]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - crypto/Kconfig
include/linux/swap.h: use offsetof() instead of custom __swapoffset macro
[thirdparty/kernel/stable.git] / crypto / Kconfig
1 # SPDX-License-Identifier: GPL-2.0
2 #
3 # Generic algorithms support
4 #
5 config XOR_BLOCKS
6 tristate
7
8 #
9 # async_tx api: hardware offloaded memory transfer/transform support
10 #
11 source "crypto/async_tx/Kconfig"
12
13 #
14 # Cryptographic API Configuration
15 #
16 menuconfig CRYPTO
17 tristate "Cryptographic API"
18 help
19 This option provides the core Cryptographic API.
20
21 if CRYPTO
22
23 comment "Crypto core or helper"
24
25 config CRYPTO_FIPS
26 bool "FIPS 200 compliance"
27 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
28 depends on (MODULE_SIG || !MODULES)
29 help
30 This options enables the fips boot option which is
31 required if you want to system to operate in a FIPS 200
32 certification. You should say no unless you know what
33 this is.
34
35 config CRYPTO_ALGAPI
36 tristate
37 select CRYPTO_ALGAPI2
38 help
39 This option provides the API for cryptographic algorithms.
40
41 config CRYPTO_ALGAPI2
42 tristate
43
44 config CRYPTO_AEAD
45 tristate
46 select CRYPTO_AEAD2
47 select CRYPTO_ALGAPI
48
49 config CRYPTO_AEAD2
50 tristate
51 select CRYPTO_ALGAPI2
52 select CRYPTO_NULL2
53 select CRYPTO_RNG2
54
55 config CRYPTO_BLKCIPHER
56 tristate
57 select CRYPTO_BLKCIPHER2
58 select CRYPTO_ALGAPI
59
60 config CRYPTO_BLKCIPHER2
61 tristate
62 select CRYPTO_ALGAPI2
63 select CRYPTO_RNG2
64 select CRYPTO_WORKQUEUE
65
66 config CRYPTO_HASH
67 tristate
68 select CRYPTO_HASH2
69 select CRYPTO_ALGAPI
70
71 config CRYPTO_HASH2
72 tristate
73 select CRYPTO_ALGAPI2
74
75 config CRYPTO_RNG
76 tristate
77 select CRYPTO_RNG2
78 select CRYPTO_ALGAPI
79
80 config CRYPTO_RNG2
81 tristate
82 select CRYPTO_ALGAPI2
83
84 config CRYPTO_RNG_DEFAULT
85 tristate
86 select CRYPTO_DRBG_MENU
87
88 config CRYPTO_AKCIPHER2
89 tristate
90 select CRYPTO_ALGAPI2
91
92 config CRYPTO_AKCIPHER
93 tristate
94 select CRYPTO_AKCIPHER2
95 select CRYPTO_ALGAPI
96
97 config CRYPTO_KPP2
98 tristate
99 select CRYPTO_ALGAPI2
100
101 config CRYPTO_KPP
102 tristate
103 select CRYPTO_ALGAPI
104 select CRYPTO_KPP2
105
106 config CRYPTO_ACOMP2
107 tristate
108 select CRYPTO_ALGAPI2
109
110 config CRYPTO_ACOMP
111 tristate
112 select CRYPTO_ALGAPI
113 select CRYPTO_ACOMP2
114
115 config CRYPTO_RSA
116 tristate "RSA algorithm"
117 select CRYPTO_AKCIPHER
118 select CRYPTO_MANAGER
119 select MPILIB
120 select ASN1
121 help
122 Generic implementation of the RSA public key algorithm.
123
124 config CRYPTO_DH
125 tristate "Diffie-Hellman algorithm"
126 select CRYPTO_KPP
127 select MPILIB
128 help
129 Generic implementation of the Diffie-Hellman algorithm.
130
131 config CRYPTO_ECDH
132 tristate "ECDH algorithm"
133 select CRYPTO_KPP
134 select CRYPTO_RNG_DEFAULT
135 help
136 Generic implementation of the ECDH algorithm
137
138 config CRYPTO_MANAGER
139 tristate "Cryptographic algorithm manager"
140 select CRYPTO_MANAGER2
141 help
142 Create default cryptographic template instantiations such as
143 cbc(aes).
144
145 config CRYPTO_MANAGER2
146 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
147 select CRYPTO_AEAD2
148 select CRYPTO_HASH2
149 select CRYPTO_BLKCIPHER2
150 select CRYPTO_AKCIPHER2
151 select CRYPTO_KPP2
152 select CRYPTO_ACOMP2
153
154 config CRYPTO_USER
155 tristate "Userspace cryptographic algorithm configuration"
156 depends on NET
157 select CRYPTO_MANAGER
158 help
159 Userspace configuration for cryptographic instantiations such as
160 cbc(aes).
161
162 config CRYPTO_MANAGER_DISABLE_TESTS
163 bool "Disable run-time self tests"
164 default y
165 depends on CRYPTO_MANAGER2
166 help
167 Disable run-time self tests that normally take place at
168 algorithm registration.
169
170 config CRYPTO_GF128MUL
171 tristate "GF(2^128) multiplication functions"
172 help
173 Efficient table driven implementation of multiplications in the
174 field GF(2^128). This is needed by some cypher modes. This
175 option will be selected automatically if you select such a
176 cipher mode. Only select this option by hand if you expect to load
177 an external module that requires these functions.
178
179 config CRYPTO_NULL
180 tristate "Null algorithms"
181 select CRYPTO_NULL2
182 help
183 These are 'Null' algorithms, used by IPsec, which do nothing.
184
185 config CRYPTO_NULL2
186 tristate
187 select CRYPTO_ALGAPI2
188 select CRYPTO_BLKCIPHER2
189 select CRYPTO_HASH2
190
191 config CRYPTO_PCRYPT
192 tristate "Parallel crypto engine"
193 depends on SMP
194 select PADATA
195 select CRYPTO_MANAGER
196 select CRYPTO_AEAD
197 help
198 This converts an arbitrary crypto algorithm into a parallel
199 algorithm that executes in kernel threads.
200
201 config CRYPTO_WORKQUEUE
202 tristate
203
204 config CRYPTO_CRYPTD
205 tristate "Software async crypto daemon"
206 select CRYPTO_BLKCIPHER
207 select CRYPTO_HASH
208 select CRYPTO_MANAGER
209 select CRYPTO_WORKQUEUE
210 help
211 This is a generic software asynchronous crypto daemon that
212 converts an arbitrary synchronous software crypto algorithm
213 into an asynchronous algorithm that executes in a kernel thread.
214
215 config CRYPTO_MCRYPTD
216 tristate "Software async multi-buffer crypto daemon"
217 select CRYPTO_BLKCIPHER
218 select CRYPTO_HASH
219 select CRYPTO_MANAGER
220 select CRYPTO_WORKQUEUE
221 help
222 This is a generic software asynchronous crypto daemon that
223 provides the kernel thread to assist multi-buffer crypto
224 algorithms for submitting jobs and flushing jobs in multi-buffer
225 crypto algorithms. Multi-buffer crypto algorithms are executed
226 in the context of this kernel thread and drivers can post
227 their crypto request asynchronously to be processed by this daemon.
228
229 config CRYPTO_AUTHENC
230 tristate "Authenc support"
231 select CRYPTO_AEAD
232 select CRYPTO_BLKCIPHER
233 select CRYPTO_MANAGER
234 select CRYPTO_HASH
235 select CRYPTO_NULL
236 help
237 Authenc: Combined mode wrapper for IPsec.
238 This is required for IPSec.
239
240 config CRYPTO_TEST
241 tristate "Testing module"
242 depends on m
243 select CRYPTO_MANAGER
244 help
245 Quick & dirty crypto test module.
246
247 config CRYPTO_ABLK_HELPER
248 tristate
249 select CRYPTO_CRYPTD
250
251 config CRYPTO_SIMD
252 tristate
253 select CRYPTO_CRYPTD
254
255 config CRYPTO_GLUE_HELPER_X86
256 tristate
257 depends on X86
258 select CRYPTO_BLKCIPHER
259
260 config CRYPTO_ENGINE
261 tristate
262
263 comment "Authenticated Encryption with Associated Data"
264
265 config CRYPTO_CCM
266 tristate "CCM support"
267 select CRYPTO_CTR
268 select CRYPTO_HASH
269 select CRYPTO_AEAD
270 help
271 Support for Counter with CBC MAC. Required for IPsec.
272
273 config CRYPTO_GCM
274 tristate "GCM/GMAC support"
275 select CRYPTO_CTR
276 select CRYPTO_AEAD
277 select CRYPTO_GHASH
278 select CRYPTO_NULL
279 help
280 Support for Galois/Counter Mode (GCM) and Galois Message
281 Authentication Code (GMAC). Required for IPSec.
282
283 config CRYPTO_CHACHA20POLY1305
284 tristate "ChaCha20-Poly1305 AEAD support"
285 select CRYPTO_CHACHA20
286 select CRYPTO_POLY1305
287 select CRYPTO_AEAD
288 help
289 ChaCha20-Poly1305 AEAD support, RFC7539.
290
291 Support for the AEAD wrapper using the ChaCha20 stream cipher combined
292 with the Poly1305 authenticator. It is defined in RFC7539 for use in
293 IETF protocols.
294
295 config CRYPTO_SEQIV
296 tristate "Sequence Number IV Generator"
297 select CRYPTO_AEAD
298 select CRYPTO_BLKCIPHER
299 select CRYPTO_NULL
300 select CRYPTO_RNG_DEFAULT
301 help
302 This IV generator generates an IV based on a sequence number by
303 xoring it with a salt. This algorithm is mainly useful for CTR
304
305 config CRYPTO_ECHAINIV
306 tristate "Encrypted Chain IV Generator"
307 select CRYPTO_AEAD
308 select CRYPTO_NULL
309 select CRYPTO_RNG_DEFAULT
310 default m
311 help
312 This IV generator generates an IV based on the encryption of
313 a sequence number xored with a salt. This is the default
314 algorithm for CBC.
315
316 comment "Block modes"
317
318 config CRYPTO_CBC
319 tristate "CBC support"
320 select CRYPTO_BLKCIPHER
321 select CRYPTO_MANAGER
322 help
323 CBC: Cipher Block Chaining mode
324 This block cipher algorithm is required for IPSec.
325
326 config CRYPTO_CTR
327 tristate "CTR support"
328 select CRYPTO_BLKCIPHER
329 select CRYPTO_SEQIV
330 select CRYPTO_MANAGER
331 help
332 CTR: Counter mode
333 This block cipher algorithm is required for IPSec.
334
335 config CRYPTO_CTS
336 tristate "CTS support"
337 select CRYPTO_BLKCIPHER
338 help
339 CTS: Cipher Text Stealing
340 This is the Cipher Text Stealing mode as described by
341 Section 8 of rfc2040 and referenced by rfc3962.
342 (rfc3962 includes errata information in its Appendix A)
343 This mode is required for Kerberos gss mechanism support
344 for AES encryption.
345
346 config CRYPTO_ECB
347 tristate "ECB support"
348 select CRYPTO_BLKCIPHER
349 select CRYPTO_MANAGER
350 help
351 ECB: Electronic CodeBook mode
352 This is the simplest block cipher algorithm. It simply encrypts
353 the input block by block.
354
355 config CRYPTO_LRW
356 tristate "LRW support"
357 select CRYPTO_BLKCIPHER
358 select CRYPTO_MANAGER
359 select CRYPTO_GF128MUL
360 help
361 LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
362 narrow block cipher mode for dm-crypt. Use it with cipher
363 specification string aes-lrw-benbi, the key must be 256, 320 or 384.
364 The first 128, 192 or 256 bits in the key are used for AES and the
365 rest is used to tie each cipher block to its logical position.
366
367 config CRYPTO_PCBC
368 tristate "PCBC support"
369 select CRYPTO_BLKCIPHER
370 select CRYPTO_MANAGER
371 help
372 PCBC: Propagating Cipher Block Chaining mode
373 This block cipher algorithm is required for RxRPC.
374
375 config CRYPTO_XTS
376 tristate "XTS support"
377 select CRYPTO_BLKCIPHER
378 select CRYPTO_MANAGER
379 select CRYPTO_ECB
380 help
381 XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
382 key size 256, 384 or 512 bits. This implementation currently
383 can't handle a sectorsize which is not a multiple of 16 bytes.
384
385 config CRYPTO_KEYWRAP
386 tristate "Key wrapping support"
387 select CRYPTO_BLKCIPHER
388 help
389 Support for key wrapping (NIST SP800-38F / RFC3394) without
390 padding.
391
392 comment "Hash modes"
393
394 config CRYPTO_CMAC
395 tristate "CMAC support"
396 select CRYPTO_HASH
397 select CRYPTO_MANAGER
398 help
399 Cipher-based Message Authentication Code (CMAC) specified by
400 The National Institute of Standards and Technology (NIST).
401
402 https://tools.ietf.org/html/rfc4493
403 http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
404
405 config CRYPTO_HMAC
406 tristate "HMAC support"
407 select CRYPTO_HASH
408 select CRYPTO_MANAGER
409 help
410 HMAC: Keyed-Hashing for Message Authentication (RFC2104).
411 This is required for IPSec.
412
413 config CRYPTO_XCBC
414 tristate "XCBC support"
415 select CRYPTO_HASH
416 select CRYPTO_MANAGER
417 help
418 XCBC: Keyed-Hashing with encryption algorithm
419 http://www.ietf.org/rfc/rfc3566.txt
420 http://csrc.nist.gov/encryption/modes/proposedmodes/
421 xcbc-mac/xcbc-mac-spec.pdf
422
423 config CRYPTO_VMAC
424 tristate "VMAC support"
425 select CRYPTO_HASH
426 select CRYPTO_MANAGER
427 help
428 VMAC is a message authentication algorithm designed for
429 very high speed on 64-bit architectures.
430
431 See also:
432 <http://fastcrypto.org/vmac>
433
434 comment "Digest"
435
436 config CRYPTO_CRC32C
437 tristate "CRC32c CRC algorithm"
438 select CRYPTO_HASH
439 select CRC32
440 help
441 Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used
442 by iSCSI for header and data digests and by others.
443 See Castagnoli93. Module will be crc32c.
444
445 config CRYPTO_CRC32C_INTEL
446 tristate "CRC32c INTEL hardware acceleration"
447 depends on X86
448 select CRYPTO_HASH
449 help
450 In Intel processor with SSE4.2 supported, the processor will
451 support CRC32C implementation using hardware accelerated CRC32
452 instruction. This option will create 'crc32c-intel' module,
453 which will enable any routine to use the CRC32 instruction to
454 gain performance compared with software implementation.
455 Module will be crc32c-intel.
456
457 config CRYPTO_CRC32C_VPMSUM
458 tristate "CRC32c CRC algorithm (powerpc64)"
459 depends on PPC64 && ALTIVEC
460 select CRYPTO_HASH
461 select CRC32
462 help
463 CRC32c algorithm implemented using vector polynomial multiply-sum
464 (vpmsum) instructions, introduced in POWER8. Enable on POWER8
465 and newer processors for improved performance.
466
467
468 config CRYPTO_CRC32C_SPARC64
469 tristate "CRC32c CRC algorithm (SPARC64)"
470 depends on SPARC64
471 select CRYPTO_HASH
472 select CRC32
473 help
474 CRC32c CRC algorithm implemented using sparc64 crypto instructions,
475 when available.
476
477 config CRYPTO_CRC32
478 tristate "CRC32 CRC algorithm"
479 select CRYPTO_HASH
480 select CRC32
481 help
482 CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
483 Shash crypto api wrappers to crc32_le function.
484
485 config CRYPTO_CRC32_PCLMUL
486 tristate "CRC32 PCLMULQDQ hardware acceleration"
487 depends on X86
488 select CRYPTO_HASH
489 select CRC32
490 help
491 From Intel Westmere and AMD Bulldozer processor with SSE4.2
492 and PCLMULQDQ supported, the processor will support
493 CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
494 instruction. This option will create 'crc32-plcmul' module,
495 which will enable any routine to use the CRC-32-IEEE 802.3 checksum
496 and gain better performance as compared with the table implementation.
497
498 config CRYPTO_CRCT10DIF
499 tristate "CRCT10DIF algorithm"
500 select CRYPTO_HASH
501 help
502 CRC T10 Data Integrity Field computation is being cast as
503 a crypto transform. This allows for faster crc t10 diff
504 transforms to be used if they are available.
505
506 config CRYPTO_CRCT10DIF_PCLMUL
507 tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
508 depends on X86 && 64BIT && CRC_T10DIF
509 select CRYPTO_HASH
510 help
511 For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
512 CRC T10 DIF PCLMULQDQ computation can be hardware
513 accelerated PCLMULQDQ instruction. This option will create
514 'crct10dif-plcmul' module, which is faster when computing the
515 crct10dif checksum as compared with the generic table implementation.
516
517 config CRYPTO_CRCT10DIF_VPMSUM
518 tristate "CRC32T10DIF powerpc64 hardware acceleration"
519 depends on PPC64 && ALTIVEC && CRC_T10DIF
520 select CRYPTO_HASH
521 help
522 CRC10T10DIF algorithm implemented using vector polynomial
523 multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
524 POWER8 and newer processors for improved performance.
525
526 config CRYPTO_VPMSUM_TESTER
527 tristate "Powerpc64 vpmsum hardware acceleration tester"
528 depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
529 help
530 Stress test for CRC32c and CRC-T10DIF algorithms implemented with
531 POWER8 vpmsum instructions.
532 Unless you are testing these algorithms, you don't need this.
533
534 config CRYPTO_GHASH
535 tristate "GHASH digest algorithm"
536 select CRYPTO_GF128MUL
537 select CRYPTO_HASH
538 help
539 GHASH is message digest algorithm for GCM (Galois/Counter Mode).
540
541 config CRYPTO_POLY1305
542 tristate "Poly1305 authenticator algorithm"
543 select CRYPTO_HASH
544 help
545 Poly1305 authenticator algorithm, RFC7539.
546
547 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
548 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
549 in IETF protocols. This is the portable C implementation of Poly1305.
550
551 config CRYPTO_POLY1305_X86_64
552 tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
553 depends on X86 && 64BIT
554 select CRYPTO_POLY1305
555 help
556 Poly1305 authenticator algorithm, RFC7539.
557
558 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
559 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
560 in IETF protocols. This is the x86_64 assembler implementation using SIMD
561 instructions.
562
563 config CRYPTO_MD4
564 tristate "MD4 digest algorithm"
565 select CRYPTO_HASH
566 help
567 MD4 message digest algorithm (RFC1320).
568
569 config CRYPTO_MD5
570 tristate "MD5 digest algorithm"
571 select CRYPTO_HASH
572 help
573 MD5 message digest algorithm (RFC1321).
574
575 config CRYPTO_MD5_OCTEON
576 tristate "MD5 digest algorithm (OCTEON)"
577 depends on CPU_CAVIUM_OCTEON
578 select CRYPTO_MD5
579 select CRYPTO_HASH
580 help
581 MD5 message digest algorithm (RFC1321) implemented
582 using OCTEON crypto instructions, when available.
583
584 config CRYPTO_MD5_PPC
585 tristate "MD5 digest algorithm (PPC)"
586 depends on PPC
587 select CRYPTO_HASH
588 help
589 MD5 message digest algorithm (RFC1321) implemented
590 in PPC assembler.
591
592 config CRYPTO_MD5_SPARC64
593 tristate "MD5 digest algorithm (SPARC64)"
594 depends on SPARC64
595 select CRYPTO_MD5
596 select CRYPTO_HASH
597 help
598 MD5 message digest algorithm (RFC1321) implemented
599 using sparc64 crypto instructions, when available.
600
601 config CRYPTO_MICHAEL_MIC
602 tristate "Michael MIC keyed digest algorithm"
603 select CRYPTO_HASH
604 help
605 Michael MIC is used for message integrity protection in TKIP
606 (IEEE 802.11i). This algorithm is required for TKIP, but it
607 should not be used for other purposes because of the weakness
608 of the algorithm.
609
610 config CRYPTO_RMD128
611 tristate "RIPEMD-128 digest algorithm"
612 select CRYPTO_HASH
613 help
614 RIPEMD-128 (ISO/IEC 10118-3:2004).
615
616 RIPEMD-128 is a 128-bit cryptographic hash function. It should only
617 be used as a secure replacement for RIPEMD. For other use cases,
618 RIPEMD-160 should be used.
619
620 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
621 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
622
623 config CRYPTO_RMD160
624 tristate "RIPEMD-160 digest algorithm"
625 select CRYPTO_HASH
626 help
627 RIPEMD-160 (ISO/IEC 10118-3:2004).
628
629 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
630 to be used as a secure replacement for the 128-bit hash functions
631 MD4, MD5 and it's predecessor RIPEMD
632 (not to be confused with RIPEMD-128).
633
634 It's speed is comparable to SHA1 and there are no known attacks
635 against RIPEMD-160.
636
637 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
638 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
639
640 config CRYPTO_RMD256
641 tristate "RIPEMD-256 digest algorithm"
642 select CRYPTO_HASH
643 help
644 RIPEMD-256 is an optional extension of RIPEMD-128 with a
645 256 bit hash. It is intended for applications that require
646 longer hash-results, without needing a larger security level
647 (than RIPEMD-128).
648
649 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
650 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
651
652 config CRYPTO_RMD320
653 tristate "RIPEMD-320 digest algorithm"
654 select CRYPTO_HASH
655 help
656 RIPEMD-320 is an optional extension of RIPEMD-160 with a
657 320 bit hash. It is intended for applications that require
658 longer hash-results, without needing a larger security level
659 (than RIPEMD-160).
660
661 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
662 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
663
664 config CRYPTO_SHA1
665 tristate "SHA1 digest algorithm"
666 select CRYPTO_HASH
667 help
668 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
669
670 config CRYPTO_SHA1_SSSE3
671 tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
672 depends on X86 && 64BIT
673 select CRYPTO_SHA1
674 select CRYPTO_HASH
675 help
676 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
677 using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
678 Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
679 when available.
680
681 config CRYPTO_SHA256_SSSE3
682 tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
683 depends on X86 && 64BIT
684 select CRYPTO_SHA256
685 select CRYPTO_HASH
686 help
687 SHA-256 secure hash standard (DFIPS 180-2) implemented
688 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
689 Extensions version 1 (AVX1), or Advanced Vector Extensions
690 version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
691 Instructions) when available.
692
693 config CRYPTO_SHA512_SSSE3
694 tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
695 depends on X86 && 64BIT
696 select CRYPTO_SHA512
697 select CRYPTO_HASH
698 help
699 SHA-512 secure hash standard (DFIPS 180-2) implemented
700 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
701 Extensions version 1 (AVX1), or Advanced Vector Extensions
702 version 2 (AVX2) instructions, when available.
703
704 config CRYPTO_SHA1_OCTEON
705 tristate "SHA1 digest algorithm (OCTEON)"
706 depends on CPU_CAVIUM_OCTEON
707 select CRYPTO_SHA1
708 select CRYPTO_HASH
709 help
710 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
711 using OCTEON crypto instructions, when available.
712
713 config CRYPTO_SHA1_SPARC64
714 tristate "SHA1 digest algorithm (SPARC64)"
715 depends on SPARC64
716 select CRYPTO_SHA1
717 select CRYPTO_HASH
718 help
719 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
720 using sparc64 crypto instructions, when available.
721
722 config CRYPTO_SHA1_PPC
723 tristate "SHA1 digest algorithm (powerpc)"
724 depends on PPC
725 help
726 This is the powerpc hardware accelerated implementation of the
727 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
728
729 config CRYPTO_SHA1_PPC_SPE
730 tristate "SHA1 digest algorithm (PPC SPE)"
731 depends on PPC && SPE
732 help
733 SHA-1 secure hash standard (DFIPS 180-4) implemented
734 using powerpc SPE SIMD instruction set.
735
736 config CRYPTO_SHA1_MB
737 tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)"
738 depends on X86 && 64BIT
739 select CRYPTO_SHA1
740 select CRYPTO_HASH
741 select CRYPTO_MCRYPTD
742 help
743 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
744 using multi-buffer technique. This algorithm computes on
745 multiple data lanes concurrently with SIMD instructions for
746 better throughput. It should not be enabled by default but
747 used when there is significant amount of work to keep the keep
748 the data lanes filled to get performance benefit. If the data
749 lanes remain unfilled, a flush operation will be initiated to
750 process the crypto jobs, adding a slight latency.
751
752 config CRYPTO_SHA256_MB
753 tristate "SHA256 digest algorithm (x86_64 Multi-Buffer, Experimental)"
754 depends on X86 && 64BIT
755 select CRYPTO_SHA256
756 select CRYPTO_HASH
757 select CRYPTO_MCRYPTD
758 help
759 SHA-256 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
760 using multi-buffer technique. This algorithm computes on
761 multiple data lanes concurrently with SIMD instructions for
762 better throughput. It should not be enabled by default but
763 used when there is significant amount of work to keep the keep
764 the data lanes filled to get performance benefit. If the data
765 lanes remain unfilled, a flush operation will be initiated to
766 process the crypto jobs, adding a slight latency.
767
768 config CRYPTO_SHA512_MB
769 tristate "SHA512 digest algorithm (x86_64 Multi-Buffer, Experimental)"
770 depends on X86 && 64BIT
771 select CRYPTO_SHA512
772 select CRYPTO_HASH
773 select CRYPTO_MCRYPTD
774 help
775 SHA-512 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
776 using multi-buffer technique. This algorithm computes on
777 multiple data lanes concurrently with SIMD instructions for
778 better throughput. It should not be enabled by default but
779 used when there is significant amount of work to keep the keep
780 the data lanes filled to get performance benefit. If the data
781 lanes remain unfilled, a flush operation will be initiated to
782 process the crypto jobs, adding a slight latency.
783
784 config CRYPTO_SHA256
785 tristate "SHA224 and SHA256 digest algorithm"
786 select CRYPTO_HASH
787 help
788 SHA256 secure hash standard (DFIPS 180-2).
789
790 This version of SHA implements a 256 bit hash with 128 bits of
791 security against collision attacks.
792
793 This code also includes SHA-224, a 224 bit hash with 112 bits
794 of security against collision attacks.
795
796 config CRYPTO_SHA256_PPC_SPE
797 tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
798 depends on PPC && SPE
799 select CRYPTO_SHA256
800 select CRYPTO_HASH
801 help
802 SHA224 and SHA256 secure hash standard (DFIPS 180-2)
803 implemented using powerpc SPE SIMD instruction set.
804
805 config CRYPTO_SHA256_OCTEON
806 tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
807 depends on CPU_CAVIUM_OCTEON
808 select CRYPTO_SHA256
809 select CRYPTO_HASH
810 help
811 SHA-256 secure hash standard (DFIPS 180-2) implemented
812 using OCTEON crypto instructions, when available.
813
814 config CRYPTO_SHA256_SPARC64
815 tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
816 depends on SPARC64
817 select CRYPTO_SHA256
818 select CRYPTO_HASH
819 help
820 SHA-256 secure hash standard (DFIPS 180-2) implemented
821 using sparc64 crypto instructions, when available.
822
823 config CRYPTO_SHA512
824 tristate "SHA384 and SHA512 digest algorithms"
825 select CRYPTO_HASH
826 help
827 SHA512 secure hash standard (DFIPS 180-2).
828
829 This version of SHA implements a 512 bit hash with 256 bits of
830 security against collision attacks.
831
832 This code also includes SHA-384, a 384 bit hash with 192 bits
833 of security against collision attacks.
834
835 config CRYPTO_SHA512_OCTEON
836 tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
837 depends on CPU_CAVIUM_OCTEON
838 select CRYPTO_SHA512
839 select CRYPTO_HASH
840 help
841 SHA-512 secure hash standard (DFIPS 180-2) implemented
842 using OCTEON crypto instructions, when available.
843
844 config CRYPTO_SHA512_SPARC64
845 tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
846 depends on SPARC64
847 select CRYPTO_SHA512
848 select CRYPTO_HASH
849 help
850 SHA-512 secure hash standard (DFIPS 180-2) implemented
851 using sparc64 crypto instructions, when available.
852
853 config CRYPTO_SHA3
854 tristate "SHA3 digest algorithm"
855 select CRYPTO_HASH
856 help
857 SHA-3 secure hash standard (DFIPS 202). It's based on
858 cryptographic sponge function family called Keccak.
859
860 References:
861 http://keccak.noekeon.org/
862
863 config CRYPTO_TGR192
864 tristate "Tiger digest algorithms"
865 select CRYPTO_HASH
866 help
867 Tiger hash algorithm 192, 160 and 128-bit hashes
868
869 Tiger is a hash function optimized for 64-bit processors while
870 still having decent performance on 32-bit processors.
871 Tiger was developed by Ross Anderson and Eli Biham.
872
873 See also:
874 <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
875
876 config CRYPTO_WP512
877 tristate "Whirlpool digest algorithms"
878 select CRYPTO_HASH
879 help
880 Whirlpool hash algorithm 512, 384 and 256-bit hashes
881
882 Whirlpool-512 is part of the NESSIE cryptographic primitives.
883 Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
884
885 See also:
886 <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
887
888 config CRYPTO_GHASH_CLMUL_NI_INTEL
889 tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
890 depends on X86 && 64BIT
891 select CRYPTO_CRYPTD
892 help
893 GHASH is message digest algorithm for GCM (Galois/Counter Mode).
894 The implementation is accelerated by CLMUL-NI of Intel.
895
896 comment "Ciphers"
897
898 config CRYPTO_AES
899 tristate "AES cipher algorithms"
900 select CRYPTO_ALGAPI
901 help
902 AES cipher algorithms (FIPS-197). AES uses the Rijndael
903 algorithm.
904
905 Rijndael appears to be consistently a very good performer in
906 both hardware and software across a wide range of computing
907 environments regardless of its use in feedback or non-feedback
908 modes. Its key setup time is excellent, and its key agility is
909 good. Rijndael's very low memory requirements make it very well
910 suited for restricted-space environments, in which it also
911 demonstrates excellent performance. Rijndael's operations are
912 among the easiest to defend against power and timing attacks.
913
914 The AES specifies three key sizes: 128, 192 and 256 bits
915
916 See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
917
918 config CRYPTO_AES_TI
919 tristate "Fixed time AES cipher"
920 select CRYPTO_ALGAPI
921 help
922 This is a generic implementation of AES that attempts to eliminate
923 data dependent latencies as much as possible without affecting
924 performance too much. It is intended for use by the generic CCM
925 and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
926 solely on encryption (although decryption is supported as well, but
927 with a more dramatic performance hit)
928
929 Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
930 8 for decryption), this implementation only uses just two S-boxes of
931 256 bytes each, and attempts to eliminate data dependent latencies by
932 prefetching the entire table into the cache at the start of each
933 block. Interrupts are also disabled to avoid races where cachelines
934 are evicted when the CPU is interrupted to do something else.
935
936 config CRYPTO_AES_586
937 tristate "AES cipher algorithms (i586)"
938 depends on (X86 || UML_X86) && !64BIT
939 select CRYPTO_ALGAPI
940 select CRYPTO_AES
941 help
942 AES cipher algorithms (FIPS-197). AES uses the Rijndael
943 algorithm.
944
945 Rijndael appears to be consistently a very good performer in
946 both hardware and software across a wide range of computing
947 environments regardless of its use in feedback or non-feedback
948 modes. Its key setup time is excellent, and its key agility is
949 good. Rijndael's very low memory requirements make it very well
950 suited for restricted-space environments, in which it also
951 demonstrates excellent performance. Rijndael's operations are
952 among the easiest to defend against power and timing attacks.
953
954 The AES specifies three key sizes: 128, 192 and 256 bits
955
956 See <http://csrc.nist.gov/encryption/aes/> for more information.
957
958 config CRYPTO_AES_X86_64
959 tristate "AES cipher algorithms (x86_64)"
960 depends on (X86 || UML_X86) && 64BIT
961 select CRYPTO_ALGAPI
962 select CRYPTO_AES
963 help
964 AES cipher algorithms (FIPS-197). AES uses the Rijndael
965 algorithm.
966
967 Rijndael appears to be consistently a very good performer in
968 both hardware and software across a wide range of computing
969 environments regardless of its use in feedback or non-feedback
970 modes. Its key setup time is excellent, and its key agility is
971 good. Rijndael's very low memory requirements make it very well
972 suited for restricted-space environments, in which it also
973 demonstrates excellent performance. Rijndael's operations are
974 among the easiest to defend against power and timing attacks.
975
976 The AES specifies three key sizes: 128, 192 and 256 bits
977
978 See <http://csrc.nist.gov/encryption/aes/> for more information.
979
980 config CRYPTO_AES_NI_INTEL
981 tristate "AES cipher algorithms (AES-NI)"
982 depends on X86
983 select CRYPTO_AEAD
984 select CRYPTO_AES_X86_64 if 64BIT
985 select CRYPTO_AES_586 if !64BIT
986 select CRYPTO_ALGAPI
987 select CRYPTO_BLKCIPHER
988 select CRYPTO_GLUE_HELPER_X86 if 64BIT
989 select CRYPTO_SIMD
990 help
991 Use Intel AES-NI instructions for AES algorithm.
992
993 AES cipher algorithms (FIPS-197). AES uses the Rijndael
994 algorithm.
995
996 Rijndael appears to be consistently a very good performer in
997 both hardware and software across a wide range of computing
998 environments regardless of its use in feedback or non-feedback
999 modes. Its key setup time is excellent, and its key agility is
1000 good. Rijndael's very low memory requirements make it very well
1001 suited for restricted-space environments, in which it also
1002 demonstrates excellent performance. Rijndael's operations are
1003 among the easiest to defend against power and timing attacks.
1004
1005 The AES specifies three key sizes: 128, 192 and 256 bits
1006
1007 See <http://csrc.nist.gov/encryption/aes/> for more information.
1008
1009 In addition to AES cipher algorithm support, the acceleration
1010 for some popular block cipher mode is supported too, including
1011 ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
1012 acceleration for CTR.
1013
1014 config CRYPTO_AES_SPARC64
1015 tristate "AES cipher algorithms (SPARC64)"
1016 depends on SPARC64
1017 select CRYPTO_CRYPTD
1018 select CRYPTO_ALGAPI
1019 help
1020 Use SPARC64 crypto opcodes for AES algorithm.
1021
1022 AES cipher algorithms (FIPS-197). AES uses the Rijndael
1023 algorithm.
1024
1025 Rijndael appears to be consistently a very good performer in
1026 both hardware and software across a wide range of computing
1027 environments regardless of its use in feedback or non-feedback
1028 modes. Its key setup time is excellent, and its key agility is
1029 good. Rijndael's very low memory requirements make it very well
1030 suited for restricted-space environments, in which it also
1031 demonstrates excellent performance. Rijndael's operations are
1032 among the easiest to defend against power and timing attacks.
1033
1034 The AES specifies three key sizes: 128, 192 and 256 bits
1035
1036 See <http://csrc.nist.gov/encryption/aes/> for more information.
1037
1038 In addition to AES cipher algorithm support, the acceleration
1039 for some popular block cipher mode is supported too, including
1040 ECB and CBC.
1041
1042 config CRYPTO_AES_PPC_SPE
1043 tristate "AES cipher algorithms (PPC SPE)"
1044 depends on PPC && SPE
1045 help
1046 AES cipher algorithms (FIPS-197). Additionally the acceleration
1047 for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1048 This module should only be used for low power (router) devices
1049 without hardware AES acceleration (e.g. caam crypto). It reduces the
1050 size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1051 timining attacks. Nevertheless it might be not as secure as other
1052 architecture specific assembler implementations that work on 1KB
1053 tables or 256 bytes S-boxes.
1054
1055 config CRYPTO_ANUBIS
1056 tristate "Anubis cipher algorithm"
1057 select CRYPTO_ALGAPI
1058 help
1059 Anubis cipher algorithm.
1060
1061 Anubis is a variable key length cipher which can use keys from
1062 128 bits to 320 bits in length. It was evaluated as a entrant
1063 in the NESSIE competition.
1064
1065 See also:
1066 <https://www.cosic.esat.kuleuven.be/nessie/reports/>
1067 <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
1068
1069 config CRYPTO_ARC4
1070 tristate "ARC4 cipher algorithm"
1071 select CRYPTO_BLKCIPHER
1072 help
1073 ARC4 cipher algorithm.
1074
1075 ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1076 bits in length. This algorithm is required for driver-based
1077 WEP, but it should not be for other purposes because of the
1078 weakness of the algorithm.
1079
1080 config CRYPTO_BLOWFISH
1081 tristate "Blowfish cipher algorithm"
1082 select CRYPTO_ALGAPI
1083 select CRYPTO_BLOWFISH_COMMON
1084 help
1085 Blowfish cipher algorithm, by Bruce Schneier.
1086
1087 This is a variable key length cipher which can use keys from 32
1088 bits to 448 bits in length. It's fast, simple and specifically
1089 designed for use on "large microprocessors".
1090
1091 See also:
1092 <http://www.schneier.com/blowfish.html>
1093
1094 config CRYPTO_BLOWFISH_COMMON
1095 tristate
1096 help
1097 Common parts of the Blowfish cipher algorithm shared by the
1098 generic c and the assembler implementations.
1099
1100 See also:
1101 <http://www.schneier.com/blowfish.html>
1102
1103 config CRYPTO_BLOWFISH_X86_64
1104 tristate "Blowfish cipher algorithm (x86_64)"
1105 depends on X86 && 64BIT
1106 select CRYPTO_ALGAPI
1107 select CRYPTO_BLOWFISH_COMMON
1108 help
1109 Blowfish cipher algorithm (x86_64), by Bruce Schneier.
1110
1111 This is a variable key length cipher which can use keys from 32
1112 bits to 448 bits in length. It's fast, simple and specifically
1113 designed for use on "large microprocessors".
1114
1115 See also:
1116 <http://www.schneier.com/blowfish.html>
1117
1118 config CRYPTO_CAMELLIA
1119 tristate "Camellia cipher algorithms"
1120 depends on CRYPTO
1121 select CRYPTO_ALGAPI
1122 help
1123 Camellia cipher algorithms module.
1124
1125 Camellia is a symmetric key block cipher developed jointly
1126 at NTT and Mitsubishi Electric Corporation.
1127
1128 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1129
1130 See also:
1131 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1132
1133 config CRYPTO_CAMELLIA_X86_64
1134 tristate "Camellia cipher algorithm (x86_64)"
1135 depends on X86 && 64BIT
1136 depends on CRYPTO
1137 select CRYPTO_ALGAPI
1138 select CRYPTO_GLUE_HELPER_X86
1139 select CRYPTO_LRW
1140 select CRYPTO_XTS
1141 help
1142 Camellia cipher algorithm module (x86_64).
1143
1144 Camellia is a symmetric key block cipher developed jointly
1145 at NTT and Mitsubishi Electric Corporation.
1146
1147 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1148
1149 See also:
1150 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1151
1152 config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1153 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1154 depends on X86 && 64BIT
1155 depends on CRYPTO
1156 select CRYPTO_ALGAPI
1157 select CRYPTO_CRYPTD
1158 select CRYPTO_ABLK_HELPER
1159 select CRYPTO_GLUE_HELPER_X86
1160 select CRYPTO_CAMELLIA_X86_64
1161 select CRYPTO_LRW
1162 select CRYPTO_XTS
1163 help
1164 Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1165
1166 Camellia is a symmetric key block cipher developed jointly
1167 at NTT and Mitsubishi Electric Corporation.
1168
1169 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1170
1171 See also:
1172 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1173
1174 config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1175 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1176 depends on X86 && 64BIT
1177 depends on CRYPTO
1178 select CRYPTO_ALGAPI
1179 select CRYPTO_CRYPTD
1180 select CRYPTO_ABLK_HELPER
1181 select CRYPTO_GLUE_HELPER_X86
1182 select CRYPTO_CAMELLIA_X86_64
1183 select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1184 select CRYPTO_LRW
1185 select CRYPTO_XTS
1186 help
1187 Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1188
1189 Camellia is a symmetric key block cipher developed jointly
1190 at NTT and Mitsubishi Electric Corporation.
1191
1192 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1193
1194 See also:
1195 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1196
1197 config CRYPTO_CAMELLIA_SPARC64
1198 tristate "Camellia cipher algorithm (SPARC64)"
1199 depends on SPARC64
1200 depends on CRYPTO
1201 select CRYPTO_ALGAPI
1202 help
1203 Camellia cipher algorithm module (SPARC64).
1204
1205 Camellia is a symmetric key block cipher developed jointly
1206 at NTT and Mitsubishi Electric Corporation.
1207
1208 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1209
1210 See also:
1211 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1212
1213 config CRYPTO_CAST_COMMON
1214 tristate
1215 help
1216 Common parts of the CAST cipher algorithms shared by the
1217 generic c and the assembler implementations.
1218
1219 config CRYPTO_CAST5
1220 tristate "CAST5 (CAST-128) cipher algorithm"
1221 select CRYPTO_ALGAPI
1222 select CRYPTO_CAST_COMMON
1223 help
1224 The CAST5 encryption algorithm (synonymous with CAST-128) is
1225 described in RFC2144.
1226
1227 config CRYPTO_CAST5_AVX_X86_64
1228 tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
1229 depends on X86 && 64BIT
1230 select CRYPTO_ALGAPI
1231 select CRYPTO_CRYPTD
1232 select CRYPTO_ABLK_HELPER
1233 select CRYPTO_CAST_COMMON
1234 select CRYPTO_CAST5
1235 help
1236 The CAST5 encryption algorithm (synonymous with CAST-128) is
1237 described in RFC2144.
1238
1239 This module provides the Cast5 cipher algorithm that processes
1240 sixteen blocks parallel using the AVX instruction set.
1241
1242 config CRYPTO_CAST6
1243 tristate "CAST6 (CAST-256) cipher algorithm"
1244 select CRYPTO_ALGAPI
1245 select CRYPTO_CAST_COMMON
1246 help
1247 The CAST6 encryption algorithm (synonymous with CAST-256) is
1248 described in RFC2612.
1249
1250 config CRYPTO_CAST6_AVX_X86_64
1251 tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
1252 depends on X86 && 64BIT
1253 select CRYPTO_ALGAPI
1254 select CRYPTO_CRYPTD
1255 select CRYPTO_ABLK_HELPER
1256 select CRYPTO_GLUE_HELPER_X86
1257 select CRYPTO_CAST_COMMON
1258 select CRYPTO_CAST6
1259 select CRYPTO_LRW
1260 select CRYPTO_XTS
1261 help
1262 The CAST6 encryption algorithm (synonymous with CAST-256) is
1263 described in RFC2612.
1264
1265 This module provides the Cast6 cipher algorithm that processes
1266 eight blocks parallel using the AVX instruction set.
1267
1268 config CRYPTO_DES
1269 tristate "DES and Triple DES EDE cipher algorithms"
1270 select CRYPTO_ALGAPI
1271 help
1272 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1273
1274 config CRYPTO_DES_SPARC64
1275 tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1276 depends on SPARC64
1277 select CRYPTO_ALGAPI
1278 select CRYPTO_DES
1279 help
1280 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1281 optimized using SPARC64 crypto opcodes.
1282
1283 config CRYPTO_DES3_EDE_X86_64
1284 tristate "Triple DES EDE cipher algorithm (x86-64)"
1285 depends on X86 && 64BIT
1286 select CRYPTO_ALGAPI
1287 select CRYPTO_DES
1288 help
1289 Triple DES EDE (FIPS 46-3) algorithm.
1290
1291 This module provides implementation of the Triple DES EDE cipher
1292 algorithm that is optimized for x86-64 processors. Two versions of
1293 algorithm are provided; regular processing one input block and
1294 one that processes three blocks parallel.
1295
1296 config CRYPTO_FCRYPT
1297 tristate "FCrypt cipher algorithm"
1298 select CRYPTO_ALGAPI
1299 select CRYPTO_BLKCIPHER
1300 help
1301 FCrypt algorithm used by RxRPC.
1302
1303 config CRYPTO_KHAZAD
1304 tristate "Khazad cipher algorithm"
1305 select CRYPTO_ALGAPI
1306 help
1307 Khazad cipher algorithm.
1308
1309 Khazad was a finalist in the initial NESSIE competition. It is
1310 an algorithm optimized for 64-bit processors with good performance
1311 on 32-bit processors. Khazad uses an 128 bit key size.
1312
1313 See also:
1314 <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1315
1316 config CRYPTO_SALSA20
1317 tristate "Salsa20 stream cipher algorithm"
1318 select CRYPTO_BLKCIPHER
1319 help
1320 Salsa20 stream cipher algorithm.
1321
1322 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1323 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1324
1325 The Salsa20 stream cipher algorithm is designed by Daniel J.
1326 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1327
1328 config CRYPTO_CHACHA20
1329 tristate "ChaCha20 cipher algorithm"
1330 select CRYPTO_BLKCIPHER
1331 help
1332 ChaCha20 cipher algorithm, RFC7539.
1333
1334 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1335 Bernstein and further specified in RFC7539 for use in IETF protocols.
1336 This is the portable C implementation of ChaCha20.
1337
1338 See also:
1339 <http://cr.yp.to/chacha/chacha-20080128.pdf>
1340
1341 config CRYPTO_CHACHA20_X86_64
1342 tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)"
1343 depends on X86 && 64BIT
1344 select CRYPTO_BLKCIPHER
1345 select CRYPTO_CHACHA20
1346 help
1347 ChaCha20 cipher algorithm, RFC7539.
1348
1349 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1350 Bernstein and further specified in RFC7539 for use in IETF protocols.
1351 This is the x86_64 assembler implementation using SIMD instructions.
1352
1353 See also:
1354 <http://cr.yp.to/chacha/chacha-20080128.pdf>
1355
1356 config CRYPTO_SEED
1357 tristate "SEED cipher algorithm"
1358 select CRYPTO_ALGAPI
1359 help
1360 SEED cipher algorithm (RFC4269).
1361
1362 SEED is a 128-bit symmetric key block cipher that has been
1363 developed by KISA (Korea Information Security Agency) as a
1364 national standard encryption algorithm of the Republic of Korea.
1365 It is a 16 round block cipher with the key size of 128 bit.
1366
1367 See also:
1368 <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1369
1370 config CRYPTO_SERPENT
1371 tristate "Serpent cipher algorithm"
1372 select CRYPTO_ALGAPI
1373 help
1374 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1375
1376 Keys are allowed to be from 0 to 256 bits in length, in steps
1377 of 8 bits. Also includes the 'Tnepres' algorithm, a reversed
1378 variant of Serpent for compatibility with old kerneli.org code.
1379
1380 See also:
1381 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1382
1383 config CRYPTO_SERPENT_SSE2_X86_64
1384 tristate "Serpent cipher algorithm (x86_64/SSE2)"
1385 depends on X86 && 64BIT
1386 select CRYPTO_ALGAPI
1387 select CRYPTO_CRYPTD
1388 select CRYPTO_ABLK_HELPER
1389 select CRYPTO_GLUE_HELPER_X86
1390 select CRYPTO_SERPENT
1391 select CRYPTO_LRW
1392 select CRYPTO_XTS
1393 help
1394 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1395
1396 Keys are allowed to be from 0 to 256 bits in length, in steps
1397 of 8 bits.
1398
1399 This module provides Serpent cipher algorithm that processes eight
1400 blocks parallel using SSE2 instruction set.
1401
1402 See also:
1403 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1404
1405 config CRYPTO_SERPENT_SSE2_586
1406 tristate "Serpent cipher algorithm (i586/SSE2)"
1407 depends on X86 && !64BIT
1408 select CRYPTO_ALGAPI
1409 select CRYPTO_CRYPTD
1410 select CRYPTO_ABLK_HELPER
1411 select CRYPTO_GLUE_HELPER_X86
1412 select CRYPTO_SERPENT
1413 select CRYPTO_LRW
1414 select CRYPTO_XTS
1415 help
1416 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1417
1418 Keys are allowed to be from 0 to 256 bits in length, in steps
1419 of 8 bits.
1420
1421 This module provides Serpent cipher algorithm that processes four
1422 blocks parallel using SSE2 instruction set.
1423
1424 See also:
1425 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1426
1427 config CRYPTO_SERPENT_AVX_X86_64
1428 tristate "Serpent cipher algorithm (x86_64/AVX)"
1429 depends on X86 && 64BIT
1430 select CRYPTO_ALGAPI
1431 select CRYPTO_CRYPTD
1432 select CRYPTO_ABLK_HELPER
1433 select CRYPTO_GLUE_HELPER_X86
1434 select CRYPTO_SERPENT
1435 select CRYPTO_LRW
1436 select CRYPTO_XTS
1437 help
1438 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1439
1440 Keys are allowed to be from 0 to 256 bits in length, in steps
1441 of 8 bits.
1442
1443 This module provides the Serpent cipher algorithm that processes
1444 eight blocks parallel using the AVX instruction set.
1445
1446 See also:
1447 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1448
1449 config CRYPTO_SERPENT_AVX2_X86_64
1450 tristate "Serpent cipher algorithm (x86_64/AVX2)"
1451 depends on X86 && 64BIT
1452 select CRYPTO_ALGAPI
1453 select CRYPTO_CRYPTD
1454 select CRYPTO_ABLK_HELPER
1455 select CRYPTO_GLUE_HELPER_X86
1456 select CRYPTO_SERPENT
1457 select CRYPTO_SERPENT_AVX_X86_64
1458 select CRYPTO_LRW
1459 select CRYPTO_XTS
1460 help
1461 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1462
1463 Keys are allowed to be from 0 to 256 bits in length, in steps
1464 of 8 bits.
1465
1466 This module provides Serpent cipher algorithm that processes 16
1467 blocks parallel using AVX2 instruction set.
1468
1469 See also:
1470 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1471
1472 config CRYPTO_TEA
1473 tristate "TEA, XTEA and XETA cipher algorithms"
1474 select CRYPTO_ALGAPI
1475 help
1476 TEA cipher algorithm.
1477
1478 Tiny Encryption Algorithm is a simple cipher that uses
1479 many rounds for security. It is very fast and uses
1480 little memory.
1481
1482 Xtendend Tiny Encryption Algorithm is a modification to
1483 the TEA algorithm to address a potential key weakness
1484 in the TEA algorithm.
1485
1486 Xtendend Encryption Tiny Algorithm is a mis-implementation
1487 of the XTEA algorithm for compatibility purposes.
1488
1489 config CRYPTO_TWOFISH
1490 tristate "Twofish cipher algorithm"
1491 select CRYPTO_ALGAPI
1492 select CRYPTO_TWOFISH_COMMON
1493 help
1494 Twofish cipher algorithm.
1495
1496 Twofish was submitted as an AES (Advanced Encryption Standard)
1497 candidate cipher by researchers at CounterPane Systems. It is a
1498 16 round block cipher supporting key sizes of 128, 192, and 256
1499 bits.
1500
1501 See also:
1502 <http://www.schneier.com/twofish.html>
1503
1504 config CRYPTO_TWOFISH_COMMON
1505 tristate
1506 help
1507 Common parts of the Twofish cipher algorithm shared by the
1508 generic c and the assembler implementations.
1509
1510 config CRYPTO_TWOFISH_586
1511 tristate "Twofish cipher algorithms (i586)"
1512 depends on (X86 || UML_X86) && !64BIT
1513 select CRYPTO_ALGAPI
1514 select CRYPTO_TWOFISH_COMMON
1515 help
1516 Twofish cipher algorithm.
1517
1518 Twofish was submitted as an AES (Advanced Encryption Standard)
1519 candidate cipher by researchers at CounterPane Systems. It is a
1520 16 round block cipher supporting key sizes of 128, 192, and 256
1521 bits.
1522
1523 See also:
1524 <http://www.schneier.com/twofish.html>
1525
1526 config CRYPTO_TWOFISH_X86_64
1527 tristate "Twofish cipher algorithm (x86_64)"
1528 depends on (X86 || UML_X86) && 64BIT
1529 select CRYPTO_ALGAPI
1530 select CRYPTO_TWOFISH_COMMON
1531 help
1532 Twofish cipher algorithm (x86_64).
1533
1534 Twofish was submitted as an AES (Advanced Encryption Standard)
1535 candidate cipher by researchers at CounterPane Systems. It is a
1536 16 round block cipher supporting key sizes of 128, 192, and 256
1537 bits.
1538
1539 See also:
1540 <http://www.schneier.com/twofish.html>
1541
1542 config CRYPTO_TWOFISH_X86_64_3WAY
1543 tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1544 depends on X86 && 64BIT
1545 select CRYPTO_ALGAPI
1546 select CRYPTO_TWOFISH_COMMON
1547 select CRYPTO_TWOFISH_X86_64
1548 select CRYPTO_GLUE_HELPER_X86
1549 select CRYPTO_LRW
1550 select CRYPTO_XTS
1551 help
1552 Twofish cipher algorithm (x86_64, 3-way parallel).
1553
1554 Twofish was submitted as an AES (Advanced Encryption Standard)
1555 candidate cipher by researchers at CounterPane Systems. It is a
1556 16 round block cipher supporting key sizes of 128, 192, and 256
1557 bits.
1558
1559 This module provides Twofish cipher algorithm that processes three
1560 blocks parallel, utilizing resources of out-of-order CPUs better.
1561
1562 See also:
1563 <http://www.schneier.com/twofish.html>
1564
1565 config CRYPTO_TWOFISH_AVX_X86_64
1566 tristate "Twofish cipher algorithm (x86_64/AVX)"
1567 depends on X86 && 64BIT
1568 select CRYPTO_ALGAPI
1569 select CRYPTO_CRYPTD
1570 select CRYPTO_ABLK_HELPER
1571 select CRYPTO_GLUE_HELPER_X86
1572 select CRYPTO_TWOFISH_COMMON
1573 select CRYPTO_TWOFISH_X86_64
1574 select CRYPTO_TWOFISH_X86_64_3WAY
1575 select CRYPTO_LRW
1576 select CRYPTO_XTS
1577 help
1578 Twofish cipher algorithm (x86_64/AVX).
1579
1580 Twofish was submitted as an AES (Advanced Encryption Standard)
1581 candidate cipher by researchers at CounterPane Systems. It is a
1582 16 round block cipher supporting key sizes of 128, 192, and 256
1583 bits.
1584
1585 This module provides the Twofish cipher algorithm that processes
1586 eight blocks parallel using the AVX Instruction Set.
1587
1588 See also:
1589 <http://www.schneier.com/twofish.html>
1590
1591 comment "Compression"
1592
1593 config CRYPTO_DEFLATE
1594 tristate "Deflate compression algorithm"
1595 select CRYPTO_ALGAPI
1596 select CRYPTO_ACOMP2
1597 select ZLIB_INFLATE
1598 select ZLIB_DEFLATE
1599 help
1600 This is the Deflate algorithm (RFC1951), specified for use in
1601 IPSec with the IPCOMP protocol (RFC3173, RFC2394).
1602
1603 You will most probably want this if using IPSec.
1604
1605 config CRYPTO_LZO
1606 tristate "LZO compression algorithm"
1607 select CRYPTO_ALGAPI
1608 select CRYPTO_ACOMP2
1609 select LZO_COMPRESS
1610 select LZO_DECOMPRESS
1611 help
1612 This is the LZO algorithm.
1613
1614 config CRYPTO_842
1615 tristate "842 compression algorithm"
1616 select CRYPTO_ALGAPI
1617 select CRYPTO_ACOMP2
1618 select 842_COMPRESS
1619 select 842_DECOMPRESS
1620 help
1621 This is the 842 algorithm.
1622
1623 config CRYPTO_LZ4
1624 tristate "LZ4 compression algorithm"
1625 select CRYPTO_ALGAPI
1626 select CRYPTO_ACOMP2
1627 select LZ4_COMPRESS
1628 select LZ4_DECOMPRESS
1629 help
1630 This is the LZ4 algorithm.
1631
1632 config CRYPTO_LZ4HC
1633 tristate "LZ4HC compression algorithm"
1634 select CRYPTO_ALGAPI
1635 select CRYPTO_ACOMP2
1636 select LZ4HC_COMPRESS
1637 select LZ4_DECOMPRESS
1638 help
1639 This is the LZ4 high compression mode algorithm.
1640
1641 comment "Random Number Generation"
1642
1643 config CRYPTO_ANSI_CPRNG
1644 tristate "Pseudo Random Number Generation for Cryptographic modules"
1645 select CRYPTO_AES
1646 select CRYPTO_RNG
1647 help
1648 This option enables the generic pseudo random number generator
1649 for cryptographic modules. Uses the Algorithm specified in
1650 ANSI X9.31 A.2.4. Note that this option must be enabled if
1651 CRYPTO_FIPS is selected
1652
1653 menuconfig CRYPTO_DRBG_MENU
1654 tristate "NIST SP800-90A DRBG"
1655 help
1656 NIST SP800-90A compliant DRBG. In the following submenu, one or
1657 more of the DRBG types must be selected.
1658
1659 if CRYPTO_DRBG_MENU
1660
1661 config CRYPTO_DRBG_HMAC
1662 bool
1663 default y
1664 select CRYPTO_HMAC
1665 select CRYPTO_SHA256
1666
1667 config CRYPTO_DRBG_HASH
1668 bool "Enable Hash DRBG"
1669 select CRYPTO_SHA256
1670 help
1671 Enable the Hash DRBG variant as defined in NIST SP800-90A.
1672
1673 config CRYPTO_DRBG_CTR
1674 bool "Enable CTR DRBG"
1675 select CRYPTO_AES
1676 depends on CRYPTO_CTR
1677 help
1678 Enable the CTR DRBG variant as defined in NIST SP800-90A.
1679
1680 config CRYPTO_DRBG
1681 tristate
1682 default CRYPTO_DRBG_MENU
1683 select CRYPTO_RNG
1684 select CRYPTO_JITTERENTROPY
1685
1686 endif # if CRYPTO_DRBG_MENU
1687
1688 config CRYPTO_JITTERENTROPY
1689 tristate "Jitterentropy Non-Deterministic Random Number Generator"
1690 select CRYPTO_RNG
1691 help
1692 The Jitterentropy RNG is a noise that is intended
1693 to provide seed to another RNG. The RNG does not
1694 perform any cryptographic whitening of the generated
1695 random numbers. This Jitterentropy RNG registers with
1696 the kernel crypto API and can be used by any caller.
1697
1698 config CRYPTO_USER_API
1699 tristate
1700
1701 config CRYPTO_USER_API_HASH
1702 tristate "User-space interface for hash algorithms"
1703 depends on NET
1704 select CRYPTO_HASH
1705 select CRYPTO_USER_API
1706 help
1707 This option enables the user-spaces interface for hash
1708 algorithms.
1709
1710 config CRYPTO_USER_API_SKCIPHER
1711 tristate "User-space interface for symmetric key cipher algorithms"
1712 depends on NET
1713 select CRYPTO_BLKCIPHER
1714 select CRYPTO_USER_API
1715 help
1716 This option enables the user-spaces interface for symmetric
1717 key cipher algorithms.
1718
1719 config CRYPTO_USER_API_RNG
1720 tristate "User-space interface for random number generator algorithms"
1721 depends on NET
1722 select CRYPTO_RNG
1723 select CRYPTO_USER_API
1724 help
1725 This option enables the user-spaces interface for random
1726 number generator algorithms.
1727
1728 config CRYPTO_USER_API_AEAD
1729 tristate "User-space interface for AEAD cipher algorithms"
1730 depends on NET
1731 select CRYPTO_AEAD
1732 select CRYPTO_BLKCIPHER
1733 select CRYPTO_NULL
1734 select CRYPTO_USER_API
1735 help
1736 This option enables the user-spaces interface for AEAD
1737 cipher algorithms.
1738
1739 config CRYPTO_HASH_INFO
1740 bool
1741
1742 source "drivers/crypto/Kconfig"
1743 source crypto/asymmetric_keys/Kconfig
1744 source certs/Kconfig
1745
1746 endif # if CRYPTO