]> git.ipfire.org Git - thirdparty/qemu.git/blob - cpu-exec.c
kvm-all: move internal types to kvm_int.h
[thirdparty/qemu.git] / cpu-exec.c
1 /*
2 * emulator main execution loop
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #include "cpu.h"
21 #include "trace.h"
22 #include "disas/disas.h"
23 #include "tcg.h"
24 #include "qemu/atomic.h"
25 #include "sysemu/qtest.h"
26 #include "qemu/timer.h"
27 #include "exec/address-spaces.h"
28 #include "exec/memory-internal.h"
29 #include "qemu/rcu.h"
30 #include "exec/tb-hash.h"
31
32 /* -icount align implementation. */
33
34 typedef struct SyncClocks {
35 int64_t diff_clk;
36 int64_t last_cpu_icount;
37 int64_t realtime_clock;
38 } SyncClocks;
39
40 #if !defined(CONFIG_USER_ONLY)
41 /* Allow the guest to have a max 3ms advance.
42 * The difference between the 2 clocks could therefore
43 * oscillate around 0.
44 */
45 #define VM_CLOCK_ADVANCE 3000000
46 #define THRESHOLD_REDUCE 1.5
47 #define MAX_DELAY_PRINT_RATE 2000000000LL
48 #define MAX_NB_PRINTS 100
49
50 static void align_clocks(SyncClocks *sc, const CPUState *cpu)
51 {
52 int64_t cpu_icount;
53
54 if (!icount_align_option) {
55 return;
56 }
57
58 cpu_icount = cpu->icount_extra + cpu->icount_decr.u16.low;
59 sc->diff_clk += cpu_icount_to_ns(sc->last_cpu_icount - cpu_icount);
60 sc->last_cpu_icount = cpu_icount;
61
62 if (sc->diff_clk > VM_CLOCK_ADVANCE) {
63 #ifndef _WIN32
64 struct timespec sleep_delay, rem_delay;
65 sleep_delay.tv_sec = sc->diff_clk / 1000000000LL;
66 sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL;
67 if (nanosleep(&sleep_delay, &rem_delay) < 0) {
68 sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec;
69 } else {
70 sc->diff_clk = 0;
71 }
72 #else
73 Sleep(sc->diff_clk / SCALE_MS);
74 sc->diff_clk = 0;
75 #endif
76 }
77 }
78
79 static void print_delay(const SyncClocks *sc)
80 {
81 static float threshold_delay;
82 static int64_t last_realtime_clock;
83 static int nb_prints;
84
85 if (icount_align_option &&
86 sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE &&
87 nb_prints < MAX_NB_PRINTS) {
88 if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) ||
89 (-sc->diff_clk / (float)1000000000LL <
90 (threshold_delay - THRESHOLD_REDUCE))) {
91 threshold_delay = (-sc->diff_clk / 1000000000LL) + 1;
92 printf("Warning: The guest is now late by %.1f to %.1f seconds\n",
93 threshold_delay - 1,
94 threshold_delay);
95 nb_prints++;
96 last_realtime_clock = sc->realtime_clock;
97 }
98 }
99 }
100
101 static void init_delay_params(SyncClocks *sc,
102 const CPUState *cpu)
103 {
104 if (!icount_align_option) {
105 return;
106 }
107 sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
108 sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock;
109 sc->last_cpu_icount = cpu->icount_extra + cpu->icount_decr.u16.low;
110 if (sc->diff_clk < max_delay) {
111 max_delay = sc->diff_clk;
112 }
113 if (sc->diff_clk > max_advance) {
114 max_advance = sc->diff_clk;
115 }
116
117 /* Print every 2s max if the guest is late. We limit the number
118 of printed messages to NB_PRINT_MAX(currently 100) */
119 print_delay(sc);
120 }
121 #else
122 static void align_clocks(SyncClocks *sc, const CPUState *cpu)
123 {
124 }
125
126 static void init_delay_params(SyncClocks *sc, const CPUState *cpu)
127 {
128 }
129 #endif /* CONFIG USER ONLY */
130
131 void cpu_loop_exit(CPUState *cpu)
132 {
133 cpu->current_tb = NULL;
134 siglongjmp(cpu->jmp_env, 1);
135 }
136
137 /* exit the current TB from a signal handler. The host registers are
138 restored in a state compatible with the CPU emulator
139 */
140 #if defined(CONFIG_SOFTMMU)
141 void cpu_resume_from_signal(CPUState *cpu, void *puc)
142 {
143 /* XXX: restore cpu registers saved in host registers */
144
145 cpu->exception_index = -1;
146 siglongjmp(cpu->jmp_env, 1);
147 }
148
149 void cpu_reload_memory_map(CPUState *cpu)
150 {
151 AddressSpaceDispatch *d;
152
153 if (qemu_in_vcpu_thread()) {
154 /* Do not let the guest prolong the critical section as much as it
155 * as it desires.
156 *
157 * Currently, this is prevented by the I/O thread's periodinc kicking
158 * of the VCPU thread (iothread_requesting_mutex, qemu_cpu_kick_thread)
159 * but this will go away once TCG's execution moves out of the global
160 * mutex.
161 *
162 * This pair matches cpu_exec's rcu_read_lock()/rcu_read_unlock(), which
163 * only protects cpu->as->dispatch. Since we reload it below, we can
164 * split the critical section.
165 */
166 rcu_read_unlock();
167 rcu_read_lock();
168 }
169
170 /* The CPU and TLB are protected by the iothread lock. */
171 d = atomic_rcu_read(&cpu->as->dispatch);
172 cpu->memory_dispatch = d;
173 tlb_flush(cpu, 1);
174 }
175 #endif
176
177 /* Execute a TB, and fix up the CPU state afterwards if necessary */
178 static inline tcg_target_ulong cpu_tb_exec(CPUState *cpu, uint8_t *tb_ptr)
179 {
180 CPUArchState *env = cpu->env_ptr;
181 uintptr_t next_tb;
182
183 #if defined(DEBUG_DISAS)
184 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
185 #if defined(TARGET_I386)
186 log_cpu_state(cpu, CPU_DUMP_CCOP);
187 #elif defined(TARGET_M68K)
188 /* ??? Should not modify env state for dumping. */
189 cpu_m68k_flush_flags(env, env->cc_op);
190 env->cc_op = CC_OP_FLAGS;
191 env->sr = (env->sr & 0xffe0) | env->cc_dest | (env->cc_x << 4);
192 log_cpu_state(cpu, 0);
193 #else
194 log_cpu_state(cpu, 0);
195 #endif
196 }
197 #endif /* DEBUG_DISAS */
198
199 cpu->can_do_io = 0;
200 next_tb = tcg_qemu_tb_exec(env, tb_ptr);
201 cpu->can_do_io = 1;
202 trace_exec_tb_exit((void *) (next_tb & ~TB_EXIT_MASK),
203 next_tb & TB_EXIT_MASK);
204
205 if ((next_tb & TB_EXIT_MASK) > TB_EXIT_IDX1) {
206 /* We didn't start executing this TB (eg because the instruction
207 * counter hit zero); we must restore the guest PC to the address
208 * of the start of the TB.
209 */
210 CPUClass *cc = CPU_GET_CLASS(cpu);
211 TranslationBlock *tb = (TranslationBlock *)(next_tb & ~TB_EXIT_MASK);
212 if (cc->synchronize_from_tb) {
213 cc->synchronize_from_tb(cpu, tb);
214 } else {
215 assert(cc->set_pc);
216 cc->set_pc(cpu, tb->pc);
217 }
218 }
219 if ((next_tb & TB_EXIT_MASK) == TB_EXIT_REQUESTED) {
220 /* We were asked to stop executing TBs (probably a pending
221 * interrupt. We've now stopped, so clear the flag.
222 */
223 cpu->tcg_exit_req = 0;
224 }
225 return next_tb;
226 }
227
228 /* Execute the code without caching the generated code. An interpreter
229 could be used if available. */
230 static void cpu_exec_nocache(CPUArchState *env, int max_cycles,
231 TranslationBlock *orig_tb)
232 {
233 CPUState *cpu = ENV_GET_CPU(env);
234 TranslationBlock *tb;
235 target_ulong pc = orig_tb->pc;
236 target_ulong cs_base = orig_tb->cs_base;
237 uint64_t flags = orig_tb->flags;
238
239 /* Should never happen.
240 We only end up here when an existing TB is too long. */
241 if (max_cycles > CF_COUNT_MASK)
242 max_cycles = CF_COUNT_MASK;
243
244 /* tb_gen_code can flush our orig_tb, invalidate it now */
245 tb_phys_invalidate(orig_tb, -1);
246 tb = tb_gen_code(cpu, pc, cs_base, flags,
247 max_cycles | CF_NOCACHE);
248 cpu->current_tb = tb;
249 /* execute the generated code */
250 trace_exec_tb_nocache(tb, tb->pc);
251 cpu_tb_exec(cpu, tb->tc_ptr);
252 cpu->current_tb = NULL;
253 tb_phys_invalidate(tb, -1);
254 tb_free(tb);
255 }
256
257 static TranslationBlock *tb_find_slow(CPUArchState *env,
258 target_ulong pc,
259 target_ulong cs_base,
260 uint64_t flags)
261 {
262 CPUState *cpu = ENV_GET_CPU(env);
263 TranslationBlock *tb, **ptb1;
264 unsigned int h;
265 tb_page_addr_t phys_pc, phys_page1;
266 target_ulong virt_page2;
267
268 tcg_ctx.tb_ctx.tb_invalidated_flag = 0;
269
270 /* find translated block using physical mappings */
271 phys_pc = get_page_addr_code(env, pc);
272 phys_page1 = phys_pc & TARGET_PAGE_MASK;
273 h = tb_phys_hash_func(phys_pc);
274 ptb1 = &tcg_ctx.tb_ctx.tb_phys_hash[h];
275 for(;;) {
276 tb = *ptb1;
277 if (!tb)
278 goto not_found;
279 if (tb->pc == pc &&
280 tb->page_addr[0] == phys_page1 &&
281 tb->cs_base == cs_base &&
282 tb->flags == flags) {
283 /* check next page if needed */
284 if (tb->page_addr[1] != -1) {
285 tb_page_addr_t phys_page2;
286
287 virt_page2 = (pc & TARGET_PAGE_MASK) +
288 TARGET_PAGE_SIZE;
289 phys_page2 = get_page_addr_code(env, virt_page2);
290 if (tb->page_addr[1] == phys_page2)
291 goto found;
292 } else {
293 goto found;
294 }
295 }
296 ptb1 = &tb->phys_hash_next;
297 }
298 not_found:
299 /* if no translated code available, then translate it now */
300 tb = tb_gen_code(cpu, pc, cs_base, flags, 0);
301
302 found:
303 /* Move the last found TB to the head of the list */
304 if (likely(*ptb1)) {
305 *ptb1 = tb->phys_hash_next;
306 tb->phys_hash_next = tcg_ctx.tb_ctx.tb_phys_hash[h];
307 tcg_ctx.tb_ctx.tb_phys_hash[h] = tb;
308 }
309 /* we add the TB in the virtual pc hash table */
310 cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
311 return tb;
312 }
313
314 static inline TranslationBlock *tb_find_fast(CPUArchState *env)
315 {
316 CPUState *cpu = ENV_GET_CPU(env);
317 TranslationBlock *tb;
318 target_ulong cs_base, pc;
319 int flags;
320
321 /* we record a subset of the CPU state. It will
322 always be the same before a given translated block
323 is executed. */
324 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
325 tb = cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
326 if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base ||
327 tb->flags != flags)) {
328 tb = tb_find_slow(env, pc, cs_base, flags);
329 }
330 return tb;
331 }
332
333 static void cpu_handle_debug_exception(CPUArchState *env)
334 {
335 CPUState *cpu = ENV_GET_CPU(env);
336 CPUClass *cc = CPU_GET_CLASS(cpu);
337 CPUWatchpoint *wp;
338
339 if (!cpu->watchpoint_hit) {
340 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
341 wp->flags &= ~BP_WATCHPOINT_HIT;
342 }
343 }
344
345 cc->debug_excp_handler(cpu);
346 }
347
348 /* main execution loop */
349
350 volatile sig_atomic_t exit_request;
351
352 int cpu_exec(CPUArchState *env)
353 {
354 CPUState *cpu = ENV_GET_CPU(env);
355 CPUClass *cc = CPU_GET_CLASS(cpu);
356 #ifdef TARGET_I386
357 X86CPU *x86_cpu = X86_CPU(cpu);
358 #endif
359 int ret, interrupt_request;
360 TranslationBlock *tb;
361 uint8_t *tc_ptr;
362 uintptr_t next_tb;
363 SyncClocks sc;
364
365 /* This must be volatile so it is not trashed by longjmp() */
366 volatile bool have_tb_lock = false;
367
368 if (cpu->halted) {
369 if (!cpu_has_work(cpu)) {
370 return EXCP_HALTED;
371 }
372
373 cpu->halted = 0;
374 }
375
376 current_cpu = cpu;
377
378 /* As long as current_cpu is null, up to the assignment just above,
379 * requests by other threads to exit the execution loop are expected to
380 * be issued using the exit_request global. We must make sure that our
381 * evaluation of the global value is performed past the current_cpu
382 * value transition point, which requires a memory barrier as well as
383 * an instruction scheduling constraint on modern architectures. */
384 smp_mb();
385
386 rcu_read_lock();
387
388 if (unlikely(exit_request)) {
389 cpu->exit_request = 1;
390 }
391
392 cc->cpu_exec_enter(cpu);
393
394 /* Calculate difference between guest clock and host clock.
395 * This delay includes the delay of the last cycle, so
396 * what we have to do is sleep until it is 0. As for the
397 * advance/delay we gain here, we try to fix it next time.
398 */
399 init_delay_params(&sc, cpu);
400
401 /* prepare setjmp context for exception handling */
402 for(;;) {
403 if (sigsetjmp(cpu->jmp_env, 0) == 0) {
404 /* if an exception is pending, we execute it here */
405 if (cpu->exception_index >= 0) {
406 if (cpu->exception_index >= EXCP_INTERRUPT) {
407 /* exit request from the cpu execution loop */
408 ret = cpu->exception_index;
409 if (ret == EXCP_DEBUG) {
410 cpu_handle_debug_exception(env);
411 }
412 cpu->exception_index = -1;
413 break;
414 } else {
415 #if defined(CONFIG_USER_ONLY)
416 /* if user mode only, we simulate a fake exception
417 which will be handled outside the cpu execution
418 loop */
419 #if defined(TARGET_I386)
420 cc->do_interrupt(cpu);
421 #endif
422 ret = cpu->exception_index;
423 cpu->exception_index = -1;
424 break;
425 #else
426 cc->do_interrupt(cpu);
427 cpu->exception_index = -1;
428 #endif
429 }
430 }
431
432 next_tb = 0; /* force lookup of first TB */
433 for(;;) {
434 interrupt_request = cpu->interrupt_request;
435 if (unlikely(interrupt_request)) {
436 if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) {
437 /* Mask out external interrupts for this step. */
438 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
439 }
440 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
441 cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
442 cpu->exception_index = EXCP_DEBUG;
443 cpu_loop_exit(cpu);
444 }
445 if (interrupt_request & CPU_INTERRUPT_HALT) {
446 cpu->interrupt_request &= ~CPU_INTERRUPT_HALT;
447 cpu->halted = 1;
448 cpu->exception_index = EXCP_HLT;
449 cpu_loop_exit(cpu);
450 }
451 #if defined(TARGET_I386)
452 if (interrupt_request & CPU_INTERRUPT_INIT) {
453 cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0);
454 do_cpu_init(x86_cpu);
455 cpu->exception_index = EXCP_HALTED;
456 cpu_loop_exit(cpu);
457 }
458 #else
459 if (interrupt_request & CPU_INTERRUPT_RESET) {
460 cpu_reset(cpu);
461 }
462 #endif
463 /* The target hook has 3 exit conditions:
464 False when the interrupt isn't processed,
465 True when it is, and we should restart on a new TB,
466 and via longjmp via cpu_loop_exit. */
467 if (cc->cpu_exec_interrupt(cpu, interrupt_request)) {
468 next_tb = 0;
469 }
470 /* Don't use the cached interrupt_request value,
471 do_interrupt may have updated the EXITTB flag. */
472 if (cpu->interrupt_request & CPU_INTERRUPT_EXITTB) {
473 cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
474 /* ensure that no TB jump will be modified as
475 the program flow was changed */
476 next_tb = 0;
477 }
478 }
479 if (unlikely(cpu->exit_request)) {
480 cpu->exit_request = 0;
481 cpu->exception_index = EXCP_INTERRUPT;
482 cpu_loop_exit(cpu);
483 }
484 spin_lock(&tcg_ctx.tb_ctx.tb_lock);
485 have_tb_lock = true;
486 tb = tb_find_fast(env);
487 /* Note: we do it here to avoid a gcc bug on Mac OS X when
488 doing it in tb_find_slow */
489 if (tcg_ctx.tb_ctx.tb_invalidated_flag) {
490 /* as some TB could have been invalidated because
491 of memory exceptions while generating the code, we
492 must recompute the hash index here */
493 next_tb = 0;
494 tcg_ctx.tb_ctx.tb_invalidated_flag = 0;
495 }
496 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
497 qemu_log("Trace %p [" TARGET_FMT_lx "] %s\n",
498 tb->tc_ptr, tb->pc, lookup_symbol(tb->pc));
499 }
500 /* see if we can patch the calling TB. When the TB
501 spans two pages, we cannot safely do a direct
502 jump. */
503 if (next_tb != 0 && tb->page_addr[1] == -1) {
504 tb_add_jump((TranslationBlock *)(next_tb & ~TB_EXIT_MASK),
505 next_tb & TB_EXIT_MASK, tb);
506 }
507 have_tb_lock = false;
508 spin_unlock(&tcg_ctx.tb_ctx.tb_lock);
509
510 /* cpu_interrupt might be called while translating the
511 TB, but before it is linked into a potentially
512 infinite loop and becomes env->current_tb. Avoid
513 starting execution if there is a pending interrupt. */
514 cpu->current_tb = tb;
515 barrier();
516 if (likely(!cpu->exit_request)) {
517 trace_exec_tb(tb, tb->pc);
518 tc_ptr = tb->tc_ptr;
519 /* execute the generated code */
520 next_tb = cpu_tb_exec(cpu, tc_ptr);
521 switch (next_tb & TB_EXIT_MASK) {
522 case TB_EXIT_REQUESTED:
523 /* Something asked us to stop executing
524 * chained TBs; just continue round the main
525 * loop. Whatever requested the exit will also
526 * have set something else (eg exit_request or
527 * interrupt_request) which we will handle
528 * next time around the loop.
529 */
530 next_tb = 0;
531 break;
532 case TB_EXIT_ICOUNT_EXPIRED:
533 {
534 /* Instruction counter expired. */
535 int insns_left = cpu->icount_decr.u32;
536 if (cpu->icount_extra && insns_left >= 0) {
537 /* Refill decrementer and continue execution. */
538 cpu->icount_extra += insns_left;
539 insns_left = MIN(0xffff, cpu->icount_extra);
540 cpu->icount_extra -= insns_left;
541 cpu->icount_decr.u16.low = insns_left;
542 } else {
543 if (insns_left > 0) {
544 /* Execute remaining instructions. */
545 tb = (TranslationBlock *)(next_tb & ~TB_EXIT_MASK);
546 cpu_exec_nocache(env, insns_left, tb);
547 align_clocks(&sc, cpu);
548 }
549 cpu->exception_index = EXCP_INTERRUPT;
550 next_tb = 0;
551 cpu_loop_exit(cpu);
552 }
553 break;
554 }
555 default:
556 break;
557 }
558 }
559 cpu->current_tb = NULL;
560 /* Try to align the host and virtual clocks
561 if the guest is in advance */
562 align_clocks(&sc, cpu);
563 /* reset soft MMU for next block (it can currently
564 only be set by a memory fault) */
565 } /* for(;;) */
566 } else {
567 /* Reload env after longjmp - the compiler may have smashed all
568 * local variables as longjmp is marked 'noreturn'. */
569 cpu = current_cpu;
570 env = cpu->env_ptr;
571 cc = CPU_GET_CLASS(cpu);
572 cpu->can_do_io = 1;
573 #ifdef TARGET_I386
574 x86_cpu = X86_CPU(cpu);
575 #endif
576 if (have_tb_lock) {
577 spin_unlock(&tcg_ctx.tb_ctx.tb_lock);
578 have_tb_lock = false;
579 }
580 }
581 } /* for(;;) */
582
583 cc->cpu_exec_exit(cpu);
584 rcu_read_unlock();
585
586 /* fail safe : never use current_cpu outside cpu_exec() */
587 current_cpu = NULL;
588 return ret;
589 }