]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/bn/asm/rsaz-4k-avx512.pl
fb5bf10198b970d699352296e5edfa01a68d1142
[thirdparty/openssl.git] / crypto / bn / asm / rsaz-4k-avx512.pl
1 # Copyright 2021 The OpenSSL Project Authors. All Rights Reserved.
2 # Copyright (c) 2021, Intel Corporation. All Rights Reserved.
3 #
4 # Licensed under the Apache License 2.0 (the "License"). You may not use
5 # this file except in compliance with the License. You can obtain a copy
6 # in the file LICENSE in the source distribution or at
7 # https://www.openssl.org/source/license.html
8 #
9 #
10 # Originally written by Sergey Kirillov and Andrey Matyukov
11 # Intel Corporation
12 #
13 # March 2021
14 #
15 # Initial release.
16 #
17 # Implementation utilizes 256-bit (ymm) registers to avoid frequency scaling issues.
18 #
19 # IceLake-Client @ 1.3GHz
20 # |---------+-----------------------+---------------+-------------|
21 # | | OpenSSL 3.0.0-alpha15 | this | Unit |
22 # |---------+-----------------------+---------------+-------------|
23 # | rsa4096 | 14 301 4300 | 5 813 953 | cycles/sign |
24 # | | 90.9 | 223.6 / +146% | sign/s |
25 # |---------+-----------------------+---------------+-------------|
26 #
27
28 # $output is the last argument if it looks like a file (it has an extension)
29 # $flavour is the first argument if it doesn't look like a file
30 $output = $#ARGV >= 0 && $ARGV[$#ARGV] =~ m|\.\w+$| ? pop : undef;
31 $flavour = $#ARGV >= 0 && $ARGV[0] !~ m|\.| ? shift : undef;
32
33 $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
34 $avx512ifma=0;
35
36 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
37 ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
38 ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
39 die "can't locate x86_64-xlate.pl";
40
41 if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1`
42 =~ /GNU assembler version ([2-9]\.[0-9]+)/) {
43 $avx512ifma = ($1>=2.26);
44 }
45
46 if (!$avx512 && $win64 && ($flavour =~ /nasm/ || $ENV{ASM} =~ /nasm/) &&
47 `nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)(?:\.([0-9]+))?/) {
48 $avx512ifma = ($1==2.11 && $2>=8) + ($1>=2.12);
49 }
50
51 if (!$avx512 && `$ENV{CC} -v 2>&1` =~ /((?:clang|LLVM) version|.*based on LLVM) ([0-9]+\.[0-9]+)/) {
52 $avx512ifma = ($2>=7.0);
53 }
54
55 open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\""
56 or die "can't call $xlate: $!";
57 *STDOUT=*OUT;
58
59 if ($avx512ifma>0) {{{
60 @_6_args_universal_ABI = ("%rdi","%rsi","%rdx","%rcx","%r8","%r9");
61
62 ###############################################################################
63 # Almost Montgomery Multiplication (AMM) for 40-digit number in radix 2^52.
64 #
65 # AMM is defined as presented in the paper [1].
66 #
67 # The input and output are presented in 2^52 radix domain, i.e.
68 # |res|, |a|, |b|, |m| are arrays of 40 64-bit qwords with 12 high bits zeroed.
69 # |k0| is a Montgomery coefficient, which is here k0 = -1/m mod 2^64
70 #
71 # NB: the AMM implementation does not perform "conditional" subtraction step
72 # specified in the original algorithm as according to the Lemma 1 from the paper
73 # [2], the result will be always < 2*m and can be used as a direct input to
74 # the next AMM iteration. This post-condition is true, provided the correct
75 # parameter |s| (notion of the Lemma 1 from [2]) is choosen, i.e. s >= n + 2 * k,
76 # which matches our case: 2080 > 2048 + 2 * 1.
77 #
78 # [1] Gueron, S. Efficient software implementations of modular exponentiation.
79 # DOI: 10.1007/s13389-012-0031-5
80 # [2] Gueron, S. Enhanced Montgomery Multiplication.
81 # DOI: 10.1007/3-540-36400-5_5
82 #
83 # void ossl_rsaz_amm52x40_x1_ifma256(BN_ULONG *res,
84 # const BN_ULONG *a,
85 # const BN_ULONG *b,
86 # const BN_ULONG *m,
87 # BN_ULONG k0);
88 ###############################################################################
89 {
90 # input parameters ("%rdi","%rsi","%rdx","%rcx","%r8")
91 my ($res,$a,$b,$m,$k0) = @_6_args_universal_ABI;
92
93 my $mask52 = "%rax";
94 my $acc0_0 = "%r9";
95 my $acc0_0_low = "%r9d";
96 my $acc0_1 = "%r15";
97 my $acc0_1_low = "%r15d";
98 my $b_ptr = "%r11";
99
100 my $iter = "%ebx";
101
102 my $zero = "%ymm0";
103 my $Bi = "%ymm1";
104 my $Yi = "%ymm2";
105 my ($R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0,$R2_0h,$R3_0,$R3_0h,$R4_0,$R4_0h) = map("%ymm$_",(3..12));
106 my ($R0_1,$R0_1h,$R1_1,$R1_1h,$R2_1,$R2_1h,$R3_1,$R3_1h,$R4_1,$R4_1h) = map("%ymm$_",(13..22));
107
108 # Registers mapping for normalization
109 my ($T0,$T0h,$T1,$T1h,$T2,$T2h,$T3,$T3h,$T4,$T4h) = ("$zero", "$Bi", "$Yi", map("%ymm$_", (23..29)));
110
111 sub amm52x40_x1() {
112 # _data_offset - offset in the |a| or |m| arrays pointing to the beginning
113 # of data for corresponding AMM operation;
114 # _b_offset - offset in the |b| array pointing to the next qword digit;
115 my ($_data_offset,$_b_offset,$_acc,$_R0,$_R0h,$_R1,$_R1h,$_R2,$_R2h,$_R3,$_R3h,$_R4,$_R4h,$_k0) = @_;
116 my $_R0_xmm = $_R0;
117 $_R0_xmm =~ s/%y/%x/;
118 $code.=<<___;
119 movq $_b_offset($b_ptr), %r13 # b[i]
120
121 vpbroadcastq %r13, $Bi # broadcast b[i]
122 movq $_data_offset($a), %rdx
123 mulx %r13, %r13, %r12 # a[0]*b[i] = (t0,t2)
124 addq %r13, $_acc # acc += t0
125 movq %r12, %r10
126 adcq \$0, %r10 # t2 += CF
127
128 movq $_k0, %r13
129 imulq $_acc, %r13 # acc * k0
130 andq $mask52, %r13 # yi = (acc * k0) & mask52
131
132 vpbroadcastq %r13, $Yi # broadcast y[i]
133 movq $_data_offset($m), %rdx
134 mulx %r13, %r13, %r12 # yi * m[0] = (t0,t1)
135 addq %r13, $_acc # acc += t0
136 adcq %r12, %r10 # t2 += (t1 + CF)
137
138 shrq \$52, $_acc
139 salq \$12, %r10
140 or %r10, $_acc # acc = ((acc >> 52) | (t2 << 12))
141
142 vpmadd52luq `$_data_offset+64*0`($a), $Bi, $_R0
143 vpmadd52luq `$_data_offset+64*0+32`($a), $Bi, $_R0h
144 vpmadd52luq `$_data_offset+64*1`($a), $Bi, $_R1
145 vpmadd52luq `$_data_offset+64*1+32`($a), $Bi, $_R1h
146 vpmadd52luq `$_data_offset+64*2`($a), $Bi, $_R2
147 vpmadd52luq `$_data_offset+64*2+32`($a), $Bi, $_R2h
148 vpmadd52luq `$_data_offset+64*3`($a), $Bi, $_R3
149 vpmadd52luq `$_data_offset+64*3+32`($a), $Bi, $_R3h
150 vpmadd52luq `$_data_offset+64*4`($a), $Bi, $_R4
151 vpmadd52luq `$_data_offset+64*4+32`($a), $Bi, $_R4h
152
153 vpmadd52luq `$_data_offset+64*0`($m), $Yi, $_R0
154 vpmadd52luq `$_data_offset+64*0+32`($m), $Yi, $_R0h
155 vpmadd52luq `$_data_offset+64*1`($m), $Yi, $_R1
156 vpmadd52luq `$_data_offset+64*1+32`($m), $Yi, $_R1h
157 vpmadd52luq `$_data_offset+64*2`($m), $Yi, $_R2
158 vpmadd52luq `$_data_offset+64*2+32`($m), $Yi, $_R2h
159 vpmadd52luq `$_data_offset+64*3`($m), $Yi, $_R3
160 vpmadd52luq `$_data_offset+64*3+32`($m), $Yi, $_R3h
161 vpmadd52luq `$_data_offset+64*4`($m), $Yi, $_R4
162 vpmadd52luq `$_data_offset+64*4+32`($m), $Yi, $_R4h
163
164 # Shift accumulators right by 1 qword, zero extending the highest one
165 valignq \$1, $_R0, $_R0h, $_R0
166 valignq \$1, $_R0h, $_R1, $_R0h
167 valignq \$1, $_R1, $_R1h, $_R1
168 valignq \$1, $_R1h, $_R2, $_R1h
169 valignq \$1, $_R2, $_R2h, $_R2
170 valignq \$1, $_R2h, $_R3, $_R2h
171 valignq \$1, $_R3, $_R3h, $_R3
172 valignq \$1, $_R3h, $_R4, $_R3h
173 valignq \$1, $_R4, $_R4h, $_R4
174 valignq \$1, $_R4h, $zero, $_R4h
175
176 vmovq $_R0_xmm, %r13
177 addq %r13, $_acc # acc += R0[0]
178
179 vpmadd52huq `$_data_offset+64*0`($a), $Bi, $_R0
180 vpmadd52huq `$_data_offset+64*0+32`($a), $Bi, $_R0h
181 vpmadd52huq `$_data_offset+64*1`($a), $Bi, $_R1
182 vpmadd52huq `$_data_offset+64*1+32`($a), $Bi, $_R1h
183 vpmadd52huq `$_data_offset+64*2`($a), $Bi, $_R2
184 vpmadd52huq `$_data_offset+64*2+32`($a), $Bi, $_R2h
185 vpmadd52huq `$_data_offset+64*3`($a), $Bi, $_R3
186 vpmadd52huq `$_data_offset+64*3+32`($a), $Bi, $_R3h
187 vpmadd52huq `$_data_offset+64*4`($a), $Bi, $_R4
188 vpmadd52huq `$_data_offset+64*4+32`($a), $Bi, $_R4h
189
190 vpmadd52huq `$_data_offset+64*0`($m), $Yi, $_R0
191 vpmadd52huq `$_data_offset+64*0+32`($m), $Yi, $_R0h
192 vpmadd52huq `$_data_offset+64*1`($m), $Yi, $_R1
193 vpmadd52huq `$_data_offset+64*1+32`($m), $Yi, $_R1h
194 vpmadd52huq `$_data_offset+64*2`($m), $Yi, $_R2
195 vpmadd52huq `$_data_offset+64*2+32`($m), $Yi, $_R2h
196 vpmadd52huq `$_data_offset+64*3`($m), $Yi, $_R3
197 vpmadd52huq `$_data_offset+64*3+32`($m), $Yi, $_R3h
198 vpmadd52huq `$_data_offset+64*4`($m), $Yi, $_R4
199 vpmadd52huq `$_data_offset+64*4+32`($m), $Yi, $_R4h
200 ___
201 }
202
203 # Normalization routine: handles carry bits and gets bignum qwords to normalized
204 # 2^52 representation.
205 #
206 # Uses %r8-14,%e[abcd]x
207 sub amm52x40_x1_norm {
208 my ($_acc,$_R0,$_R0h,$_R1,$_R1h,$_R2,$_R2h,$_R3,$_R3h,$_R4,$_R4h) = @_;
209 $code.=<<___;
210 # Put accumulator to low qword in R0
211 vpbroadcastq $_acc, $T0
212 vpblendd \$3, $T0, $_R0, $_R0
213
214 # Extract "carries" (12 high bits) from each QW of the bignum
215 # Save them to LSB of QWs in T0..Tn
216 vpsrlq \$52, $_R0, $T0
217 vpsrlq \$52, $_R0h, $T0h
218 vpsrlq \$52, $_R1, $T1
219 vpsrlq \$52, $_R1h, $T1h
220 vpsrlq \$52, $_R2, $T2
221 vpsrlq \$52, $_R2h, $T2h
222 vpsrlq \$52, $_R3, $T3
223 vpsrlq \$52, $_R3h, $T3h
224 vpsrlq \$52, $_R4, $T4
225 vpsrlq \$52, $_R4h, $T4h
226
227 # "Shift left" T0..Tn by 1 QW
228 valignq \$3, $T4, $T4h, $T4h
229 valignq \$3, $T3h, $T4, $T4
230 valignq \$3, $T3, $T3h, $T3h
231 valignq \$3, $T2h, $T3, $T3
232 valignq \$3, $T2, $T2h, $T2h
233 valignq \$3, $T1h, $T2, $T2
234 valignq \$3, $T1, $T1h, $T1h
235 valignq \$3, $T0h, $T1, $T1
236 valignq \$3, $T0, $T0h, $T0h
237 valignq \$3, .Lzeros(%rip), $T0, $T0
238
239 # Drop "carries" from R0..Rn QWs
240 vpandq .Lmask52x4(%rip), $_R0, $_R0
241 vpandq .Lmask52x4(%rip), $_R0h, $_R0h
242 vpandq .Lmask52x4(%rip), $_R1, $_R1
243 vpandq .Lmask52x4(%rip), $_R1h, $_R1h
244 vpandq .Lmask52x4(%rip), $_R2, $_R2
245 vpandq .Lmask52x4(%rip), $_R2h, $_R2h
246 vpandq .Lmask52x4(%rip), $_R3, $_R3
247 vpandq .Lmask52x4(%rip), $_R3h, $_R3h
248 vpandq .Lmask52x4(%rip), $_R4, $_R4
249 vpandq .Lmask52x4(%rip), $_R4h, $_R4h
250
251 # Sum R0..Rn with corresponding adjusted carries
252 vpaddq $T0, $_R0, $_R0
253 vpaddq $T0h, $_R0h, $_R0h
254 vpaddq $T1, $_R1, $_R1
255 vpaddq $T1h, $_R1h, $_R1h
256 vpaddq $T2, $_R2, $_R2
257 vpaddq $T2h, $_R2h, $_R2h
258 vpaddq $T3, $_R3, $_R3
259 vpaddq $T3h, $_R3h, $_R3h
260 vpaddq $T4, $_R4, $_R4
261 vpaddq $T4h, $_R4h, $_R4h
262
263 # Now handle carry bits from this addition
264 # Get mask of QWs whose 52-bit parts overflow
265 vpcmpuq \$6,.Lmask52x4(%rip),${_R0},%k1 # OP=nle (i.e. gt)
266 vpcmpuq \$6,.Lmask52x4(%rip),${_R0h},%k2
267 kmovb %k1,%r14d
268 kmovb %k2,%r13d
269 shl \$4,%r13b
270 or %r13b,%r14b
271
272 vpcmpuq \$6,.Lmask52x4(%rip),${_R1},%k1
273 vpcmpuq \$6,.Lmask52x4(%rip),${_R1h},%k2
274 kmovb %k1,%r13d
275 kmovb %k2,%r12d
276 shl \$4,%r12b
277 or %r12b,%r13b
278
279 vpcmpuq \$6,.Lmask52x4(%rip),${_R2},%k1
280 vpcmpuq \$6,.Lmask52x4(%rip),${_R2h},%k2
281 kmovb %k1,%r12d
282 kmovb %k2,%r11d
283 shl \$4,%r11b
284 or %r11b,%r12b
285
286 vpcmpuq \$6,.Lmask52x4(%rip),${_R3},%k1
287 vpcmpuq \$6,.Lmask52x4(%rip),${_R3h},%k2
288 kmovb %k1,%r11d
289 kmovb %k2,%r10d
290 shl \$4,%r10b
291 or %r10b,%r11b
292
293 vpcmpuq \$6,.Lmask52x4(%rip),${_R4},%k1
294 vpcmpuq \$6,.Lmask52x4(%rip),${_R4h},%k2
295 kmovb %k1,%r10d
296 kmovb %k2,%r9d
297 shl \$4,%r9b
298 or %r9b,%r10b
299
300 addb %r14b,%r14b
301 adcb %r13b,%r13b
302 adcb %r12b,%r12b
303 adcb %r11b,%r11b
304 adcb %r10b,%r10b
305
306 # Get mask of QWs whose 52-bit parts saturated
307 vpcmpuq \$0,.Lmask52x4(%rip),${_R0},%k1 # OP=eq
308 vpcmpuq \$0,.Lmask52x4(%rip),${_R0h},%k2
309 kmovb %k1,%r9d
310 kmovb %k2,%r8d
311 shl \$4,%r8b
312 or %r8b,%r9b
313
314 vpcmpuq \$0,.Lmask52x4(%rip),${_R1},%k1
315 vpcmpuq \$0,.Lmask52x4(%rip),${_R1h},%k2
316 kmovb %k1,%r8d
317 kmovb %k2,%edx
318 shl \$4,%dl
319 or %dl,%r8b
320
321 vpcmpuq \$0,.Lmask52x4(%rip),${_R2},%k1
322 vpcmpuq \$0,.Lmask52x4(%rip),${_R2h},%k2
323 kmovb %k1,%edx
324 kmovb %k2,%ecx
325 shl \$4,%cl
326 or %cl,%dl
327
328 vpcmpuq \$0,.Lmask52x4(%rip),${_R3},%k1
329 vpcmpuq \$0,.Lmask52x4(%rip),${_R3h},%k2
330 kmovb %k1,%ecx
331 kmovb %k2,%ebx
332 shl \$4,%bl
333 or %bl,%cl
334
335 vpcmpuq \$0,.Lmask52x4(%rip),${_R4},%k1
336 vpcmpuq \$0,.Lmask52x4(%rip),${_R4h},%k2
337 kmovb %k1,%ebx
338 kmovb %k2,%eax
339 shl \$4,%al
340 or %al,%bl
341
342 addb %r9b,%r14b
343 adcb %r8b,%r13b
344 adcb %dl,%r12b
345 adcb %cl,%r11b
346 adcb %bl,%r10b
347
348 xor %r9b,%r14b
349 xor %r8b,%r13b
350 xor %dl,%r12b
351 xor %cl,%r11b
352 xor %bl,%r10b
353
354 kmovb %r14d,%k1
355 shr \$4,%r14b
356 kmovb %r14d,%k2
357 kmovb %r13d,%k3
358 shr \$4,%r13b
359 kmovb %r13d,%k4
360 kmovb %r12d,%k5
361 shr \$4,%r12b
362 kmovb %r12d,%k6
363 kmovb %r11d,%k7
364
365 vpsubq .Lmask52x4(%rip), $_R0, ${_R0}{%k1}
366 vpsubq .Lmask52x4(%rip), $_R0h, ${_R0h}{%k2}
367 vpsubq .Lmask52x4(%rip), $_R1, ${_R1}{%k3}
368 vpsubq .Lmask52x4(%rip), $_R1h, ${_R1h}{%k4}
369 vpsubq .Lmask52x4(%rip), $_R2, ${_R2}{%k5}
370 vpsubq .Lmask52x4(%rip), $_R2h, ${_R2h}{%k6}
371 vpsubq .Lmask52x4(%rip), $_R3, ${_R3}{%k7}
372
373 vpandq .Lmask52x4(%rip), $_R0, $_R0
374 vpandq .Lmask52x4(%rip), $_R0h, $_R0h
375 vpandq .Lmask52x4(%rip), $_R1, $_R1
376 vpandq .Lmask52x4(%rip), $_R1h, $_R1h
377 vpandq .Lmask52x4(%rip), $_R2, $_R2
378 vpandq .Lmask52x4(%rip), $_R2h, $_R2h
379 vpandq .Lmask52x4(%rip), $_R3, $_R3
380
381 shr \$4,%r11b
382 kmovb %r11d,%k1
383 kmovb %r10d,%k2
384 shr \$4,%r10b
385 kmovb %r10d,%k3
386
387 vpsubq .Lmask52x4(%rip), $_R3h, ${_R3h}{%k1}
388 vpsubq .Lmask52x4(%rip), $_R4, ${_R4}{%k2}
389 vpsubq .Lmask52x4(%rip), $_R4h, ${_R4h}{%k3}
390
391 vpandq .Lmask52x4(%rip), $_R3h, $_R3h
392 vpandq .Lmask52x4(%rip), $_R4, $_R4
393 vpandq .Lmask52x4(%rip), $_R4h, $_R4h
394 ___
395 }
396
397 $code.=<<___;
398 .text
399
400 .globl ossl_rsaz_amm52x40_x1_ifma256
401 .type ossl_rsaz_amm52x40_x1_ifma256,\@function,5
402 .align 32
403 ossl_rsaz_amm52x40_x1_ifma256:
404 .cfi_startproc
405 endbranch
406 push %rbx
407 .cfi_push %rbx
408 push %rbp
409 .cfi_push %rbp
410 push %r12
411 .cfi_push %r12
412 push %r13
413 .cfi_push %r13
414 push %r14
415 .cfi_push %r14
416 push %r15
417 .cfi_push %r15
418 ___
419 $code.=<<___ if ($win64);
420 lea -168(%rsp),%rsp # 16*10 + (8 bytes to get correct 16-byte SIMD alignment)
421 vmovdqa64 %xmm6, `0*16`(%rsp) # save non-volatile registers
422 vmovdqa64 %xmm7, `1*16`(%rsp)
423 vmovdqa64 %xmm8, `2*16`(%rsp)
424 vmovdqa64 %xmm9, `3*16`(%rsp)
425 vmovdqa64 %xmm10,`4*16`(%rsp)
426 vmovdqa64 %xmm11,`5*16`(%rsp)
427 vmovdqa64 %xmm12,`6*16`(%rsp)
428 vmovdqa64 %xmm13,`7*16`(%rsp)
429 vmovdqa64 %xmm14,`8*16`(%rsp)
430 vmovdqa64 %xmm15,`9*16`(%rsp)
431 .Lossl_rsaz_amm52x40_x1_ifma256_body:
432 ___
433 $code.=<<___;
434 # Zeroing accumulators
435 vpxord $zero, $zero, $zero
436 vmovdqa64 $zero, $R0_0
437 vmovdqa64 $zero, $R0_0h
438 vmovdqa64 $zero, $R1_0
439 vmovdqa64 $zero, $R1_0h
440 vmovdqa64 $zero, $R2_0
441 vmovdqa64 $zero, $R2_0h
442 vmovdqa64 $zero, $R3_0
443 vmovdqa64 $zero, $R3_0h
444 vmovdqa64 $zero, $R4_0
445 vmovdqa64 $zero, $R4_0h
446
447 xorl $acc0_0_low, $acc0_0_low
448
449 movq $b, $b_ptr # backup address of b
450 movq \$0xfffffffffffff, $mask52 # 52-bit mask
451
452 # Loop over 40 digits unrolled by 4
453 mov \$10, $iter
454
455 .align 32
456 .Lloop10:
457 ___
458 foreach my $idx (0..3) {
459 &amm52x40_x1(0,8*$idx,$acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0,$R2_0h,$R3_0,$R3_0h,$R4_0,$R4_0h,$k0);
460 }
461 $code.=<<___;
462 lea `4*8`($b_ptr), $b_ptr
463 dec $iter
464 jne .Lloop10
465 ___
466 &amm52x40_x1_norm($acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0,$R2_0h,$R3_0,$R3_0h,$R4_0,$R4_0h);
467 $code.=<<___;
468
469 vmovdqu64 $R0_0, `0*32`($res)
470 vmovdqu64 $R0_0h, `1*32`($res)
471 vmovdqu64 $R1_0, `2*32`($res)
472 vmovdqu64 $R1_0h, `3*32`($res)
473 vmovdqu64 $R2_0, `4*32`($res)
474 vmovdqu64 $R2_0h, `5*32`($res)
475 vmovdqu64 $R3_0, `6*32`($res)
476 vmovdqu64 $R3_0h, `7*32`($res)
477 vmovdqu64 $R4_0, `8*32`($res)
478 vmovdqu64 $R4_0h, `9*32`($res)
479
480 vzeroupper
481 lea (%rsp),%rax
482 .cfi_def_cfa_register %rax
483 ___
484 $code.=<<___ if ($win64);
485 vmovdqa64 `0*16`(%rax),%xmm6
486 vmovdqa64 `1*16`(%rax),%xmm7
487 vmovdqa64 `2*16`(%rax),%xmm8
488 vmovdqa64 `3*16`(%rax),%xmm9
489 vmovdqa64 `4*16`(%rax),%xmm10
490 vmovdqa64 `5*16`(%rax),%xmm11
491 vmovdqa64 `6*16`(%rax),%xmm12
492 vmovdqa64 `7*16`(%rax),%xmm13
493 vmovdqa64 `8*16`(%rax),%xmm14
494 vmovdqa64 `9*16`(%rax),%xmm15
495 lea 168(%rsp),%rax
496 ___
497 $code.=<<___;
498 mov 0(%rax),%r15
499 .cfi_restore %r15
500 mov 8(%rax),%r14
501 .cfi_restore %r14
502 mov 16(%rax),%r13
503 .cfi_restore %r13
504 mov 24(%rax),%r12
505 .cfi_restore %r12
506 mov 32(%rax),%rbp
507 .cfi_restore %rbp
508 mov 40(%rax),%rbx
509 .cfi_restore %rbx
510 lea 48(%rax),%rsp # restore rsp
511 .cfi_def_cfa %rsp,8
512 .Lossl_rsaz_amm52x40_x1_ifma256_epilogue:
513
514 ret
515 .cfi_endproc
516 .size ossl_rsaz_amm52x40_x1_ifma256, .-ossl_rsaz_amm52x40_x1_ifma256
517 ___
518
519 $code.=<<___;
520 .data
521 .align 32
522 .Lmask52x4:
523 .quad 0xfffffffffffff
524 .quad 0xfffffffffffff
525 .quad 0xfffffffffffff
526 .quad 0xfffffffffffff
527 ___
528
529 ###############################################################################
530 # Dual Almost Montgomery Multiplication for 40-digit number in radix 2^52
531 #
532 # See description of ossl_rsaz_amm52x40_x1_ifma256() above for details about Almost
533 # Montgomery Multiplication algorithm and function input parameters description.
534 #
535 # This function does two AMMs for two independent inputs, hence dual.
536 #
537 # void ossl_rsaz_amm52x40_x2_ifma256(BN_ULONG out[2][40],
538 # const BN_ULONG a[2][40],
539 # const BN_ULONG b[2][40],
540 # const BN_ULONG m[2][40],
541 # const BN_ULONG k0[2]);
542 ###############################################################################
543
544 $code.=<<___;
545 .text
546
547 .globl ossl_rsaz_amm52x40_x2_ifma256
548 .type ossl_rsaz_amm52x40_x2_ifma256,\@function,5
549 .align 32
550 ossl_rsaz_amm52x40_x2_ifma256:
551 .cfi_startproc
552 endbranch
553 push %rbx
554 .cfi_push %rbx
555 push %rbp
556 .cfi_push %rbp
557 push %r12
558 .cfi_push %r12
559 push %r13
560 .cfi_push %r13
561 push %r14
562 .cfi_push %r14
563 push %r15
564 .cfi_push %r15
565 ___
566 $code.=<<___ if ($win64);
567 lea -168(%rsp),%rsp
568 vmovdqa64 %xmm6, `0*16`(%rsp) # save non-volatile registers
569 vmovdqa64 %xmm7, `1*16`(%rsp)
570 vmovdqa64 %xmm8, `2*16`(%rsp)
571 vmovdqa64 %xmm9, `3*16`(%rsp)
572 vmovdqa64 %xmm10,`4*16`(%rsp)
573 vmovdqa64 %xmm11,`5*16`(%rsp)
574 vmovdqa64 %xmm12,`6*16`(%rsp)
575 vmovdqa64 %xmm13,`7*16`(%rsp)
576 vmovdqa64 %xmm14,`8*16`(%rsp)
577 vmovdqa64 %xmm15,`9*16`(%rsp)
578 .Lossl_rsaz_amm52x40_x2_ifma256_body:
579 ___
580 $code.=<<___;
581 # Zeroing accumulators
582 vpxord $zero, $zero, $zero
583 vmovdqa64 $zero, $R0_0
584 vmovdqa64 $zero, $R0_0h
585 vmovdqa64 $zero, $R1_0
586 vmovdqa64 $zero, $R1_0h
587 vmovdqa64 $zero, $R2_0
588 vmovdqa64 $zero, $R2_0h
589 vmovdqa64 $zero, $R3_0
590 vmovdqa64 $zero, $R3_0h
591 vmovdqa64 $zero, $R4_0
592 vmovdqa64 $zero, $R4_0h
593
594 vmovdqa64 $zero, $R0_1
595 vmovdqa64 $zero, $R0_1h
596 vmovdqa64 $zero, $R1_1
597 vmovdqa64 $zero, $R1_1h
598 vmovdqa64 $zero, $R2_1
599 vmovdqa64 $zero, $R2_1h
600 vmovdqa64 $zero, $R3_1
601 vmovdqa64 $zero, $R3_1h
602 vmovdqa64 $zero, $R4_1
603 vmovdqa64 $zero, $R4_1h
604
605
606 xorl $acc0_0_low, $acc0_0_low
607 xorl $acc0_1_low, $acc0_1_low
608
609 movq $b, $b_ptr # backup address of b
610 movq \$0xfffffffffffff, $mask52 # 52-bit mask
611
612 mov \$40, $iter
613
614 .align 32
615 .Lloop40:
616 ___
617 &amm52x40_x1( 0, 0,$acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0,$R2_0h,$R3_0,$R3_0h,$R4_0,$R4_0h,"($k0)");
618 # 40*8 = offset of the next dimension in two-dimension array
619 &amm52x40_x1(40*8,40*8,$acc0_1,$R0_1,$R0_1h,$R1_1,$R1_1h,$R2_1,$R2_1h,$R3_1,$R3_1h,$R4_1,$R4_1h,"8($k0)");
620 $code.=<<___;
621 lea 8($b_ptr), $b_ptr
622 dec $iter
623 jne .Lloop40
624 ___
625 &amm52x40_x1_norm($acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0,$R2_0h,$R3_0,$R3_0h,$R4_0,$R4_0h);
626 &amm52x40_x1_norm($acc0_1,$R0_1,$R0_1h,$R1_1,$R1_1h,$R2_1,$R2_1h,$R3_1,$R3_1h,$R4_1,$R4_1h);
627 $code.=<<___;
628
629 vmovdqu64 $R0_0, `0*32`($res)
630 vmovdqu64 $R0_0h, `1*32`($res)
631 vmovdqu64 $R1_0, `2*32`($res)
632 vmovdqu64 $R1_0h, `3*32`($res)
633 vmovdqu64 $R2_0, `4*32`($res)
634 vmovdqu64 $R2_0h, `5*32`($res)
635 vmovdqu64 $R3_0, `6*32`($res)
636 vmovdqu64 $R3_0h, `7*32`($res)
637 vmovdqu64 $R4_0, `8*32`($res)
638 vmovdqu64 $R4_0h, `9*32`($res)
639
640 vmovdqu64 $R0_1, `10*32`($res)
641 vmovdqu64 $R0_1h, `11*32`($res)
642 vmovdqu64 $R1_1, `12*32`($res)
643 vmovdqu64 $R1_1h, `13*32`($res)
644 vmovdqu64 $R2_1, `14*32`($res)
645 vmovdqu64 $R2_1h, `15*32`($res)
646 vmovdqu64 $R3_1, `16*32`($res)
647 vmovdqu64 $R3_1h, `17*32`($res)
648 vmovdqu64 $R4_1, `18*32`($res)
649 vmovdqu64 $R4_1h, `19*32`($res)
650
651 vzeroupper
652 lea (%rsp),%rax
653 .cfi_def_cfa_register %rax
654 ___
655 $code.=<<___ if ($win64);
656 vmovdqa64 `0*16`(%rax),%xmm6
657 vmovdqa64 `1*16`(%rax),%xmm7
658 vmovdqa64 `2*16`(%rax),%xmm8
659 vmovdqa64 `3*16`(%rax),%xmm9
660 vmovdqa64 `4*16`(%rax),%xmm10
661 vmovdqa64 `5*16`(%rax),%xmm11
662 vmovdqa64 `6*16`(%rax),%xmm12
663 vmovdqa64 `7*16`(%rax),%xmm13
664 vmovdqa64 `8*16`(%rax),%xmm14
665 vmovdqa64 `9*16`(%rax),%xmm15
666 lea 168(%rsp),%rax
667 ___
668 $code.=<<___;
669 mov 0(%rax),%r15
670 .cfi_restore %r15
671 mov 8(%rax),%r14
672 .cfi_restore %r14
673 mov 16(%rax),%r13
674 .cfi_restore %r13
675 mov 24(%rax),%r12
676 .cfi_restore %r12
677 mov 32(%rax),%rbp
678 .cfi_restore %rbp
679 mov 40(%rax),%rbx
680 .cfi_restore %rbx
681 lea 48(%rax),%rsp
682 .cfi_def_cfa %rsp,8
683 .Lossl_rsaz_amm52x40_x2_ifma256_epilogue:
684 ret
685 .cfi_endproc
686 .size ossl_rsaz_amm52x40_x2_ifma256, .-ossl_rsaz_amm52x40_x2_ifma256
687 ___
688 }
689
690 ###############################################################################
691 # Constant time extraction from the precomputed table of powers base^i, where
692 # i = 0..2^EXP_WIN_SIZE-1
693 #
694 # The input |red_table| contains precomputations for two independent base values.
695 # |red_table_idx1| and |red_table_idx2| are corresponding power indexes.
696 #
697 # Extracted value (output) is 2 40 digits numbers in 2^52 radix.
698 #
699 # void ossl_extract_multiplier_2x40_win5(BN_ULONG *red_Y,
700 # const BN_ULONG red_table[1 << EXP_WIN_SIZE][2][40],
701 # int red_table_idx1, int red_table_idx2);
702 #
703 # EXP_WIN_SIZE = 5
704 ###############################################################################
705 {
706 # input parameters
707 my ($out,$red_tbl,$red_tbl_idx1,$red_tbl_idx2)=$win64 ? ("%rcx","%rdx","%r8", "%r9") : # Win64 order
708 ("%rdi","%rsi","%rdx","%rcx"); # Unix order
709
710 my ($t0,$t1,$t2,$t3,$t4,$t5) = map("%ymm$_", (0..5));
711 my ($t6,$t7,$t8,$t9) = map("%ymm$_", (16..19));
712 my ($tmp,$cur_idx,$idx1,$idx2,$ones) = map("%ymm$_", (20..24));
713
714 my @t = ($t0,$t1,$t2,$t3,$t4,$t5,$t6,$t7,$t8,$t9);
715 my $t0xmm = $t0;
716 $t0xmm =~ s/%y/%x/;
717
718 sub get_table_value_consttime() {
719 my ($_idx,$_offset) = @_;
720 $code.=<<___;
721 vpxorq $cur_idx, $cur_idx, $cur_idx
722 .align 32
723 .Lloop_$_offset:
724 vpcmpq \$0, $cur_idx, $_idx, %k1 # mask of (idx == cur_idx)
725 ___
726 foreach (0..9) {
727 $code.=<<___;
728 vmovdqu64 `$_offset+${_}*32`($red_tbl), $tmp # load data from red_tbl
729 vpblendmq $tmp, $t[$_], ${t[$_]}{%k1} # extract data when mask is not zero
730 ___
731 }
732 $code.=<<___;
733 vpaddq $ones, $cur_idx, $cur_idx # increment cur_idx
734 addq \$`2*40*8`, $red_tbl
735 cmpq $red_tbl, %rax
736 jne .Lloop_$_offset
737 ___
738 }
739
740 $code.=<<___;
741 .text
742
743 .align 32
744 .globl ossl_extract_multiplier_2x40_win5
745 .type ossl_extract_multiplier_2x40_win5,\@abi-omnipotent
746 ossl_extract_multiplier_2x40_win5:
747 .cfi_startproc
748 endbranch
749 vmovdqa64 .Lones(%rip), $ones # broadcast ones
750 vpbroadcastq $red_tbl_idx1, $idx1
751 vpbroadcastq $red_tbl_idx2, $idx2
752 leaq `(1<<5)*2*40*8`($red_tbl), %rax # holds end of the tbl
753
754 # backup red_tbl address
755 movq $red_tbl, %r10
756
757 # zeroing t0..n, cur_idx
758 vpxor $t0xmm, $t0xmm, $t0xmm
759 ___
760 foreach (1..9) {
761 $code.="vmovdqa64 $t0, $t[$_] \n";
762 }
763
764 &get_table_value_consttime($idx1, 0);
765 foreach (0..9) {
766 $code.="vmovdqu64 $t[$_], `(0+$_)*32`($out) \n";
767 }
768 $code.="movq %r10, $red_tbl \n";
769 &get_table_value_consttime($idx2, 40*8);
770 foreach (0..9) {
771 $code.="vmovdqu64 $t[$_], `(10+$_)*32`($out) \n";
772 }
773 $code.=<<___;
774
775 ret
776 .cfi_endproc
777 .size ossl_extract_multiplier_2x40_win5, .-ossl_extract_multiplier_2x40_win5
778 ___
779 $code.=<<___;
780 .data
781 .align 32
782 .Lones:
783 .quad 1,1,1,1
784 .Lzeros:
785 .quad 0,0,0,0
786 ___
787 }
788
789 if ($win64) {
790 $rec="%rcx";
791 $frame="%rdx";
792 $context="%r8";
793 $disp="%r9";
794
795 $code.=<<___;
796 .extern __imp_RtlVirtualUnwind
797 .type rsaz_avx_handler,\@abi-omnipotent
798 .align 16
799 rsaz_avx_handler:
800 push %rsi
801 push %rdi
802 push %rbx
803 push %rbp
804 push %r12
805 push %r13
806 push %r14
807 push %r15
808 pushfq
809 sub \$64,%rsp
810
811 mov 120($context),%rax # pull context->Rax
812 mov 248($context),%rbx # pull context->Rip
813
814 mov 8($disp),%rsi # disp->ImageBase
815 mov 56($disp),%r11 # disp->HandlerData
816
817 mov 0(%r11),%r10d # HandlerData[0]
818 lea (%rsi,%r10),%r10 # prologue label
819 cmp %r10,%rbx # context->Rip<.Lprologue
820 jb .Lcommon_seh_tail
821
822 mov 4(%r11),%r10d # HandlerData[1]
823 lea (%rsi,%r10),%r10 # epilogue label
824 cmp %r10,%rbx # context->Rip>=.Lepilogue
825 jae .Lcommon_seh_tail
826
827 mov 152($context),%rax # pull context->Rsp
828
829 lea (%rax),%rsi # %xmm save area
830 lea 512($context),%rdi # & context.Xmm6
831 mov \$20,%ecx # 10*sizeof(%xmm0)/sizeof(%rax)
832 .long 0xa548f3fc # cld; rep movsq
833
834 lea `48+168`(%rax),%rax
835
836 mov -8(%rax),%rbx
837 mov -16(%rax),%rbp
838 mov -24(%rax),%r12
839 mov -32(%rax),%r13
840 mov -40(%rax),%r14
841 mov -48(%rax),%r15
842 mov %rbx,144($context) # restore context->Rbx
843 mov %rbp,160($context) # restore context->Rbp
844 mov %r12,216($context) # restore context->R12
845 mov %r13,224($context) # restore context->R13
846 mov %r14,232($context) # restore context->R14
847 mov %r15,240($context) # restore context->R14
848
849 .Lcommon_seh_tail:
850 mov 8(%rax),%rdi
851 mov 16(%rax),%rsi
852 mov %rax,152($context) # restore context->Rsp
853 mov %rsi,168($context) # restore context->Rsi
854 mov %rdi,176($context) # restore context->Rdi
855
856 mov 40($disp),%rdi # disp->ContextRecord
857 mov $context,%rsi # context
858 mov \$154,%ecx # sizeof(CONTEXT)
859 .long 0xa548f3fc # cld; rep movsq
860
861 mov $disp,%rsi
862 xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
863 mov 8(%rsi),%rdx # arg2, disp->ImageBase
864 mov 0(%rsi),%r8 # arg3, disp->ControlPc
865 mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
866 mov 40(%rsi),%r10 # disp->ContextRecord
867 lea 56(%rsi),%r11 # &disp->HandlerData
868 lea 24(%rsi),%r12 # &disp->EstablisherFrame
869 mov %r10,32(%rsp) # arg5
870 mov %r11,40(%rsp) # arg6
871 mov %r12,48(%rsp) # arg7
872 mov %rcx,56(%rsp) # arg8, (NULL)
873 call *__imp_RtlVirtualUnwind(%rip)
874
875 mov \$1,%eax # ExceptionContinueSearch
876 add \$64,%rsp
877 popfq
878 pop %r15
879 pop %r14
880 pop %r13
881 pop %r12
882 pop %rbp
883 pop %rbx
884 pop %rdi
885 pop %rsi
886 ret
887 .size rsaz_avx_handler,.-rsaz_avx_handler
888
889 .section .pdata
890 .align 4
891 .rva .LSEH_begin_ossl_rsaz_amm52x40_x1_ifma256
892 .rva .LSEH_end_ossl_rsaz_amm52x40_x1_ifma256
893 .rva .LSEH_info_ossl_rsaz_amm52x40_x1_ifma256
894
895 .rva .LSEH_begin_ossl_rsaz_amm52x40_x2_ifma256
896 .rva .LSEH_end_ossl_rsaz_amm52x40_x2_ifma256
897 .rva .LSEH_info_ossl_rsaz_amm52x40_x2_ifma256
898
899 .section .xdata
900 .align 8
901 .LSEH_info_ossl_rsaz_amm52x40_x1_ifma256:
902 .byte 9,0,0,0
903 .rva rsaz_avx_handler
904 .rva .Lossl_rsaz_amm52x40_x1_ifma256_body,.Lossl_rsaz_amm52x40_x1_ifma256_epilogue
905 .LSEH_info_ossl_rsaz_amm52x40_x2_ifma256:
906 .byte 9,0,0,0
907 .rva rsaz_avx_handler
908 .rva .Lossl_rsaz_amm52x40_x2_ifma256_body,.Lossl_rsaz_amm52x40_x2_ifma256_epilogue
909 ___
910 }
911 }}} else {{{ # fallback for old assembler
912 $code.=<<___;
913 .text
914
915 .globl ossl_rsaz_amm52x40_x1_ifma256
916 .globl ossl_rsaz_amm52x40_x2_ifma256
917 .globl ossl_extract_multiplier_2x40_win5
918 .type ossl_rsaz_amm52x40_x1_ifma256,\@abi-omnipotent
919 ossl_rsaz_amm52x40_x1_ifma256:
920 ossl_rsaz_amm52x40_x2_ifma256:
921 ossl_extract_multiplier_2x40_win5:
922 .byte 0x0f,0x0b # ud2
923 ret
924 .size ossl_rsaz_amm52x40_x1_ifma256, .-ossl_rsaz_amm52x40_x1_ifma256
925 ___
926 }}}
927
928 $code =~ s/\`([^\`]*)\`/eval $1/gem;
929 print $code;
930 close STDOUT or die "error closing STDOUT: $!";