]> git.ipfire.org Git - people/ms/u-boot.git/blob - cpu/ppc4xx/44x_spd_ddr2.c
Change initdram() return type to phys_size_t
[people/ms/u-boot.git] / cpu / ppc4xx / 44x_spd_ddr2.c
1 /*
2 * cpu/ppc4xx/44x_spd_ddr2.c
3 * This SPD SDRAM detection code supports AMCC PPC44x cpu's with a
4 * DDR2 controller (non Denali Core). Those currently are:
5 *
6 * 405: 405EX(r)
7 * 440/460: 440SP/440SPe/460EX/460GT
8 *
9 * Copyright (c) 2008 Nuovation System Designs, LLC
10 * Grant Erickson <gerickson@nuovations.com>
11
12 * (C) Copyright 2007-2008
13 * Stefan Roese, DENX Software Engineering, sr@denx.de.
14 *
15 * COPYRIGHT AMCC CORPORATION 2004
16 *
17 * See file CREDITS for list of people who contributed to this
18 * project.
19 *
20 * This program is free software; you can redistribute it and/or
21 * modify it under the terms of the GNU General Public License as
22 * published by the Free Software Foundation; either version 2 of
23 * the License, or (at your option) any later version.
24 *
25 * This program is distributed in the hope that it will be useful,
26 * but WITHOUT ANY WARRANTY; without even the implied warranty of
27 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
28 * GNU General Public License for more details.
29 *
30 * You should have received a copy of the GNU General Public License
31 * along with this program; if not, write to the Free Software
32 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
33 * MA 02111-1307 USA
34 *
35 */
36
37 /* define DEBUG for debugging output (obviously ;-)) */
38 #if 0
39 #define DEBUG
40 #endif
41
42 #include <common.h>
43 #include <command.h>
44 #include <ppc4xx.h>
45 #include <i2c.h>
46 #include <asm/io.h>
47 #include <asm/processor.h>
48 #include <asm/mmu.h>
49 #include <asm/cache.h>
50
51 #include "ecc.h"
52
53 #if defined(CONFIG_SPD_EEPROM) && \
54 (defined(CONFIG_440SP) || defined(CONFIG_440SPE) || \
55 defined(CONFIG_460EX) || defined(CONFIG_460GT))
56
57 /*-----------------------------------------------------------------------------+
58 * Defines
59 *-----------------------------------------------------------------------------*/
60 #ifndef TRUE
61 #define TRUE 1
62 #endif
63 #ifndef FALSE
64 #define FALSE 0
65 #endif
66
67 #define SDRAM_DDR1 1
68 #define SDRAM_DDR2 2
69 #define SDRAM_NONE 0
70
71 #define MAXDIMMS 2
72 #define MAXRANKS 4
73 #define MAXBXCF 4
74 #define MAX_SPD_BYTES 256 /* Max number of bytes on the DIMM's SPD EEPROM */
75
76 #define ONE_BILLION 1000000000
77
78 #define MULDIV64(m1, m2, d) (u32)(((u64)(m1) * (u64)(m2)) / (u64)(d))
79
80 #define CMD_NOP (7 << 19)
81 #define CMD_PRECHARGE (2 << 19)
82 #define CMD_REFRESH (1 << 19)
83 #define CMD_EMR (0 << 19)
84 #define CMD_READ (5 << 19)
85 #define CMD_WRITE (4 << 19)
86
87 #define SELECT_MR (0 << 16)
88 #define SELECT_EMR (1 << 16)
89 #define SELECT_EMR2 (2 << 16)
90 #define SELECT_EMR3 (3 << 16)
91
92 /* MR */
93 #define DLL_RESET 0x00000100
94
95 #define WRITE_RECOV_2 (1 << 9)
96 #define WRITE_RECOV_3 (2 << 9)
97 #define WRITE_RECOV_4 (3 << 9)
98 #define WRITE_RECOV_5 (4 << 9)
99 #define WRITE_RECOV_6 (5 << 9)
100
101 #define BURST_LEN_4 0x00000002
102
103 /* EMR */
104 #define ODT_0_OHM 0x00000000
105 #define ODT_50_OHM 0x00000044
106 #define ODT_75_OHM 0x00000004
107 #define ODT_150_OHM 0x00000040
108
109 #define ODS_FULL 0x00000000
110 #define ODS_REDUCED 0x00000002
111
112 /* defines for ODT (On Die Termination) of the 440SP(e) DDR2 controller */
113 #define ODT_EB0R (0x80000000 >> 8)
114 #define ODT_EB0W (0x80000000 >> 7)
115 #define CALC_ODT_R(n) (ODT_EB0R << (n << 1))
116 #define CALC_ODT_W(n) (ODT_EB0W << (n << 1))
117 #define CALC_ODT_RW(n) (CALC_ODT_R(n) | CALC_ODT_W(n))
118
119 /* Defines for the Read Cycle Delay test */
120 #define NUMMEMTESTS 8
121 #define NUMMEMWORDS 8
122 #define NUMLOOPS 64 /* memory test loops */
123
124 /*
125 * This DDR2 setup code can dynamically setup the TLB entries for the DDR2 memory
126 * region. Right now the cache should still be disabled in U-Boot because of the
127 * EMAC driver, that need it's buffer descriptor to be located in non cached
128 * memory.
129 *
130 * If at some time this restriction doesn't apply anymore, just define
131 * CONFIG_4xx_DCACHE in the board config file and this code should setup
132 * everything correctly.
133 */
134 #ifdef CONFIG_4xx_DCACHE
135 #define MY_TLB_WORD2_I_ENABLE 0 /* enable caching on SDRAM */
136 #else
137 #define MY_TLB_WORD2_I_ENABLE TLB_WORD2_I_ENABLE /* disable caching on SDRAM */
138 #endif
139
140 /*
141 * Board-specific Platform code can reimplement spd_ddr_init_hang () if needed
142 */
143 void __spd_ddr_init_hang (void)
144 {
145 hang ();
146 }
147 void spd_ddr_init_hang (void) __attribute__((weak, alias("__spd_ddr_init_hang")));
148
149 /*
150 * To provide an interface for board specific config values in this common
151 * DDR setup code, we implement he "weak" default functions here. They return
152 * the default value back to the caller.
153 *
154 * Please see include/configs/yucca.h for an example fora board specific
155 * implementation.
156 */
157 u32 __ddr_wrdtr(u32 default_val)
158 {
159 return default_val;
160 }
161 u32 ddr_wrdtr(u32) __attribute__((weak, alias("__ddr_wrdtr")));
162
163 u32 __ddr_clktr(u32 default_val)
164 {
165 return default_val;
166 }
167 u32 ddr_clktr(u32) __attribute__((weak, alias("__ddr_clktr")));
168
169
170 /* Private Structure Definitions */
171
172 /* enum only to ease code for cas latency setting */
173 typedef enum ddr_cas_id {
174 DDR_CAS_2 = 20,
175 DDR_CAS_2_5 = 25,
176 DDR_CAS_3 = 30,
177 DDR_CAS_4 = 40,
178 DDR_CAS_5 = 50
179 } ddr_cas_id_t;
180
181 /*-----------------------------------------------------------------------------+
182 * Prototypes
183 *-----------------------------------------------------------------------------*/
184 static unsigned long sdram_memsize(void);
185 static void get_spd_info(unsigned long *dimm_populated,
186 unsigned char *iic0_dimm_addr,
187 unsigned long num_dimm_banks);
188 static void check_mem_type(unsigned long *dimm_populated,
189 unsigned char *iic0_dimm_addr,
190 unsigned long num_dimm_banks);
191 static void check_frequency(unsigned long *dimm_populated,
192 unsigned char *iic0_dimm_addr,
193 unsigned long num_dimm_banks);
194 static void check_rank_number(unsigned long *dimm_populated,
195 unsigned char *iic0_dimm_addr,
196 unsigned long num_dimm_banks);
197 static void check_voltage_type(unsigned long *dimm_populated,
198 unsigned char *iic0_dimm_addr,
199 unsigned long num_dimm_banks);
200 static void program_memory_queue(unsigned long *dimm_populated,
201 unsigned char *iic0_dimm_addr,
202 unsigned long num_dimm_banks);
203 static void program_codt(unsigned long *dimm_populated,
204 unsigned char *iic0_dimm_addr,
205 unsigned long num_dimm_banks);
206 static void program_mode(unsigned long *dimm_populated,
207 unsigned char *iic0_dimm_addr,
208 unsigned long num_dimm_banks,
209 ddr_cas_id_t *selected_cas,
210 int *write_recovery);
211 static void program_tr(unsigned long *dimm_populated,
212 unsigned char *iic0_dimm_addr,
213 unsigned long num_dimm_banks);
214 static void program_rtr(unsigned long *dimm_populated,
215 unsigned char *iic0_dimm_addr,
216 unsigned long num_dimm_banks);
217 static void program_bxcf(unsigned long *dimm_populated,
218 unsigned char *iic0_dimm_addr,
219 unsigned long num_dimm_banks);
220 static void program_copt1(unsigned long *dimm_populated,
221 unsigned char *iic0_dimm_addr,
222 unsigned long num_dimm_banks);
223 static void program_initplr(unsigned long *dimm_populated,
224 unsigned char *iic0_dimm_addr,
225 unsigned long num_dimm_banks,
226 ddr_cas_id_t selected_cas,
227 int write_recovery);
228 static unsigned long is_ecc_enabled(void);
229 #ifdef CONFIG_DDR_ECC
230 static void program_ecc(unsigned long *dimm_populated,
231 unsigned char *iic0_dimm_addr,
232 unsigned long num_dimm_banks,
233 unsigned long tlb_word2_i_value);
234 static void program_ecc_addr(unsigned long start_address,
235 unsigned long num_bytes,
236 unsigned long tlb_word2_i_value);
237 #endif
238 static void program_DQS_calibration(unsigned long *dimm_populated,
239 unsigned char *iic0_dimm_addr,
240 unsigned long num_dimm_banks);
241 #ifdef HARD_CODED_DQS /* calibration test with hardvalues */
242 static void test(void);
243 #else
244 static void DQS_calibration_process(void);
245 #endif
246 static void ppc440sp_sdram_register_dump(void);
247 int do_reset (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]);
248 void dcbz_area(u32 start_address, u32 num_bytes);
249
250 static u32 mfdcr_any(u32 dcr)
251 {
252 u32 val;
253
254 switch (dcr) {
255 case SDRAM_R0BAS + 0:
256 val = mfdcr(SDRAM_R0BAS + 0);
257 break;
258 case SDRAM_R0BAS + 1:
259 val = mfdcr(SDRAM_R0BAS + 1);
260 break;
261 case SDRAM_R0BAS + 2:
262 val = mfdcr(SDRAM_R0BAS + 2);
263 break;
264 case SDRAM_R0BAS + 3:
265 val = mfdcr(SDRAM_R0BAS + 3);
266 break;
267 default:
268 printf("DCR %d not defined in case statement!!!\n", dcr);
269 val = 0; /* just to satisfy the compiler */
270 }
271
272 return val;
273 }
274
275 static void mtdcr_any(u32 dcr, u32 val)
276 {
277 switch (dcr) {
278 case SDRAM_R0BAS + 0:
279 mtdcr(SDRAM_R0BAS + 0, val);
280 break;
281 case SDRAM_R0BAS + 1:
282 mtdcr(SDRAM_R0BAS + 1, val);
283 break;
284 case SDRAM_R0BAS + 2:
285 mtdcr(SDRAM_R0BAS + 2, val);
286 break;
287 case SDRAM_R0BAS + 3:
288 mtdcr(SDRAM_R0BAS + 3, val);
289 break;
290 default:
291 printf("DCR %d not defined in case statement!!!\n", dcr);
292 }
293 }
294
295 static unsigned char spd_read(uchar chip, uint addr)
296 {
297 unsigned char data[2];
298
299 if (i2c_probe(chip) == 0)
300 if (i2c_read(chip, addr, 1, data, 1) == 0)
301 return data[0];
302
303 return 0;
304 }
305
306 /*-----------------------------------------------------------------------------+
307 * sdram_memsize
308 *-----------------------------------------------------------------------------*/
309 static unsigned long sdram_memsize(void)
310 {
311 unsigned long mem_size;
312 unsigned long mcopt2;
313 unsigned long mcstat;
314 unsigned long mb0cf;
315 unsigned long sdsz;
316 unsigned long i;
317
318 mem_size = 0;
319
320 mfsdram(SDRAM_MCOPT2, mcopt2);
321 mfsdram(SDRAM_MCSTAT, mcstat);
322
323 /* DDR controller must be enabled and not in self-refresh. */
324 /* Otherwise memsize is zero. */
325 if (((mcopt2 & SDRAM_MCOPT2_DCEN_MASK) == SDRAM_MCOPT2_DCEN_ENABLE)
326 && ((mcopt2 & SDRAM_MCOPT2_SREN_MASK) == SDRAM_MCOPT2_SREN_EXIT)
327 && ((mcstat & (SDRAM_MCSTAT_MIC_MASK | SDRAM_MCSTAT_SRMS_MASK))
328 == (SDRAM_MCSTAT_MIC_COMP | SDRAM_MCSTAT_SRMS_NOT_SF))) {
329 for (i = 0; i < MAXBXCF; i++) {
330 mfsdram(SDRAM_MB0CF + (i << 2), mb0cf);
331 /* Banks enabled */
332 if ((mb0cf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
333 sdsz = mfdcr_any(SDRAM_R0BAS + i) & SDRAM_RXBAS_SDSZ_MASK;
334
335 switch(sdsz) {
336 case SDRAM_RXBAS_SDSZ_8:
337 mem_size+=8;
338 break;
339 case SDRAM_RXBAS_SDSZ_16:
340 mem_size+=16;
341 break;
342 case SDRAM_RXBAS_SDSZ_32:
343 mem_size+=32;
344 break;
345 case SDRAM_RXBAS_SDSZ_64:
346 mem_size+=64;
347 break;
348 case SDRAM_RXBAS_SDSZ_128:
349 mem_size+=128;
350 break;
351 case SDRAM_RXBAS_SDSZ_256:
352 mem_size+=256;
353 break;
354 case SDRAM_RXBAS_SDSZ_512:
355 mem_size+=512;
356 break;
357 case SDRAM_RXBAS_SDSZ_1024:
358 mem_size+=1024;
359 break;
360 case SDRAM_RXBAS_SDSZ_2048:
361 mem_size+=2048;
362 break;
363 case SDRAM_RXBAS_SDSZ_4096:
364 mem_size+=4096;
365 break;
366 default:
367 mem_size=0;
368 break;
369 }
370 }
371 }
372 }
373
374 mem_size *= 1024 * 1024;
375 return(mem_size);
376 }
377
378 /*-----------------------------------------------------------------------------+
379 * initdram. Initializes the 440SP Memory Queue and DDR SDRAM controller.
380 * Note: This routine runs from flash with a stack set up in the chip's
381 * sram space. It is important that the routine does not require .sbss, .bss or
382 * .data sections. It also cannot call routines that require these sections.
383 *-----------------------------------------------------------------------------*/
384 /*-----------------------------------------------------------------------------
385 * Function: initdram
386 * Description: Configures SDRAM memory banks for DDR operation.
387 * Auto Memory Configuration option reads the DDR SDRAM EEPROMs
388 * via the IIC bus and then configures the DDR SDRAM memory
389 * banks appropriately. If Auto Memory Configuration is
390 * not used, it is assumed that no DIMM is plugged
391 *-----------------------------------------------------------------------------*/
392 phys_size_t initdram(int board_type)
393 {
394 unsigned char iic0_dimm_addr[] = SPD_EEPROM_ADDRESS;
395 unsigned char spd0[MAX_SPD_BYTES];
396 unsigned char spd1[MAX_SPD_BYTES];
397 unsigned char *dimm_spd[MAXDIMMS];
398 unsigned long dimm_populated[MAXDIMMS];
399 unsigned long num_dimm_banks; /* on board dimm banks */
400 unsigned long val;
401 ddr_cas_id_t selected_cas = DDR_CAS_5; /* preset to silence compiler */
402 int write_recovery;
403 unsigned long dram_size = 0;
404
405 num_dimm_banks = sizeof(iic0_dimm_addr);
406
407 /*------------------------------------------------------------------
408 * Set up an array of SPD matrixes.
409 *-----------------------------------------------------------------*/
410 dimm_spd[0] = spd0;
411 dimm_spd[1] = spd1;
412
413 /*------------------------------------------------------------------
414 * Reset the DDR-SDRAM controller.
415 *-----------------------------------------------------------------*/
416 mtsdr(SDR0_SRST, (0x80000000 >> 10));
417 mtsdr(SDR0_SRST, 0x00000000);
418
419 /*
420 * Make sure I2C controller is initialized
421 * before continuing.
422 */
423
424 /* switch to correct I2C bus */
425 I2C_SET_BUS(CFG_SPD_BUS_NUM);
426 i2c_init(CFG_I2C_SPEED, CFG_I2C_SLAVE);
427
428 /*------------------------------------------------------------------
429 * Clear out the serial presence detect buffers.
430 * Perform IIC reads from the dimm. Fill in the spds.
431 * Check to see if the dimm slots are populated
432 *-----------------------------------------------------------------*/
433 get_spd_info(dimm_populated, iic0_dimm_addr, num_dimm_banks);
434
435 /*------------------------------------------------------------------
436 * Check the memory type for the dimms plugged.
437 *-----------------------------------------------------------------*/
438 check_mem_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
439
440 /*------------------------------------------------------------------
441 * Check the frequency supported for the dimms plugged.
442 *-----------------------------------------------------------------*/
443 check_frequency(dimm_populated, iic0_dimm_addr, num_dimm_banks);
444
445 /*------------------------------------------------------------------
446 * Check the total rank number.
447 *-----------------------------------------------------------------*/
448 check_rank_number(dimm_populated, iic0_dimm_addr, num_dimm_banks);
449
450 /*------------------------------------------------------------------
451 * Check the voltage type for the dimms plugged.
452 *-----------------------------------------------------------------*/
453 check_voltage_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
454
455 /*------------------------------------------------------------------
456 * Program SDRAM controller options 2 register
457 * Except Enabling of the memory controller.
458 *-----------------------------------------------------------------*/
459 mfsdram(SDRAM_MCOPT2, val);
460 mtsdram(SDRAM_MCOPT2,
461 (val &
462 ~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_PMEN_MASK |
463 SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_XSRP_MASK |
464 SDRAM_MCOPT2_ISIE_MASK))
465 | (SDRAM_MCOPT2_SREN_ENTER | SDRAM_MCOPT2_PMEN_DISABLE |
466 SDRAM_MCOPT2_IPTR_IDLE | SDRAM_MCOPT2_XSRP_ALLOW |
467 SDRAM_MCOPT2_ISIE_ENABLE));
468
469 /*------------------------------------------------------------------
470 * Program SDRAM controller options 1 register
471 * Note: Does not enable the memory controller.
472 *-----------------------------------------------------------------*/
473 program_copt1(dimm_populated, iic0_dimm_addr, num_dimm_banks);
474
475 /*------------------------------------------------------------------
476 * Set the SDRAM Controller On Die Termination Register
477 *-----------------------------------------------------------------*/
478 program_codt(dimm_populated, iic0_dimm_addr, num_dimm_banks);
479
480 /*------------------------------------------------------------------
481 * Program SDRAM refresh register.
482 *-----------------------------------------------------------------*/
483 program_rtr(dimm_populated, iic0_dimm_addr, num_dimm_banks);
484
485 /*------------------------------------------------------------------
486 * Program SDRAM mode register.
487 *-----------------------------------------------------------------*/
488 program_mode(dimm_populated, iic0_dimm_addr, num_dimm_banks,
489 &selected_cas, &write_recovery);
490
491 /*------------------------------------------------------------------
492 * Set the SDRAM Write Data/DM/DQS Clock Timing Reg
493 *-----------------------------------------------------------------*/
494 mfsdram(SDRAM_WRDTR, val);
495 mtsdram(SDRAM_WRDTR, (val & ~(SDRAM_WRDTR_LLWP_MASK | SDRAM_WRDTR_WTR_MASK)) |
496 ddr_wrdtr(SDRAM_WRDTR_LLWP_1_CYC | SDRAM_WRDTR_WTR_90_DEG_ADV));
497
498 /*------------------------------------------------------------------
499 * Set the SDRAM Clock Timing Register
500 *-----------------------------------------------------------------*/
501 mfsdram(SDRAM_CLKTR, val);
502 mtsdram(SDRAM_CLKTR, (val & ~SDRAM_CLKTR_CLKP_MASK) |
503 ddr_clktr(SDRAM_CLKTR_CLKP_0_DEG));
504
505 /*------------------------------------------------------------------
506 * Program the BxCF registers.
507 *-----------------------------------------------------------------*/
508 program_bxcf(dimm_populated, iic0_dimm_addr, num_dimm_banks);
509
510 /*------------------------------------------------------------------
511 * Program SDRAM timing registers.
512 *-----------------------------------------------------------------*/
513 program_tr(dimm_populated, iic0_dimm_addr, num_dimm_banks);
514
515 /*------------------------------------------------------------------
516 * Set the Extended Mode register
517 *-----------------------------------------------------------------*/
518 mfsdram(SDRAM_MEMODE, val);
519 mtsdram(SDRAM_MEMODE,
520 (val & ~(SDRAM_MEMODE_DIC_MASK | SDRAM_MEMODE_DLL_MASK |
521 SDRAM_MEMODE_RTT_MASK | SDRAM_MEMODE_DQS_MASK)) |
522 (SDRAM_MEMODE_DIC_NORMAL | SDRAM_MEMODE_DLL_ENABLE
523 | SDRAM_MEMODE_RTT_150OHM | SDRAM_MEMODE_DQS_ENABLE));
524
525 /*------------------------------------------------------------------
526 * Program Initialization preload registers.
527 *-----------------------------------------------------------------*/
528 program_initplr(dimm_populated, iic0_dimm_addr, num_dimm_banks,
529 selected_cas, write_recovery);
530
531 /*------------------------------------------------------------------
532 * Delay to ensure 200usec have elapsed since reset.
533 *-----------------------------------------------------------------*/
534 udelay(400);
535
536 /*------------------------------------------------------------------
537 * Set the memory queue core base addr.
538 *-----------------------------------------------------------------*/
539 program_memory_queue(dimm_populated, iic0_dimm_addr, num_dimm_banks);
540
541 /*------------------------------------------------------------------
542 * Program SDRAM controller options 2 register
543 * Enable the memory controller.
544 *-----------------------------------------------------------------*/
545 mfsdram(SDRAM_MCOPT2, val);
546 mtsdram(SDRAM_MCOPT2,
547 (val & ~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_DCEN_MASK |
548 SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_ISIE_MASK)) |
549 (SDRAM_MCOPT2_DCEN_ENABLE | SDRAM_MCOPT2_IPTR_EXECUTE));
550
551 /*------------------------------------------------------------------
552 * Wait for SDRAM_CFG0_DC_EN to complete.
553 *-----------------------------------------------------------------*/
554 do {
555 mfsdram(SDRAM_MCSTAT, val);
556 } while ((val & SDRAM_MCSTAT_MIC_MASK) == SDRAM_MCSTAT_MIC_NOTCOMP);
557
558 /* get installed memory size */
559 dram_size = sdram_memsize();
560
561 /* and program tlb entries for this size (dynamic) */
562
563 /*
564 * Program TLB entries with caches enabled, for best performace
565 * while auto-calibrating and ECC generation
566 */
567 program_tlb(0, 0, dram_size, 0);
568
569 /*------------------------------------------------------------------
570 * DQS calibration.
571 *-----------------------------------------------------------------*/
572 program_DQS_calibration(dimm_populated, iic0_dimm_addr, num_dimm_banks);
573
574 #ifdef CONFIG_DDR_ECC
575 /*------------------------------------------------------------------
576 * If ecc is enabled, initialize the parity bits.
577 *-----------------------------------------------------------------*/
578 program_ecc(dimm_populated, iic0_dimm_addr, num_dimm_banks, 0);
579 #endif
580
581 /*
582 * Now after initialization (auto-calibration and ECC generation)
583 * remove the TLB entries with caches enabled and program again with
584 * desired cache functionality
585 */
586 remove_tlb(0, dram_size);
587 program_tlb(0, 0, dram_size, MY_TLB_WORD2_I_ENABLE);
588
589 ppc440sp_sdram_register_dump();
590
591 /*
592 * Clear potential errors resulting from auto-calibration.
593 * If not done, then we could get an interrupt later on when
594 * exceptions are enabled.
595 */
596 set_mcsr(get_mcsr());
597
598 return dram_size;
599 }
600
601 static void get_spd_info(unsigned long *dimm_populated,
602 unsigned char *iic0_dimm_addr,
603 unsigned long num_dimm_banks)
604 {
605 unsigned long dimm_num;
606 unsigned long dimm_found;
607 unsigned char num_of_bytes;
608 unsigned char total_size;
609
610 dimm_found = FALSE;
611 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
612 num_of_bytes = 0;
613 total_size = 0;
614
615 num_of_bytes = spd_read(iic0_dimm_addr[dimm_num], 0);
616 debug("\nspd_read(0x%x) returned %d\n",
617 iic0_dimm_addr[dimm_num], num_of_bytes);
618 total_size = spd_read(iic0_dimm_addr[dimm_num], 1);
619 debug("spd_read(0x%x) returned %d\n",
620 iic0_dimm_addr[dimm_num], total_size);
621
622 if ((num_of_bytes != 0) && (total_size != 0)) {
623 dimm_populated[dimm_num] = TRUE;
624 dimm_found = TRUE;
625 debug("DIMM slot %lu: populated\n", dimm_num);
626 } else {
627 dimm_populated[dimm_num] = FALSE;
628 debug("DIMM slot %lu: Not populated\n", dimm_num);
629 }
630 }
631
632 if (dimm_found == FALSE) {
633 printf("ERROR - No memory installed. Install a DDR-SDRAM DIMM.\n\n");
634 spd_ddr_init_hang ();
635 }
636 }
637
638 void board_add_ram_info(int use_default)
639 {
640 PPC4xx_SYS_INFO board_cfg;
641 u32 val;
642
643 if (is_ecc_enabled())
644 puts(" (ECC");
645 else
646 puts(" (ECC not");
647
648 get_sys_info(&board_cfg);
649
650 mfsdr(SDR0_DDR0, val);
651 val = MULDIV64((board_cfg.freqPLB), SDR0_DDR0_DDRM_DECODE(val), 1);
652 printf(" enabled, %d MHz", (val * 2) / 1000000);
653
654 mfsdram(SDRAM_MMODE, val);
655 val = (val & SDRAM_MMODE_DCL_MASK) >> 4;
656 printf(", CL%d)", val);
657 }
658
659 /*------------------------------------------------------------------
660 * For the memory DIMMs installed, this routine verifies that they
661 * really are DDR specific DIMMs.
662 *-----------------------------------------------------------------*/
663 static void check_mem_type(unsigned long *dimm_populated,
664 unsigned char *iic0_dimm_addr,
665 unsigned long num_dimm_banks)
666 {
667 unsigned long dimm_num;
668 unsigned long dimm_type;
669
670 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
671 if (dimm_populated[dimm_num] == TRUE) {
672 dimm_type = spd_read(iic0_dimm_addr[dimm_num], 2);
673 switch (dimm_type) {
674 case 1:
675 printf("ERROR: Standard Fast Page Mode DRAM DIMM detected in "
676 "slot %d.\n", (unsigned int)dimm_num);
677 printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
678 printf("Replace the DIMM module with a supported DIMM.\n\n");
679 spd_ddr_init_hang ();
680 break;
681 case 2:
682 printf("ERROR: EDO DIMM detected in slot %d.\n",
683 (unsigned int)dimm_num);
684 printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
685 printf("Replace the DIMM module with a supported DIMM.\n\n");
686 spd_ddr_init_hang ();
687 break;
688 case 3:
689 printf("ERROR: Pipelined Nibble DIMM detected in slot %d.\n",
690 (unsigned int)dimm_num);
691 printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
692 printf("Replace the DIMM module with a supported DIMM.\n\n");
693 spd_ddr_init_hang ();
694 break;
695 case 4:
696 printf("ERROR: SDRAM DIMM detected in slot %d.\n",
697 (unsigned int)dimm_num);
698 printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
699 printf("Replace the DIMM module with a supported DIMM.\n\n");
700 spd_ddr_init_hang ();
701 break;
702 case 5:
703 printf("ERROR: Multiplexed ROM DIMM detected in slot %d.\n",
704 (unsigned int)dimm_num);
705 printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
706 printf("Replace the DIMM module with a supported DIMM.\n\n");
707 spd_ddr_init_hang ();
708 break;
709 case 6:
710 printf("ERROR: SGRAM DIMM detected in slot %d.\n",
711 (unsigned int)dimm_num);
712 printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
713 printf("Replace the DIMM module with a supported DIMM.\n\n");
714 spd_ddr_init_hang ();
715 break;
716 case 7:
717 debug("DIMM slot %d: DDR1 SDRAM detected\n", dimm_num);
718 dimm_populated[dimm_num] = SDRAM_DDR1;
719 break;
720 case 8:
721 debug("DIMM slot %d: DDR2 SDRAM detected\n", dimm_num);
722 dimm_populated[dimm_num] = SDRAM_DDR2;
723 break;
724 default:
725 printf("ERROR: Unknown DIMM detected in slot %d.\n",
726 (unsigned int)dimm_num);
727 printf("Only DDR1 and DDR2 SDRAM DIMMs are supported.\n");
728 printf("Replace the DIMM module with a supported DIMM.\n\n");
729 spd_ddr_init_hang ();
730 break;
731 }
732 }
733 }
734 for (dimm_num = 1; dimm_num < num_dimm_banks; dimm_num++) {
735 if ((dimm_populated[dimm_num-1] != SDRAM_NONE)
736 && (dimm_populated[dimm_num] != SDRAM_NONE)
737 && (dimm_populated[dimm_num-1] != dimm_populated[dimm_num])) {
738 printf("ERROR: DIMM's DDR1 and DDR2 type can not be mixed.\n");
739 spd_ddr_init_hang ();
740 }
741 }
742 }
743
744 /*------------------------------------------------------------------
745 * For the memory DIMMs installed, this routine verifies that
746 * frequency previously calculated is supported.
747 *-----------------------------------------------------------------*/
748 static void check_frequency(unsigned long *dimm_populated,
749 unsigned char *iic0_dimm_addr,
750 unsigned long num_dimm_banks)
751 {
752 unsigned long dimm_num;
753 unsigned long tcyc_reg;
754 unsigned long cycle_time;
755 unsigned long calc_cycle_time;
756 unsigned long sdram_freq;
757 unsigned long sdr_ddrpll;
758 PPC4xx_SYS_INFO board_cfg;
759
760 /*------------------------------------------------------------------
761 * Get the board configuration info.
762 *-----------------------------------------------------------------*/
763 get_sys_info(&board_cfg);
764
765 mfsdr(SDR0_DDR0, sdr_ddrpll);
766 sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
767
768 /*
769 * calc_cycle_time is calculated from DDR frequency set by board/chip
770 * and is expressed in multiple of 10 picoseconds
771 * to match the way DIMM cycle time is calculated below.
772 */
773 calc_cycle_time = MULDIV64(ONE_BILLION, 100, sdram_freq);
774
775 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
776 if (dimm_populated[dimm_num] != SDRAM_NONE) {
777 tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
778 /*
779 * Byte 9, Cycle time for CAS Latency=X, is split into two nibbles:
780 * the higher order nibble (bits 4-7) designates the cycle time
781 * to a granularity of 1ns;
782 * the value presented by the lower order nibble (bits 0-3)
783 * has a granularity of .1ns and is added to the value designated
784 * by the higher nibble. In addition, four lines of the lower order
785 * nibble are assigned to support +.25,+.33, +.66 and +.75.
786 */
787 /* Convert from hex to decimal */
788 if ((tcyc_reg & 0x0F) == 0x0D)
789 cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 75;
790 else if ((tcyc_reg & 0x0F) == 0x0C)
791 cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 66;
792 else if ((tcyc_reg & 0x0F) == 0x0B)
793 cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 33;
794 else if ((tcyc_reg & 0x0F) == 0x0A)
795 cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 25;
796 else
797 cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) +
798 ((tcyc_reg & 0x0F)*10);
799 debug("cycle_time=%d [10 picoseconds]\n", cycle_time);
800
801 if (cycle_time > (calc_cycle_time + 10)) {
802 /*
803 * the provided sdram cycle_time is too small
804 * for the available DIMM cycle_time.
805 * The additionnal 100ps is here to accept a small incertainty.
806 */
807 printf("ERROR: DRAM DIMM detected with cycle_time %d ps in "
808 "slot %d \n while calculated cycle time is %d ps.\n",
809 (unsigned int)(cycle_time*10),
810 (unsigned int)dimm_num,
811 (unsigned int)(calc_cycle_time*10));
812 printf("Replace the DIMM, or change DDR frequency via "
813 "strapping bits.\n\n");
814 spd_ddr_init_hang ();
815 }
816 }
817 }
818 }
819
820 /*------------------------------------------------------------------
821 * For the memory DIMMs installed, this routine verifies two
822 * ranks/banks maximum are availables.
823 *-----------------------------------------------------------------*/
824 static void check_rank_number(unsigned long *dimm_populated,
825 unsigned char *iic0_dimm_addr,
826 unsigned long num_dimm_banks)
827 {
828 unsigned long dimm_num;
829 unsigned long dimm_rank;
830 unsigned long total_rank = 0;
831
832 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
833 if (dimm_populated[dimm_num] != SDRAM_NONE) {
834 dimm_rank = spd_read(iic0_dimm_addr[dimm_num], 5);
835 if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
836 dimm_rank = (dimm_rank & 0x0F) +1;
837 else
838 dimm_rank = dimm_rank & 0x0F;
839
840
841 if (dimm_rank > MAXRANKS) {
842 printf("ERROR: DRAM DIMM detected with %d ranks in "
843 "slot %d is not supported.\n", dimm_rank, dimm_num);
844 printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS);
845 printf("Replace the DIMM module with a supported DIMM.\n\n");
846 spd_ddr_init_hang ();
847 } else
848 total_rank += dimm_rank;
849 }
850 if (total_rank > MAXRANKS) {
851 printf("ERROR: DRAM DIMM detected with a total of %d ranks "
852 "for all slots.\n", (unsigned int)total_rank);
853 printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS);
854 printf("Remove one of the DIMM modules.\n\n");
855 spd_ddr_init_hang ();
856 }
857 }
858 }
859
860 /*------------------------------------------------------------------
861 * only support 2.5V modules.
862 * This routine verifies this.
863 *-----------------------------------------------------------------*/
864 static void check_voltage_type(unsigned long *dimm_populated,
865 unsigned char *iic0_dimm_addr,
866 unsigned long num_dimm_banks)
867 {
868 unsigned long dimm_num;
869 unsigned long voltage_type;
870
871 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
872 if (dimm_populated[dimm_num] != SDRAM_NONE) {
873 voltage_type = spd_read(iic0_dimm_addr[dimm_num], 8);
874 switch (voltage_type) {
875 case 0x00:
876 printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
877 printf("This DIMM is 5.0 Volt/TTL.\n");
878 printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
879 (unsigned int)dimm_num);
880 spd_ddr_init_hang ();
881 break;
882 case 0x01:
883 printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
884 printf("This DIMM is LVTTL.\n");
885 printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
886 (unsigned int)dimm_num);
887 spd_ddr_init_hang ();
888 break;
889 case 0x02:
890 printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
891 printf("This DIMM is 1.5 Volt.\n");
892 printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
893 (unsigned int)dimm_num);
894 spd_ddr_init_hang ();
895 break;
896 case 0x03:
897 printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
898 printf("This DIMM is 3.3 Volt/TTL.\n");
899 printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
900 (unsigned int)dimm_num);
901 spd_ddr_init_hang ();
902 break;
903 case 0x04:
904 /* 2.5 Voltage only for DDR1 */
905 break;
906 case 0x05:
907 /* 1.8 Voltage only for DDR2 */
908 break;
909 default:
910 printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
911 printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
912 (unsigned int)dimm_num);
913 spd_ddr_init_hang ();
914 break;
915 }
916 }
917 }
918 }
919
920 /*-----------------------------------------------------------------------------+
921 * program_copt1.
922 *-----------------------------------------------------------------------------*/
923 static void program_copt1(unsigned long *dimm_populated,
924 unsigned char *iic0_dimm_addr,
925 unsigned long num_dimm_banks)
926 {
927 unsigned long dimm_num;
928 unsigned long mcopt1;
929 unsigned long ecc_enabled;
930 unsigned long ecc = 0;
931 unsigned long data_width = 0;
932 unsigned long dimm_32bit;
933 unsigned long dimm_64bit;
934 unsigned long registered = 0;
935 unsigned long attribute = 0;
936 unsigned long buf0, buf1; /* TODO: code to be changed for IOP1.6 to support 4 DIMMs */
937 unsigned long bankcount;
938 unsigned long ddrtype;
939 unsigned long val;
940
941 #ifdef CONFIG_DDR_ECC
942 ecc_enabled = TRUE;
943 #else
944 ecc_enabled = FALSE;
945 #endif
946 dimm_32bit = FALSE;
947 dimm_64bit = FALSE;
948 buf0 = FALSE;
949 buf1 = FALSE;
950
951 /*------------------------------------------------------------------
952 * Set memory controller options reg 1, SDRAM_MCOPT1.
953 *-----------------------------------------------------------------*/
954 mfsdram(SDRAM_MCOPT1, val);
955 mcopt1 = val & ~(SDRAM_MCOPT1_MCHK_MASK | SDRAM_MCOPT1_RDEN_MASK |
956 SDRAM_MCOPT1_PMU_MASK | SDRAM_MCOPT1_DMWD_MASK |
957 SDRAM_MCOPT1_UIOS_MASK | SDRAM_MCOPT1_BCNT_MASK |
958 SDRAM_MCOPT1_DDR_TYPE_MASK | SDRAM_MCOPT1_RWOO_MASK |
959 SDRAM_MCOPT1_WOOO_MASK | SDRAM_MCOPT1_DCOO_MASK |
960 SDRAM_MCOPT1_DREF_MASK);
961
962 mcopt1 |= SDRAM_MCOPT1_QDEP;
963 mcopt1 |= SDRAM_MCOPT1_PMU_OPEN;
964 mcopt1 |= SDRAM_MCOPT1_RWOO_DISABLED;
965 mcopt1 |= SDRAM_MCOPT1_WOOO_DISABLED;
966 mcopt1 |= SDRAM_MCOPT1_DCOO_DISABLED;
967 mcopt1 |= SDRAM_MCOPT1_DREF_NORMAL;
968
969 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
970 if (dimm_populated[dimm_num] != SDRAM_NONE) {
971 /* test ecc support */
972 ecc = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 11);
973 if (ecc != 0x02) /* ecc not supported */
974 ecc_enabled = FALSE;
975
976 /* test bank count */
977 bankcount = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 17);
978 if (bankcount == 0x04) /* bank count = 4 */
979 mcopt1 |= SDRAM_MCOPT1_4_BANKS;
980 else /* bank count = 8 */
981 mcopt1 |= SDRAM_MCOPT1_8_BANKS;
982
983 /* test DDR type */
984 ddrtype = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2);
985 /* test for buffered/unbuffered, registered, differential clocks */
986 registered = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 20);
987 attribute = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 21);
988
989 /* TODO: code to be changed for IOP1.6 to support 4 DIMMs */
990 if (dimm_num == 0) {
991 if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */
992 mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE;
993 if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */
994 mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE;
995 if (registered == 1) { /* DDR2 always buffered */
996 /* TODO: what about above comments ? */
997 mcopt1 |= SDRAM_MCOPT1_RDEN;
998 buf0 = TRUE;
999 } else {
1000 /* TODO: the mask 0x02 doesn't match Samsung def for byte 21. */
1001 if ((attribute & 0x02) == 0x00) {
1002 /* buffered not supported */
1003 buf0 = FALSE;
1004 } else {
1005 mcopt1 |= SDRAM_MCOPT1_RDEN;
1006 buf0 = TRUE;
1007 }
1008 }
1009 }
1010 else if (dimm_num == 1) {
1011 if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */
1012 mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE;
1013 if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */
1014 mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE;
1015 if (registered == 1) {
1016 /* DDR2 always buffered */
1017 mcopt1 |= SDRAM_MCOPT1_RDEN;
1018 buf1 = TRUE;
1019 } else {
1020 if ((attribute & 0x02) == 0x00) {
1021 /* buffered not supported */
1022 buf1 = FALSE;
1023 } else {
1024 mcopt1 |= SDRAM_MCOPT1_RDEN;
1025 buf1 = TRUE;
1026 }
1027 }
1028 }
1029
1030 /* Note that for DDR2 the byte 7 is reserved, but OK to keep code as is. */
1031 data_width = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 6) +
1032 (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 7)) << 8);
1033
1034 switch (data_width) {
1035 case 72:
1036 case 64:
1037 dimm_64bit = TRUE;
1038 break;
1039 case 40:
1040 case 32:
1041 dimm_32bit = TRUE;
1042 break;
1043 default:
1044 printf("WARNING: Detected a DIMM with a data width of %d bits.\n",
1045 data_width);
1046 printf("Only DIMMs with 32 or 64 bit DDR-SDRAM widths are supported.\n");
1047 break;
1048 }
1049 }
1050 }
1051
1052 /* verify matching properties */
1053 if ((dimm_populated[0] != SDRAM_NONE) && (dimm_populated[1] != SDRAM_NONE)) {
1054 if (buf0 != buf1) {
1055 printf("ERROR: DIMM's buffered/unbuffered, registered, clocking don't match.\n");
1056 spd_ddr_init_hang ();
1057 }
1058 }
1059
1060 if ((dimm_64bit == TRUE) && (dimm_32bit == TRUE)) {
1061 printf("ERROR: Cannot mix 32 bit and 64 bit DDR-SDRAM DIMMs together.\n");
1062 spd_ddr_init_hang ();
1063 }
1064 else if ((dimm_64bit == TRUE) && (dimm_32bit == FALSE)) {
1065 mcopt1 |= SDRAM_MCOPT1_DMWD_64;
1066 } else if ((dimm_64bit == FALSE) && (dimm_32bit == TRUE)) {
1067 mcopt1 |= SDRAM_MCOPT1_DMWD_32;
1068 } else {
1069 printf("ERROR: Please install only 32 or 64 bit DDR-SDRAM DIMMs.\n\n");
1070 spd_ddr_init_hang ();
1071 }
1072
1073 if (ecc_enabled == TRUE)
1074 mcopt1 |= SDRAM_MCOPT1_MCHK_GEN;
1075 else
1076 mcopt1 |= SDRAM_MCOPT1_MCHK_NON;
1077
1078 mtsdram(SDRAM_MCOPT1, mcopt1);
1079 }
1080
1081 /*-----------------------------------------------------------------------------+
1082 * program_codt.
1083 *-----------------------------------------------------------------------------*/
1084 static void program_codt(unsigned long *dimm_populated,
1085 unsigned char *iic0_dimm_addr,
1086 unsigned long num_dimm_banks)
1087 {
1088 unsigned long codt;
1089 unsigned long modt0 = 0;
1090 unsigned long modt1 = 0;
1091 unsigned long modt2 = 0;
1092 unsigned long modt3 = 0;
1093 unsigned char dimm_num;
1094 unsigned char dimm_rank;
1095 unsigned char total_rank = 0;
1096 unsigned char total_dimm = 0;
1097 unsigned char dimm_type = 0;
1098 unsigned char firstSlot = 0;
1099
1100 /*------------------------------------------------------------------
1101 * Set the SDRAM Controller On Die Termination Register
1102 *-----------------------------------------------------------------*/
1103 mfsdram(SDRAM_CODT, codt);
1104 codt |= (SDRAM_CODT_IO_NMODE
1105 & (~SDRAM_CODT_DQS_SINGLE_END
1106 & ~SDRAM_CODT_CKSE_SINGLE_END
1107 & ~SDRAM_CODT_FEEBBACK_RCV_SINGLE_END
1108 & ~SDRAM_CODT_FEEBBACK_DRV_SINGLE_END));
1109
1110 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
1111 if (dimm_populated[dimm_num] != SDRAM_NONE) {
1112 dimm_rank = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 5);
1113 if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08) {
1114 dimm_rank = (dimm_rank & 0x0F) + 1;
1115 dimm_type = SDRAM_DDR2;
1116 } else {
1117 dimm_rank = dimm_rank & 0x0F;
1118 dimm_type = SDRAM_DDR1;
1119 }
1120
1121 total_rank += dimm_rank;
1122 total_dimm++;
1123 if ((dimm_num == 0) && (total_dimm == 1))
1124 firstSlot = TRUE;
1125 else
1126 firstSlot = FALSE;
1127 }
1128 }
1129 if (dimm_type == SDRAM_DDR2) {
1130 codt |= SDRAM_CODT_DQS_1_8_V_DDR2;
1131 if ((total_dimm == 1) && (firstSlot == TRUE)) {
1132 if (total_rank == 1) {
1133 codt |= CALC_ODT_R(0);
1134 modt0 = CALC_ODT_W(0);
1135 modt1 = 0x00000000;
1136 modt2 = 0x00000000;
1137 modt3 = 0x00000000;
1138 }
1139 if (total_rank == 2) {
1140 codt |= CALC_ODT_R(0) | CALC_ODT_R(1);
1141 modt0 = CALC_ODT_W(0);
1142 modt1 = CALC_ODT_W(0);
1143 modt2 = 0x00000000;
1144 modt3 = 0x00000000;
1145 }
1146 } else if ((total_dimm == 1) && (firstSlot != TRUE)) {
1147 if (total_rank == 1) {
1148 codt |= CALC_ODT_R(2);
1149 modt0 = 0x00000000;
1150 modt1 = 0x00000000;
1151 modt2 = CALC_ODT_W(2);
1152 modt3 = 0x00000000;
1153 }
1154 if (total_rank == 2) {
1155 codt |= CALC_ODT_R(2) | CALC_ODT_R(3);
1156 modt0 = 0x00000000;
1157 modt1 = 0x00000000;
1158 modt2 = CALC_ODT_W(2);
1159 modt3 = CALC_ODT_W(2);
1160 }
1161 }
1162 if (total_dimm == 2) {
1163 if (total_rank == 2) {
1164 codt |= CALC_ODT_R(0) | CALC_ODT_R(2);
1165 modt0 = CALC_ODT_RW(2);
1166 modt1 = 0x00000000;
1167 modt2 = CALC_ODT_RW(0);
1168 modt3 = 0x00000000;
1169 }
1170 if (total_rank == 4) {
1171 codt |= CALC_ODT_R(0) | CALC_ODT_R(1) |
1172 CALC_ODT_R(2) | CALC_ODT_R(3);
1173 modt0 = CALC_ODT_RW(2);
1174 modt1 = 0x00000000;
1175 modt2 = CALC_ODT_RW(0);
1176 modt3 = 0x00000000;
1177 }
1178 }
1179 } else {
1180 codt |= SDRAM_CODT_DQS_2_5_V_DDR1;
1181 modt0 = 0x00000000;
1182 modt1 = 0x00000000;
1183 modt2 = 0x00000000;
1184 modt3 = 0x00000000;
1185
1186 if (total_dimm == 1) {
1187 if (total_rank == 1)
1188 codt |= 0x00800000;
1189 if (total_rank == 2)
1190 codt |= 0x02800000;
1191 }
1192 if (total_dimm == 2) {
1193 if (total_rank == 2)
1194 codt |= 0x08800000;
1195 if (total_rank == 4)
1196 codt |= 0x2a800000;
1197 }
1198 }
1199
1200 debug("nb of dimm %d\n", total_dimm);
1201 debug("nb of rank %d\n", total_rank);
1202 if (total_dimm == 1)
1203 debug("dimm in slot %d\n", firstSlot);
1204
1205 mtsdram(SDRAM_CODT, codt);
1206 mtsdram(SDRAM_MODT0, modt0);
1207 mtsdram(SDRAM_MODT1, modt1);
1208 mtsdram(SDRAM_MODT2, modt2);
1209 mtsdram(SDRAM_MODT3, modt3);
1210 }
1211
1212 /*-----------------------------------------------------------------------------+
1213 * program_initplr.
1214 *-----------------------------------------------------------------------------*/
1215 static void program_initplr(unsigned long *dimm_populated,
1216 unsigned char *iic0_dimm_addr,
1217 unsigned long num_dimm_banks,
1218 ddr_cas_id_t selected_cas,
1219 int write_recovery)
1220 {
1221 u32 cas = 0;
1222 u32 odt = 0;
1223 u32 ods = 0;
1224 u32 mr;
1225 u32 wr;
1226 u32 emr;
1227 u32 emr2;
1228 u32 emr3;
1229 int dimm_num;
1230 int total_dimm = 0;
1231
1232 /******************************************************
1233 ** Assumption: if more than one DIMM, all DIMMs are the same
1234 ** as already checked in check_memory_type
1235 ******************************************************/
1236
1237 if ((dimm_populated[0] == SDRAM_DDR1) || (dimm_populated[1] == SDRAM_DDR1)) {
1238 mtsdram(SDRAM_INITPLR0, 0x81B80000);
1239 mtsdram(SDRAM_INITPLR1, 0x81900400);
1240 mtsdram(SDRAM_INITPLR2, 0x81810000);
1241 mtsdram(SDRAM_INITPLR3, 0xff800162);
1242 mtsdram(SDRAM_INITPLR4, 0x81900400);
1243 mtsdram(SDRAM_INITPLR5, 0x86080000);
1244 mtsdram(SDRAM_INITPLR6, 0x86080000);
1245 mtsdram(SDRAM_INITPLR7, 0x81000062);
1246 } else if ((dimm_populated[0] == SDRAM_DDR2) || (dimm_populated[1] == SDRAM_DDR2)) {
1247 switch (selected_cas) {
1248 case DDR_CAS_3:
1249 cas = 3 << 4;
1250 break;
1251 case DDR_CAS_4:
1252 cas = 4 << 4;
1253 break;
1254 case DDR_CAS_5:
1255 cas = 5 << 4;
1256 break;
1257 default:
1258 printf("ERROR: ucode error on selected_cas value %d", selected_cas);
1259 spd_ddr_init_hang ();
1260 break;
1261 }
1262
1263 #if 0
1264 /*
1265 * ToDo - Still a problem with the write recovery:
1266 * On the Corsair CM2X512-5400C4 module, setting write recovery
1267 * in the INITPLR reg to the value calculated in program_mode()
1268 * results in not correctly working DDR2 memory (crash after
1269 * relocation).
1270 *
1271 * So for now, set the write recovery to 3. This seems to work
1272 * on the Corair module too.
1273 *
1274 * 2007-03-01, sr
1275 */
1276 switch (write_recovery) {
1277 case 3:
1278 wr = WRITE_RECOV_3;
1279 break;
1280 case 4:
1281 wr = WRITE_RECOV_4;
1282 break;
1283 case 5:
1284 wr = WRITE_RECOV_5;
1285 break;
1286 case 6:
1287 wr = WRITE_RECOV_6;
1288 break;
1289 default:
1290 printf("ERROR: write recovery not support (%d)", write_recovery);
1291 spd_ddr_init_hang ();
1292 break;
1293 }
1294 #else
1295 wr = WRITE_RECOV_3; /* test-only, see description above */
1296 #endif
1297
1298 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++)
1299 if (dimm_populated[dimm_num] != SDRAM_NONE)
1300 total_dimm++;
1301 if (total_dimm == 1) {
1302 odt = ODT_150_OHM;
1303 ods = ODS_FULL;
1304 } else if (total_dimm == 2) {
1305 odt = ODT_75_OHM;
1306 ods = ODS_REDUCED;
1307 } else {
1308 printf("ERROR: Unsupported number of DIMM's (%d)", total_dimm);
1309 spd_ddr_init_hang ();
1310 }
1311
1312 mr = CMD_EMR | SELECT_MR | BURST_LEN_4 | wr | cas;
1313 emr = CMD_EMR | SELECT_EMR | odt | ods;
1314 emr2 = CMD_EMR | SELECT_EMR2;
1315 emr3 = CMD_EMR | SELECT_EMR3;
1316 mtsdram(SDRAM_INITPLR0, 0xB5000000 | CMD_NOP); /* NOP */
1317 udelay(1000);
1318 mtsdram(SDRAM_INITPLR1, 0x82000400 | CMD_PRECHARGE); /* precharge 8 DDR clock cycle */
1319 mtsdram(SDRAM_INITPLR2, 0x80800000 | emr2); /* EMR2 */
1320 mtsdram(SDRAM_INITPLR3, 0x80800000 | emr3); /* EMR3 */
1321 mtsdram(SDRAM_INITPLR4, 0x80800000 | emr); /* EMR DLL ENABLE */
1322 mtsdram(SDRAM_INITPLR5, 0x80800000 | mr | DLL_RESET); /* MR w/ DLL reset */
1323 udelay(1000);
1324 mtsdram(SDRAM_INITPLR6, 0x82000400 | CMD_PRECHARGE); /* precharge 8 DDR clock cycle */
1325 mtsdram(SDRAM_INITPLR7, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
1326 mtsdram(SDRAM_INITPLR8, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
1327 mtsdram(SDRAM_INITPLR9, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
1328 mtsdram(SDRAM_INITPLR10, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
1329 mtsdram(SDRAM_INITPLR11, 0x80000000 | mr); /* MR w/o DLL reset */
1330 mtsdram(SDRAM_INITPLR12, 0x80800380 | emr); /* EMR OCD Default */
1331 mtsdram(SDRAM_INITPLR13, 0x80800000 | emr); /* EMR OCD Exit */
1332 } else {
1333 printf("ERROR: ucode error as unknown DDR type in program_initplr");
1334 spd_ddr_init_hang ();
1335 }
1336 }
1337
1338 /*------------------------------------------------------------------
1339 * This routine programs the SDRAM_MMODE register.
1340 * the selected_cas is an output parameter, that will be passed
1341 * by caller to call the above program_initplr( )
1342 *-----------------------------------------------------------------*/
1343 static void program_mode(unsigned long *dimm_populated,
1344 unsigned char *iic0_dimm_addr,
1345 unsigned long num_dimm_banks,
1346 ddr_cas_id_t *selected_cas,
1347 int *write_recovery)
1348 {
1349 unsigned long dimm_num;
1350 unsigned long sdram_ddr1;
1351 unsigned long t_wr_ns;
1352 unsigned long t_wr_clk;
1353 unsigned long cas_bit;
1354 unsigned long cas_index;
1355 unsigned long sdram_freq;
1356 unsigned long ddr_check;
1357 unsigned long mmode;
1358 unsigned long tcyc_reg;
1359 unsigned long cycle_2_0_clk;
1360 unsigned long cycle_2_5_clk;
1361 unsigned long cycle_3_0_clk;
1362 unsigned long cycle_4_0_clk;
1363 unsigned long cycle_5_0_clk;
1364 unsigned long max_2_0_tcyc_ns_x_100;
1365 unsigned long max_2_5_tcyc_ns_x_100;
1366 unsigned long max_3_0_tcyc_ns_x_100;
1367 unsigned long max_4_0_tcyc_ns_x_100;
1368 unsigned long max_5_0_tcyc_ns_x_100;
1369 unsigned long cycle_time_ns_x_100[3];
1370 PPC4xx_SYS_INFO board_cfg;
1371 unsigned char cas_2_0_available;
1372 unsigned char cas_2_5_available;
1373 unsigned char cas_3_0_available;
1374 unsigned char cas_4_0_available;
1375 unsigned char cas_5_0_available;
1376 unsigned long sdr_ddrpll;
1377
1378 /*------------------------------------------------------------------
1379 * Get the board configuration info.
1380 *-----------------------------------------------------------------*/
1381 get_sys_info(&board_cfg);
1382
1383 mfsdr(SDR0_DDR0, sdr_ddrpll);
1384 sdram_freq = MULDIV64((board_cfg.freqPLB), SDR0_DDR0_DDRM_DECODE(sdr_ddrpll), 1);
1385 debug("sdram_freq=%d\n", sdram_freq);
1386
1387 /*------------------------------------------------------------------
1388 * Handle the timing. We need to find the worst case timing of all
1389 * the dimm modules installed.
1390 *-----------------------------------------------------------------*/
1391 t_wr_ns = 0;
1392 cas_2_0_available = TRUE;
1393 cas_2_5_available = TRUE;
1394 cas_3_0_available = TRUE;
1395 cas_4_0_available = TRUE;
1396 cas_5_0_available = TRUE;
1397 max_2_0_tcyc_ns_x_100 = 10;
1398 max_2_5_tcyc_ns_x_100 = 10;
1399 max_3_0_tcyc_ns_x_100 = 10;
1400 max_4_0_tcyc_ns_x_100 = 10;
1401 max_5_0_tcyc_ns_x_100 = 10;
1402 sdram_ddr1 = TRUE;
1403
1404 /* loop through all the DIMM slots on the board */
1405 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
1406 /* If a dimm is installed in a particular slot ... */
1407 if (dimm_populated[dimm_num] != SDRAM_NONE) {
1408 if (dimm_populated[dimm_num] == SDRAM_DDR1)
1409 sdram_ddr1 = TRUE;
1410 else
1411 sdram_ddr1 = FALSE;
1412
1413 /* t_wr_ns = max(t_wr_ns, (unsigned long)dimm_spd[dimm_num][36] >> 2); */ /* not used in this loop. */
1414 cas_bit = spd_read(iic0_dimm_addr[dimm_num], 18);
1415 debug("cas_bit[SPD byte 18]=%02x\n", cas_bit);
1416
1417 /* For a particular DIMM, grab the three CAS values it supports */
1418 for (cas_index = 0; cas_index < 3; cas_index++) {
1419 switch (cas_index) {
1420 case 0:
1421 tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
1422 break;
1423 case 1:
1424 tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 23);
1425 break;
1426 default:
1427 tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 25);
1428 break;
1429 }
1430
1431 if ((tcyc_reg & 0x0F) >= 10) {
1432 if ((tcyc_reg & 0x0F) == 0x0D) {
1433 /* Convert from hex to decimal */
1434 cycle_time_ns_x_100[cas_index] =
1435 (((tcyc_reg & 0xF0) >> 4) * 100) + 75;
1436 } else {
1437 printf("ERROR: SPD reported Tcyc is incorrect for DIMM "
1438 "in slot %d\n", (unsigned int)dimm_num);
1439 spd_ddr_init_hang ();
1440 }
1441 } else {
1442 /* Convert from hex to decimal */
1443 cycle_time_ns_x_100[cas_index] =
1444 (((tcyc_reg & 0xF0) >> 4) * 100) +
1445 ((tcyc_reg & 0x0F)*10);
1446 }
1447 debug("cas_index=%d: cycle_time_ns_x_100=%d\n", cas_index,
1448 cycle_time_ns_x_100[cas_index]);
1449 }
1450
1451 /* The rest of this routine determines if CAS 2.0, 2.5, 3.0, 4.0 and 5.0 are */
1452 /* supported for a particular DIMM. */
1453 cas_index = 0;
1454
1455 if (sdram_ddr1) {
1456 /*
1457 * DDR devices use the following bitmask for CAS latency:
1458 * Bit 7 6 5 4 3 2 1 0
1459 * TBD 4.0 3.5 3.0 2.5 2.0 1.5 1.0
1460 */
1461 if (((cas_bit & 0x40) == 0x40) && (cas_index < 3) &&
1462 (cycle_time_ns_x_100[cas_index] != 0)) {
1463 max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100,
1464 cycle_time_ns_x_100[cas_index]);
1465 cas_index++;
1466 } else {
1467 if (cas_index != 0)
1468 cas_index++;
1469 cas_4_0_available = FALSE;
1470 }
1471
1472 if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) &&
1473 (cycle_time_ns_x_100[cas_index] != 0)) {
1474 max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100,
1475 cycle_time_ns_x_100[cas_index]);
1476 cas_index++;
1477 } else {
1478 if (cas_index != 0)
1479 cas_index++;
1480 cas_3_0_available = FALSE;
1481 }
1482
1483 if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) &&
1484 (cycle_time_ns_x_100[cas_index] != 0)) {
1485 max_2_5_tcyc_ns_x_100 = max(max_2_5_tcyc_ns_x_100,
1486 cycle_time_ns_x_100[cas_index]);
1487 cas_index++;
1488 } else {
1489 if (cas_index != 0)
1490 cas_index++;
1491 cas_2_5_available = FALSE;
1492 }
1493
1494 if (((cas_bit & 0x04) == 0x04) && (cas_index < 3) &&
1495 (cycle_time_ns_x_100[cas_index] != 0)) {
1496 max_2_0_tcyc_ns_x_100 = max(max_2_0_tcyc_ns_x_100,
1497 cycle_time_ns_x_100[cas_index]);
1498 cas_index++;
1499 } else {
1500 if (cas_index != 0)
1501 cas_index++;
1502 cas_2_0_available = FALSE;
1503 }
1504 } else {
1505 /*
1506 * DDR2 devices use the following bitmask for CAS latency:
1507 * Bit 7 6 5 4 3 2 1 0
1508 * TBD 6.0 5.0 4.0 3.0 2.0 TBD TBD
1509 */
1510 if (((cas_bit & 0x20) == 0x20) && (cas_index < 3) &&
1511 (cycle_time_ns_x_100[cas_index] != 0)) {
1512 max_5_0_tcyc_ns_x_100 = max(max_5_0_tcyc_ns_x_100,
1513 cycle_time_ns_x_100[cas_index]);
1514 cas_index++;
1515 } else {
1516 if (cas_index != 0)
1517 cas_index++;
1518 cas_5_0_available = FALSE;
1519 }
1520
1521 if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) &&
1522 (cycle_time_ns_x_100[cas_index] != 0)) {
1523 max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100,
1524 cycle_time_ns_x_100[cas_index]);
1525 cas_index++;
1526 } else {
1527 if (cas_index != 0)
1528 cas_index++;
1529 cas_4_0_available = FALSE;
1530 }
1531
1532 if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) &&
1533 (cycle_time_ns_x_100[cas_index] != 0)) {
1534 max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100,
1535 cycle_time_ns_x_100[cas_index]);
1536 cas_index++;
1537 } else {
1538 if (cas_index != 0)
1539 cas_index++;
1540 cas_3_0_available = FALSE;
1541 }
1542 }
1543 }
1544 }
1545
1546 /*------------------------------------------------------------------
1547 * Set the SDRAM mode, SDRAM_MMODE
1548 *-----------------------------------------------------------------*/
1549 mfsdram(SDRAM_MMODE, mmode);
1550 mmode = mmode & ~(SDRAM_MMODE_WR_MASK | SDRAM_MMODE_DCL_MASK);
1551
1552 /* add 10 here because of rounding problems */
1553 cycle_2_0_clk = MULDIV64(ONE_BILLION, 100, max_2_0_tcyc_ns_x_100) + 10;
1554 cycle_2_5_clk = MULDIV64(ONE_BILLION, 100, max_2_5_tcyc_ns_x_100) + 10;
1555 cycle_3_0_clk = MULDIV64(ONE_BILLION, 100, max_3_0_tcyc_ns_x_100) + 10;
1556 cycle_4_0_clk = MULDIV64(ONE_BILLION, 100, max_4_0_tcyc_ns_x_100) + 10;
1557 cycle_5_0_clk = MULDIV64(ONE_BILLION, 100, max_5_0_tcyc_ns_x_100) + 10;
1558 debug("cycle_3_0_clk=%d\n", cycle_3_0_clk);
1559 debug("cycle_4_0_clk=%d\n", cycle_4_0_clk);
1560 debug("cycle_5_0_clk=%d\n", cycle_5_0_clk);
1561
1562 if (sdram_ddr1 == TRUE) { /* DDR1 */
1563 if ((cas_2_0_available == TRUE) && (sdram_freq <= cycle_2_0_clk)) {
1564 mmode |= SDRAM_MMODE_DCL_DDR1_2_0_CLK;
1565 *selected_cas = DDR_CAS_2;
1566 } else if ((cas_2_5_available == TRUE) && (sdram_freq <= cycle_2_5_clk)) {
1567 mmode |= SDRAM_MMODE_DCL_DDR1_2_5_CLK;
1568 *selected_cas = DDR_CAS_2_5;
1569 } else if ((cas_3_0_available == TRUE) && (sdram_freq <= cycle_3_0_clk)) {
1570 mmode |= SDRAM_MMODE_DCL_DDR1_3_0_CLK;
1571 *selected_cas = DDR_CAS_3;
1572 } else {
1573 printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n");
1574 printf("Only DIMMs DDR1 with CAS latencies of 2.0, 2.5, and 3.0 are supported.\n");
1575 printf("Make sure the PLB speed is within the supported range of the DIMMs.\n\n");
1576 spd_ddr_init_hang ();
1577 }
1578 } else { /* DDR2 */
1579 debug("cas_3_0_available=%d\n", cas_3_0_available);
1580 debug("cas_4_0_available=%d\n", cas_4_0_available);
1581 debug("cas_5_0_available=%d\n", cas_5_0_available);
1582 if ((cas_3_0_available == TRUE) && (sdram_freq <= cycle_3_0_clk)) {
1583 mmode |= SDRAM_MMODE_DCL_DDR2_3_0_CLK;
1584 *selected_cas = DDR_CAS_3;
1585 } else if ((cas_4_0_available == TRUE) && (sdram_freq <= cycle_4_0_clk)) {
1586 mmode |= SDRAM_MMODE_DCL_DDR2_4_0_CLK;
1587 *selected_cas = DDR_CAS_4;
1588 } else if ((cas_5_0_available == TRUE) && (sdram_freq <= cycle_5_0_clk)) {
1589 mmode |= SDRAM_MMODE_DCL_DDR2_5_0_CLK;
1590 *selected_cas = DDR_CAS_5;
1591 } else {
1592 printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n");
1593 printf("Only DIMMs DDR2 with CAS latencies of 3.0, 4.0, and 5.0 are supported.\n");
1594 printf("Make sure the PLB speed is within the supported range of the DIMMs.\n");
1595 printf("cas3=%d cas4=%d cas5=%d\n",
1596 cas_3_0_available, cas_4_0_available, cas_5_0_available);
1597 printf("sdram_freq=%d cycle3=%d cycle4=%d cycle5=%d\n\n",
1598 sdram_freq, cycle_3_0_clk, cycle_4_0_clk, cycle_5_0_clk);
1599 spd_ddr_init_hang ();
1600 }
1601 }
1602
1603 if (sdram_ddr1 == TRUE)
1604 mmode |= SDRAM_MMODE_WR_DDR1;
1605 else {
1606
1607 /* loop through all the DIMM slots on the board */
1608 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
1609 /* If a dimm is installed in a particular slot ... */
1610 if (dimm_populated[dimm_num] != SDRAM_NONE)
1611 t_wr_ns = max(t_wr_ns,
1612 spd_read(iic0_dimm_addr[dimm_num], 36) >> 2);
1613 }
1614
1615 /*
1616 * convert from nanoseconds to ddr clocks
1617 * round up if necessary
1618 */
1619 t_wr_clk = MULDIV64(sdram_freq, t_wr_ns, ONE_BILLION);
1620 ddr_check = MULDIV64(ONE_BILLION, t_wr_clk, t_wr_ns);
1621 if (sdram_freq != ddr_check)
1622 t_wr_clk++;
1623
1624 switch (t_wr_clk) {
1625 case 0:
1626 case 1:
1627 case 2:
1628 case 3:
1629 mmode |= SDRAM_MMODE_WR_DDR2_3_CYC;
1630 break;
1631 case 4:
1632 mmode |= SDRAM_MMODE_WR_DDR2_4_CYC;
1633 break;
1634 case 5:
1635 mmode |= SDRAM_MMODE_WR_DDR2_5_CYC;
1636 break;
1637 default:
1638 mmode |= SDRAM_MMODE_WR_DDR2_6_CYC;
1639 break;
1640 }
1641 *write_recovery = t_wr_clk;
1642 }
1643
1644 debug("CAS latency = %d\n", *selected_cas);
1645 debug("Write recovery = %d\n", *write_recovery);
1646
1647 mtsdram(SDRAM_MMODE, mmode);
1648 }
1649
1650 /*-----------------------------------------------------------------------------+
1651 * program_rtr.
1652 *-----------------------------------------------------------------------------*/
1653 static void program_rtr(unsigned long *dimm_populated,
1654 unsigned char *iic0_dimm_addr,
1655 unsigned long num_dimm_banks)
1656 {
1657 PPC4xx_SYS_INFO board_cfg;
1658 unsigned long max_refresh_rate;
1659 unsigned long dimm_num;
1660 unsigned long refresh_rate_type;
1661 unsigned long refresh_rate;
1662 unsigned long rint;
1663 unsigned long sdram_freq;
1664 unsigned long sdr_ddrpll;
1665 unsigned long val;
1666
1667 /*------------------------------------------------------------------
1668 * Get the board configuration info.
1669 *-----------------------------------------------------------------*/
1670 get_sys_info(&board_cfg);
1671
1672 /*------------------------------------------------------------------
1673 * Set the SDRAM Refresh Timing Register, SDRAM_RTR
1674 *-----------------------------------------------------------------*/
1675 mfsdr(SDR0_DDR0, sdr_ddrpll);
1676 sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
1677
1678 max_refresh_rate = 0;
1679 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
1680 if (dimm_populated[dimm_num] != SDRAM_NONE) {
1681
1682 refresh_rate_type = spd_read(iic0_dimm_addr[dimm_num], 12);
1683 refresh_rate_type &= 0x7F;
1684 switch (refresh_rate_type) {
1685 case 0:
1686 refresh_rate = 15625;
1687 break;
1688 case 1:
1689 refresh_rate = 3906;
1690 break;
1691 case 2:
1692 refresh_rate = 7812;
1693 break;
1694 case 3:
1695 refresh_rate = 31250;
1696 break;
1697 case 4:
1698 refresh_rate = 62500;
1699 break;
1700 case 5:
1701 refresh_rate = 125000;
1702 break;
1703 default:
1704 refresh_rate = 0;
1705 printf("ERROR: DIMM %d unsupported refresh rate/type.\n",
1706 (unsigned int)dimm_num);
1707 printf("Replace the DIMM module with a supported DIMM.\n\n");
1708 spd_ddr_init_hang ();
1709 break;
1710 }
1711
1712 max_refresh_rate = max(max_refresh_rate, refresh_rate);
1713 }
1714 }
1715
1716 rint = MULDIV64(sdram_freq, max_refresh_rate, ONE_BILLION);
1717 mfsdram(SDRAM_RTR, val);
1718 mtsdram(SDRAM_RTR, (val & ~SDRAM_RTR_RINT_MASK) |
1719 (SDRAM_RTR_RINT_ENCODE(rint)));
1720 }
1721
1722 /*------------------------------------------------------------------
1723 * This routine programs the SDRAM_TRx registers.
1724 *-----------------------------------------------------------------*/
1725 static void program_tr(unsigned long *dimm_populated,
1726 unsigned char *iic0_dimm_addr,
1727 unsigned long num_dimm_banks)
1728 {
1729 unsigned long dimm_num;
1730 unsigned long sdram_ddr1;
1731 unsigned long t_rp_ns;
1732 unsigned long t_rcd_ns;
1733 unsigned long t_rrd_ns;
1734 unsigned long t_ras_ns;
1735 unsigned long t_rc_ns;
1736 unsigned long t_rfc_ns;
1737 unsigned long t_wpc_ns;
1738 unsigned long t_wtr_ns;
1739 unsigned long t_rpc_ns;
1740 unsigned long t_rp_clk;
1741 unsigned long t_rcd_clk;
1742 unsigned long t_rrd_clk;
1743 unsigned long t_ras_clk;
1744 unsigned long t_rc_clk;
1745 unsigned long t_rfc_clk;
1746 unsigned long t_wpc_clk;
1747 unsigned long t_wtr_clk;
1748 unsigned long t_rpc_clk;
1749 unsigned long sdtr1, sdtr2, sdtr3;
1750 unsigned long ddr_check;
1751 unsigned long sdram_freq;
1752 unsigned long sdr_ddrpll;
1753
1754 PPC4xx_SYS_INFO board_cfg;
1755
1756 /*------------------------------------------------------------------
1757 * Get the board configuration info.
1758 *-----------------------------------------------------------------*/
1759 get_sys_info(&board_cfg);
1760
1761 mfsdr(SDR0_DDR0, sdr_ddrpll);
1762 sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
1763
1764 /*------------------------------------------------------------------
1765 * Handle the timing. We need to find the worst case timing of all
1766 * the dimm modules installed.
1767 *-----------------------------------------------------------------*/
1768 t_rp_ns = 0;
1769 t_rrd_ns = 0;
1770 t_rcd_ns = 0;
1771 t_ras_ns = 0;
1772 t_rc_ns = 0;
1773 t_rfc_ns = 0;
1774 t_wpc_ns = 0;
1775 t_wtr_ns = 0;
1776 t_rpc_ns = 0;
1777 sdram_ddr1 = TRUE;
1778
1779 /* loop through all the DIMM slots on the board */
1780 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
1781 /* If a dimm is installed in a particular slot ... */
1782 if (dimm_populated[dimm_num] != SDRAM_NONE) {
1783 if (dimm_populated[dimm_num] == SDRAM_DDR2)
1784 sdram_ddr1 = TRUE;
1785 else
1786 sdram_ddr1 = FALSE;
1787
1788 t_rcd_ns = max(t_rcd_ns, spd_read(iic0_dimm_addr[dimm_num], 29) >> 2);
1789 t_rrd_ns = max(t_rrd_ns, spd_read(iic0_dimm_addr[dimm_num], 28) >> 2);
1790 t_rp_ns = max(t_rp_ns, spd_read(iic0_dimm_addr[dimm_num], 27) >> 2);
1791 t_ras_ns = max(t_ras_ns, spd_read(iic0_dimm_addr[dimm_num], 30));
1792 t_rc_ns = max(t_rc_ns, spd_read(iic0_dimm_addr[dimm_num], 41));
1793 t_rfc_ns = max(t_rfc_ns, spd_read(iic0_dimm_addr[dimm_num], 42));
1794 }
1795 }
1796
1797 /*------------------------------------------------------------------
1798 * Set the SDRAM Timing Reg 1, SDRAM_TR1
1799 *-----------------------------------------------------------------*/
1800 mfsdram(SDRAM_SDTR1, sdtr1);
1801 sdtr1 &= ~(SDRAM_SDTR1_LDOF_MASK | SDRAM_SDTR1_RTW_MASK |
1802 SDRAM_SDTR1_WTWO_MASK | SDRAM_SDTR1_RTRO_MASK);
1803
1804 /* default values */
1805 sdtr1 |= SDRAM_SDTR1_LDOF_2_CLK;
1806 sdtr1 |= SDRAM_SDTR1_RTW_2_CLK;
1807
1808 /* normal operations */
1809 sdtr1 |= SDRAM_SDTR1_WTWO_0_CLK;
1810 sdtr1 |= SDRAM_SDTR1_RTRO_1_CLK;
1811
1812 mtsdram(SDRAM_SDTR1, sdtr1);
1813
1814 /*------------------------------------------------------------------
1815 * Set the SDRAM Timing Reg 2, SDRAM_TR2
1816 *-----------------------------------------------------------------*/
1817 mfsdram(SDRAM_SDTR2, sdtr2);
1818 sdtr2 &= ~(SDRAM_SDTR2_RCD_MASK | SDRAM_SDTR2_WTR_MASK |
1819 SDRAM_SDTR2_XSNR_MASK | SDRAM_SDTR2_WPC_MASK |
1820 SDRAM_SDTR2_RPC_MASK | SDRAM_SDTR2_RP_MASK |
1821 SDRAM_SDTR2_RRD_MASK);
1822
1823 /*
1824 * convert t_rcd from nanoseconds to ddr clocks
1825 * round up if necessary
1826 */
1827 t_rcd_clk = MULDIV64(sdram_freq, t_rcd_ns, ONE_BILLION);
1828 ddr_check = MULDIV64(ONE_BILLION, t_rcd_clk, t_rcd_ns);
1829 if (sdram_freq != ddr_check)
1830 t_rcd_clk++;
1831
1832 switch (t_rcd_clk) {
1833 case 0:
1834 case 1:
1835 sdtr2 |= SDRAM_SDTR2_RCD_1_CLK;
1836 break;
1837 case 2:
1838 sdtr2 |= SDRAM_SDTR2_RCD_2_CLK;
1839 break;
1840 case 3:
1841 sdtr2 |= SDRAM_SDTR2_RCD_3_CLK;
1842 break;
1843 case 4:
1844 sdtr2 |= SDRAM_SDTR2_RCD_4_CLK;
1845 break;
1846 default:
1847 sdtr2 |= SDRAM_SDTR2_RCD_5_CLK;
1848 break;
1849 }
1850
1851 if (sdram_ddr1 == TRUE) { /* DDR1 */
1852 if (sdram_freq < 200000000) {
1853 sdtr2 |= SDRAM_SDTR2_WTR_1_CLK;
1854 sdtr2 |= SDRAM_SDTR2_WPC_2_CLK;
1855 sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
1856 } else {
1857 sdtr2 |= SDRAM_SDTR2_WTR_2_CLK;
1858 sdtr2 |= SDRAM_SDTR2_WPC_3_CLK;
1859 sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
1860 }
1861 } else { /* DDR2 */
1862 /* loop through all the DIMM slots on the board */
1863 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
1864 /* If a dimm is installed in a particular slot ... */
1865 if (dimm_populated[dimm_num] != SDRAM_NONE) {
1866 t_wpc_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 36) >> 2);
1867 t_wtr_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 37) >> 2);
1868 t_rpc_ns = max(t_rpc_ns, spd_read(iic0_dimm_addr[dimm_num], 38) >> 2);
1869 }
1870 }
1871
1872 /*
1873 * convert from nanoseconds to ddr clocks
1874 * round up if necessary
1875 */
1876 t_wpc_clk = MULDIV64(sdram_freq, t_wpc_ns, ONE_BILLION);
1877 ddr_check = MULDIV64(ONE_BILLION, t_wpc_clk, t_wpc_ns);
1878 if (sdram_freq != ddr_check)
1879 t_wpc_clk++;
1880
1881 switch (t_wpc_clk) {
1882 case 0:
1883 case 1:
1884 case 2:
1885 sdtr2 |= SDRAM_SDTR2_WPC_2_CLK;
1886 break;
1887 case 3:
1888 sdtr2 |= SDRAM_SDTR2_WPC_3_CLK;
1889 break;
1890 case 4:
1891 sdtr2 |= SDRAM_SDTR2_WPC_4_CLK;
1892 break;
1893 case 5:
1894 sdtr2 |= SDRAM_SDTR2_WPC_5_CLK;
1895 break;
1896 default:
1897 sdtr2 |= SDRAM_SDTR2_WPC_6_CLK;
1898 break;
1899 }
1900
1901 /*
1902 * convert from nanoseconds to ddr clocks
1903 * round up if necessary
1904 */
1905 t_wtr_clk = MULDIV64(sdram_freq, t_wtr_ns, ONE_BILLION);
1906 ddr_check = MULDIV64(ONE_BILLION, t_wtr_clk, t_wtr_ns);
1907 if (sdram_freq != ddr_check)
1908 t_wtr_clk++;
1909
1910 switch (t_wtr_clk) {
1911 case 0:
1912 case 1:
1913 sdtr2 |= SDRAM_SDTR2_WTR_1_CLK;
1914 break;
1915 case 2:
1916 sdtr2 |= SDRAM_SDTR2_WTR_2_CLK;
1917 break;
1918 case 3:
1919 sdtr2 |= SDRAM_SDTR2_WTR_3_CLK;
1920 break;
1921 default:
1922 sdtr2 |= SDRAM_SDTR2_WTR_4_CLK;
1923 break;
1924 }
1925
1926 /*
1927 * convert from nanoseconds to ddr clocks
1928 * round up if necessary
1929 */
1930 t_rpc_clk = MULDIV64(sdram_freq, t_rpc_ns, ONE_BILLION);
1931 ddr_check = MULDIV64(ONE_BILLION, t_rpc_clk, t_rpc_ns);
1932 if (sdram_freq != ddr_check)
1933 t_rpc_clk++;
1934
1935 switch (t_rpc_clk) {
1936 case 0:
1937 case 1:
1938 case 2:
1939 sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
1940 break;
1941 case 3:
1942 sdtr2 |= SDRAM_SDTR2_RPC_3_CLK;
1943 break;
1944 default:
1945 sdtr2 |= SDRAM_SDTR2_RPC_4_CLK;
1946 break;
1947 }
1948 }
1949
1950 /* default value */
1951 sdtr2 |= SDRAM_SDTR2_XSNR_16_CLK;
1952
1953 /*
1954 * convert t_rrd from nanoseconds to ddr clocks
1955 * round up if necessary
1956 */
1957 t_rrd_clk = MULDIV64(sdram_freq, t_rrd_ns, ONE_BILLION);
1958 ddr_check = MULDIV64(ONE_BILLION, t_rrd_clk, t_rrd_ns);
1959 if (sdram_freq != ddr_check)
1960 t_rrd_clk++;
1961
1962 if (t_rrd_clk == 3)
1963 sdtr2 |= SDRAM_SDTR2_RRD_3_CLK;
1964 else
1965 sdtr2 |= SDRAM_SDTR2_RRD_2_CLK;
1966
1967 /*
1968 * convert t_rp from nanoseconds to ddr clocks
1969 * round up if necessary
1970 */
1971 t_rp_clk = MULDIV64(sdram_freq, t_rp_ns, ONE_BILLION);
1972 ddr_check = MULDIV64(ONE_BILLION, t_rp_clk, t_rp_ns);
1973 if (sdram_freq != ddr_check)
1974 t_rp_clk++;
1975
1976 switch (t_rp_clk) {
1977 case 0:
1978 case 1:
1979 case 2:
1980 case 3:
1981 sdtr2 |= SDRAM_SDTR2_RP_3_CLK;
1982 break;
1983 case 4:
1984 sdtr2 |= SDRAM_SDTR2_RP_4_CLK;
1985 break;
1986 case 5:
1987 sdtr2 |= SDRAM_SDTR2_RP_5_CLK;
1988 break;
1989 case 6:
1990 sdtr2 |= SDRAM_SDTR2_RP_6_CLK;
1991 break;
1992 default:
1993 sdtr2 |= SDRAM_SDTR2_RP_7_CLK;
1994 break;
1995 }
1996
1997 mtsdram(SDRAM_SDTR2, sdtr2);
1998
1999 /*------------------------------------------------------------------
2000 * Set the SDRAM Timing Reg 3, SDRAM_TR3
2001 *-----------------------------------------------------------------*/
2002 mfsdram(SDRAM_SDTR3, sdtr3);
2003 sdtr3 &= ~(SDRAM_SDTR3_RAS_MASK | SDRAM_SDTR3_RC_MASK |
2004 SDRAM_SDTR3_XCS_MASK | SDRAM_SDTR3_RFC_MASK);
2005
2006 /*
2007 * convert t_ras from nanoseconds to ddr clocks
2008 * round up if necessary
2009 */
2010 t_ras_clk = MULDIV64(sdram_freq, t_ras_ns, ONE_BILLION);
2011 ddr_check = MULDIV64(ONE_BILLION, t_ras_clk, t_ras_ns);
2012 if (sdram_freq != ddr_check)
2013 t_ras_clk++;
2014
2015 sdtr3 |= SDRAM_SDTR3_RAS_ENCODE(t_ras_clk);
2016
2017 /*
2018 * convert t_rc from nanoseconds to ddr clocks
2019 * round up if necessary
2020 */
2021 t_rc_clk = MULDIV64(sdram_freq, t_rc_ns, ONE_BILLION);
2022 ddr_check = MULDIV64(ONE_BILLION, t_rc_clk, t_rc_ns);
2023 if (sdram_freq != ddr_check)
2024 t_rc_clk++;
2025
2026 sdtr3 |= SDRAM_SDTR3_RC_ENCODE(t_rc_clk);
2027
2028 /* default xcs value */
2029 sdtr3 |= SDRAM_SDTR3_XCS;
2030
2031 /*
2032 * convert t_rfc from nanoseconds to ddr clocks
2033 * round up if necessary
2034 */
2035 t_rfc_clk = MULDIV64(sdram_freq, t_rfc_ns, ONE_BILLION);
2036 ddr_check = MULDIV64(ONE_BILLION, t_rfc_clk, t_rfc_ns);
2037 if (sdram_freq != ddr_check)
2038 t_rfc_clk++;
2039
2040 sdtr3 |= SDRAM_SDTR3_RFC_ENCODE(t_rfc_clk);
2041
2042 mtsdram(SDRAM_SDTR3, sdtr3);
2043 }
2044
2045 /*-----------------------------------------------------------------------------+
2046 * program_bxcf.
2047 *-----------------------------------------------------------------------------*/
2048 static void program_bxcf(unsigned long *dimm_populated,
2049 unsigned char *iic0_dimm_addr,
2050 unsigned long num_dimm_banks)
2051 {
2052 unsigned long dimm_num;
2053 unsigned long num_col_addr;
2054 unsigned long num_ranks;
2055 unsigned long num_banks;
2056 unsigned long mode;
2057 unsigned long ind_rank;
2058 unsigned long ind;
2059 unsigned long ind_bank;
2060 unsigned long bank_0_populated;
2061
2062 /*------------------------------------------------------------------
2063 * Set the BxCF regs. First, wipe out the bank config registers.
2064 *-----------------------------------------------------------------*/
2065 mtsdram(SDRAM_MB0CF, 0x00000000);
2066 mtsdram(SDRAM_MB1CF, 0x00000000);
2067 mtsdram(SDRAM_MB2CF, 0x00000000);
2068 mtsdram(SDRAM_MB3CF, 0x00000000);
2069
2070 mode = SDRAM_BXCF_M_BE_ENABLE;
2071
2072 bank_0_populated = 0;
2073
2074 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
2075 if (dimm_populated[dimm_num] != SDRAM_NONE) {
2076 num_col_addr = spd_read(iic0_dimm_addr[dimm_num], 4);
2077 num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5);
2078 if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
2079 num_ranks = (num_ranks & 0x0F) +1;
2080 else
2081 num_ranks = num_ranks & 0x0F;
2082
2083 num_banks = spd_read(iic0_dimm_addr[dimm_num], 17);
2084
2085 for (ind_bank = 0; ind_bank < 2; ind_bank++) {
2086 if (num_banks == 4)
2087 ind = 0;
2088 else
2089 ind = 5 << 8;
2090 switch (num_col_addr) {
2091 case 0x08:
2092 mode |= (SDRAM_BXCF_M_AM_0 + ind);
2093 break;
2094 case 0x09:
2095 mode |= (SDRAM_BXCF_M_AM_1 + ind);
2096 break;
2097 case 0x0A:
2098 mode |= (SDRAM_BXCF_M_AM_2 + ind);
2099 break;
2100 case 0x0B:
2101 mode |= (SDRAM_BXCF_M_AM_3 + ind);
2102 break;
2103 case 0x0C:
2104 mode |= (SDRAM_BXCF_M_AM_4 + ind);
2105 break;
2106 default:
2107 printf("DDR-SDRAM: DIMM %d BxCF configuration.\n",
2108 (unsigned int)dimm_num);
2109 printf("ERROR: Unsupported value for number of "
2110 "column addresses: %d.\n", (unsigned int)num_col_addr);
2111 printf("Replace the DIMM module with a supported DIMM.\n\n");
2112 spd_ddr_init_hang ();
2113 }
2114 }
2115
2116 if ((dimm_populated[dimm_num] != SDRAM_NONE)&& (dimm_num ==1))
2117 bank_0_populated = 1;
2118
2119 for (ind_rank = 0; ind_rank < num_ranks; ind_rank++) {
2120 mtsdram(SDRAM_MB0CF +
2121 ((dimm_num + bank_0_populated + ind_rank) << 2),
2122 mode);
2123 }
2124 }
2125 }
2126 }
2127
2128 /*------------------------------------------------------------------
2129 * program memory queue.
2130 *-----------------------------------------------------------------*/
2131 static void program_memory_queue(unsigned long *dimm_populated,
2132 unsigned char *iic0_dimm_addr,
2133 unsigned long num_dimm_banks)
2134 {
2135 unsigned long dimm_num;
2136 unsigned long rank_base_addr;
2137 unsigned long rank_reg;
2138 unsigned long rank_size_bytes;
2139 unsigned long rank_size_id;
2140 unsigned long num_ranks;
2141 unsigned long baseadd_size;
2142 unsigned long i;
2143 unsigned long bank_0_populated = 0;
2144 unsigned long total_size = 0;
2145
2146 /*------------------------------------------------------------------
2147 * Reset the rank_base_address.
2148 *-----------------------------------------------------------------*/
2149 rank_reg = SDRAM_R0BAS;
2150
2151 rank_base_addr = 0x00000000;
2152
2153 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
2154 if (dimm_populated[dimm_num] != SDRAM_NONE) {
2155 num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5);
2156 if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
2157 num_ranks = (num_ranks & 0x0F) + 1;
2158 else
2159 num_ranks = num_ranks & 0x0F;
2160
2161 rank_size_id = spd_read(iic0_dimm_addr[dimm_num], 31);
2162
2163 /*------------------------------------------------------------------
2164 * Set the sizes
2165 *-----------------------------------------------------------------*/
2166 baseadd_size = 0;
2167 switch (rank_size_id) {
2168 case 0x01:
2169 baseadd_size |= SDRAM_RXBAS_SDSZ_1024;
2170 total_size = 1024;
2171 break;
2172 case 0x02:
2173 baseadd_size |= SDRAM_RXBAS_SDSZ_2048;
2174 total_size = 2048;
2175 break;
2176 case 0x04:
2177 baseadd_size |= SDRAM_RXBAS_SDSZ_4096;
2178 total_size = 4096;
2179 break;
2180 case 0x08:
2181 baseadd_size |= SDRAM_RXBAS_SDSZ_32;
2182 total_size = 32;
2183 break;
2184 case 0x10:
2185 baseadd_size |= SDRAM_RXBAS_SDSZ_64;
2186 total_size = 64;
2187 break;
2188 case 0x20:
2189 baseadd_size |= SDRAM_RXBAS_SDSZ_128;
2190 total_size = 128;
2191 break;
2192 case 0x40:
2193 baseadd_size |= SDRAM_RXBAS_SDSZ_256;
2194 total_size = 256;
2195 break;
2196 case 0x80:
2197 baseadd_size |= SDRAM_RXBAS_SDSZ_512;
2198 total_size = 512;
2199 break;
2200 default:
2201 printf("DDR-SDRAM: DIMM %d memory queue configuration.\n",
2202 (unsigned int)dimm_num);
2203 printf("ERROR: Unsupported value for the banksize: %d.\n",
2204 (unsigned int)rank_size_id);
2205 printf("Replace the DIMM module with a supported DIMM.\n\n");
2206 spd_ddr_init_hang ();
2207 }
2208 rank_size_bytes = total_size << 20;
2209
2210 if ((dimm_populated[dimm_num] != SDRAM_NONE) && (dimm_num == 1))
2211 bank_0_populated = 1;
2212
2213 for (i = 0; i < num_ranks; i++) {
2214 mtdcr_any(rank_reg+i+dimm_num+bank_0_populated,
2215 (SDRAM_RXBAS_SDBA_ENCODE(rank_base_addr) |
2216 baseadd_size));
2217 rank_base_addr += rank_size_bytes;
2218 }
2219 }
2220 }
2221
2222 #if defined(CONFIG_460EX) || defined(CONFIG_460GT)
2223 /*
2224 * Enable high bandwidth access on 460EX/GT.
2225 * This should/could probably be done on other
2226 * PPC's too, like 440SPe.
2227 * This is currently not used, but with this setup
2228 * it is possible to use it later on in e.g. the Linux
2229 * EMAC driver for performance gain.
2230 */
2231 mtdcr(SDRAM_PLBADDULL, 0x00000000); /* MQ0_BAUL */
2232 mtdcr(SDRAM_PLBADDUHB, 0x00000008); /* MQ0_BAUH */
2233 #endif
2234 }
2235
2236 /*-----------------------------------------------------------------------------+
2237 * is_ecc_enabled.
2238 *-----------------------------------------------------------------------------*/
2239 static unsigned long is_ecc_enabled(void)
2240 {
2241 unsigned long dimm_num;
2242 unsigned long ecc;
2243 unsigned long val;
2244
2245 ecc = 0;
2246 /* loop through all the DIMM slots on the board */
2247 for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
2248 mfsdram(SDRAM_MCOPT1, val);
2249 ecc = max(ecc, SDRAM_MCOPT1_MCHK_CHK_DECODE(val));
2250 }
2251
2252 return ecc;
2253 }
2254
2255 static void blank_string(int size)
2256 {
2257 int i;
2258
2259 for (i=0; i<size; i++)
2260 putc('\b');
2261 for (i=0; i<size; i++)
2262 putc(' ');
2263 for (i=0; i<size; i++)
2264 putc('\b');
2265 }
2266
2267 #ifdef CONFIG_DDR_ECC
2268 /*-----------------------------------------------------------------------------+
2269 * program_ecc.
2270 *-----------------------------------------------------------------------------*/
2271 static void program_ecc(unsigned long *dimm_populated,
2272 unsigned char *iic0_dimm_addr,
2273 unsigned long num_dimm_banks,
2274 unsigned long tlb_word2_i_value)
2275 {
2276 unsigned long mcopt1;
2277 unsigned long mcopt2;
2278 unsigned long mcstat;
2279 unsigned long dimm_num;
2280 unsigned long ecc;
2281
2282 ecc = 0;
2283 /* loop through all the DIMM slots on the board */
2284 for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
2285 /* If a dimm is installed in a particular slot ... */
2286 if (dimm_populated[dimm_num] != SDRAM_NONE)
2287 ecc = max(ecc, spd_read(iic0_dimm_addr[dimm_num], 11));
2288 }
2289 if (ecc == 0)
2290 return;
2291
2292 mfsdram(SDRAM_MCOPT1, mcopt1);
2293 mfsdram(SDRAM_MCOPT2, mcopt2);
2294
2295 if ((mcopt1 & SDRAM_MCOPT1_MCHK_MASK) != SDRAM_MCOPT1_MCHK_NON) {
2296 /* DDR controller must be enabled and not in self-refresh. */
2297 mfsdram(SDRAM_MCSTAT, mcstat);
2298 if (((mcopt2 & SDRAM_MCOPT2_DCEN_MASK) == SDRAM_MCOPT2_DCEN_ENABLE)
2299 && ((mcopt2 & SDRAM_MCOPT2_SREN_MASK) == SDRAM_MCOPT2_SREN_EXIT)
2300 && ((mcstat & (SDRAM_MCSTAT_MIC_MASK | SDRAM_MCSTAT_SRMS_MASK))
2301 == (SDRAM_MCSTAT_MIC_COMP | SDRAM_MCSTAT_SRMS_NOT_SF))) {
2302
2303 program_ecc_addr(0, sdram_memsize(), tlb_word2_i_value);
2304 }
2305 }
2306
2307 return;
2308 }
2309
2310 static void wait_ddr_idle(void)
2311 {
2312 u32 val;
2313
2314 do {
2315 mfsdram(SDRAM_MCSTAT, val);
2316 } while ((val & SDRAM_MCSTAT_IDLE_MASK) == SDRAM_MCSTAT_IDLE_NOT);
2317 }
2318
2319 /*-----------------------------------------------------------------------------+
2320 * program_ecc_addr.
2321 *-----------------------------------------------------------------------------*/
2322 static void program_ecc_addr(unsigned long start_address,
2323 unsigned long num_bytes,
2324 unsigned long tlb_word2_i_value)
2325 {
2326 unsigned long current_address;
2327 unsigned long end_address;
2328 unsigned long address_increment;
2329 unsigned long mcopt1;
2330 char str[] = "ECC generation -";
2331 char slash[] = "\\|/-\\|/-";
2332 int loop = 0;
2333 int loopi = 0;
2334
2335 current_address = start_address;
2336 mfsdram(SDRAM_MCOPT1, mcopt1);
2337 if ((mcopt1 & SDRAM_MCOPT1_MCHK_MASK) != SDRAM_MCOPT1_MCHK_NON) {
2338 mtsdram(SDRAM_MCOPT1,
2339 (mcopt1 & ~SDRAM_MCOPT1_MCHK_MASK) | SDRAM_MCOPT1_MCHK_GEN);
2340 sync();
2341 eieio();
2342 wait_ddr_idle();
2343
2344 puts(str);
2345 if (tlb_word2_i_value == TLB_WORD2_I_ENABLE) {
2346 /* ECC bit set method for non-cached memory */
2347 if ((mcopt1 & SDRAM_MCOPT1_DMWD_MASK) == SDRAM_MCOPT1_DMWD_32)
2348 address_increment = 4;
2349 else
2350 address_increment = 8;
2351 end_address = current_address + num_bytes;
2352
2353 while (current_address < end_address) {
2354 *((unsigned long *)current_address) = 0x00000000;
2355 current_address += address_increment;
2356
2357 if ((loop++ % (2 << 20)) == 0) {
2358 putc('\b');
2359 putc(slash[loopi++ % 8]);
2360 }
2361 }
2362
2363 } else {
2364 /* ECC bit set method for cached memory */
2365 dcbz_area(start_address, num_bytes);
2366 /* Write modified dcache lines back to memory */
2367 clean_dcache_range(start_address, start_address + num_bytes);
2368 }
2369
2370 blank_string(strlen(str));
2371
2372 sync();
2373 eieio();
2374 wait_ddr_idle();
2375
2376 /* clear ECC error repoting registers */
2377 mtsdram(SDRAM_ECCCR, 0xffffffff);
2378 mtdcr(0x4c, 0xffffffff);
2379
2380 mtsdram(SDRAM_MCOPT1,
2381 (mcopt1 & ~SDRAM_MCOPT1_MCHK_MASK) | SDRAM_MCOPT1_MCHK_CHK_REP);
2382 sync();
2383 eieio();
2384 wait_ddr_idle();
2385 }
2386 }
2387 #endif
2388
2389 /*-----------------------------------------------------------------------------+
2390 * program_DQS_calibration.
2391 *-----------------------------------------------------------------------------*/
2392 static void program_DQS_calibration(unsigned long *dimm_populated,
2393 unsigned char *iic0_dimm_addr,
2394 unsigned long num_dimm_banks)
2395 {
2396 unsigned long val;
2397
2398 #ifdef HARD_CODED_DQS /* calibration test with hardvalues */
2399 mtsdram(SDRAM_RQDC, 0x80000037);
2400 mtsdram(SDRAM_RDCC, 0x40000000);
2401 mtsdram(SDRAM_RFDC, 0x000001DF);
2402
2403 test();
2404 #else
2405 /*------------------------------------------------------------------
2406 * Program RDCC register
2407 * Read sample cycle auto-update enable
2408 *-----------------------------------------------------------------*/
2409
2410 mfsdram(SDRAM_RDCC, val);
2411 mtsdram(SDRAM_RDCC,
2412 (val & ~(SDRAM_RDCC_RDSS_MASK | SDRAM_RDCC_RSAE_MASK))
2413 | SDRAM_RDCC_RSAE_ENABLE);
2414
2415 /*------------------------------------------------------------------
2416 * Program RQDC register
2417 * Internal DQS delay mechanism enable
2418 *-----------------------------------------------------------------*/
2419 mtsdram(SDRAM_RQDC, (SDRAM_RQDC_RQDE_ENABLE|SDRAM_RQDC_RQFD_ENCODE(0x38)));
2420
2421 /*------------------------------------------------------------------
2422 * Program RFDC register
2423 * Set Feedback Fractional Oversample
2424 * Auto-detect read sample cycle enable
2425 *-----------------------------------------------------------------*/
2426 mfsdram(SDRAM_RFDC, val);
2427 mtsdram(SDRAM_RFDC,
2428 (val & ~(SDRAM_RFDC_ARSE_MASK | SDRAM_RFDC_RFOS_MASK |
2429 SDRAM_RFDC_RFFD_MASK))
2430 | (SDRAM_RFDC_ARSE_ENABLE | SDRAM_RFDC_RFOS_ENCODE(0) |
2431 SDRAM_RFDC_RFFD_ENCODE(0)));
2432
2433 DQS_calibration_process();
2434 #endif
2435 }
2436
2437 static int short_mem_test(void)
2438 {
2439 u32 *membase;
2440 u32 bxcr_num;
2441 u32 bxcf;
2442 int i;
2443 int j;
2444 u32 test[NUMMEMTESTS][NUMMEMWORDS] = {
2445 {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
2446 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF},
2447 {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
2448 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000},
2449 {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
2450 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555},
2451 {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
2452 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA},
2453 {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
2454 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A},
2455 {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
2456 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5},
2457 {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
2458 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA},
2459 {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
2460 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} };
2461 int l;
2462
2463 for (bxcr_num = 0; bxcr_num < MAXBXCF; bxcr_num++) {
2464 mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf);
2465
2466 /* Banks enabled */
2467 if ((bxcf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
2468 /* Bank is enabled */
2469
2470 /*------------------------------------------------------------------
2471 * Run the short memory test.
2472 *-----------------------------------------------------------------*/
2473 membase = (u32 *)(SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+bxcr_num)));
2474
2475 for (i = 0; i < NUMMEMTESTS; i++) {
2476 for (j = 0; j < NUMMEMWORDS; j++) {
2477 membase[j] = test[i][j];
2478 ppcDcbf((u32)&(membase[j]));
2479 }
2480 sync();
2481 for (l=0; l<NUMLOOPS; l++) {
2482 for (j = 0; j < NUMMEMWORDS; j++) {
2483 if (membase[j] != test[i][j]) {
2484 ppcDcbf((u32)&(membase[j]));
2485 return 0;
2486 }
2487 ppcDcbf((u32)&(membase[j]));
2488 }
2489 sync();
2490 }
2491 }
2492 } /* if bank enabled */
2493 } /* for bxcf_num */
2494
2495 return 1;
2496 }
2497
2498 #ifndef HARD_CODED_DQS
2499 /*-----------------------------------------------------------------------------+
2500 * DQS_calibration_process.
2501 *-----------------------------------------------------------------------------*/
2502 static void DQS_calibration_process(void)
2503 {
2504 unsigned long rfdc_reg;
2505 unsigned long rffd;
2506 unsigned long val;
2507 long rffd_average;
2508 long max_start;
2509 long min_end;
2510 unsigned long begin_rqfd[MAXRANKS];
2511 unsigned long begin_rffd[MAXRANKS];
2512 unsigned long end_rqfd[MAXRANKS];
2513 unsigned long end_rffd[MAXRANKS];
2514 char window_found;
2515 unsigned long dlycal;
2516 unsigned long dly_val;
2517 unsigned long max_pass_length;
2518 unsigned long current_pass_length;
2519 unsigned long current_fail_length;
2520 unsigned long current_start;
2521 long max_end;
2522 unsigned char fail_found;
2523 unsigned char pass_found;
2524 #if !defined(CONFIG_DDR_RQDC_FIXED)
2525 u32 rqdc_reg;
2526 u32 rqfd;
2527 u32 rqfd_start;
2528 u32 rqfd_average;
2529 int loopi = 0;
2530 char str[] = "Auto calibration -";
2531 char slash[] = "\\|/-\\|/-";
2532
2533 /*------------------------------------------------------------------
2534 * Test to determine the best read clock delay tuning bits.
2535 *
2536 * Before the DDR controller can be used, the read clock delay needs to be
2537 * set. This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD].
2538 * This value cannot be hardcoded into the program because it changes
2539 * depending on the board's setup and environment.
2540 * To do this, all delay values are tested to see if they
2541 * work or not. By doing this, you get groups of fails with groups of
2542 * passing values. The idea is to find the start and end of a passing
2543 * window and take the center of it to use as the read clock delay.
2544 *
2545 * A failure has to be seen first so that when we hit a pass, we know
2546 * that it is truely the start of the window. If we get passing values
2547 * to start off with, we don't know if we are at the start of the window.
2548 *
2549 * The code assumes that a failure will always be found.
2550 * If a failure is not found, there is no easy way to get the middle
2551 * of the passing window. I guess we can pretty much pick any value
2552 * but some values will be better than others. Since the lowest speed
2553 * we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed),
2554 * from experimentation it is safe to say you will always have a failure.
2555 *-----------------------------------------------------------------*/
2556
2557 /* first fix RQDC[RQFD] to an average of 80 degre phase shift to find RFDC[RFFD] */
2558 rqfd_start = 64; /* test-only: don't know if this is the _best_ start value */
2559
2560 puts(str);
2561
2562 calibration_loop:
2563 mfsdram(SDRAM_RQDC, rqdc_reg);
2564 mtsdram(SDRAM_RQDC, (rqdc_reg & ~SDRAM_RQDC_RQFD_MASK) |
2565 SDRAM_RQDC_RQFD_ENCODE(rqfd_start));
2566 #else /* CONFIG_DDR_RQDC_FIXED */
2567 /*
2568 * On Katmai the complete auto-calibration somehow doesn't seem to
2569 * produce the best results, meaning optimal values for RQFD/RFFD.
2570 * This was discovered by GDA using a high bandwidth scope,
2571 * analyzing the DDR2 signals. GDA provided a fixed value for RQFD,
2572 * so now on Katmai "only" RFFD is auto-calibrated.
2573 */
2574 mtsdram(SDRAM_RQDC, CONFIG_DDR_RQDC_FIXED);
2575 #endif /* CONFIG_DDR_RQDC_FIXED */
2576
2577 max_start = 0;
2578 min_end = 0;
2579 begin_rqfd[0] = 0;
2580 begin_rffd[0] = 0;
2581 begin_rqfd[1] = 0;
2582 begin_rffd[1] = 0;
2583 end_rqfd[0] = 0;
2584 end_rffd[0] = 0;
2585 end_rqfd[1] = 0;
2586 end_rffd[1] = 0;
2587 window_found = FALSE;
2588
2589 max_pass_length = 0;
2590 max_start = 0;
2591 max_end = 0;
2592 current_pass_length = 0;
2593 current_fail_length = 0;
2594 current_start = 0;
2595 window_found = FALSE;
2596 fail_found = FALSE;
2597 pass_found = FALSE;
2598
2599 /*
2600 * get the delay line calibration register value
2601 */
2602 mfsdram(SDRAM_DLCR, dlycal);
2603 dly_val = SDRAM_DLYCAL_DLCV_DECODE(dlycal) << 2;
2604
2605 for (rffd = 0; rffd <= SDRAM_RFDC_RFFD_MAX; rffd++) {
2606 mfsdram(SDRAM_RFDC, rfdc_reg);
2607 rfdc_reg &= ~(SDRAM_RFDC_RFFD_MASK);
2608
2609 /*------------------------------------------------------------------
2610 * Set the timing reg for the test.
2611 *-----------------------------------------------------------------*/
2612 mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd));
2613
2614 /*------------------------------------------------------------------
2615 * See if the rffd value passed.
2616 *-----------------------------------------------------------------*/
2617 if (short_mem_test()) {
2618 if (fail_found == TRUE) {
2619 pass_found = TRUE;
2620 if (current_pass_length == 0)
2621 current_start = rffd;
2622
2623 current_fail_length = 0;
2624 current_pass_length++;
2625
2626 if (current_pass_length > max_pass_length) {
2627 max_pass_length = current_pass_length;
2628 max_start = current_start;
2629 max_end = rffd;
2630 }
2631 }
2632 } else {
2633 current_pass_length = 0;
2634 current_fail_length++;
2635
2636 if (current_fail_length >= (dly_val >> 2)) {
2637 if (fail_found == FALSE) {
2638 fail_found = TRUE;
2639 } else if (pass_found == TRUE) {
2640 window_found = TRUE;
2641 break;
2642 }
2643 }
2644 }
2645 } /* for rffd */
2646
2647 /*------------------------------------------------------------------
2648 * Set the average RFFD value
2649 *-----------------------------------------------------------------*/
2650 rffd_average = ((max_start + max_end) >> 1);
2651
2652 if (rffd_average < 0)
2653 rffd_average = 0;
2654
2655 if (rffd_average > SDRAM_RFDC_RFFD_MAX)
2656 rffd_average = SDRAM_RFDC_RFFD_MAX;
2657 /* now fix RFDC[RFFD] found and find RQDC[RQFD] */
2658 mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd_average));
2659
2660 #if !defined(CONFIG_DDR_RQDC_FIXED)
2661 max_pass_length = 0;
2662 max_start = 0;
2663 max_end = 0;
2664 current_pass_length = 0;
2665 current_fail_length = 0;
2666 current_start = 0;
2667 window_found = FALSE;
2668 fail_found = FALSE;
2669 pass_found = FALSE;
2670
2671 for (rqfd = 0; rqfd <= SDRAM_RQDC_RQFD_MAX; rqfd++) {
2672 mfsdram(SDRAM_RQDC, rqdc_reg);
2673 rqdc_reg &= ~(SDRAM_RQDC_RQFD_MASK);
2674
2675 /*------------------------------------------------------------------
2676 * Set the timing reg for the test.
2677 *-----------------------------------------------------------------*/
2678 mtsdram(SDRAM_RQDC, rqdc_reg | SDRAM_RQDC_RQFD_ENCODE(rqfd));
2679
2680 /*------------------------------------------------------------------
2681 * See if the rffd value passed.
2682 *-----------------------------------------------------------------*/
2683 if (short_mem_test()) {
2684 if (fail_found == TRUE) {
2685 pass_found = TRUE;
2686 if (current_pass_length == 0)
2687 current_start = rqfd;
2688
2689 current_fail_length = 0;
2690 current_pass_length++;
2691
2692 if (current_pass_length > max_pass_length) {
2693 max_pass_length = current_pass_length;
2694 max_start = current_start;
2695 max_end = rqfd;
2696 }
2697 }
2698 } else {
2699 current_pass_length = 0;
2700 current_fail_length++;
2701
2702 if (fail_found == FALSE) {
2703 fail_found = TRUE;
2704 } else if (pass_found == TRUE) {
2705 window_found = TRUE;
2706 break;
2707 }
2708 }
2709 }
2710
2711 rqfd_average = ((max_start + max_end) >> 1);
2712
2713 /*------------------------------------------------------------------
2714 * Make sure we found the valid read passing window. Halt if not
2715 *-----------------------------------------------------------------*/
2716 if (window_found == FALSE) {
2717 if (rqfd_start < SDRAM_RQDC_RQFD_MAX) {
2718 putc('\b');
2719 putc(slash[loopi++ % 8]);
2720
2721 /* try again from with a different RQFD start value */
2722 rqfd_start++;
2723 goto calibration_loop;
2724 }
2725
2726 printf("\nERROR: Cannot determine a common read delay for the "
2727 "DIMM(s) installed.\n");
2728 debug("%s[%d] ERROR : \n", __FUNCTION__,__LINE__);
2729 ppc440sp_sdram_register_dump();
2730 spd_ddr_init_hang ();
2731 }
2732
2733 if (rqfd_average < 0)
2734 rqfd_average = 0;
2735
2736 if (rqfd_average > SDRAM_RQDC_RQFD_MAX)
2737 rqfd_average = SDRAM_RQDC_RQFD_MAX;
2738
2739 mtsdram(SDRAM_RQDC,
2740 (rqdc_reg & ~SDRAM_RQDC_RQFD_MASK) |
2741 SDRAM_RQDC_RQFD_ENCODE(rqfd_average));
2742
2743 blank_string(strlen(str));
2744 #endif /* CONFIG_DDR_RQDC_FIXED */
2745
2746 /*
2747 * Now complete RDSS configuration as mentioned on page 7 of the AMCC
2748 * PowerPC440SP/SPe DDR2 application note:
2749 * "DDR1/DDR2 Initialization Sequence and Dynamic Tuning"
2750 */
2751 mfsdram(SDRAM_RTSR, val);
2752 if ((val & SDRAM_RTSR_TRK1SM_MASK) == SDRAM_RTSR_TRK1SM_ATPLS1) {
2753 mfsdram(SDRAM_RDCC, val);
2754 if ((val & SDRAM_RDCC_RDSS_MASK) != SDRAM_RDCC_RDSS_T4) {
2755 val += 0x40000000;
2756 mtsdram(SDRAM_RDCC, val);
2757 }
2758 }
2759
2760 mfsdram(SDRAM_DLCR, val);
2761 debug("%s[%d] DLCR: 0x%08X\n", __FUNCTION__, __LINE__, val);
2762 mfsdram(SDRAM_RQDC, val);
2763 debug("%s[%d] RQDC: 0x%08X\n", __FUNCTION__, __LINE__, val);
2764 mfsdram(SDRAM_RFDC, val);
2765 debug("%s[%d] RFDC: 0x%08X\n", __FUNCTION__, __LINE__, val);
2766 mfsdram(SDRAM_RDCC, val);
2767 debug("%s[%d] RDCC: 0x%08X\n", __FUNCTION__, __LINE__, val);
2768 }
2769 #else /* calibration test with hardvalues */
2770 /*-----------------------------------------------------------------------------+
2771 * DQS_calibration_process.
2772 *-----------------------------------------------------------------------------*/
2773 static void test(void)
2774 {
2775 unsigned long dimm_num;
2776 unsigned long ecc_temp;
2777 unsigned long i, j;
2778 unsigned long *membase;
2779 unsigned long bxcf[MAXRANKS];
2780 unsigned long val;
2781 char window_found;
2782 char begin_found[MAXDIMMS];
2783 char end_found[MAXDIMMS];
2784 char search_end[MAXDIMMS];
2785 unsigned long test[NUMMEMTESTS][NUMMEMWORDS] = {
2786 {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
2787 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF},
2788 {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
2789 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000},
2790 {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
2791 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555},
2792 {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
2793 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA},
2794 {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
2795 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A},
2796 {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
2797 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5},
2798 {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
2799 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA},
2800 {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
2801 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} };
2802
2803 /*------------------------------------------------------------------
2804 * Test to determine the best read clock delay tuning bits.
2805 *
2806 * Before the DDR controller can be used, the read clock delay needs to be
2807 * set. This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD].
2808 * This value cannot be hardcoded into the program because it changes
2809 * depending on the board's setup and environment.
2810 * To do this, all delay values are tested to see if they
2811 * work or not. By doing this, you get groups of fails with groups of
2812 * passing values. The idea is to find the start and end of a passing
2813 * window and take the center of it to use as the read clock delay.
2814 *
2815 * A failure has to be seen first so that when we hit a pass, we know
2816 * that it is truely the start of the window. If we get passing values
2817 * to start off with, we don't know if we are at the start of the window.
2818 *
2819 * The code assumes that a failure will always be found.
2820 * If a failure is not found, there is no easy way to get the middle
2821 * of the passing window. I guess we can pretty much pick any value
2822 * but some values will be better than others. Since the lowest speed
2823 * we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed),
2824 * from experimentation it is safe to say you will always have a failure.
2825 *-----------------------------------------------------------------*/
2826 mfsdram(SDRAM_MCOPT1, ecc_temp);
2827 ecc_temp &= SDRAM_MCOPT1_MCHK_MASK;
2828 mfsdram(SDRAM_MCOPT1, val);
2829 mtsdram(SDRAM_MCOPT1, (val & ~SDRAM_MCOPT1_MCHK_MASK) |
2830 SDRAM_MCOPT1_MCHK_NON);
2831
2832 window_found = FALSE;
2833 begin_found[0] = FALSE;
2834 end_found[0] = FALSE;
2835 search_end[0] = FALSE;
2836 begin_found[1] = FALSE;
2837 end_found[1] = FALSE;
2838 search_end[1] = FALSE;
2839
2840 for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
2841 mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf[bxcr_num]);
2842
2843 /* Banks enabled */
2844 if ((bxcf[dimm_num] & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
2845
2846 /* Bank is enabled */
2847 membase =
2848 (unsigned long*)(SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+dimm_num)));
2849
2850 /*------------------------------------------------------------------
2851 * Run the short memory test.
2852 *-----------------------------------------------------------------*/
2853 for (i = 0; i < NUMMEMTESTS; i++) {
2854 for (j = 0; j < NUMMEMWORDS; j++) {
2855 membase[j] = test[i][j];
2856 ppcDcbf((u32)&(membase[j]));
2857 }
2858 sync();
2859 for (j = 0; j < NUMMEMWORDS; j++) {
2860 if (membase[j] != test[i][j]) {
2861 ppcDcbf((u32)&(membase[j]));
2862 break;
2863 }
2864 ppcDcbf((u32)&(membase[j]));
2865 }
2866 sync();
2867 if (j < NUMMEMWORDS)
2868 break;
2869 }
2870
2871 /*------------------------------------------------------------------
2872 * See if the rffd value passed.
2873 *-----------------------------------------------------------------*/
2874 if (i < NUMMEMTESTS) {
2875 if ((end_found[dimm_num] == FALSE) &&
2876 (search_end[dimm_num] == TRUE)) {
2877 end_found[dimm_num] = TRUE;
2878 }
2879 if ((end_found[0] == TRUE) &&
2880 (end_found[1] == TRUE))
2881 break;
2882 } else {
2883 if (begin_found[dimm_num] == FALSE) {
2884 begin_found[dimm_num] = TRUE;
2885 search_end[dimm_num] = TRUE;
2886 }
2887 }
2888 } else {
2889 begin_found[dimm_num] = TRUE;
2890 end_found[dimm_num] = TRUE;
2891 }
2892 }
2893
2894 if ((begin_found[0] == TRUE) && (begin_found[1] == TRUE))
2895 window_found = TRUE;
2896
2897 /*------------------------------------------------------------------
2898 * Make sure we found the valid read passing window. Halt if not
2899 *-----------------------------------------------------------------*/
2900 if (window_found == FALSE) {
2901 printf("ERROR: Cannot determine a common read delay for the "
2902 "DIMM(s) installed.\n");
2903 spd_ddr_init_hang ();
2904 }
2905
2906 /*------------------------------------------------------------------
2907 * Restore the ECC variable to what it originally was
2908 *-----------------------------------------------------------------*/
2909 mtsdram(SDRAM_MCOPT1,
2910 (ppcMfdcr_sdram(SDRAM_MCOPT1) & ~SDRAM_MCOPT1_MCHK_MASK)
2911 | ecc_temp);
2912 }
2913 #endif
2914
2915 #if defined(DEBUG)
2916 static void ppc440sp_sdram_register_dump(void)
2917 {
2918 unsigned int sdram_reg;
2919 unsigned int sdram_data;
2920 unsigned int dcr_data;
2921
2922 printf("\n Register Dump:\n");
2923 sdram_reg = SDRAM_MCSTAT;
2924 mfsdram(sdram_reg, sdram_data);
2925 printf(" SDRAM_MCSTAT = 0x%08X", sdram_data);
2926 sdram_reg = SDRAM_MCOPT1;
2927 mfsdram(sdram_reg, sdram_data);
2928 printf(" SDRAM_MCOPT1 = 0x%08X\n", sdram_data);
2929 sdram_reg = SDRAM_MCOPT2;
2930 mfsdram(sdram_reg, sdram_data);
2931 printf(" SDRAM_MCOPT2 = 0x%08X", sdram_data);
2932 sdram_reg = SDRAM_MODT0;
2933 mfsdram(sdram_reg, sdram_data);
2934 printf(" SDRAM_MODT0 = 0x%08X\n", sdram_data);
2935 sdram_reg = SDRAM_MODT1;
2936 mfsdram(sdram_reg, sdram_data);
2937 printf(" SDRAM_MODT1 = 0x%08X", sdram_data);
2938 sdram_reg = SDRAM_MODT2;
2939 mfsdram(sdram_reg, sdram_data);
2940 printf(" SDRAM_MODT2 = 0x%08X\n", sdram_data);
2941 sdram_reg = SDRAM_MODT3;
2942 mfsdram(sdram_reg, sdram_data);
2943 printf(" SDRAM_MODT3 = 0x%08X", sdram_data);
2944 sdram_reg = SDRAM_CODT;
2945 mfsdram(sdram_reg, sdram_data);
2946 printf(" SDRAM_CODT = 0x%08X\n", sdram_data);
2947 sdram_reg = SDRAM_VVPR;
2948 mfsdram(sdram_reg, sdram_data);
2949 printf(" SDRAM_VVPR = 0x%08X", sdram_data);
2950 sdram_reg = SDRAM_OPARS;
2951 mfsdram(sdram_reg, sdram_data);
2952 printf(" SDRAM_OPARS = 0x%08X\n", sdram_data);
2953 /*
2954 * OPAR2 is only used as a trigger register.
2955 * No data is contained in this register, and reading or writing
2956 * to is can cause bad things to happen (hangs). Just skip it
2957 * and report NA
2958 * sdram_reg = SDRAM_OPAR2;
2959 * mfsdram(sdram_reg, sdram_data);
2960 * printf(" SDRAM_OPAR2 = 0x%08X\n", sdram_data);
2961 */
2962 printf(" SDRAM_OPART = N/A ");
2963 sdram_reg = SDRAM_RTR;
2964 mfsdram(sdram_reg, sdram_data);
2965 printf(" SDRAM_RTR = 0x%08X\n", sdram_data);
2966 sdram_reg = SDRAM_MB0CF;
2967 mfsdram(sdram_reg, sdram_data);
2968 printf(" SDRAM_MB0CF = 0x%08X", sdram_data);
2969 sdram_reg = SDRAM_MB1CF;
2970 mfsdram(sdram_reg, sdram_data);
2971 printf(" SDRAM_MB1CF = 0x%08X\n", sdram_data);
2972 sdram_reg = SDRAM_MB2CF;
2973 mfsdram(sdram_reg, sdram_data);
2974 printf(" SDRAM_MB2CF = 0x%08X", sdram_data);
2975 sdram_reg = SDRAM_MB3CF;
2976 mfsdram(sdram_reg, sdram_data);
2977 printf(" SDRAM_MB3CF = 0x%08X\n", sdram_data);
2978 sdram_reg = SDRAM_INITPLR0;
2979 mfsdram(sdram_reg, sdram_data);
2980 printf(" SDRAM_INITPLR0 = 0x%08X", sdram_data);
2981 sdram_reg = SDRAM_INITPLR1;
2982 mfsdram(sdram_reg, sdram_data);
2983 printf(" SDRAM_INITPLR1 = 0x%08X\n", sdram_data);
2984 sdram_reg = SDRAM_INITPLR2;
2985 mfsdram(sdram_reg, sdram_data);
2986 printf(" SDRAM_INITPLR2 = 0x%08X", sdram_data);
2987 sdram_reg = SDRAM_INITPLR3;
2988 mfsdram(sdram_reg, sdram_data);
2989 printf(" SDRAM_INITPLR3 = 0x%08X\n", sdram_data);
2990 sdram_reg = SDRAM_INITPLR4;
2991 mfsdram(sdram_reg, sdram_data);
2992 printf(" SDRAM_INITPLR4 = 0x%08X", sdram_data);
2993 sdram_reg = SDRAM_INITPLR5;
2994 mfsdram(sdram_reg, sdram_data);
2995 printf(" SDRAM_INITPLR5 = 0x%08X\n", sdram_data);
2996 sdram_reg = SDRAM_INITPLR6;
2997 mfsdram(sdram_reg, sdram_data);
2998 printf(" SDRAM_INITPLR6 = 0x%08X", sdram_data);
2999 sdram_reg = SDRAM_INITPLR7;
3000 mfsdram(sdram_reg, sdram_data);
3001 printf(" SDRAM_INITPLR7 = 0x%08X\n", sdram_data);
3002 sdram_reg = SDRAM_INITPLR8;
3003 mfsdram(sdram_reg, sdram_data);
3004 printf(" SDRAM_INITPLR8 = 0x%08X", sdram_data);
3005 sdram_reg = SDRAM_INITPLR9;
3006 mfsdram(sdram_reg, sdram_data);
3007 printf(" SDRAM_INITPLR9 = 0x%08X\n", sdram_data);
3008 sdram_reg = SDRAM_INITPLR10;
3009 mfsdram(sdram_reg, sdram_data);
3010 printf(" SDRAM_INITPLR10 = 0x%08X", sdram_data);
3011 sdram_reg = SDRAM_INITPLR11;
3012 mfsdram(sdram_reg, sdram_data);
3013 printf(" SDRAM_INITPLR11 = 0x%08X\n", sdram_data);
3014 sdram_reg = SDRAM_INITPLR12;
3015 mfsdram(sdram_reg, sdram_data);
3016 printf(" SDRAM_INITPLR12 = 0x%08X", sdram_data);
3017 sdram_reg = SDRAM_INITPLR13;
3018 mfsdram(sdram_reg, sdram_data);
3019 printf(" SDRAM_INITPLR13 = 0x%08X\n", sdram_data);
3020 sdram_reg = SDRAM_INITPLR14;
3021 mfsdram(sdram_reg, sdram_data);
3022 printf(" SDRAM_INITPLR14 = 0x%08X", sdram_data);
3023 sdram_reg = SDRAM_INITPLR15;
3024 mfsdram(sdram_reg, sdram_data);
3025 printf(" SDRAM_INITPLR15 = 0x%08X\n", sdram_data);
3026 sdram_reg = SDRAM_RQDC;
3027 mfsdram(sdram_reg, sdram_data);
3028 printf(" SDRAM_RQDC = 0x%08X", sdram_data);
3029 sdram_reg = SDRAM_RFDC;
3030 mfsdram(sdram_reg, sdram_data);
3031 printf(" SDRAM_RFDC = 0x%08X\n", sdram_data);
3032 sdram_reg = SDRAM_RDCC;
3033 mfsdram(sdram_reg, sdram_data);
3034 printf(" SDRAM_RDCC = 0x%08X", sdram_data);
3035 sdram_reg = SDRAM_DLCR;
3036 mfsdram(sdram_reg, sdram_data);
3037 printf(" SDRAM_DLCR = 0x%08X\n", sdram_data);
3038 sdram_reg = SDRAM_CLKTR;
3039 mfsdram(sdram_reg, sdram_data);
3040 printf(" SDRAM_CLKTR = 0x%08X", sdram_data);
3041 sdram_reg = SDRAM_WRDTR;
3042 mfsdram(sdram_reg, sdram_data);
3043 printf(" SDRAM_WRDTR = 0x%08X\n", sdram_data);
3044 sdram_reg = SDRAM_SDTR1;
3045 mfsdram(sdram_reg, sdram_data);
3046 printf(" SDRAM_SDTR1 = 0x%08X", sdram_data);
3047 sdram_reg = SDRAM_SDTR2;
3048 mfsdram(sdram_reg, sdram_data);
3049 printf(" SDRAM_SDTR2 = 0x%08X\n", sdram_data);
3050 sdram_reg = SDRAM_SDTR3;
3051 mfsdram(sdram_reg, sdram_data);
3052 printf(" SDRAM_SDTR3 = 0x%08X", sdram_data);
3053 sdram_reg = SDRAM_MMODE;
3054 mfsdram(sdram_reg, sdram_data);
3055 printf(" SDRAM_MMODE = 0x%08X\n", sdram_data);
3056 sdram_reg = SDRAM_MEMODE;
3057 mfsdram(sdram_reg, sdram_data);
3058 printf(" SDRAM_MEMODE = 0x%08X", sdram_data);
3059 sdram_reg = SDRAM_ECCCR;
3060 mfsdram(sdram_reg, sdram_data);
3061 printf(" SDRAM_ECCCR = 0x%08X\n\n", sdram_data);
3062
3063 dcr_data = mfdcr(SDRAM_R0BAS);
3064 printf(" MQ0_B0BAS = 0x%08X", dcr_data);
3065 dcr_data = mfdcr(SDRAM_R1BAS);
3066 printf(" MQ1_B0BAS = 0x%08X\n", dcr_data);
3067 dcr_data = mfdcr(SDRAM_R2BAS);
3068 printf(" MQ2_B0BAS = 0x%08X", dcr_data);
3069 dcr_data = mfdcr(SDRAM_R3BAS);
3070 printf(" MQ3_B0BAS = 0x%08X\n", dcr_data);
3071 }
3072 #else /* !defined(DEBUG) */
3073 static void ppc440sp_sdram_register_dump(void)
3074 {
3075 }
3076 #endif /* defined(DEBUG) */
3077 #elif defined(CONFIG_405EX)
3078 /*-----------------------------------------------------------------------------
3079 * Function: initdram
3080 * Description: Configures the PPC405EX(r) DDR1/DDR2 SDRAM memory
3081 * banks. The configuration is performed using static, compile-
3082 * time parameters.
3083 *---------------------------------------------------------------------------*/
3084 phys_size_t initdram(int board_type)
3085 {
3086 /*
3087 * Only run this SDRAM init code once. For NAND booting
3088 * targets like Kilauea, we call initdram() early from the
3089 * 4k NAND booting image (CONFIG_NAND_SPL) from nand_boot().
3090 * Later on the NAND U-Boot image runs (CONFIG_NAND_U_BOOT)
3091 * which calls initdram() again. This time the controller
3092 * mustn't be reconfigured again since we're already running
3093 * from SDRAM.
3094 */
3095 #if !defined(CONFIG_NAND_U_BOOT) || defined(CONFIG_NAND_SPL)
3096 unsigned long val;
3097
3098 /* Set Memory Bank Configuration Registers */
3099
3100 mtsdram(SDRAM_MB0CF, CFG_SDRAM0_MB0CF);
3101 mtsdram(SDRAM_MB1CF, CFG_SDRAM0_MB1CF);
3102 mtsdram(SDRAM_MB2CF, CFG_SDRAM0_MB2CF);
3103 mtsdram(SDRAM_MB3CF, CFG_SDRAM0_MB3CF);
3104
3105 /* Set Memory Clock Timing Register */
3106
3107 mtsdram(SDRAM_CLKTR, CFG_SDRAM0_CLKTR);
3108
3109 /* Set Refresh Time Register */
3110
3111 mtsdram(SDRAM_RTR, CFG_SDRAM0_RTR);
3112
3113 /* Set SDRAM Timing Registers */
3114
3115 mtsdram(SDRAM_SDTR1, CFG_SDRAM0_SDTR1);
3116 mtsdram(SDRAM_SDTR2, CFG_SDRAM0_SDTR2);
3117 mtsdram(SDRAM_SDTR3, CFG_SDRAM0_SDTR3);
3118
3119 /* Set Mode and Extended Mode Registers */
3120
3121 mtsdram(SDRAM_MMODE, CFG_SDRAM0_MMODE);
3122 mtsdram(SDRAM_MEMODE, CFG_SDRAM0_MEMODE);
3123
3124 /* Set Memory Controller Options 1 Register */
3125
3126 mtsdram(SDRAM_MCOPT1, CFG_SDRAM0_MCOPT1);
3127
3128 /* Set Manual Initialization Control Registers */
3129
3130 mtsdram(SDRAM_INITPLR0, CFG_SDRAM0_INITPLR0);
3131 mtsdram(SDRAM_INITPLR1, CFG_SDRAM0_INITPLR1);
3132 mtsdram(SDRAM_INITPLR2, CFG_SDRAM0_INITPLR2);
3133 mtsdram(SDRAM_INITPLR3, CFG_SDRAM0_INITPLR3);
3134 mtsdram(SDRAM_INITPLR4, CFG_SDRAM0_INITPLR4);
3135 mtsdram(SDRAM_INITPLR5, CFG_SDRAM0_INITPLR5);
3136 mtsdram(SDRAM_INITPLR6, CFG_SDRAM0_INITPLR6);
3137 mtsdram(SDRAM_INITPLR7, CFG_SDRAM0_INITPLR7);
3138 mtsdram(SDRAM_INITPLR8, CFG_SDRAM0_INITPLR8);
3139 mtsdram(SDRAM_INITPLR9, CFG_SDRAM0_INITPLR9);
3140 mtsdram(SDRAM_INITPLR10, CFG_SDRAM0_INITPLR10);
3141 mtsdram(SDRAM_INITPLR11, CFG_SDRAM0_INITPLR11);
3142 mtsdram(SDRAM_INITPLR12, CFG_SDRAM0_INITPLR12);
3143 mtsdram(SDRAM_INITPLR13, CFG_SDRAM0_INITPLR13);
3144 mtsdram(SDRAM_INITPLR14, CFG_SDRAM0_INITPLR14);
3145 mtsdram(SDRAM_INITPLR15, CFG_SDRAM0_INITPLR15);
3146
3147 /* Set On-Die Termination Registers */
3148
3149 mtsdram(SDRAM_CODT, CFG_SDRAM0_CODT);
3150 mtsdram(SDRAM_MODT0, CFG_SDRAM0_MODT0);
3151 mtsdram(SDRAM_MODT1, CFG_SDRAM0_MODT1);
3152
3153 /* Set Write Timing Register */
3154
3155 mtsdram(SDRAM_WRDTR, CFG_SDRAM0_WRDTR);
3156
3157 /*
3158 * Start Initialization by SDRAM0_MCOPT2[SREN] = 0 and
3159 * SDRAM0_MCOPT2[IPTR] = 1
3160 */
3161
3162 mtsdram(SDRAM_MCOPT2, (SDRAM_MCOPT2_SREN_EXIT |
3163 SDRAM_MCOPT2_IPTR_EXECUTE));
3164
3165 /*
3166 * Poll SDRAM0_MCSTAT[MIC] for assertion to indicate the
3167 * completion of initialization.
3168 */
3169
3170 do {
3171 mfsdram(SDRAM_MCSTAT, val);
3172 } while ((val & SDRAM_MCSTAT_MIC_MASK) != SDRAM_MCSTAT_MIC_COMP);
3173
3174 /* Set Delay Control Registers */
3175
3176 mtsdram(SDRAM_DLCR, CFG_SDRAM0_DLCR);
3177 mtsdram(SDRAM_RDCC, CFG_SDRAM0_RDCC);
3178 mtsdram(SDRAM_RQDC, CFG_SDRAM0_RQDC);
3179 mtsdram(SDRAM_RFDC, CFG_SDRAM0_RFDC);
3180
3181 /*
3182 * Enable Controller by SDRAM0_MCOPT2[DCEN] = 1:
3183 */
3184
3185 mfsdram(SDRAM_MCOPT2, val);
3186 mtsdram(SDRAM_MCOPT2, val | SDRAM_MCOPT2_DCEN_ENABLE);
3187
3188 #if defined(CONFIG_DDR_ECC)
3189 ecc_init(CFG_SDRAM_BASE, CFG_MBYTES_SDRAM << 20);
3190 #endif /* defined(CONFIG_DDR_ECC) */
3191 #endif /* !defined(CONFIG_NAND_U_BOOT) || defined(CONFIG_NAND_SPL) */
3192
3193 return (CFG_MBYTES_SDRAM << 20);
3194 }
3195 #endif /* defined(CONFIG_SPD_EEPROM) && defined(CONFIG_440SP) || ... */