]> git.ipfire.org Git - thirdparty/qemu.git/blob - cpu-exec.c
win32 port (initial patch by kazu)
[thirdparty/qemu.git] / cpu-exec.c
1 /*
2 * i386 emulator main execution loop
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20 #include "config.h"
21 #include "exec.h"
22 #include "disas.h"
23
24 int tb_invalidated_flag;
25
26 //#define DEBUG_EXEC
27 //#define DEBUG_SIGNAL
28
29 #if defined(TARGET_ARM) || defined(TARGET_SPARC)
30 /* XXX: unify with i386 target */
31 void cpu_loop_exit(void)
32 {
33 longjmp(env->jmp_env, 1);
34 }
35 #endif
36
37 /* main execution loop */
38
39 int cpu_exec(CPUState *env1)
40 {
41 int saved_T0, saved_T1, saved_T2;
42 CPUState *saved_env;
43 #ifdef reg_EAX
44 int saved_EAX;
45 #endif
46 #ifdef reg_ECX
47 int saved_ECX;
48 #endif
49 #ifdef reg_EDX
50 int saved_EDX;
51 #endif
52 #ifdef reg_EBX
53 int saved_EBX;
54 #endif
55 #ifdef reg_ESP
56 int saved_ESP;
57 #endif
58 #ifdef reg_EBP
59 int saved_EBP;
60 #endif
61 #ifdef reg_ESI
62 int saved_ESI;
63 #endif
64 #ifdef reg_EDI
65 int saved_EDI;
66 #endif
67 #ifdef __sparc__
68 int saved_i7, tmp_T0;
69 #endif
70 int code_gen_size, ret, interrupt_request;
71 void (*gen_func)(void);
72 TranslationBlock *tb, **ptb;
73 uint8_t *tc_ptr, *cs_base, *pc;
74 unsigned int flags;
75
76 /* first we save global registers */
77 saved_T0 = T0;
78 saved_T1 = T1;
79 saved_T2 = T2;
80 saved_env = env;
81 env = env1;
82 #ifdef __sparc__
83 /* we also save i7 because longjmp may not restore it */
84 asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
85 #endif
86
87 #if defined(TARGET_I386)
88 #ifdef reg_EAX
89 saved_EAX = EAX;
90 EAX = env->regs[R_EAX];
91 #endif
92 #ifdef reg_ECX
93 saved_ECX = ECX;
94 ECX = env->regs[R_ECX];
95 #endif
96 #ifdef reg_EDX
97 saved_EDX = EDX;
98 EDX = env->regs[R_EDX];
99 #endif
100 #ifdef reg_EBX
101 saved_EBX = EBX;
102 EBX = env->regs[R_EBX];
103 #endif
104 #ifdef reg_ESP
105 saved_ESP = ESP;
106 ESP = env->regs[R_ESP];
107 #endif
108 #ifdef reg_EBP
109 saved_EBP = EBP;
110 EBP = env->regs[R_EBP];
111 #endif
112 #ifdef reg_ESI
113 saved_ESI = ESI;
114 ESI = env->regs[R_ESI];
115 #endif
116 #ifdef reg_EDI
117 saved_EDI = EDI;
118 EDI = env->regs[R_EDI];
119 #endif
120
121 /* put eflags in CPU temporary format */
122 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
123 DF = 1 - (2 * ((env->eflags >> 10) & 1));
124 CC_OP = CC_OP_EFLAGS;
125 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
126 #elif defined(TARGET_ARM)
127 {
128 unsigned int psr;
129 psr = env->cpsr;
130 env->CF = (psr >> 29) & 1;
131 env->NZF = (psr & 0xc0000000) ^ 0x40000000;
132 env->VF = (psr << 3) & 0x80000000;
133 env->cpsr = psr & ~0xf0000000;
134 }
135 #elif defined(TARGET_SPARC)
136 #elif defined(TARGET_PPC)
137 #else
138 #error unsupported target CPU
139 #endif
140 env->exception_index = -1;
141
142 /* prepare setjmp context for exception handling */
143 for(;;) {
144 if (setjmp(env->jmp_env) == 0) {
145 env->current_tb = NULL;
146 /* if an exception is pending, we execute it here */
147 if (env->exception_index >= 0) {
148 if (env->exception_index >= EXCP_INTERRUPT) {
149 /* exit request from the cpu execution loop */
150 ret = env->exception_index;
151 break;
152 } else if (env->user_mode_only) {
153 /* if user mode only, we simulate a fake exception
154 which will be hanlded outside the cpu execution
155 loop */
156 #if defined(TARGET_I386)
157 do_interrupt_user(env->exception_index,
158 env->exception_is_int,
159 env->error_code,
160 env->exception_next_eip);
161 #endif
162 ret = env->exception_index;
163 break;
164 } else {
165 #if defined(TARGET_I386)
166 /* simulate a real cpu exception. On i386, it can
167 trigger new exceptions, but we do not handle
168 double or triple faults yet. */
169 do_interrupt(env->exception_index,
170 env->exception_is_int,
171 env->error_code,
172 env->exception_next_eip, 0);
173 #elif defined(TARGET_PPC)
174 do_interrupt(env);
175 #endif
176 }
177 env->exception_index = -1;
178 }
179 T0 = 0; /* force lookup of first TB */
180 for(;;) {
181 #ifdef __sparc__
182 /* g1 can be modified by some libc? functions */
183 tmp_T0 = T0;
184 #endif
185 interrupt_request = env->interrupt_request;
186 if (__builtin_expect(interrupt_request, 0)) {
187 #if defined(TARGET_I386)
188 /* if hardware interrupt pending, we execute it */
189 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
190 (env->eflags & IF_MASK) &&
191 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
192 int intno;
193 intno = cpu_x86_get_pic_interrupt(env);
194 if (loglevel & CPU_LOG_TB_IN_ASM) {
195 fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
196 }
197 do_interrupt(intno, 0, 0, 0, 1);
198 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
199 /* ensure that no TB jump will be modified as
200 the program flow was changed */
201 #ifdef __sparc__
202 tmp_T0 = 0;
203 #else
204 T0 = 0;
205 #endif
206 }
207 #elif defined(TARGET_PPC)
208 if ((interrupt_request & CPU_INTERRUPT_HARD)) {
209 do_queue_exception(EXCP_EXTERNAL);
210 if (check_exception_state(env))
211 do_interrupt(env);
212 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
213 }
214 #endif
215 if (interrupt_request & CPU_INTERRUPT_EXITTB) {
216 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
217 /* ensure that no TB jump will be modified as
218 the program flow was changed */
219 #ifdef __sparc__
220 tmp_T0 = 0;
221 #else
222 T0 = 0;
223 #endif
224 }
225 if (interrupt_request & CPU_INTERRUPT_EXIT) {
226 env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
227 env->exception_index = EXCP_INTERRUPT;
228 cpu_loop_exit();
229 }
230 }
231 #ifdef DEBUG_EXEC
232 if (loglevel & CPU_LOG_EXEC) {
233 #if defined(TARGET_I386)
234 /* restore flags in standard format */
235 env->regs[R_EAX] = EAX;
236 env->regs[R_EBX] = EBX;
237 env->regs[R_ECX] = ECX;
238 env->regs[R_EDX] = EDX;
239 env->regs[R_ESI] = ESI;
240 env->regs[R_EDI] = EDI;
241 env->regs[R_EBP] = EBP;
242 env->regs[R_ESP] = ESP;
243 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
244 cpu_x86_dump_state(env, logfile, X86_DUMP_CCOP);
245 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
246 #elif defined(TARGET_ARM)
247 env->cpsr = compute_cpsr();
248 cpu_arm_dump_state(env, logfile, 0);
249 env->cpsr &= ~0xf0000000;
250 #elif defined(TARGET_SPARC)
251 cpu_sparc_dump_state (env, logfile, 0);
252 #elif defined(TARGET_PPC)
253 cpu_ppc_dump_state(env, logfile, 0);
254 #else
255 #error unsupported target CPU
256 #endif
257 }
258 #endif
259 /* we record a subset of the CPU state. It will
260 always be the same before a given translated block
261 is executed. */
262 #if defined(TARGET_I386)
263 flags = env->hflags;
264 flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
265 cs_base = env->segs[R_CS].base;
266 pc = cs_base + env->eip;
267 #elif defined(TARGET_ARM)
268 flags = 0;
269 cs_base = 0;
270 pc = (uint8_t *)env->regs[15];
271 #elif defined(TARGET_SPARC)
272 flags = 0;
273 cs_base = (uint8_t *)env->npc;
274 pc = (uint8_t *) env->pc;
275 #elif defined(TARGET_PPC)
276 flags = 0;
277 cs_base = 0;
278 pc = (uint8_t *)env->nip;
279 #else
280 #error unsupported CPU
281 #endif
282 tb = tb_find(&ptb, (unsigned long)pc, (unsigned long)cs_base,
283 flags);
284 if (!tb) {
285 TranslationBlock **ptb1;
286 unsigned int h;
287 target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
288
289
290 spin_lock(&tb_lock);
291
292 tb_invalidated_flag = 0;
293
294 /* find translated block using physical mappings */
295 phys_pc = get_phys_addr_code(env, (unsigned long)pc);
296 phys_page1 = phys_pc & TARGET_PAGE_MASK;
297 phys_page2 = -1;
298 h = tb_phys_hash_func(phys_pc);
299 ptb1 = &tb_phys_hash[h];
300 for(;;) {
301 tb = *ptb1;
302 if (!tb)
303 goto not_found;
304 if (tb->pc == (unsigned long)pc &&
305 tb->page_addr[0] == phys_page1 &&
306 tb->cs_base == (unsigned long)cs_base &&
307 tb->flags == flags) {
308 /* check next page if needed */
309 if (tb->page_addr[1] != -1) {
310 virt_page2 = ((unsigned long)pc & TARGET_PAGE_MASK) +
311 TARGET_PAGE_SIZE;
312 phys_page2 = get_phys_addr_code(env, virt_page2);
313 if (tb->page_addr[1] == phys_page2)
314 goto found;
315 } else {
316 goto found;
317 }
318 }
319 ptb1 = &tb->phys_hash_next;
320 }
321 not_found:
322 /* if no translated code available, then translate it now */
323 tb = tb_alloc((unsigned long)pc);
324 if (!tb) {
325 /* flush must be done */
326 tb_flush(env);
327 /* cannot fail at this point */
328 tb = tb_alloc((unsigned long)pc);
329 /* don't forget to invalidate previous TB info */
330 ptb = &tb_hash[tb_hash_func((unsigned long)pc)];
331 T0 = 0;
332 }
333 tc_ptr = code_gen_ptr;
334 tb->tc_ptr = tc_ptr;
335 tb->cs_base = (unsigned long)cs_base;
336 tb->flags = flags;
337 cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
338 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
339
340 /* check next page if needed */
341 virt_page2 = ((unsigned long)pc + tb->size - 1) & TARGET_PAGE_MASK;
342 phys_page2 = -1;
343 if (((unsigned long)pc & TARGET_PAGE_MASK) != virt_page2) {
344 phys_page2 = get_phys_addr_code(env, virt_page2);
345 }
346 tb_link_phys(tb, phys_pc, phys_page2);
347
348 found:
349 if (tb_invalidated_flag) {
350 /* as some TB could have been invalidated because
351 of memory exceptions while generating the code, we
352 must recompute the hash index here */
353 ptb = &tb_hash[tb_hash_func((unsigned long)pc)];
354 while (*ptb != NULL)
355 ptb = &(*ptb)->hash_next;
356 T0 = 0;
357 }
358 /* we add the TB in the virtual pc hash table */
359 *ptb = tb;
360 tb->hash_next = NULL;
361 tb_link(tb);
362 spin_unlock(&tb_lock);
363 }
364 #ifdef DEBUG_EXEC
365 if (loglevel & CPU_LOG_EXEC) {
366 fprintf(logfile, "Trace 0x%08lx [0x%08lx] %s\n",
367 (long)tb->tc_ptr, (long)tb->pc,
368 lookup_symbol((void *)tb->pc));
369 }
370 #endif
371 #ifdef __sparc__
372 T0 = tmp_T0;
373 #endif
374 /* see if we can patch the calling TB. */
375 if (T0 != 0
376 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
377 && (tb->cflags & CF_CODE_COPY) ==
378 (((TranslationBlock *)(T0 & ~3))->cflags & CF_CODE_COPY)
379 #endif
380 ) {
381 spin_lock(&tb_lock);
382 tb_add_jump((TranslationBlock *)(T0 & ~3), T0 & 3, tb);
383 #if defined(USE_CODE_COPY)
384 /* propagates the FP use info */
385 ((TranslationBlock *)(T0 & ~3))->cflags |=
386 (tb->cflags & CF_FP_USED);
387 #endif
388 spin_unlock(&tb_lock);
389 }
390 tc_ptr = tb->tc_ptr;
391 env->current_tb = tb;
392 /* execute the generated code */
393 gen_func = (void *)tc_ptr;
394 #if defined(__sparc__)
395 __asm__ __volatile__("call %0\n\t"
396 "mov %%o7,%%i0"
397 : /* no outputs */
398 : "r" (gen_func)
399 : "i0", "i1", "i2", "i3", "i4", "i5");
400 #elif defined(__arm__)
401 asm volatile ("mov pc, %0\n\t"
402 ".global exec_loop\n\t"
403 "exec_loop:\n\t"
404 : /* no outputs */
405 : "r" (gen_func)
406 : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
407 #elif defined(TARGET_I386) && defined(USE_CODE_COPY)
408 {
409 if (!(tb->cflags & CF_CODE_COPY)) {
410 if ((tb->cflags & CF_FP_USED) && env->native_fp_regs) {
411 save_native_fp_state(env);
412 }
413 gen_func();
414 } else {
415 if ((tb->cflags & CF_FP_USED) && !env->native_fp_regs) {
416 restore_native_fp_state(env);
417 }
418 /* we work with native eflags */
419 CC_SRC = cc_table[CC_OP].compute_all();
420 CC_OP = CC_OP_EFLAGS;
421 asm(".globl exec_loop\n"
422 "\n"
423 "debug1:\n"
424 " pushl %%ebp\n"
425 " fs movl %10, %9\n"
426 " fs movl %11, %%eax\n"
427 " andl $0x400, %%eax\n"
428 " fs orl %8, %%eax\n"
429 " pushl %%eax\n"
430 " popf\n"
431 " fs movl %%esp, %12\n"
432 " fs movl %0, %%eax\n"
433 " fs movl %1, %%ecx\n"
434 " fs movl %2, %%edx\n"
435 " fs movl %3, %%ebx\n"
436 " fs movl %4, %%esp\n"
437 " fs movl %5, %%ebp\n"
438 " fs movl %6, %%esi\n"
439 " fs movl %7, %%edi\n"
440 " fs jmp *%9\n"
441 "exec_loop:\n"
442 " fs movl %%esp, %4\n"
443 " fs movl %12, %%esp\n"
444 " fs movl %%eax, %0\n"
445 " fs movl %%ecx, %1\n"
446 " fs movl %%edx, %2\n"
447 " fs movl %%ebx, %3\n"
448 " fs movl %%ebp, %5\n"
449 " fs movl %%esi, %6\n"
450 " fs movl %%edi, %7\n"
451 " pushf\n"
452 " popl %%eax\n"
453 " movl %%eax, %%ecx\n"
454 " andl $0x400, %%ecx\n"
455 " shrl $9, %%ecx\n"
456 " andl $0x8d5, %%eax\n"
457 " fs movl %%eax, %8\n"
458 " movl $1, %%eax\n"
459 " subl %%ecx, %%eax\n"
460 " fs movl %%eax, %11\n"
461 " fs movl %9, %%ebx\n" /* get T0 value */
462 " popl %%ebp\n"
463 :
464 : "m" (*(uint8_t *)offsetof(CPUState, regs[0])),
465 "m" (*(uint8_t *)offsetof(CPUState, regs[1])),
466 "m" (*(uint8_t *)offsetof(CPUState, regs[2])),
467 "m" (*(uint8_t *)offsetof(CPUState, regs[3])),
468 "m" (*(uint8_t *)offsetof(CPUState, regs[4])),
469 "m" (*(uint8_t *)offsetof(CPUState, regs[5])),
470 "m" (*(uint8_t *)offsetof(CPUState, regs[6])),
471 "m" (*(uint8_t *)offsetof(CPUState, regs[7])),
472 "m" (*(uint8_t *)offsetof(CPUState, cc_src)),
473 "m" (*(uint8_t *)offsetof(CPUState, tmp0)),
474 "a" (gen_func),
475 "m" (*(uint8_t *)offsetof(CPUState, df)),
476 "m" (*(uint8_t *)offsetof(CPUState, saved_esp))
477 : "%ecx", "%edx"
478 );
479 }
480 }
481 #else
482 gen_func();
483 #endif
484 env->current_tb = NULL;
485 /* reset soft MMU for next block (it can currently
486 only be set by a memory fault) */
487 #if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
488 if (env->hflags & HF_SOFTMMU_MASK) {
489 env->hflags &= ~HF_SOFTMMU_MASK;
490 /* do not allow linking to another block */
491 T0 = 0;
492 }
493 #endif
494 }
495 } else {
496 }
497 } /* for(;;) */
498
499
500 #if defined(TARGET_I386)
501 #if defined(USE_CODE_COPY)
502 if (env->native_fp_regs) {
503 save_native_fp_state(env);
504 }
505 #endif
506 /* restore flags in standard format */
507 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
508
509 /* restore global registers */
510 #ifdef reg_EAX
511 EAX = saved_EAX;
512 #endif
513 #ifdef reg_ECX
514 ECX = saved_ECX;
515 #endif
516 #ifdef reg_EDX
517 EDX = saved_EDX;
518 #endif
519 #ifdef reg_EBX
520 EBX = saved_EBX;
521 #endif
522 #ifdef reg_ESP
523 ESP = saved_ESP;
524 #endif
525 #ifdef reg_EBP
526 EBP = saved_EBP;
527 #endif
528 #ifdef reg_ESI
529 ESI = saved_ESI;
530 #endif
531 #ifdef reg_EDI
532 EDI = saved_EDI;
533 #endif
534 #elif defined(TARGET_ARM)
535 env->cpsr = compute_cpsr();
536 #elif defined(TARGET_SPARC)
537 #elif defined(TARGET_PPC)
538 #else
539 #error unsupported target CPU
540 #endif
541 #ifdef __sparc__
542 asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
543 #endif
544 T0 = saved_T0;
545 T1 = saved_T1;
546 T2 = saved_T2;
547 env = saved_env;
548 return ret;
549 }
550
551 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
552
553 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
554 {
555 CPUX86State *saved_env;
556
557 saved_env = env;
558 env = s;
559 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
560 selector &= 0xffff;
561 cpu_x86_load_seg_cache(env, seg_reg, selector,
562 (uint8_t *)(selector << 4), 0xffff, 0);
563 } else {
564 load_seg(seg_reg, selector);
565 }
566 env = saved_env;
567 }
568
569 void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
570 {
571 CPUX86State *saved_env;
572
573 saved_env = env;
574 env = s;
575
576 helper_fsave(ptr, data32);
577
578 env = saved_env;
579 }
580
581 void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
582 {
583 CPUX86State *saved_env;
584
585 saved_env = env;
586 env = s;
587
588 helper_frstor(ptr, data32);
589
590 env = saved_env;
591 }
592
593 #endif /* TARGET_I386 */
594
595 #if !defined(CONFIG_SOFTMMU)
596
597 #undef EAX
598 #undef ECX
599 #undef EDX
600 #undef EBX
601 #undef ESP
602 #undef EBP
603 #undef ESI
604 #undef EDI
605 #undef EIP
606 #include <signal.h>
607 #include <sys/ucontext.h>
608
609 #if defined(TARGET_I386)
610
611 /* 'pc' is the host PC at which the exception was raised. 'address' is
612 the effective address of the memory exception. 'is_write' is 1 if a
613 write caused the exception and otherwise 0'. 'old_set' is the
614 signal set which should be restored */
615 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
616 int is_write, sigset_t *old_set,
617 void *puc)
618 {
619 TranslationBlock *tb;
620 int ret;
621
622 if (cpu_single_env)
623 env = cpu_single_env; /* XXX: find a correct solution for multithread */
624 #if defined(DEBUG_SIGNAL)
625 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
626 pc, address, is_write, *(unsigned long *)old_set);
627 #endif
628 /* XXX: locking issue */
629 if (is_write && page_unprotect(address)) {
630 return 1;
631 }
632 /* see if it is an MMU fault */
633 ret = cpu_x86_handle_mmu_fault(env, address, is_write,
634 ((env->hflags & HF_CPL_MASK) == 3), 0);
635 if (ret < 0)
636 return 0; /* not an MMU fault */
637 if (ret == 0)
638 return 1; /* the MMU fault was handled without causing real CPU fault */
639 /* now we have a real cpu fault */
640 tb = tb_find_pc(pc);
641 if (tb) {
642 /* the PC is inside the translated code. It means that we have
643 a virtual CPU fault */
644 cpu_restore_state(tb, env, pc, puc);
645 }
646 if (ret == 1) {
647 #if 0
648 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
649 env->eip, env->cr[2], env->error_code);
650 #endif
651 /* we restore the process signal mask as the sigreturn should
652 do it (XXX: use sigsetjmp) */
653 sigprocmask(SIG_SETMASK, old_set, NULL);
654 raise_exception_err(EXCP0E_PAGE, env->error_code);
655 } else {
656 /* activate soft MMU for this block */
657 env->hflags |= HF_SOFTMMU_MASK;
658 sigprocmask(SIG_SETMASK, old_set, NULL);
659 cpu_loop_exit();
660 }
661 /* never comes here */
662 return 1;
663 }
664
665 #elif defined(TARGET_ARM)
666 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
667 int is_write, sigset_t *old_set,
668 void *puc)
669 {
670 /* XXX: do more */
671 return 0;
672 }
673 #elif defined(TARGET_SPARC)
674 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
675 int is_write, sigset_t *old_set,
676 void *puc)
677 {
678 /* XXX: locking issue */
679 if (is_write && page_unprotect(address)) {
680 return 1;
681 }
682 return 0;
683 }
684 #elif defined (TARGET_PPC)
685 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
686 int is_write, sigset_t *old_set,
687 void *puc)
688 {
689 TranslationBlock *tb;
690 int ret;
691
692 #if 1
693 if (cpu_single_env)
694 env = cpu_single_env; /* XXX: find a correct solution for multithread */
695 #endif
696 #if defined(DEBUG_SIGNAL)
697 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
698 pc, address, is_write, *(unsigned long *)old_set);
699 #endif
700 /* XXX: locking issue */
701 if (is_write && page_unprotect(address)) {
702 return 1;
703 }
704
705 /* see if it is an MMU fault */
706 ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0);
707 if (ret < 0)
708 return 0; /* not an MMU fault */
709 if (ret == 0)
710 return 1; /* the MMU fault was handled without causing real CPU fault */
711
712 /* now we have a real cpu fault */
713 tb = tb_find_pc(pc);
714 if (tb) {
715 /* the PC is inside the translated code. It means that we have
716 a virtual CPU fault */
717 cpu_restore_state(tb, env, pc, puc);
718 }
719 if (ret == 1) {
720 #if 0
721 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
722 env->nip, env->error_code, tb);
723 #endif
724 /* we restore the process signal mask as the sigreturn should
725 do it (XXX: use sigsetjmp) */
726 sigprocmask(SIG_SETMASK, old_set, NULL);
727 do_queue_exception_err(env->exception_index, env->error_code);
728 } else {
729 /* activate soft MMU for this block */
730 sigprocmask(SIG_SETMASK, old_set, NULL);
731 cpu_loop_exit();
732 }
733 /* never comes here */
734 return 1;
735 }
736 #else
737 #error unsupported target CPU
738 #endif
739
740 #if defined(__i386__)
741
742 #if defined(USE_CODE_COPY)
743 static void cpu_send_trap(unsigned long pc, int trap,
744 struct ucontext *uc)
745 {
746 TranslationBlock *tb;
747
748 if (cpu_single_env)
749 env = cpu_single_env; /* XXX: find a correct solution for multithread */
750 /* now we have a real cpu fault */
751 tb = tb_find_pc(pc);
752 if (tb) {
753 /* the PC is inside the translated code. It means that we have
754 a virtual CPU fault */
755 cpu_restore_state(tb, env, pc, uc);
756 }
757 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
758 raise_exception_err(trap, env->error_code);
759 }
760 #endif
761
762 int cpu_signal_handler(int host_signum, struct siginfo *info,
763 void *puc)
764 {
765 struct ucontext *uc = puc;
766 unsigned long pc;
767 int trapno;
768
769 #ifndef REG_EIP
770 /* for glibc 2.1 */
771 #define REG_EIP EIP
772 #define REG_ERR ERR
773 #define REG_TRAPNO TRAPNO
774 #endif
775 pc = uc->uc_mcontext.gregs[REG_EIP];
776 trapno = uc->uc_mcontext.gregs[REG_TRAPNO];
777 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
778 if (trapno == 0x00 || trapno == 0x05) {
779 /* send division by zero or bound exception */
780 cpu_send_trap(pc, trapno, uc);
781 return 1;
782 } else
783 #endif
784 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
785 trapno == 0xe ?
786 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
787 &uc->uc_sigmask, puc);
788 }
789
790 #elif defined(__x86_64__)
791
792 int cpu_signal_handler(int host_signum, struct siginfo *info,
793 void *puc)
794 {
795 struct ucontext *uc = puc;
796 unsigned long pc;
797
798 pc = uc->uc_mcontext.gregs[REG_RIP];
799 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
800 uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ?
801 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
802 &uc->uc_sigmask, puc);
803 }
804
805 #elif defined(__powerpc)
806
807 int cpu_signal_handler(int host_signum, struct siginfo *info,
808 void *puc)
809 {
810 struct ucontext *uc = puc;
811 struct pt_regs *regs = uc->uc_mcontext.regs;
812 unsigned long pc;
813 int is_write;
814
815 pc = regs->nip;
816 is_write = 0;
817 #if 0
818 /* ppc 4xx case */
819 if (regs->dsisr & 0x00800000)
820 is_write = 1;
821 #else
822 if (regs->trap != 0x400 && (regs->dsisr & 0x02000000))
823 is_write = 1;
824 #endif
825 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
826 is_write, &uc->uc_sigmask, puc);
827 }
828
829 #elif defined(__alpha__)
830
831 int cpu_signal_handler(int host_signum, struct siginfo *info,
832 void *puc)
833 {
834 struct ucontext *uc = puc;
835 uint32_t *pc = uc->uc_mcontext.sc_pc;
836 uint32_t insn = *pc;
837 int is_write = 0;
838
839 /* XXX: need kernel patch to get write flag faster */
840 switch (insn >> 26) {
841 case 0x0d: // stw
842 case 0x0e: // stb
843 case 0x0f: // stq_u
844 case 0x24: // stf
845 case 0x25: // stg
846 case 0x26: // sts
847 case 0x27: // stt
848 case 0x2c: // stl
849 case 0x2d: // stq
850 case 0x2e: // stl_c
851 case 0x2f: // stq_c
852 is_write = 1;
853 }
854
855 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
856 is_write, &uc->uc_sigmask, puc);
857 }
858 #elif defined(__sparc__)
859
860 int cpu_signal_handler(int host_signum, struct siginfo *info,
861 void *puc)
862 {
863 uint32_t *regs = (uint32_t *)(info + 1);
864 void *sigmask = (regs + 20);
865 unsigned long pc;
866 int is_write;
867 uint32_t insn;
868
869 /* XXX: is there a standard glibc define ? */
870 pc = regs[1];
871 /* XXX: need kernel patch to get write flag faster */
872 is_write = 0;
873 insn = *(uint32_t *)pc;
874 if ((insn >> 30) == 3) {
875 switch((insn >> 19) & 0x3f) {
876 case 0x05: // stb
877 case 0x06: // sth
878 case 0x04: // st
879 case 0x07: // std
880 case 0x24: // stf
881 case 0x27: // stdf
882 case 0x25: // stfsr
883 is_write = 1;
884 break;
885 }
886 }
887 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
888 is_write, sigmask, NULL);
889 }
890
891 #elif defined(__arm__)
892
893 int cpu_signal_handler(int host_signum, struct siginfo *info,
894 void *puc)
895 {
896 struct ucontext *uc = puc;
897 unsigned long pc;
898 int is_write;
899
900 pc = uc->uc_mcontext.gregs[R15];
901 /* XXX: compute is_write */
902 is_write = 0;
903 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
904 is_write,
905 &uc->uc_sigmask);
906 }
907
908 #elif defined(__mc68000)
909
910 int cpu_signal_handler(int host_signum, struct siginfo *info,
911 void *puc)
912 {
913 struct ucontext *uc = puc;
914 unsigned long pc;
915 int is_write;
916
917 pc = uc->uc_mcontext.gregs[16];
918 /* XXX: compute is_write */
919 is_write = 0;
920 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
921 is_write,
922 &uc->uc_sigmask, puc);
923 }
924
925 #else
926
927 #error host CPU specific signal handler needed
928
929 #endif
930
931 #endif /* !defined(CONFIG_SOFTMMU) */