]> git.ipfire.org Git - thirdparty/qemu.git/blob - cpus.c
cpus-common: move exclusive work infrastructure from linux-user
[thirdparty/qemu.git] / cpus.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 /* Needed early for CONFIG_BSD etc. */
26 #include "qemu/osdep.h"
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "monitor/monitor.h"
30 #include "qapi/qmp/qerror.h"
31 #include "qemu/error-report.h"
32 #include "sysemu/sysemu.h"
33 #include "sysemu/block-backend.h"
34 #include "exec/gdbstub.h"
35 #include "sysemu/dma.h"
36 #include "sysemu/kvm.h"
37 #include "qmp-commands.h"
38 #include "exec/exec-all.h"
39
40 #include "qemu/thread.h"
41 #include "sysemu/cpus.h"
42 #include "sysemu/qtest.h"
43 #include "qemu/main-loop.h"
44 #include "qemu/bitmap.h"
45 #include "qemu/seqlock.h"
46 #include "qapi-event.h"
47 #include "hw/nmi.h"
48 #include "sysemu/replay.h"
49
50 #ifndef _WIN32
51 #include "qemu/compatfd.h"
52 #endif
53
54 #ifdef CONFIG_LINUX
55
56 #include <sys/prctl.h>
57
58 #ifndef PR_MCE_KILL
59 #define PR_MCE_KILL 33
60 #endif
61
62 #ifndef PR_MCE_KILL_SET
63 #define PR_MCE_KILL_SET 1
64 #endif
65
66 #ifndef PR_MCE_KILL_EARLY
67 #define PR_MCE_KILL_EARLY 1
68 #endif
69
70 #endif /* CONFIG_LINUX */
71
72 static CPUState *next_cpu;
73 int64_t max_delay;
74 int64_t max_advance;
75
76 /* vcpu throttling controls */
77 static QEMUTimer *throttle_timer;
78 static unsigned int throttle_percentage;
79
80 #define CPU_THROTTLE_PCT_MIN 1
81 #define CPU_THROTTLE_PCT_MAX 99
82 #define CPU_THROTTLE_TIMESLICE_NS 10000000
83
84 bool cpu_is_stopped(CPUState *cpu)
85 {
86 return cpu->stopped || !runstate_is_running();
87 }
88
89 static bool cpu_thread_is_idle(CPUState *cpu)
90 {
91 if (cpu->stop || cpu->queued_work_first) {
92 return false;
93 }
94 if (cpu_is_stopped(cpu)) {
95 return true;
96 }
97 if (!cpu->halted || cpu_has_work(cpu) ||
98 kvm_halt_in_kernel()) {
99 return false;
100 }
101 return true;
102 }
103
104 static bool all_cpu_threads_idle(void)
105 {
106 CPUState *cpu;
107
108 CPU_FOREACH(cpu) {
109 if (!cpu_thread_is_idle(cpu)) {
110 return false;
111 }
112 }
113 return true;
114 }
115
116 /***********************************************************/
117 /* guest cycle counter */
118
119 /* Protected by TimersState seqlock */
120
121 static bool icount_sleep = true;
122 static int64_t vm_clock_warp_start = -1;
123 /* Conversion factor from emulated instructions to virtual clock ticks. */
124 static int icount_time_shift;
125 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
126 #define MAX_ICOUNT_SHIFT 10
127
128 static QEMUTimer *icount_rt_timer;
129 static QEMUTimer *icount_vm_timer;
130 static QEMUTimer *icount_warp_timer;
131
132 typedef struct TimersState {
133 /* Protected by BQL. */
134 int64_t cpu_ticks_prev;
135 int64_t cpu_ticks_offset;
136
137 /* cpu_clock_offset can be read out of BQL, so protect it with
138 * this lock.
139 */
140 QemuSeqLock vm_clock_seqlock;
141 int64_t cpu_clock_offset;
142 int32_t cpu_ticks_enabled;
143 int64_t dummy;
144
145 /* Compensate for varying guest execution speed. */
146 int64_t qemu_icount_bias;
147 /* Only written by TCG thread */
148 int64_t qemu_icount;
149 } TimersState;
150
151 static TimersState timers_state;
152
153 int64_t cpu_get_icount_raw(void)
154 {
155 int64_t icount;
156 CPUState *cpu = current_cpu;
157
158 icount = timers_state.qemu_icount;
159 if (cpu) {
160 if (!cpu->can_do_io) {
161 fprintf(stderr, "Bad icount read\n");
162 exit(1);
163 }
164 icount -= (cpu->icount_decr.u16.low + cpu->icount_extra);
165 }
166 return icount;
167 }
168
169 /* Return the virtual CPU time, based on the instruction counter. */
170 static int64_t cpu_get_icount_locked(void)
171 {
172 int64_t icount = cpu_get_icount_raw();
173 return timers_state.qemu_icount_bias + cpu_icount_to_ns(icount);
174 }
175
176 int64_t cpu_get_icount(void)
177 {
178 int64_t icount;
179 unsigned start;
180
181 do {
182 start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
183 icount = cpu_get_icount_locked();
184 } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
185
186 return icount;
187 }
188
189 int64_t cpu_icount_to_ns(int64_t icount)
190 {
191 return icount << icount_time_shift;
192 }
193
194 /* return the time elapsed in VM between vm_start and vm_stop. Unless
195 * icount is active, cpu_get_ticks() uses units of the host CPU cycle
196 * counter.
197 *
198 * Caller must hold the BQL
199 */
200 int64_t cpu_get_ticks(void)
201 {
202 int64_t ticks;
203
204 if (use_icount) {
205 return cpu_get_icount();
206 }
207
208 ticks = timers_state.cpu_ticks_offset;
209 if (timers_state.cpu_ticks_enabled) {
210 ticks += cpu_get_host_ticks();
211 }
212
213 if (timers_state.cpu_ticks_prev > ticks) {
214 /* Note: non increasing ticks may happen if the host uses
215 software suspend */
216 timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
217 ticks = timers_state.cpu_ticks_prev;
218 }
219
220 timers_state.cpu_ticks_prev = ticks;
221 return ticks;
222 }
223
224 static int64_t cpu_get_clock_locked(void)
225 {
226 int64_t time;
227
228 time = timers_state.cpu_clock_offset;
229 if (timers_state.cpu_ticks_enabled) {
230 time += get_clock();
231 }
232
233 return time;
234 }
235
236 /* Return the monotonic time elapsed in VM, i.e.,
237 * the time between vm_start and vm_stop
238 */
239 int64_t cpu_get_clock(void)
240 {
241 int64_t ti;
242 unsigned start;
243
244 do {
245 start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
246 ti = cpu_get_clock_locked();
247 } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
248
249 return ti;
250 }
251
252 /* enable cpu_get_ticks()
253 * Caller must hold BQL which serves as mutex for vm_clock_seqlock.
254 */
255 void cpu_enable_ticks(void)
256 {
257 /* Here, the really thing protected by seqlock is cpu_clock_offset. */
258 seqlock_write_begin(&timers_state.vm_clock_seqlock);
259 if (!timers_state.cpu_ticks_enabled) {
260 timers_state.cpu_ticks_offset -= cpu_get_host_ticks();
261 timers_state.cpu_clock_offset -= get_clock();
262 timers_state.cpu_ticks_enabled = 1;
263 }
264 seqlock_write_end(&timers_state.vm_clock_seqlock);
265 }
266
267 /* disable cpu_get_ticks() : the clock is stopped. You must not call
268 * cpu_get_ticks() after that.
269 * Caller must hold BQL which serves as mutex for vm_clock_seqlock.
270 */
271 void cpu_disable_ticks(void)
272 {
273 /* Here, the really thing protected by seqlock is cpu_clock_offset. */
274 seqlock_write_begin(&timers_state.vm_clock_seqlock);
275 if (timers_state.cpu_ticks_enabled) {
276 timers_state.cpu_ticks_offset += cpu_get_host_ticks();
277 timers_state.cpu_clock_offset = cpu_get_clock_locked();
278 timers_state.cpu_ticks_enabled = 0;
279 }
280 seqlock_write_end(&timers_state.vm_clock_seqlock);
281 }
282
283 /* Correlation between real and virtual time is always going to be
284 fairly approximate, so ignore small variation.
285 When the guest is idle real and virtual time will be aligned in
286 the IO wait loop. */
287 #define ICOUNT_WOBBLE (NANOSECONDS_PER_SECOND / 10)
288
289 static void icount_adjust(void)
290 {
291 int64_t cur_time;
292 int64_t cur_icount;
293 int64_t delta;
294
295 /* Protected by TimersState mutex. */
296 static int64_t last_delta;
297
298 /* If the VM is not running, then do nothing. */
299 if (!runstate_is_running()) {
300 return;
301 }
302
303 seqlock_write_begin(&timers_state.vm_clock_seqlock);
304 cur_time = cpu_get_clock_locked();
305 cur_icount = cpu_get_icount_locked();
306
307 delta = cur_icount - cur_time;
308 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
309 if (delta > 0
310 && last_delta + ICOUNT_WOBBLE < delta * 2
311 && icount_time_shift > 0) {
312 /* The guest is getting too far ahead. Slow time down. */
313 icount_time_shift--;
314 }
315 if (delta < 0
316 && last_delta - ICOUNT_WOBBLE > delta * 2
317 && icount_time_shift < MAX_ICOUNT_SHIFT) {
318 /* The guest is getting too far behind. Speed time up. */
319 icount_time_shift++;
320 }
321 last_delta = delta;
322 timers_state.qemu_icount_bias = cur_icount
323 - (timers_state.qemu_icount << icount_time_shift);
324 seqlock_write_end(&timers_state.vm_clock_seqlock);
325 }
326
327 static void icount_adjust_rt(void *opaque)
328 {
329 timer_mod(icount_rt_timer,
330 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000);
331 icount_adjust();
332 }
333
334 static void icount_adjust_vm(void *opaque)
335 {
336 timer_mod(icount_vm_timer,
337 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
338 NANOSECONDS_PER_SECOND / 10);
339 icount_adjust();
340 }
341
342 static int64_t qemu_icount_round(int64_t count)
343 {
344 return (count + (1 << icount_time_shift) - 1) >> icount_time_shift;
345 }
346
347 static void icount_warp_rt(void)
348 {
349 unsigned seq;
350 int64_t warp_start;
351
352 /* The icount_warp_timer is rescheduled soon after vm_clock_warp_start
353 * changes from -1 to another value, so the race here is okay.
354 */
355 do {
356 seq = seqlock_read_begin(&timers_state.vm_clock_seqlock);
357 warp_start = vm_clock_warp_start;
358 } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, seq));
359
360 if (warp_start == -1) {
361 return;
362 }
363
364 seqlock_write_begin(&timers_state.vm_clock_seqlock);
365 if (runstate_is_running()) {
366 int64_t clock = REPLAY_CLOCK(REPLAY_CLOCK_VIRTUAL_RT,
367 cpu_get_clock_locked());
368 int64_t warp_delta;
369
370 warp_delta = clock - vm_clock_warp_start;
371 if (use_icount == 2) {
372 /*
373 * In adaptive mode, do not let QEMU_CLOCK_VIRTUAL run too
374 * far ahead of real time.
375 */
376 int64_t cur_icount = cpu_get_icount_locked();
377 int64_t delta = clock - cur_icount;
378 warp_delta = MIN(warp_delta, delta);
379 }
380 timers_state.qemu_icount_bias += warp_delta;
381 }
382 vm_clock_warp_start = -1;
383 seqlock_write_end(&timers_state.vm_clock_seqlock);
384
385 if (qemu_clock_expired(QEMU_CLOCK_VIRTUAL)) {
386 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
387 }
388 }
389
390 static void icount_timer_cb(void *opaque)
391 {
392 /* No need for a checkpoint because the timer already synchronizes
393 * with CHECKPOINT_CLOCK_VIRTUAL_RT.
394 */
395 icount_warp_rt();
396 }
397
398 void qtest_clock_warp(int64_t dest)
399 {
400 int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
401 AioContext *aio_context;
402 assert(qtest_enabled());
403 aio_context = qemu_get_aio_context();
404 while (clock < dest) {
405 int64_t deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
406 int64_t warp = qemu_soonest_timeout(dest - clock, deadline);
407
408 seqlock_write_begin(&timers_state.vm_clock_seqlock);
409 timers_state.qemu_icount_bias += warp;
410 seqlock_write_end(&timers_state.vm_clock_seqlock);
411
412 qemu_clock_run_timers(QEMU_CLOCK_VIRTUAL);
413 timerlist_run_timers(aio_context->tlg.tl[QEMU_CLOCK_VIRTUAL]);
414 clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
415 }
416 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
417 }
418
419 void qemu_start_warp_timer(void)
420 {
421 int64_t clock;
422 int64_t deadline;
423
424 if (!use_icount) {
425 return;
426 }
427
428 /* Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers
429 * do not fire, so computing the deadline does not make sense.
430 */
431 if (!runstate_is_running()) {
432 return;
433 }
434
435 /* warp clock deterministically in record/replay mode */
436 if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP_START)) {
437 return;
438 }
439
440 if (!all_cpu_threads_idle()) {
441 return;
442 }
443
444 if (qtest_enabled()) {
445 /* When testing, qtest commands advance icount. */
446 return;
447 }
448
449 /* We want to use the earliest deadline from ALL vm_clocks */
450 clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
451 deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
452 if (deadline < 0) {
453 static bool notified;
454 if (!icount_sleep && !notified) {
455 error_report("WARNING: icount sleep disabled and no active timers");
456 notified = true;
457 }
458 return;
459 }
460
461 if (deadline > 0) {
462 /*
463 * Ensure QEMU_CLOCK_VIRTUAL proceeds even when the virtual CPU goes to
464 * sleep. Otherwise, the CPU might be waiting for a future timer
465 * interrupt to wake it up, but the interrupt never comes because
466 * the vCPU isn't running any insns and thus doesn't advance the
467 * QEMU_CLOCK_VIRTUAL.
468 */
469 if (!icount_sleep) {
470 /*
471 * We never let VCPUs sleep in no sleep icount mode.
472 * If there is a pending QEMU_CLOCK_VIRTUAL timer we just advance
473 * to the next QEMU_CLOCK_VIRTUAL event and notify it.
474 * It is useful when we want a deterministic execution time,
475 * isolated from host latencies.
476 */
477 seqlock_write_begin(&timers_state.vm_clock_seqlock);
478 timers_state.qemu_icount_bias += deadline;
479 seqlock_write_end(&timers_state.vm_clock_seqlock);
480 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
481 } else {
482 /*
483 * We do stop VCPUs and only advance QEMU_CLOCK_VIRTUAL after some
484 * "real" time, (related to the time left until the next event) has
485 * passed. The QEMU_CLOCK_VIRTUAL_RT clock will do this.
486 * This avoids that the warps are visible externally; for example,
487 * you will not be sending network packets continuously instead of
488 * every 100ms.
489 */
490 seqlock_write_begin(&timers_state.vm_clock_seqlock);
491 if (vm_clock_warp_start == -1 || vm_clock_warp_start > clock) {
492 vm_clock_warp_start = clock;
493 }
494 seqlock_write_end(&timers_state.vm_clock_seqlock);
495 timer_mod_anticipate(icount_warp_timer, clock + deadline);
496 }
497 } else if (deadline == 0) {
498 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
499 }
500 }
501
502 static void qemu_account_warp_timer(void)
503 {
504 if (!use_icount || !icount_sleep) {
505 return;
506 }
507
508 /* Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers
509 * do not fire, so computing the deadline does not make sense.
510 */
511 if (!runstate_is_running()) {
512 return;
513 }
514
515 /* warp clock deterministically in record/replay mode */
516 if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP_ACCOUNT)) {
517 return;
518 }
519
520 timer_del(icount_warp_timer);
521 icount_warp_rt();
522 }
523
524 static bool icount_state_needed(void *opaque)
525 {
526 return use_icount;
527 }
528
529 /*
530 * This is a subsection for icount migration.
531 */
532 static const VMStateDescription icount_vmstate_timers = {
533 .name = "timer/icount",
534 .version_id = 1,
535 .minimum_version_id = 1,
536 .needed = icount_state_needed,
537 .fields = (VMStateField[]) {
538 VMSTATE_INT64(qemu_icount_bias, TimersState),
539 VMSTATE_INT64(qemu_icount, TimersState),
540 VMSTATE_END_OF_LIST()
541 }
542 };
543
544 static const VMStateDescription vmstate_timers = {
545 .name = "timer",
546 .version_id = 2,
547 .minimum_version_id = 1,
548 .fields = (VMStateField[]) {
549 VMSTATE_INT64(cpu_ticks_offset, TimersState),
550 VMSTATE_INT64(dummy, TimersState),
551 VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
552 VMSTATE_END_OF_LIST()
553 },
554 .subsections = (const VMStateDescription*[]) {
555 &icount_vmstate_timers,
556 NULL
557 }
558 };
559
560 static void cpu_throttle_thread(CPUState *cpu, void *opaque)
561 {
562 double pct;
563 double throttle_ratio;
564 long sleeptime_ns;
565
566 if (!cpu_throttle_get_percentage()) {
567 return;
568 }
569
570 pct = (double)cpu_throttle_get_percentage()/100;
571 throttle_ratio = pct / (1 - pct);
572 sleeptime_ns = (long)(throttle_ratio * CPU_THROTTLE_TIMESLICE_NS);
573
574 qemu_mutex_unlock_iothread();
575 atomic_set(&cpu->throttle_thread_scheduled, 0);
576 g_usleep(sleeptime_ns / 1000); /* Convert ns to us for usleep call */
577 qemu_mutex_lock_iothread();
578 }
579
580 static void cpu_throttle_timer_tick(void *opaque)
581 {
582 CPUState *cpu;
583 double pct;
584
585 /* Stop the timer if needed */
586 if (!cpu_throttle_get_percentage()) {
587 return;
588 }
589 CPU_FOREACH(cpu) {
590 if (!atomic_xchg(&cpu->throttle_thread_scheduled, 1)) {
591 async_run_on_cpu(cpu, cpu_throttle_thread, NULL);
592 }
593 }
594
595 pct = (double)cpu_throttle_get_percentage()/100;
596 timer_mod(throttle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT) +
597 CPU_THROTTLE_TIMESLICE_NS / (1-pct));
598 }
599
600 void cpu_throttle_set(int new_throttle_pct)
601 {
602 /* Ensure throttle percentage is within valid range */
603 new_throttle_pct = MIN(new_throttle_pct, CPU_THROTTLE_PCT_MAX);
604 new_throttle_pct = MAX(new_throttle_pct, CPU_THROTTLE_PCT_MIN);
605
606 atomic_set(&throttle_percentage, new_throttle_pct);
607
608 timer_mod(throttle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT) +
609 CPU_THROTTLE_TIMESLICE_NS);
610 }
611
612 void cpu_throttle_stop(void)
613 {
614 atomic_set(&throttle_percentage, 0);
615 }
616
617 bool cpu_throttle_active(void)
618 {
619 return (cpu_throttle_get_percentage() != 0);
620 }
621
622 int cpu_throttle_get_percentage(void)
623 {
624 return atomic_read(&throttle_percentage);
625 }
626
627 void cpu_ticks_init(void)
628 {
629 seqlock_init(&timers_state.vm_clock_seqlock);
630 vmstate_register(NULL, 0, &vmstate_timers, &timers_state);
631 throttle_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL_RT,
632 cpu_throttle_timer_tick, NULL);
633 }
634
635 void configure_icount(QemuOpts *opts, Error **errp)
636 {
637 const char *option;
638 char *rem_str = NULL;
639
640 option = qemu_opt_get(opts, "shift");
641 if (!option) {
642 if (qemu_opt_get(opts, "align") != NULL) {
643 error_setg(errp, "Please specify shift option when using align");
644 }
645 return;
646 }
647
648 icount_sleep = qemu_opt_get_bool(opts, "sleep", true);
649 if (icount_sleep) {
650 icount_warp_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL_RT,
651 icount_timer_cb, NULL);
652 }
653
654 icount_align_option = qemu_opt_get_bool(opts, "align", false);
655
656 if (icount_align_option && !icount_sleep) {
657 error_setg(errp, "align=on and sleep=off are incompatible");
658 }
659 if (strcmp(option, "auto") != 0) {
660 errno = 0;
661 icount_time_shift = strtol(option, &rem_str, 0);
662 if (errno != 0 || *rem_str != '\0' || !strlen(option)) {
663 error_setg(errp, "icount: Invalid shift value");
664 }
665 use_icount = 1;
666 return;
667 } else if (icount_align_option) {
668 error_setg(errp, "shift=auto and align=on are incompatible");
669 } else if (!icount_sleep) {
670 error_setg(errp, "shift=auto and sleep=off are incompatible");
671 }
672
673 use_icount = 2;
674
675 /* 125MIPS seems a reasonable initial guess at the guest speed.
676 It will be corrected fairly quickly anyway. */
677 icount_time_shift = 3;
678
679 /* Have both realtime and virtual time triggers for speed adjustment.
680 The realtime trigger catches emulated time passing too slowly,
681 the virtual time trigger catches emulated time passing too fast.
682 Realtime triggers occur even when idle, so use them less frequently
683 than VM triggers. */
684 icount_rt_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL_RT,
685 icount_adjust_rt, NULL);
686 timer_mod(icount_rt_timer,
687 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000);
688 icount_vm_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
689 icount_adjust_vm, NULL);
690 timer_mod(icount_vm_timer,
691 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
692 NANOSECONDS_PER_SECOND / 10);
693 }
694
695 /***********************************************************/
696 void hw_error(const char *fmt, ...)
697 {
698 va_list ap;
699 CPUState *cpu;
700
701 va_start(ap, fmt);
702 fprintf(stderr, "qemu: hardware error: ");
703 vfprintf(stderr, fmt, ap);
704 fprintf(stderr, "\n");
705 CPU_FOREACH(cpu) {
706 fprintf(stderr, "CPU #%d:\n", cpu->cpu_index);
707 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU);
708 }
709 va_end(ap);
710 abort();
711 }
712
713 void cpu_synchronize_all_states(void)
714 {
715 CPUState *cpu;
716
717 CPU_FOREACH(cpu) {
718 cpu_synchronize_state(cpu);
719 }
720 }
721
722 void cpu_synchronize_all_post_reset(void)
723 {
724 CPUState *cpu;
725
726 CPU_FOREACH(cpu) {
727 cpu_synchronize_post_reset(cpu);
728 }
729 }
730
731 void cpu_synchronize_all_post_init(void)
732 {
733 CPUState *cpu;
734
735 CPU_FOREACH(cpu) {
736 cpu_synchronize_post_init(cpu);
737 }
738 }
739
740 static int do_vm_stop(RunState state)
741 {
742 int ret = 0;
743
744 if (runstate_is_running()) {
745 cpu_disable_ticks();
746 pause_all_vcpus();
747 runstate_set(state);
748 vm_state_notify(0, state);
749 qapi_event_send_stop(&error_abort);
750 }
751
752 bdrv_drain_all();
753 ret = blk_flush_all();
754
755 return ret;
756 }
757
758 static bool cpu_can_run(CPUState *cpu)
759 {
760 if (cpu->stop) {
761 return false;
762 }
763 if (cpu_is_stopped(cpu)) {
764 return false;
765 }
766 return true;
767 }
768
769 static void cpu_handle_guest_debug(CPUState *cpu)
770 {
771 gdb_set_stop_cpu(cpu);
772 qemu_system_debug_request();
773 cpu->stopped = true;
774 }
775
776 #ifdef CONFIG_LINUX
777 static void sigbus_reraise(void)
778 {
779 sigset_t set;
780 struct sigaction action;
781
782 memset(&action, 0, sizeof(action));
783 action.sa_handler = SIG_DFL;
784 if (!sigaction(SIGBUS, &action, NULL)) {
785 raise(SIGBUS);
786 sigemptyset(&set);
787 sigaddset(&set, SIGBUS);
788 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
789 }
790 perror("Failed to re-raise SIGBUS!\n");
791 abort();
792 }
793
794 static void sigbus_handler(int n, struct qemu_signalfd_siginfo *siginfo,
795 void *ctx)
796 {
797 if (kvm_on_sigbus(siginfo->ssi_code,
798 (void *)(intptr_t)siginfo->ssi_addr)) {
799 sigbus_reraise();
800 }
801 }
802
803 static void qemu_init_sigbus(void)
804 {
805 struct sigaction action;
806
807 memset(&action, 0, sizeof(action));
808 action.sa_flags = SA_SIGINFO;
809 action.sa_sigaction = (void (*)(int, siginfo_t*, void*))sigbus_handler;
810 sigaction(SIGBUS, &action, NULL);
811
812 prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0);
813 }
814
815 static void qemu_kvm_eat_signals(CPUState *cpu)
816 {
817 struct timespec ts = { 0, 0 };
818 siginfo_t siginfo;
819 sigset_t waitset;
820 sigset_t chkset;
821 int r;
822
823 sigemptyset(&waitset);
824 sigaddset(&waitset, SIG_IPI);
825 sigaddset(&waitset, SIGBUS);
826
827 do {
828 r = sigtimedwait(&waitset, &siginfo, &ts);
829 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
830 perror("sigtimedwait");
831 exit(1);
832 }
833
834 switch (r) {
835 case SIGBUS:
836 if (kvm_on_sigbus_vcpu(cpu, siginfo.si_code, siginfo.si_addr)) {
837 sigbus_reraise();
838 }
839 break;
840 default:
841 break;
842 }
843
844 r = sigpending(&chkset);
845 if (r == -1) {
846 perror("sigpending");
847 exit(1);
848 }
849 } while (sigismember(&chkset, SIG_IPI) || sigismember(&chkset, SIGBUS));
850 }
851
852 #else /* !CONFIG_LINUX */
853
854 static void qemu_init_sigbus(void)
855 {
856 }
857
858 static void qemu_kvm_eat_signals(CPUState *cpu)
859 {
860 }
861 #endif /* !CONFIG_LINUX */
862
863 #ifndef _WIN32
864 static void dummy_signal(int sig)
865 {
866 }
867
868 static void qemu_kvm_init_cpu_signals(CPUState *cpu)
869 {
870 int r;
871 sigset_t set;
872 struct sigaction sigact;
873
874 memset(&sigact, 0, sizeof(sigact));
875 sigact.sa_handler = dummy_signal;
876 sigaction(SIG_IPI, &sigact, NULL);
877
878 pthread_sigmask(SIG_BLOCK, NULL, &set);
879 sigdelset(&set, SIG_IPI);
880 sigdelset(&set, SIGBUS);
881 r = kvm_set_signal_mask(cpu, &set);
882 if (r) {
883 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
884 exit(1);
885 }
886 }
887
888 #else /* _WIN32 */
889 static void qemu_kvm_init_cpu_signals(CPUState *cpu)
890 {
891 abort();
892 }
893 #endif /* _WIN32 */
894
895 static QemuMutex qemu_global_mutex;
896 static QemuCond qemu_io_proceeded_cond;
897 static unsigned iothread_requesting_mutex;
898
899 static QemuThread io_thread;
900
901 /* cpu creation */
902 static QemuCond qemu_cpu_cond;
903 /* system init */
904 static QemuCond qemu_pause_cond;
905
906 void qemu_init_cpu_loop(void)
907 {
908 qemu_init_sigbus();
909 qemu_cond_init(&qemu_cpu_cond);
910 qemu_cond_init(&qemu_pause_cond);
911 qemu_cond_init(&qemu_io_proceeded_cond);
912 qemu_mutex_init(&qemu_global_mutex);
913
914 qemu_thread_get_self(&io_thread);
915 }
916
917 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, void *data)
918 {
919 do_run_on_cpu(cpu, func, data, &qemu_global_mutex);
920 }
921
922 static void qemu_kvm_destroy_vcpu(CPUState *cpu)
923 {
924 if (kvm_destroy_vcpu(cpu) < 0) {
925 error_report("kvm_destroy_vcpu failed");
926 exit(EXIT_FAILURE);
927 }
928 }
929
930 static void qemu_tcg_destroy_vcpu(CPUState *cpu)
931 {
932 }
933
934 static void qemu_wait_io_event_common(CPUState *cpu)
935 {
936 if (cpu->stop) {
937 cpu->stop = false;
938 cpu->stopped = true;
939 qemu_cond_broadcast(&qemu_pause_cond);
940 }
941 process_queued_cpu_work(cpu);
942 cpu->thread_kicked = false;
943 }
944
945 static void qemu_tcg_wait_io_event(CPUState *cpu)
946 {
947 while (all_cpu_threads_idle()) {
948 qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex);
949 }
950
951 while (iothread_requesting_mutex) {
952 qemu_cond_wait(&qemu_io_proceeded_cond, &qemu_global_mutex);
953 }
954
955 CPU_FOREACH(cpu) {
956 qemu_wait_io_event_common(cpu);
957 }
958 }
959
960 static void qemu_kvm_wait_io_event(CPUState *cpu)
961 {
962 while (cpu_thread_is_idle(cpu)) {
963 qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex);
964 }
965
966 qemu_kvm_eat_signals(cpu);
967 qemu_wait_io_event_common(cpu);
968 }
969
970 static void *qemu_kvm_cpu_thread_fn(void *arg)
971 {
972 CPUState *cpu = arg;
973 int r;
974
975 rcu_register_thread();
976
977 qemu_mutex_lock_iothread();
978 qemu_thread_get_self(cpu->thread);
979 cpu->thread_id = qemu_get_thread_id();
980 cpu->can_do_io = 1;
981 current_cpu = cpu;
982
983 r = kvm_init_vcpu(cpu);
984 if (r < 0) {
985 fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r));
986 exit(1);
987 }
988
989 qemu_kvm_init_cpu_signals(cpu);
990
991 /* signal CPU creation */
992 cpu->created = true;
993 qemu_cond_signal(&qemu_cpu_cond);
994
995 do {
996 if (cpu_can_run(cpu)) {
997 r = kvm_cpu_exec(cpu);
998 if (r == EXCP_DEBUG) {
999 cpu_handle_guest_debug(cpu);
1000 }
1001 }
1002 qemu_kvm_wait_io_event(cpu);
1003 } while (!cpu->unplug || cpu_can_run(cpu));
1004
1005 qemu_kvm_destroy_vcpu(cpu);
1006 cpu->created = false;
1007 qemu_cond_signal(&qemu_cpu_cond);
1008 qemu_mutex_unlock_iothread();
1009 return NULL;
1010 }
1011
1012 static void *qemu_dummy_cpu_thread_fn(void *arg)
1013 {
1014 #ifdef _WIN32
1015 fprintf(stderr, "qtest is not supported under Windows\n");
1016 exit(1);
1017 #else
1018 CPUState *cpu = arg;
1019 sigset_t waitset;
1020 int r;
1021
1022 rcu_register_thread();
1023
1024 qemu_mutex_lock_iothread();
1025 qemu_thread_get_self(cpu->thread);
1026 cpu->thread_id = qemu_get_thread_id();
1027 cpu->can_do_io = 1;
1028
1029 sigemptyset(&waitset);
1030 sigaddset(&waitset, SIG_IPI);
1031
1032 /* signal CPU creation */
1033 cpu->created = true;
1034 qemu_cond_signal(&qemu_cpu_cond);
1035
1036 current_cpu = cpu;
1037 while (1) {
1038 current_cpu = NULL;
1039 qemu_mutex_unlock_iothread();
1040 do {
1041 int sig;
1042 r = sigwait(&waitset, &sig);
1043 } while (r == -1 && (errno == EAGAIN || errno == EINTR));
1044 if (r == -1) {
1045 perror("sigwait");
1046 exit(1);
1047 }
1048 qemu_mutex_lock_iothread();
1049 current_cpu = cpu;
1050 qemu_wait_io_event_common(cpu);
1051 }
1052
1053 return NULL;
1054 #endif
1055 }
1056
1057 static void tcg_exec_all(void);
1058
1059 static void *qemu_tcg_cpu_thread_fn(void *arg)
1060 {
1061 CPUState *cpu = arg;
1062 CPUState *remove_cpu = NULL;
1063
1064 rcu_register_thread();
1065
1066 qemu_mutex_lock_iothread();
1067 qemu_thread_get_self(cpu->thread);
1068
1069 CPU_FOREACH(cpu) {
1070 cpu->thread_id = qemu_get_thread_id();
1071 cpu->created = true;
1072 cpu->can_do_io = 1;
1073 }
1074 qemu_cond_signal(&qemu_cpu_cond);
1075
1076 /* wait for initial kick-off after machine start */
1077 while (first_cpu->stopped) {
1078 qemu_cond_wait(first_cpu->halt_cond, &qemu_global_mutex);
1079
1080 /* process any pending work */
1081 CPU_FOREACH(cpu) {
1082 qemu_wait_io_event_common(cpu);
1083 }
1084 }
1085
1086 /* process any pending work */
1087 atomic_mb_set(&exit_request, 1);
1088
1089 while (1) {
1090 tcg_exec_all();
1091
1092 if (use_icount) {
1093 int64_t deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
1094
1095 if (deadline == 0) {
1096 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
1097 }
1098 }
1099 qemu_tcg_wait_io_event(QTAILQ_FIRST(&cpus));
1100 CPU_FOREACH(cpu) {
1101 if (cpu->unplug && !cpu_can_run(cpu)) {
1102 remove_cpu = cpu;
1103 break;
1104 }
1105 }
1106 if (remove_cpu) {
1107 qemu_tcg_destroy_vcpu(remove_cpu);
1108 cpu->created = false;
1109 qemu_cond_signal(&qemu_cpu_cond);
1110 remove_cpu = NULL;
1111 }
1112 }
1113
1114 return NULL;
1115 }
1116
1117 static void qemu_cpu_kick_thread(CPUState *cpu)
1118 {
1119 #ifndef _WIN32
1120 int err;
1121
1122 if (cpu->thread_kicked) {
1123 return;
1124 }
1125 cpu->thread_kicked = true;
1126 err = pthread_kill(cpu->thread->thread, SIG_IPI);
1127 if (err) {
1128 fprintf(stderr, "qemu:%s: %s", __func__, strerror(err));
1129 exit(1);
1130 }
1131 #else /* _WIN32 */
1132 abort();
1133 #endif
1134 }
1135
1136 static void qemu_cpu_kick_no_halt(void)
1137 {
1138 CPUState *cpu;
1139 /* Ensure whatever caused the exit has reached the CPU threads before
1140 * writing exit_request.
1141 */
1142 atomic_mb_set(&exit_request, 1);
1143 cpu = atomic_mb_read(&tcg_current_cpu);
1144 if (cpu) {
1145 cpu_exit(cpu);
1146 }
1147 }
1148
1149 void qemu_cpu_kick(CPUState *cpu)
1150 {
1151 qemu_cond_broadcast(cpu->halt_cond);
1152 if (tcg_enabled()) {
1153 qemu_cpu_kick_no_halt();
1154 } else {
1155 qemu_cpu_kick_thread(cpu);
1156 }
1157 }
1158
1159 void qemu_cpu_kick_self(void)
1160 {
1161 assert(current_cpu);
1162 qemu_cpu_kick_thread(current_cpu);
1163 }
1164
1165 bool qemu_cpu_is_self(CPUState *cpu)
1166 {
1167 return qemu_thread_is_self(cpu->thread);
1168 }
1169
1170 bool qemu_in_vcpu_thread(void)
1171 {
1172 return current_cpu && qemu_cpu_is_self(current_cpu);
1173 }
1174
1175 static __thread bool iothread_locked = false;
1176
1177 bool qemu_mutex_iothread_locked(void)
1178 {
1179 return iothread_locked;
1180 }
1181
1182 void qemu_mutex_lock_iothread(void)
1183 {
1184 atomic_inc(&iothread_requesting_mutex);
1185 /* In the simple case there is no need to bump the VCPU thread out of
1186 * TCG code execution.
1187 */
1188 if (!tcg_enabled() || qemu_in_vcpu_thread() ||
1189 !first_cpu || !first_cpu->created) {
1190 qemu_mutex_lock(&qemu_global_mutex);
1191 atomic_dec(&iothread_requesting_mutex);
1192 } else {
1193 if (qemu_mutex_trylock(&qemu_global_mutex)) {
1194 qemu_cpu_kick_no_halt();
1195 qemu_mutex_lock(&qemu_global_mutex);
1196 }
1197 atomic_dec(&iothread_requesting_mutex);
1198 qemu_cond_broadcast(&qemu_io_proceeded_cond);
1199 }
1200 iothread_locked = true;
1201 }
1202
1203 void qemu_mutex_unlock_iothread(void)
1204 {
1205 iothread_locked = false;
1206 qemu_mutex_unlock(&qemu_global_mutex);
1207 }
1208
1209 static int all_vcpus_paused(void)
1210 {
1211 CPUState *cpu;
1212
1213 CPU_FOREACH(cpu) {
1214 if (!cpu->stopped) {
1215 return 0;
1216 }
1217 }
1218
1219 return 1;
1220 }
1221
1222 void pause_all_vcpus(void)
1223 {
1224 CPUState *cpu;
1225
1226 qemu_clock_enable(QEMU_CLOCK_VIRTUAL, false);
1227 CPU_FOREACH(cpu) {
1228 cpu->stop = true;
1229 qemu_cpu_kick(cpu);
1230 }
1231
1232 if (qemu_in_vcpu_thread()) {
1233 cpu_stop_current();
1234 if (!kvm_enabled()) {
1235 CPU_FOREACH(cpu) {
1236 cpu->stop = false;
1237 cpu->stopped = true;
1238 }
1239 return;
1240 }
1241 }
1242
1243 while (!all_vcpus_paused()) {
1244 qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex);
1245 CPU_FOREACH(cpu) {
1246 qemu_cpu_kick(cpu);
1247 }
1248 }
1249 }
1250
1251 void cpu_resume(CPUState *cpu)
1252 {
1253 cpu->stop = false;
1254 cpu->stopped = false;
1255 qemu_cpu_kick(cpu);
1256 }
1257
1258 void resume_all_vcpus(void)
1259 {
1260 CPUState *cpu;
1261
1262 qemu_clock_enable(QEMU_CLOCK_VIRTUAL, true);
1263 CPU_FOREACH(cpu) {
1264 cpu_resume(cpu);
1265 }
1266 }
1267
1268 void cpu_remove(CPUState *cpu)
1269 {
1270 cpu->stop = true;
1271 cpu->unplug = true;
1272 qemu_cpu_kick(cpu);
1273 }
1274
1275 void cpu_remove_sync(CPUState *cpu)
1276 {
1277 cpu_remove(cpu);
1278 while (cpu->created) {
1279 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1280 }
1281 }
1282
1283 /* For temporary buffers for forming a name */
1284 #define VCPU_THREAD_NAME_SIZE 16
1285
1286 static void qemu_tcg_init_vcpu(CPUState *cpu)
1287 {
1288 char thread_name[VCPU_THREAD_NAME_SIZE];
1289 static QemuCond *tcg_halt_cond;
1290 static QemuThread *tcg_cpu_thread;
1291
1292 /* share a single thread for all cpus with TCG */
1293 if (!tcg_cpu_thread) {
1294 cpu->thread = g_malloc0(sizeof(QemuThread));
1295 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1296 qemu_cond_init(cpu->halt_cond);
1297 tcg_halt_cond = cpu->halt_cond;
1298 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/TCG",
1299 cpu->cpu_index);
1300 qemu_thread_create(cpu->thread, thread_name, qemu_tcg_cpu_thread_fn,
1301 cpu, QEMU_THREAD_JOINABLE);
1302 #ifdef _WIN32
1303 cpu->hThread = qemu_thread_get_handle(cpu->thread);
1304 #endif
1305 while (!cpu->created) {
1306 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1307 }
1308 tcg_cpu_thread = cpu->thread;
1309 } else {
1310 cpu->thread = tcg_cpu_thread;
1311 cpu->halt_cond = tcg_halt_cond;
1312 }
1313 }
1314
1315 static void qemu_kvm_start_vcpu(CPUState *cpu)
1316 {
1317 char thread_name[VCPU_THREAD_NAME_SIZE];
1318
1319 cpu->thread = g_malloc0(sizeof(QemuThread));
1320 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1321 qemu_cond_init(cpu->halt_cond);
1322 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/KVM",
1323 cpu->cpu_index);
1324 qemu_thread_create(cpu->thread, thread_name, qemu_kvm_cpu_thread_fn,
1325 cpu, QEMU_THREAD_JOINABLE);
1326 while (!cpu->created) {
1327 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1328 }
1329 }
1330
1331 static void qemu_dummy_start_vcpu(CPUState *cpu)
1332 {
1333 char thread_name[VCPU_THREAD_NAME_SIZE];
1334
1335 cpu->thread = g_malloc0(sizeof(QemuThread));
1336 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1337 qemu_cond_init(cpu->halt_cond);
1338 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/DUMMY",
1339 cpu->cpu_index);
1340 qemu_thread_create(cpu->thread, thread_name, qemu_dummy_cpu_thread_fn, cpu,
1341 QEMU_THREAD_JOINABLE);
1342 while (!cpu->created) {
1343 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1344 }
1345 }
1346
1347 void qemu_init_vcpu(CPUState *cpu)
1348 {
1349 cpu->nr_cores = smp_cores;
1350 cpu->nr_threads = smp_threads;
1351 cpu->stopped = true;
1352
1353 if (!cpu->as) {
1354 /* If the target cpu hasn't set up any address spaces itself,
1355 * give it the default one.
1356 */
1357 AddressSpace *as = address_space_init_shareable(cpu->memory,
1358 "cpu-memory");
1359 cpu->num_ases = 1;
1360 cpu_address_space_init(cpu, as, 0);
1361 }
1362
1363 if (kvm_enabled()) {
1364 qemu_kvm_start_vcpu(cpu);
1365 } else if (tcg_enabled()) {
1366 qemu_tcg_init_vcpu(cpu);
1367 } else {
1368 qemu_dummy_start_vcpu(cpu);
1369 }
1370 }
1371
1372 void cpu_stop_current(void)
1373 {
1374 if (current_cpu) {
1375 current_cpu->stop = false;
1376 current_cpu->stopped = true;
1377 cpu_exit(current_cpu);
1378 qemu_cond_broadcast(&qemu_pause_cond);
1379 }
1380 }
1381
1382 int vm_stop(RunState state)
1383 {
1384 if (qemu_in_vcpu_thread()) {
1385 qemu_system_vmstop_request_prepare();
1386 qemu_system_vmstop_request(state);
1387 /*
1388 * FIXME: should not return to device code in case
1389 * vm_stop() has been requested.
1390 */
1391 cpu_stop_current();
1392 return 0;
1393 }
1394
1395 return do_vm_stop(state);
1396 }
1397
1398 /* does a state transition even if the VM is already stopped,
1399 current state is forgotten forever */
1400 int vm_stop_force_state(RunState state)
1401 {
1402 if (runstate_is_running()) {
1403 return vm_stop(state);
1404 } else {
1405 runstate_set(state);
1406
1407 bdrv_drain_all();
1408 /* Make sure to return an error if the flush in a previous vm_stop()
1409 * failed. */
1410 return blk_flush_all();
1411 }
1412 }
1413
1414 static int64_t tcg_get_icount_limit(void)
1415 {
1416 int64_t deadline;
1417
1418 if (replay_mode != REPLAY_MODE_PLAY) {
1419 deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
1420
1421 /* Maintain prior (possibly buggy) behaviour where if no deadline
1422 * was set (as there is no QEMU_CLOCK_VIRTUAL timer) or it is more than
1423 * INT32_MAX nanoseconds ahead, we still use INT32_MAX
1424 * nanoseconds.
1425 */
1426 if ((deadline < 0) || (deadline > INT32_MAX)) {
1427 deadline = INT32_MAX;
1428 }
1429
1430 return qemu_icount_round(deadline);
1431 } else {
1432 return replay_get_instructions();
1433 }
1434 }
1435
1436 static int tcg_cpu_exec(CPUState *cpu)
1437 {
1438 int ret;
1439 #ifdef CONFIG_PROFILER
1440 int64_t ti;
1441 #endif
1442
1443 #ifdef CONFIG_PROFILER
1444 ti = profile_getclock();
1445 #endif
1446 if (use_icount) {
1447 int64_t count;
1448 int decr;
1449 timers_state.qemu_icount -= (cpu->icount_decr.u16.low
1450 + cpu->icount_extra);
1451 cpu->icount_decr.u16.low = 0;
1452 cpu->icount_extra = 0;
1453 count = tcg_get_icount_limit();
1454 timers_state.qemu_icount += count;
1455 decr = (count > 0xffff) ? 0xffff : count;
1456 count -= decr;
1457 cpu->icount_decr.u16.low = decr;
1458 cpu->icount_extra = count;
1459 }
1460 cpu_exec_start(cpu);
1461 ret = cpu_exec(cpu);
1462 cpu_exec_end(cpu);
1463 #ifdef CONFIG_PROFILER
1464 tcg_time += profile_getclock() - ti;
1465 #endif
1466 if (use_icount) {
1467 /* Fold pending instructions back into the
1468 instruction counter, and clear the interrupt flag. */
1469 timers_state.qemu_icount -= (cpu->icount_decr.u16.low
1470 + cpu->icount_extra);
1471 cpu->icount_decr.u32 = 0;
1472 cpu->icount_extra = 0;
1473 replay_account_executed_instructions();
1474 }
1475 return ret;
1476 }
1477
1478 static void tcg_exec_all(void)
1479 {
1480 int r;
1481
1482 /* Account partial waits to QEMU_CLOCK_VIRTUAL. */
1483 qemu_account_warp_timer();
1484
1485 if (next_cpu == NULL) {
1486 next_cpu = first_cpu;
1487 }
1488 for (; next_cpu != NULL && !exit_request; next_cpu = CPU_NEXT(next_cpu)) {
1489 CPUState *cpu = next_cpu;
1490
1491 qemu_clock_enable(QEMU_CLOCK_VIRTUAL,
1492 (cpu->singlestep_enabled & SSTEP_NOTIMER) == 0);
1493
1494 if (cpu_can_run(cpu)) {
1495 r = tcg_cpu_exec(cpu);
1496 if (r == EXCP_DEBUG) {
1497 cpu_handle_guest_debug(cpu);
1498 break;
1499 }
1500 } else if (cpu->stop || cpu->stopped) {
1501 if (cpu->unplug) {
1502 next_cpu = CPU_NEXT(cpu);
1503 }
1504 break;
1505 }
1506 }
1507
1508 /* Pairs with smp_wmb in qemu_cpu_kick. */
1509 atomic_mb_set(&exit_request, 0);
1510 }
1511
1512 void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg)
1513 {
1514 /* XXX: implement xxx_cpu_list for targets that still miss it */
1515 #if defined(cpu_list)
1516 cpu_list(f, cpu_fprintf);
1517 #endif
1518 }
1519
1520 CpuInfoList *qmp_query_cpus(Error **errp)
1521 {
1522 CpuInfoList *head = NULL, *cur_item = NULL;
1523 CPUState *cpu;
1524
1525 CPU_FOREACH(cpu) {
1526 CpuInfoList *info;
1527 #if defined(TARGET_I386)
1528 X86CPU *x86_cpu = X86_CPU(cpu);
1529 CPUX86State *env = &x86_cpu->env;
1530 #elif defined(TARGET_PPC)
1531 PowerPCCPU *ppc_cpu = POWERPC_CPU(cpu);
1532 CPUPPCState *env = &ppc_cpu->env;
1533 #elif defined(TARGET_SPARC)
1534 SPARCCPU *sparc_cpu = SPARC_CPU(cpu);
1535 CPUSPARCState *env = &sparc_cpu->env;
1536 #elif defined(TARGET_MIPS)
1537 MIPSCPU *mips_cpu = MIPS_CPU(cpu);
1538 CPUMIPSState *env = &mips_cpu->env;
1539 #elif defined(TARGET_TRICORE)
1540 TriCoreCPU *tricore_cpu = TRICORE_CPU(cpu);
1541 CPUTriCoreState *env = &tricore_cpu->env;
1542 #endif
1543
1544 cpu_synchronize_state(cpu);
1545
1546 info = g_malloc0(sizeof(*info));
1547 info->value = g_malloc0(sizeof(*info->value));
1548 info->value->CPU = cpu->cpu_index;
1549 info->value->current = (cpu == first_cpu);
1550 info->value->halted = cpu->halted;
1551 info->value->qom_path = object_get_canonical_path(OBJECT(cpu));
1552 info->value->thread_id = cpu->thread_id;
1553 #if defined(TARGET_I386)
1554 info->value->arch = CPU_INFO_ARCH_X86;
1555 info->value->u.x86.pc = env->eip + env->segs[R_CS].base;
1556 #elif defined(TARGET_PPC)
1557 info->value->arch = CPU_INFO_ARCH_PPC;
1558 info->value->u.ppc.nip = env->nip;
1559 #elif defined(TARGET_SPARC)
1560 info->value->arch = CPU_INFO_ARCH_SPARC;
1561 info->value->u.q_sparc.pc = env->pc;
1562 info->value->u.q_sparc.npc = env->npc;
1563 #elif defined(TARGET_MIPS)
1564 info->value->arch = CPU_INFO_ARCH_MIPS;
1565 info->value->u.q_mips.PC = env->active_tc.PC;
1566 #elif defined(TARGET_TRICORE)
1567 info->value->arch = CPU_INFO_ARCH_TRICORE;
1568 info->value->u.tricore.PC = env->PC;
1569 #else
1570 info->value->arch = CPU_INFO_ARCH_OTHER;
1571 #endif
1572
1573 /* XXX: waiting for the qapi to support GSList */
1574 if (!cur_item) {
1575 head = cur_item = info;
1576 } else {
1577 cur_item->next = info;
1578 cur_item = info;
1579 }
1580 }
1581
1582 return head;
1583 }
1584
1585 void qmp_memsave(int64_t addr, int64_t size, const char *filename,
1586 bool has_cpu, int64_t cpu_index, Error **errp)
1587 {
1588 FILE *f;
1589 uint32_t l;
1590 CPUState *cpu;
1591 uint8_t buf[1024];
1592 int64_t orig_addr = addr, orig_size = size;
1593
1594 if (!has_cpu) {
1595 cpu_index = 0;
1596 }
1597
1598 cpu = qemu_get_cpu(cpu_index);
1599 if (cpu == NULL) {
1600 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index",
1601 "a CPU number");
1602 return;
1603 }
1604
1605 f = fopen(filename, "wb");
1606 if (!f) {
1607 error_setg_file_open(errp, errno, filename);
1608 return;
1609 }
1610
1611 while (size != 0) {
1612 l = sizeof(buf);
1613 if (l > size)
1614 l = size;
1615 if (cpu_memory_rw_debug(cpu, addr, buf, l, 0) != 0) {
1616 error_setg(errp, "Invalid addr 0x%016" PRIx64 "/size %" PRId64
1617 " specified", orig_addr, orig_size);
1618 goto exit;
1619 }
1620 if (fwrite(buf, 1, l, f) != l) {
1621 error_setg(errp, QERR_IO_ERROR);
1622 goto exit;
1623 }
1624 addr += l;
1625 size -= l;
1626 }
1627
1628 exit:
1629 fclose(f);
1630 }
1631
1632 void qmp_pmemsave(int64_t addr, int64_t size, const char *filename,
1633 Error **errp)
1634 {
1635 FILE *f;
1636 uint32_t l;
1637 uint8_t buf[1024];
1638
1639 f = fopen(filename, "wb");
1640 if (!f) {
1641 error_setg_file_open(errp, errno, filename);
1642 return;
1643 }
1644
1645 while (size != 0) {
1646 l = sizeof(buf);
1647 if (l > size)
1648 l = size;
1649 cpu_physical_memory_read(addr, buf, l);
1650 if (fwrite(buf, 1, l, f) != l) {
1651 error_setg(errp, QERR_IO_ERROR);
1652 goto exit;
1653 }
1654 addr += l;
1655 size -= l;
1656 }
1657
1658 exit:
1659 fclose(f);
1660 }
1661
1662 void qmp_inject_nmi(Error **errp)
1663 {
1664 nmi_monitor_handle(monitor_get_cpu_index(), errp);
1665 }
1666
1667 void dump_drift_info(FILE *f, fprintf_function cpu_fprintf)
1668 {
1669 if (!use_icount) {
1670 return;
1671 }
1672
1673 cpu_fprintf(f, "Host - Guest clock %"PRIi64" ms\n",
1674 (cpu_get_clock() - cpu_get_icount())/SCALE_MS);
1675 if (icount_align_option) {
1676 cpu_fprintf(f, "Max guest delay %"PRIi64" ms\n", -max_delay/SCALE_MS);
1677 cpu_fprintf(f, "Max guest advance %"PRIi64" ms\n", max_advance/SCALE_MS);
1678 } else {
1679 cpu_fprintf(f, "Max guest delay NA\n");
1680 cpu_fprintf(f, "Max guest advance NA\n");
1681 }
1682 }