]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/bn/bn_prime.c
026c119c1374f4de00120f4776f0e6165939c034
[thirdparty/openssl.git] / crypto / bn / bn_prime.c
1 /*
2 * Copyright 1995-2017 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the OpenSSL license (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #include <stdio.h>
11 #include <time.h>
12 #include "internal/cryptlib.h"
13 #include "bn_lcl.h"
14
15 /*
16 * The quick sieve algorithm approach to weeding out primes is Philip
17 * Zimmermann's, as implemented in PGP. I have had a read of his comments
18 * and implemented my own version.
19 */
20 #include "bn_prime.h"
21
22 static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1,
23 const BIGNUM *a1_odd, int k, BN_CTX *ctx,
24 BN_MONT_CTX *mont);
25 static int probable_prime(BIGNUM *rnd, int bits, prime_t *mods);
26 static int probable_prime_dh_safe(BIGNUM *rnd, int bits,
27 const BIGNUM *add, const BIGNUM *rem,
28 BN_CTX *ctx);
29
30 int BN_GENCB_call(BN_GENCB *cb, int a, int b)
31 {
32 /* No callback means continue */
33 if (!cb)
34 return 1;
35 switch (cb->ver) {
36 case 1:
37 /* Deprecated-style callbacks */
38 if (!cb->cb.cb_1)
39 return 1;
40 cb->cb.cb_1(a, b, cb->arg);
41 return 1;
42 case 2:
43 /* New-style callbacks */
44 return cb->cb.cb_2(a, b, cb);
45 default:
46 break;
47 }
48 /* Unrecognised callback type */
49 return 0;
50 }
51
52 int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe,
53 const BIGNUM *add, const BIGNUM *rem, BN_GENCB *cb)
54 {
55 BIGNUM *t;
56 int found = 0;
57 int i, j, c1 = 0;
58 BN_CTX *ctx = NULL;
59 prime_t *mods = NULL;
60 int checks = BN_prime_checks_for_size(bits);
61
62 if (bits < 2) {
63 /* There are no prime numbers this small. */
64 BNerr(BN_F_BN_GENERATE_PRIME_EX, BN_R_BITS_TOO_SMALL);
65 return 0;
66 } else if (bits == 2 && safe) {
67 /* The smallest safe prime (7) is three bits. */
68 BNerr(BN_F_BN_GENERATE_PRIME_EX, BN_R_BITS_TOO_SMALL);
69 return 0;
70 }
71
72 mods = OPENSSL_zalloc(sizeof(*mods) * NUMPRIMES);
73 if (mods == NULL)
74 goto err;
75
76 ctx = BN_CTX_new();
77 if (ctx == NULL)
78 goto err;
79 BN_CTX_start(ctx);
80 t = BN_CTX_get(ctx);
81 if (t == NULL)
82 goto err;
83 loop:
84 /* make a random number and set the top and bottom bits */
85 if (add == NULL) {
86 if (!probable_prime(ret, bits, mods))
87 goto err;
88 } else {
89 if (safe) {
90 if (!probable_prime_dh_safe(ret, bits, add, rem, ctx))
91 goto err;
92 } else {
93 if (!bn_probable_prime_dh(ret, bits, add, rem, ctx))
94 goto err;
95 }
96 }
97
98 if (!BN_GENCB_call(cb, 0, c1++))
99 /* aborted */
100 goto err;
101
102 if (!safe) {
103 i = BN_is_prime_fasttest_ex(ret, checks, ctx, 0, cb);
104 if (i == -1)
105 goto err;
106 if (i == 0)
107 goto loop;
108 } else {
109 /*
110 * for "safe prime" generation, check that (p-1)/2 is prime. Since a
111 * prime is odd, We just need to divide by 2
112 */
113 if (!BN_rshift1(t, ret))
114 goto err;
115
116 for (i = 0; i < checks; i++) {
117 j = BN_is_prime_fasttest_ex(ret, 1, ctx, 0, cb);
118 if (j == -1)
119 goto err;
120 if (j == 0)
121 goto loop;
122
123 j = BN_is_prime_fasttest_ex(t, 1, ctx, 0, cb);
124 if (j == -1)
125 goto err;
126 if (j == 0)
127 goto loop;
128
129 if (!BN_GENCB_call(cb, 2, c1 - 1))
130 goto err;
131 /* We have a safe prime test pass */
132 }
133 }
134 /* we have a prime :-) */
135 found = 1;
136 err:
137 OPENSSL_free(mods);
138 if (ctx != NULL)
139 BN_CTX_end(ctx);
140 BN_CTX_free(ctx);
141 bn_check_top(ret);
142 return found;
143 }
144
145 int BN_is_prime_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed,
146 BN_GENCB *cb)
147 {
148 return BN_is_prime_fasttest_ex(a, checks, ctx_passed, 0, cb);
149 }
150
151 int BN_is_prime_fasttest_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed,
152 int do_trial_division, BN_GENCB *cb)
153 {
154 int i, j, ret = -1;
155 int k;
156 BN_CTX *ctx = NULL;
157 BIGNUM *A1, *A1_odd, *check; /* taken from ctx */
158 BN_MONT_CTX *mont = NULL;
159
160 if (BN_cmp(a, BN_value_one()) <= 0)
161 return 0;
162
163 if (checks == BN_prime_checks)
164 checks = BN_prime_checks_for_size(BN_num_bits(a));
165
166 /* first look for small factors */
167 if (!BN_is_odd(a))
168 /* a is even => a is prime if and only if a == 2 */
169 return BN_is_word(a, 2);
170 if (do_trial_division) {
171 for (i = 1; i < NUMPRIMES; i++) {
172 BN_ULONG mod = BN_mod_word(a, primes[i]);
173 if (mod == (BN_ULONG)-1)
174 goto err;
175 if (mod == 0)
176 return BN_is_word(a, primes[i]);
177 }
178 if (!BN_GENCB_call(cb, 1, -1))
179 goto err;
180 }
181
182 if (ctx_passed != NULL)
183 ctx = ctx_passed;
184 else if ((ctx = BN_CTX_new()) == NULL)
185 goto err;
186 BN_CTX_start(ctx);
187
188 A1 = BN_CTX_get(ctx);
189 A1_odd = BN_CTX_get(ctx);
190 check = BN_CTX_get(ctx);
191 if (check == NULL)
192 goto err;
193
194 /* compute A1 := a - 1 */
195 if (!BN_copy(A1, a))
196 goto err;
197 if (!BN_sub_word(A1, 1))
198 goto err;
199 if (BN_is_zero(A1)) {
200 ret = 0;
201 goto err;
202 }
203
204 /* write A1 as A1_odd * 2^k */
205 k = 1;
206 while (!BN_is_bit_set(A1, k))
207 k++;
208 if (!BN_rshift(A1_odd, A1, k))
209 goto err;
210
211 /* Montgomery setup for computations mod a */
212 mont = BN_MONT_CTX_new();
213 if (mont == NULL)
214 goto err;
215 if (!BN_MONT_CTX_set(mont, a, ctx))
216 goto err;
217
218 for (i = 0; i < checks; i++) {
219 if (!BN_priv_rand_range(check, A1))
220 goto err;
221 if (!BN_add_word(check, 1))
222 goto err;
223 /* now 1 <= check < a */
224
225 j = witness(check, a, A1, A1_odd, k, ctx, mont);
226 if (j == -1)
227 goto err;
228 if (j) {
229 ret = 0;
230 goto err;
231 }
232 if (!BN_GENCB_call(cb, 1, i))
233 goto err;
234 }
235 ret = 1;
236 err:
237 if (ctx != NULL) {
238 BN_CTX_end(ctx);
239 if (ctx_passed == NULL)
240 BN_CTX_free(ctx);
241 }
242 BN_MONT_CTX_free(mont);
243
244 return (ret);
245 }
246
247 static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1,
248 const BIGNUM *a1_odd, int k, BN_CTX *ctx,
249 BN_MONT_CTX *mont)
250 {
251 if (!BN_mod_exp_mont(w, w, a1_odd, a, ctx, mont)) /* w := w^a1_odd mod a */
252 return -1;
253 if (BN_is_one(w))
254 return 0; /* probably prime */
255 if (BN_cmp(w, a1) == 0)
256 return 0; /* w == -1 (mod a), 'a' is probably prime */
257 while (--k) {
258 if (!BN_mod_mul(w, w, w, a, ctx)) /* w := w^2 mod a */
259 return -1;
260 if (BN_is_one(w))
261 return 1; /* 'a' is composite, otherwise a previous 'w'
262 * would have been == -1 (mod 'a') */
263 if (BN_cmp(w, a1) == 0)
264 return 0; /* w == -1 (mod a), 'a' is probably prime */
265 }
266 /*
267 * If we get here, 'w' is the (a-1)/2-th power of the original 'w', and
268 * it is neither -1 nor +1 -- so 'a' cannot be prime
269 */
270 bn_check_top(w);
271 return 1;
272 }
273
274 static int probable_prime(BIGNUM *rnd, int bits, prime_t *mods)
275 {
276 int i;
277 BN_ULONG delta;
278 BN_ULONG maxdelta = BN_MASK2 - primes[NUMPRIMES - 1];
279 char is_single_word = bits <= BN_BITS2;
280
281 again:
282 if (!BN_priv_rand(rnd, bits, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ODD))
283 return (0);
284 /* we now have a random number 'rnd' to test. */
285 for (i = 1; i < NUMPRIMES; i++) {
286 BN_ULONG mod = BN_mod_word(rnd, (BN_ULONG)primes[i]);
287 if (mod == (BN_ULONG)-1)
288 return 0;
289 mods[i] = (prime_t) mod;
290 }
291 /*
292 * If bits is so small that it fits into a single word then we
293 * additionally don't want to exceed that many bits.
294 */
295 if (is_single_word) {
296 BN_ULONG size_limit;
297
298 if (bits == BN_BITS2) {
299 /*
300 * Shifting by this much has undefined behaviour so we do it a
301 * different way
302 */
303 size_limit = ~((BN_ULONG)0) - BN_get_word(rnd);
304 } else {
305 size_limit = (((BN_ULONG)1) << bits) - BN_get_word(rnd) - 1;
306 }
307 if (size_limit < maxdelta)
308 maxdelta = size_limit;
309 }
310 delta = 0;
311 loop:
312 if (is_single_word) {
313 BN_ULONG rnd_word = BN_get_word(rnd);
314
315 /*-
316 * In the case that the candidate prime is a single word then
317 * we check that:
318 * 1) It's greater than primes[i] because we shouldn't reject
319 * 3 as being a prime number because it's a multiple of
320 * three.
321 * 2) That it's not a multiple of a known prime. We don't
322 * check that rnd-1 is also coprime to all the known
323 * primes because there aren't many small primes where
324 * that's true.
325 */
326 for (i = 1; i < NUMPRIMES && primes[i] < rnd_word; i++) {
327 if ((mods[i] + delta) % primes[i] == 0) {
328 delta += 2;
329 if (delta > maxdelta)
330 goto again;
331 goto loop;
332 }
333 }
334 } else {
335 for (i = 1; i < NUMPRIMES; i++) {
336 /*
337 * check that rnd is not a prime and also that gcd(rnd-1,primes)
338 * == 1 (except for 2)
339 */
340 if (((mods[i] + delta) % primes[i]) <= 1) {
341 delta += 2;
342 if (delta > maxdelta)
343 goto again;
344 goto loop;
345 }
346 }
347 }
348 if (!BN_add_word(rnd, delta))
349 return (0);
350 if (BN_num_bits(rnd) != bits)
351 goto again;
352 bn_check_top(rnd);
353 return (1);
354 }
355
356 int bn_probable_prime_dh(BIGNUM *rnd, int bits,
357 const BIGNUM *add, const BIGNUM *rem, BN_CTX *ctx)
358 {
359 int i, ret = 0;
360 BIGNUM *t1;
361
362 BN_CTX_start(ctx);
363 if ((t1 = BN_CTX_get(ctx)) == NULL)
364 goto err;
365
366 if (!BN_priv_rand(rnd, bits, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD))
367 goto err;
368
369 /* we need ((rnd-rem) % add) == 0 */
370
371 if (!BN_mod(t1, rnd, add, ctx))
372 goto err;
373 if (!BN_sub(rnd, rnd, t1))
374 goto err;
375 if (rem == NULL) {
376 if (!BN_add_word(rnd, 1))
377 goto err;
378 } else {
379 if (!BN_add(rnd, rnd, rem))
380 goto err;
381 }
382
383 /* we now have a random number 'rand' to test. */
384
385 loop:
386 for (i = 1; i < NUMPRIMES; i++) {
387 /* check that rnd is a prime */
388 BN_ULONG mod = BN_mod_word(rnd, (BN_ULONG)primes[i]);
389 if (mod == (BN_ULONG)-1)
390 goto err;
391 if (mod <= 1) {
392 if (!BN_add(rnd, rnd, add))
393 goto err;
394 goto loop;
395 }
396 }
397 ret = 1;
398
399 err:
400 BN_CTX_end(ctx);
401 bn_check_top(rnd);
402 return (ret);
403 }
404
405 static int probable_prime_dh_safe(BIGNUM *p, int bits, const BIGNUM *padd,
406 const BIGNUM *rem, BN_CTX *ctx)
407 {
408 int i, ret = 0;
409 BIGNUM *t1, *qadd, *q;
410
411 bits--;
412 BN_CTX_start(ctx);
413 t1 = BN_CTX_get(ctx);
414 q = BN_CTX_get(ctx);
415 qadd = BN_CTX_get(ctx);
416 if (qadd == NULL)
417 goto err;
418
419 if (!BN_rshift1(qadd, padd))
420 goto err;
421
422 if (!BN_priv_rand(q, bits, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD))
423 goto err;
424
425 /* we need ((rnd-rem) % add) == 0 */
426 if (!BN_mod(t1, q, qadd, ctx))
427 goto err;
428 if (!BN_sub(q, q, t1))
429 goto err;
430 if (rem == NULL) {
431 if (!BN_add_word(q, 1))
432 goto err;
433 } else {
434 if (!BN_rshift1(t1, rem))
435 goto err;
436 if (!BN_add(q, q, t1))
437 goto err;
438 }
439
440 /* we now have a random number 'rand' to test. */
441 if (!BN_lshift1(p, q))
442 goto err;
443 if (!BN_add_word(p, 1))
444 goto err;
445
446 loop:
447 for (i = 1; i < NUMPRIMES; i++) {
448 /* check that p and q are prime */
449 /*
450 * check that for p and q gcd(p-1,primes) == 1 (except for 2)
451 */
452 BN_ULONG pmod = BN_mod_word(p, (BN_ULONG)primes[i]);
453 BN_ULONG qmod = BN_mod_word(q, (BN_ULONG)primes[i]);
454 if (pmod == (BN_ULONG)-1 || qmod == (BN_ULONG)-1)
455 goto err;
456 if (pmod == 0 || qmod == 0) {
457 if (!BN_add(p, p, padd))
458 goto err;
459 if (!BN_add(q, q, qadd))
460 goto err;
461 goto loop;
462 }
463 }
464 ret = 1;
465
466 err:
467 BN_CTX_end(ctx);
468 bn_check_top(p);
469 return (ret);
470 }