]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - crypto/cryptd.c
Merge tag 'media/v5.2-2' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[thirdparty/kernel/stable.git] / crypto / cryptd.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Software async crypto daemon.
4 *
5 * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
6 *
7 * Added AEAD support to cryptd.
8 * Authors: Tadeusz Struk (tadeusz.struk@intel.com)
9 * Adrian Hoban <adrian.hoban@intel.com>
10 * Gabriele Paoloni <gabriele.paoloni@intel.com>
11 * Aidan O'Mahony (aidan.o.mahony@intel.com)
12 * Copyright (c) 2010, Intel Corporation.
13 */
14
15 #include <crypto/internal/hash.h>
16 #include <crypto/internal/aead.h>
17 #include <crypto/internal/skcipher.h>
18 #include <crypto/cryptd.h>
19 #include <crypto/crypto_wq.h>
20 #include <linux/atomic.h>
21 #include <linux/err.h>
22 #include <linux/init.h>
23 #include <linux/kernel.h>
24 #include <linux/list.h>
25 #include <linux/module.h>
26 #include <linux/scatterlist.h>
27 #include <linux/sched.h>
28 #include <linux/slab.h>
29
30 static unsigned int cryptd_max_cpu_qlen = 1000;
31 module_param(cryptd_max_cpu_qlen, uint, 0);
32 MODULE_PARM_DESC(cryptd_max_cpu_qlen, "Set cryptd Max queue depth");
33
34 struct cryptd_cpu_queue {
35 struct crypto_queue queue;
36 struct work_struct work;
37 };
38
39 struct cryptd_queue {
40 struct cryptd_cpu_queue __percpu *cpu_queue;
41 };
42
43 struct cryptd_instance_ctx {
44 struct crypto_spawn spawn;
45 struct cryptd_queue *queue;
46 };
47
48 struct skcipherd_instance_ctx {
49 struct crypto_skcipher_spawn spawn;
50 struct cryptd_queue *queue;
51 };
52
53 struct hashd_instance_ctx {
54 struct crypto_shash_spawn spawn;
55 struct cryptd_queue *queue;
56 };
57
58 struct aead_instance_ctx {
59 struct crypto_aead_spawn aead_spawn;
60 struct cryptd_queue *queue;
61 };
62
63 struct cryptd_skcipher_ctx {
64 atomic_t refcnt;
65 struct crypto_sync_skcipher *child;
66 };
67
68 struct cryptd_skcipher_request_ctx {
69 crypto_completion_t complete;
70 };
71
72 struct cryptd_hash_ctx {
73 atomic_t refcnt;
74 struct crypto_shash *child;
75 };
76
77 struct cryptd_hash_request_ctx {
78 crypto_completion_t complete;
79 struct shash_desc desc;
80 };
81
82 struct cryptd_aead_ctx {
83 atomic_t refcnt;
84 struct crypto_aead *child;
85 };
86
87 struct cryptd_aead_request_ctx {
88 crypto_completion_t complete;
89 };
90
91 static void cryptd_queue_worker(struct work_struct *work);
92
93 static int cryptd_init_queue(struct cryptd_queue *queue,
94 unsigned int max_cpu_qlen)
95 {
96 int cpu;
97 struct cryptd_cpu_queue *cpu_queue;
98
99 queue->cpu_queue = alloc_percpu(struct cryptd_cpu_queue);
100 if (!queue->cpu_queue)
101 return -ENOMEM;
102 for_each_possible_cpu(cpu) {
103 cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
104 crypto_init_queue(&cpu_queue->queue, max_cpu_qlen);
105 INIT_WORK(&cpu_queue->work, cryptd_queue_worker);
106 }
107 pr_info("cryptd: max_cpu_qlen set to %d\n", max_cpu_qlen);
108 return 0;
109 }
110
111 static void cryptd_fini_queue(struct cryptd_queue *queue)
112 {
113 int cpu;
114 struct cryptd_cpu_queue *cpu_queue;
115
116 for_each_possible_cpu(cpu) {
117 cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
118 BUG_ON(cpu_queue->queue.qlen);
119 }
120 free_percpu(queue->cpu_queue);
121 }
122
123 static int cryptd_enqueue_request(struct cryptd_queue *queue,
124 struct crypto_async_request *request)
125 {
126 int cpu, err;
127 struct cryptd_cpu_queue *cpu_queue;
128 atomic_t *refcnt;
129
130 cpu = get_cpu();
131 cpu_queue = this_cpu_ptr(queue->cpu_queue);
132 err = crypto_enqueue_request(&cpu_queue->queue, request);
133
134 refcnt = crypto_tfm_ctx(request->tfm);
135
136 if (err == -ENOSPC)
137 goto out_put_cpu;
138
139 queue_work_on(cpu, kcrypto_wq, &cpu_queue->work);
140
141 if (!atomic_read(refcnt))
142 goto out_put_cpu;
143
144 atomic_inc(refcnt);
145
146 out_put_cpu:
147 put_cpu();
148
149 return err;
150 }
151
152 /* Called in workqueue context, do one real cryption work (via
153 * req->complete) and reschedule itself if there are more work to
154 * do. */
155 static void cryptd_queue_worker(struct work_struct *work)
156 {
157 struct cryptd_cpu_queue *cpu_queue;
158 struct crypto_async_request *req, *backlog;
159
160 cpu_queue = container_of(work, struct cryptd_cpu_queue, work);
161 /*
162 * Only handle one request at a time to avoid hogging crypto workqueue.
163 * preempt_disable/enable is used to prevent being preempted by
164 * cryptd_enqueue_request(). local_bh_disable/enable is used to prevent
165 * cryptd_enqueue_request() being accessed from software interrupts.
166 */
167 local_bh_disable();
168 preempt_disable();
169 backlog = crypto_get_backlog(&cpu_queue->queue);
170 req = crypto_dequeue_request(&cpu_queue->queue);
171 preempt_enable();
172 local_bh_enable();
173
174 if (!req)
175 return;
176
177 if (backlog)
178 backlog->complete(backlog, -EINPROGRESS);
179 req->complete(req, 0);
180
181 if (cpu_queue->queue.qlen)
182 queue_work(kcrypto_wq, &cpu_queue->work);
183 }
184
185 static inline struct cryptd_queue *cryptd_get_queue(struct crypto_tfm *tfm)
186 {
187 struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
188 struct cryptd_instance_ctx *ictx = crypto_instance_ctx(inst);
189 return ictx->queue;
190 }
191
192 static inline void cryptd_check_internal(struct rtattr **tb, u32 *type,
193 u32 *mask)
194 {
195 struct crypto_attr_type *algt;
196
197 algt = crypto_get_attr_type(tb);
198 if (IS_ERR(algt))
199 return;
200
201 *type |= algt->type & CRYPTO_ALG_INTERNAL;
202 *mask |= algt->mask & CRYPTO_ALG_INTERNAL;
203 }
204
205 static int cryptd_init_instance(struct crypto_instance *inst,
206 struct crypto_alg *alg)
207 {
208 if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME,
209 "cryptd(%s)",
210 alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
211 return -ENAMETOOLONG;
212
213 memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME);
214
215 inst->alg.cra_priority = alg->cra_priority + 50;
216 inst->alg.cra_blocksize = alg->cra_blocksize;
217 inst->alg.cra_alignmask = alg->cra_alignmask;
218
219 return 0;
220 }
221
222 static void *cryptd_alloc_instance(struct crypto_alg *alg, unsigned int head,
223 unsigned int tail)
224 {
225 char *p;
226 struct crypto_instance *inst;
227 int err;
228
229 p = kzalloc(head + sizeof(*inst) + tail, GFP_KERNEL);
230 if (!p)
231 return ERR_PTR(-ENOMEM);
232
233 inst = (void *)(p + head);
234
235 err = cryptd_init_instance(inst, alg);
236 if (err)
237 goto out_free_inst;
238
239 out:
240 return p;
241
242 out_free_inst:
243 kfree(p);
244 p = ERR_PTR(err);
245 goto out;
246 }
247
248 static int cryptd_skcipher_setkey(struct crypto_skcipher *parent,
249 const u8 *key, unsigned int keylen)
250 {
251 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(parent);
252 struct crypto_sync_skcipher *child = ctx->child;
253 int err;
254
255 crypto_sync_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
256 crypto_sync_skcipher_set_flags(child,
257 crypto_skcipher_get_flags(parent) &
258 CRYPTO_TFM_REQ_MASK);
259 err = crypto_sync_skcipher_setkey(child, key, keylen);
260 crypto_skcipher_set_flags(parent,
261 crypto_sync_skcipher_get_flags(child) &
262 CRYPTO_TFM_RES_MASK);
263 return err;
264 }
265
266 static void cryptd_skcipher_complete(struct skcipher_request *req, int err)
267 {
268 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
269 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
270 struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
271 int refcnt = atomic_read(&ctx->refcnt);
272
273 local_bh_disable();
274 rctx->complete(&req->base, err);
275 local_bh_enable();
276
277 if (err != -EINPROGRESS && refcnt && atomic_dec_and_test(&ctx->refcnt))
278 crypto_free_skcipher(tfm);
279 }
280
281 static void cryptd_skcipher_encrypt(struct crypto_async_request *base,
282 int err)
283 {
284 struct skcipher_request *req = skcipher_request_cast(base);
285 struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
286 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
287 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
288 struct crypto_sync_skcipher *child = ctx->child;
289 SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, child);
290
291 if (unlikely(err == -EINPROGRESS))
292 goto out;
293
294 skcipher_request_set_sync_tfm(subreq, child);
295 skcipher_request_set_callback(subreq, CRYPTO_TFM_REQ_MAY_SLEEP,
296 NULL, NULL);
297 skcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
298 req->iv);
299
300 err = crypto_skcipher_encrypt(subreq);
301 skcipher_request_zero(subreq);
302
303 req->base.complete = rctx->complete;
304
305 out:
306 cryptd_skcipher_complete(req, err);
307 }
308
309 static void cryptd_skcipher_decrypt(struct crypto_async_request *base,
310 int err)
311 {
312 struct skcipher_request *req = skcipher_request_cast(base);
313 struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
314 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
315 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
316 struct crypto_sync_skcipher *child = ctx->child;
317 SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, child);
318
319 if (unlikely(err == -EINPROGRESS))
320 goto out;
321
322 skcipher_request_set_sync_tfm(subreq, child);
323 skcipher_request_set_callback(subreq, CRYPTO_TFM_REQ_MAY_SLEEP,
324 NULL, NULL);
325 skcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
326 req->iv);
327
328 err = crypto_skcipher_decrypt(subreq);
329 skcipher_request_zero(subreq);
330
331 req->base.complete = rctx->complete;
332
333 out:
334 cryptd_skcipher_complete(req, err);
335 }
336
337 static int cryptd_skcipher_enqueue(struct skcipher_request *req,
338 crypto_completion_t compl)
339 {
340 struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
341 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
342 struct cryptd_queue *queue;
343
344 queue = cryptd_get_queue(crypto_skcipher_tfm(tfm));
345 rctx->complete = req->base.complete;
346 req->base.complete = compl;
347
348 return cryptd_enqueue_request(queue, &req->base);
349 }
350
351 static int cryptd_skcipher_encrypt_enqueue(struct skcipher_request *req)
352 {
353 return cryptd_skcipher_enqueue(req, cryptd_skcipher_encrypt);
354 }
355
356 static int cryptd_skcipher_decrypt_enqueue(struct skcipher_request *req)
357 {
358 return cryptd_skcipher_enqueue(req, cryptd_skcipher_decrypt);
359 }
360
361 static int cryptd_skcipher_init_tfm(struct crypto_skcipher *tfm)
362 {
363 struct skcipher_instance *inst = skcipher_alg_instance(tfm);
364 struct skcipherd_instance_ctx *ictx = skcipher_instance_ctx(inst);
365 struct crypto_skcipher_spawn *spawn = &ictx->spawn;
366 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
367 struct crypto_skcipher *cipher;
368
369 cipher = crypto_spawn_skcipher(spawn);
370 if (IS_ERR(cipher))
371 return PTR_ERR(cipher);
372
373 ctx->child = (struct crypto_sync_skcipher *)cipher;
374 crypto_skcipher_set_reqsize(
375 tfm, sizeof(struct cryptd_skcipher_request_ctx));
376 return 0;
377 }
378
379 static void cryptd_skcipher_exit_tfm(struct crypto_skcipher *tfm)
380 {
381 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
382
383 crypto_free_sync_skcipher(ctx->child);
384 }
385
386 static void cryptd_skcipher_free(struct skcipher_instance *inst)
387 {
388 struct skcipherd_instance_ctx *ctx = skcipher_instance_ctx(inst);
389
390 crypto_drop_skcipher(&ctx->spawn);
391 }
392
393 static int cryptd_create_skcipher(struct crypto_template *tmpl,
394 struct rtattr **tb,
395 struct cryptd_queue *queue)
396 {
397 struct skcipherd_instance_ctx *ctx;
398 struct skcipher_instance *inst;
399 struct skcipher_alg *alg;
400 const char *name;
401 u32 type;
402 u32 mask;
403 int err;
404
405 type = 0;
406 mask = CRYPTO_ALG_ASYNC;
407
408 cryptd_check_internal(tb, &type, &mask);
409
410 name = crypto_attr_alg_name(tb[1]);
411 if (IS_ERR(name))
412 return PTR_ERR(name);
413
414 inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
415 if (!inst)
416 return -ENOMEM;
417
418 ctx = skcipher_instance_ctx(inst);
419 ctx->queue = queue;
420
421 crypto_set_skcipher_spawn(&ctx->spawn, skcipher_crypto_instance(inst));
422 err = crypto_grab_skcipher(&ctx->spawn, name, type, mask);
423 if (err)
424 goto out_free_inst;
425
426 alg = crypto_spawn_skcipher_alg(&ctx->spawn);
427 err = cryptd_init_instance(skcipher_crypto_instance(inst), &alg->base);
428 if (err)
429 goto out_drop_skcipher;
430
431 inst->alg.base.cra_flags = CRYPTO_ALG_ASYNC |
432 (alg->base.cra_flags & CRYPTO_ALG_INTERNAL);
433
434 inst->alg.ivsize = crypto_skcipher_alg_ivsize(alg);
435 inst->alg.chunksize = crypto_skcipher_alg_chunksize(alg);
436 inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(alg);
437 inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(alg);
438
439 inst->alg.base.cra_ctxsize = sizeof(struct cryptd_skcipher_ctx);
440
441 inst->alg.init = cryptd_skcipher_init_tfm;
442 inst->alg.exit = cryptd_skcipher_exit_tfm;
443
444 inst->alg.setkey = cryptd_skcipher_setkey;
445 inst->alg.encrypt = cryptd_skcipher_encrypt_enqueue;
446 inst->alg.decrypt = cryptd_skcipher_decrypt_enqueue;
447
448 inst->free = cryptd_skcipher_free;
449
450 err = skcipher_register_instance(tmpl, inst);
451 if (err) {
452 out_drop_skcipher:
453 crypto_drop_skcipher(&ctx->spawn);
454 out_free_inst:
455 kfree(inst);
456 }
457 return err;
458 }
459
460 static int cryptd_hash_init_tfm(struct crypto_tfm *tfm)
461 {
462 struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
463 struct hashd_instance_ctx *ictx = crypto_instance_ctx(inst);
464 struct crypto_shash_spawn *spawn = &ictx->spawn;
465 struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
466 struct crypto_shash *hash;
467
468 hash = crypto_spawn_shash(spawn);
469 if (IS_ERR(hash))
470 return PTR_ERR(hash);
471
472 ctx->child = hash;
473 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
474 sizeof(struct cryptd_hash_request_ctx) +
475 crypto_shash_descsize(hash));
476 return 0;
477 }
478
479 static void cryptd_hash_exit_tfm(struct crypto_tfm *tfm)
480 {
481 struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
482
483 crypto_free_shash(ctx->child);
484 }
485
486 static int cryptd_hash_setkey(struct crypto_ahash *parent,
487 const u8 *key, unsigned int keylen)
488 {
489 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(parent);
490 struct crypto_shash *child = ctx->child;
491 int err;
492
493 crypto_shash_clear_flags(child, CRYPTO_TFM_REQ_MASK);
494 crypto_shash_set_flags(child, crypto_ahash_get_flags(parent) &
495 CRYPTO_TFM_REQ_MASK);
496 err = crypto_shash_setkey(child, key, keylen);
497 crypto_ahash_set_flags(parent, crypto_shash_get_flags(child) &
498 CRYPTO_TFM_RES_MASK);
499 return err;
500 }
501
502 static int cryptd_hash_enqueue(struct ahash_request *req,
503 crypto_completion_t compl)
504 {
505 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
506 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
507 struct cryptd_queue *queue =
508 cryptd_get_queue(crypto_ahash_tfm(tfm));
509
510 rctx->complete = req->base.complete;
511 req->base.complete = compl;
512
513 return cryptd_enqueue_request(queue, &req->base);
514 }
515
516 static void cryptd_hash_complete(struct ahash_request *req, int err)
517 {
518 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
519 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm);
520 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
521 int refcnt = atomic_read(&ctx->refcnt);
522
523 local_bh_disable();
524 rctx->complete(&req->base, err);
525 local_bh_enable();
526
527 if (err != -EINPROGRESS && refcnt && atomic_dec_and_test(&ctx->refcnt))
528 crypto_free_ahash(tfm);
529 }
530
531 static void cryptd_hash_init(struct crypto_async_request *req_async, int err)
532 {
533 struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
534 struct crypto_shash *child = ctx->child;
535 struct ahash_request *req = ahash_request_cast(req_async);
536 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
537 struct shash_desc *desc = &rctx->desc;
538
539 if (unlikely(err == -EINPROGRESS))
540 goto out;
541
542 desc->tfm = child;
543
544 err = crypto_shash_init(desc);
545
546 req->base.complete = rctx->complete;
547
548 out:
549 cryptd_hash_complete(req, err);
550 }
551
552 static int cryptd_hash_init_enqueue(struct ahash_request *req)
553 {
554 return cryptd_hash_enqueue(req, cryptd_hash_init);
555 }
556
557 static void cryptd_hash_update(struct crypto_async_request *req_async, int err)
558 {
559 struct ahash_request *req = ahash_request_cast(req_async);
560 struct cryptd_hash_request_ctx *rctx;
561
562 rctx = ahash_request_ctx(req);
563
564 if (unlikely(err == -EINPROGRESS))
565 goto out;
566
567 err = shash_ahash_update(req, &rctx->desc);
568
569 req->base.complete = rctx->complete;
570
571 out:
572 cryptd_hash_complete(req, err);
573 }
574
575 static int cryptd_hash_update_enqueue(struct ahash_request *req)
576 {
577 return cryptd_hash_enqueue(req, cryptd_hash_update);
578 }
579
580 static void cryptd_hash_final(struct crypto_async_request *req_async, int err)
581 {
582 struct ahash_request *req = ahash_request_cast(req_async);
583 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
584
585 if (unlikely(err == -EINPROGRESS))
586 goto out;
587
588 err = crypto_shash_final(&rctx->desc, req->result);
589
590 req->base.complete = rctx->complete;
591
592 out:
593 cryptd_hash_complete(req, err);
594 }
595
596 static int cryptd_hash_final_enqueue(struct ahash_request *req)
597 {
598 return cryptd_hash_enqueue(req, cryptd_hash_final);
599 }
600
601 static void cryptd_hash_finup(struct crypto_async_request *req_async, int err)
602 {
603 struct ahash_request *req = ahash_request_cast(req_async);
604 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
605
606 if (unlikely(err == -EINPROGRESS))
607 goto out;
608
609 err = shash_ahash_finup(req, &rctx->desc);
610
611 req->base.complete = rctx->complete;
612
613 out:
614 cryptd_hash_complete(req, err);
615 }
616
617 static int cryptd_hash_finup_enqueue(struct ahash_request *req)
618 {
619 return cryptd_hash_enqueue(req, cryptd_hash_finup);
620 }
621
622 static void cryptd_hash_digest(struct crypto_async_request *req_async, int err)
623 {
624 struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
625 struct crypto_shash *child = ctx->child;
626 struct ahash_request *req = ahash_request_cast(req_async);
627 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
628 struct shash_desc *desc = &rctx->desc;
629
630 if (unlikely(err == -EINPROGRESS))
631 goto out;
632
633 desc->tfm = child;
634
635 err = shash_ahash_digest(req, desc);
636
637 req->base.complete = rctx->complete;
638
639 out:
640 cryptd_hash_complete(req, err);
641 }
642
643 static int cryptd_hash_digest_enqueue(struct ahash_request *req)
644 {
645 return cryptd_hash_enqueue(req, cryptd_hash_digest);
646 }
647
648 static int cryptd_hash_export(struct ahash_request *req, void *out)
649 {
650 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
651
652 return crypto_shash_export(&rctx->desc, out);
653 }
654
655 static int cryptd_hash_import(struct ahash_request *req, const void *in)
656 {
657 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
658 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm);
659 struct shash_desc *desc = cryptd_shash_desc(req);
660
661 desc->tfm = ctx->child;
662
663 return crypto_shash_import(desc, in);
664 }
665
666 static int cryptd_create_hash(struct crypto_template *tmpl, struct rtattr **tb,
667 struct cryptd_queue *queue)
668 {
669 struct hashd_instance_ctx *ctx;
670 struct ahash_instance *inst;
671 struct shash_alg *salg;
672 struct crypto_alg *alg;
673 u32 type = 0;
674 u32 mask = 0;
675 int err;
676
677 cryptd_check_internal(tb, &type, &mask);
678
679 salg = shash_attr_alg(tb[1], type, mask);
680 if (IS_ERR(salg))
681 return PTR_ERR(salg);
682
683 alg = &salg->base;
684 inst = cryptd_alloc_instance(alg, ahash_instance_headroom(),
685 sizeof(*ctx));
686 err = PTR_ERR(inst);
687 if (IS_ERR(inst))
688 goto out_put_alg;
689
690 ctx = ahash_instance_ctx(inst);
691 ctx->queue = queue;
692
693 err = crypto_init_shash_spawn(&ctx->spawn, salg,
694 ahash_crypto_instance(inst));
695 if (err)
696 goto out_free_inst;
697
698 inst->alg.halg.base.cra_flags = CRYPTO_ALG_ASYNC |
699 (alg->cra_flags & (CRYPTO_ALG_INTERNAL |
700 CRYPTO_ALG_OPTIONAL_KEY));
701
702 inst->alg.halg.digestsize = salg->digestsize;
703 inst->alg.halg.statesize = salg->statesize;
704 inst->alg.halg.base.cra_ctxsize = sizeof(struct cryptd_hash_ctx);
705
706 inst->alg.halg.base.cra_init = cryptd_hash_init_tfm;
707 inst->alg.halg.base.cra_exit = cryptd_hash_exit_tfm;
708
709 inst->alg.init = cryptd_hash_init_enqueue;
710 inst->alg.update = cryptd_hash_update_enqueue;
711 inst->alg.final = cryptd_hash_final_enqueue;
712 inst->alg.finup = cryptd_hash_finup_enqueue;
713 inst->alg.export = cryptd_hash_export;
714 inst->alg.import = cryptd_hash_import;
715 if (crypto_shash_alg_has_setkey(salg))
716 inst->alg.setkey = cryptd_hash_setkey;
717 inst->alg.digest = cryptd_hash_digest_enqueue;
718
719 err = ahash_register_instance(tmpl, inst);
720 if (err) {
721 crypto_drop_shash(&ctx->spawn);
722 out_free_inst:
723 kfree(inst);
724 }
725
726 out_put_alg:
727 crypto_mod_put(alg);
728 return err;
729 }
730
731 static int cryptd_aead_setkey(struct crypto_aead *parent,
732 const u8 *key, unsigned int keylen)
733 {
734 struct cryptd_aead_ctx *ctx = crypto_aead_ctx(parent);
735 struct crypto_aead *child = ctx->child;
736
737 return crypto_aead_setkey(child, key, keylen);
738 }
739
740 static int cryptd_aead_setauthsize(struct crypto_aead *parent,
741 unsigned int authsize)
742 {
743 struct cryptd_aead_ctx *ctx = crypto_aead_ctx(parent);
744 struct crypto_aead *child = ctx->child;
745
746 return crypto_aead_setauthsize(child, authsize);
747 }
748
749 static void cryptd_aead_crypt(struct aead_request *req,
750 struct crypto_aead *child,
751 int err,
752 int (*crypt)(struct aead_request *req))
753 {
754 struct cryptd_aead_request_ctx *rctx;
755 struct cryptd_aead_ctx *ctx;
756 crypto_completion_t compl;
757 struct crypto_aead *tfm;
758 int refcnt;
759
760 rctx = aead_request_ctx(req);
761 compl = rctx->complete;
762
763 tfm = crypto_aead_reqtfm(req);
764
765 if (unlikely(err == -EINPROGRESS))
766 goto out;
767 aead_request_set_tfm(req, child);
768 err = crypt( req );
769
770 out:
771 ctx = crypto_aead_ctx(tfm);
772 refcnt = atomic_read(&ctx->refcnt);
773
774 local_bh_disable();
775 compl(&req->base, err);
776 local_bh_enable();
777
778 if (err != -EINPROGRESS && refcnt && atomic_dec_and_test(&ctx->refcnt))
779 crypto_free_aead(tfm);
780 }
781
782 static void cryptd_aead_encrypt(struct crypto_async_request *areq, int err)
783 {
784 struct cryptd_aead_ctx *ctx = crypto_tfm_ctx(areq->tfm);
785 struct crypto_aead *child = ctx->child;
786 struct aead_request *req;
787
788 req = container_of(areq, struct aead_request, base);
789 cryptd_aead_crypt(req, child, err, crypto_aead_alg(child)->encrypt);
790 }
791
792 static void cryptd_aead_decrypt(struct crypto_async_request *areq, int err)
793 {
794 struct cryptd_aead_ctx *ctx = crypto_tfm_ctx(areq->tfm);
795 struct crypto_aead *child = ctx->child;
796 struct aead_request *req;
797
798 req = container_of(areq, struct aead_request, base);
799 cryptd_aead_crypt(req, child, err, crypto_aead_alg(child)->decrypt);
800 }
801
802 static int cryptd_aead_enqueue(struct aead_request *req,
803 crypto_completion_t compl)
804 {
805 struct cryptd_aead_request_ctx *rctx = aead_request_ctx(req);
806 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
807 struct cryptd_queue *queue = cryptd_get_queue(crypto_aead_tfm(tfm));
808
809 rctx->complete = req->base.complete;
810 req->base.complete = compl;
811 return cryptd_enqueue_request(queue, &req->base);
812 }
813
814 static int cryptd_aead_encrypt_enqueue(struct aead_request *req)
815 {
816 return cryptd_aead_enqueue(req, cryptd_aead_encrypt );
817 }
818
819 static int cryptd_aead_decrypt_enqueue(struct aead_request *req)
820 {
821 return cryptd_aead_enqueue(req, cryptd_aead_decrypt );
822 }
823
824 static int cryptd_aead_init_tfm(struct crypto_aead *tfm)
825 {
826 struct aead_instance *inst = aead_alg_instance(tfm);
827 struct aead_instance_ctx *ictx = aead_instance_ctx(inst);
828 struct crypto_aead_spawn *spawn = &ictx->aead_spawn;
829 struct cryptd_aead_ctx *ctx = crypto_aead_ctx(tfm);
830 struct crypto_aead *cipher;
831
832 cipher = crypto_spawn_aead(spawn);
833 if (IS_ERR(cipher))
834 return PTR_ERR(cipher);
835
836 ctx->child = cipher;
837 crypto_aead_set_reqsize(
838 tfm, max((unsigned)sizeof(struct cryptd_aead_request_ctx),
839 crypto_aead_reqsize(cipher)));
840 return 0;
841 }
842
843 static void cryptd_aead_exit_tfm(struct crypto_aead *tfm)
844 {
845 struct cryptd_aead_ctx *ctx = crypto_aead_ctx(tfm);
846 crypto_free_aead(ctx->child);
847 }
848
849 static int cryptd_create_aead(struct crypto_template *tmpl,
850 struct rtattr **tb,
851 struct cryptd_queue *queue)
852 {
853 struct aead_instance_ctx *ctx;
854 struct aead_instance *inst;
855 struct aead_alg *alg;
856 const char *name;
857 u32 type = 0;
858 u32 mask = CRYPTO_ALG_ASYNC;
859 int err;
860
861 cryptd_check_internal(tb, &type, &mask);
862
863 name = crypto_attr_alg_name(tb[1]);
864 if (IS_ERR(name))
865 return PTR_ERR(name);
866
867 inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
868 if (!inst)
869 return -ENOMEM;
870
871 ctx = aead_instance_ctx(inst);
872 ctx->queue = queue;
873
874 crypto_set_aead_spawn(&ctx->aead_spawn, aead_crypto_instance(inst));
875 err = crypto_grab_aead(&ctx->aead_spawn, name, type, mask);
876 if (err)
877 goto out_free_inst;
878
879 alg = crypto_spawn_aead_alg(&ctx->aead_spawn);
880 err = cryptd_init_instance(aead_crypto_instance(inst), &alg->base);
881 if (err)
882 goto out_drop_aead;
883
884 inst->alg.base.cra_flags = CRYPTO_ALG_ASYNC |
885 (alg->base.cra_flags & CRYPTO_ALG_INTERNAL);
886 inst->alg.base.cra_ctxsize = sizeof(struct cryptd_aead_ctx);
887
888 inst->alg.ivsize = crypto_aead_alg_ivsize(alg);
889 inst->alg.maxauthsize = crypto_aead_alg_maxauthsize(alg);
890
891 inst->alg.init = cryptd_aead_init_tfm;
892 inst->alg.exit = cryptd_aead_exit_tfm;
893 inst->alg.setkey = cryptd_aead_setkey;
894 inst->alg.setauthsize = cryptd_aead_setauthsize;
895 inst->alg.encrypt = cryptd_aead_encrypt_enqueue;
896 inst->alg.decrypt = cryptd_aead_decrypt_enqueue;
897
898 err = aead_register_instance(tmpl, inst);
899 if (err) {
900 out_drop_aead:
901 crypto_drop_aead(&ctx->aead_spawn);
902 out_free_inst:
903 kfree(inst);
904 }
905 return err;
906 }
907
908 static struct cryptd_queue queue;
909
910 static int cryptd_create(struct crypto_template *tmpl, struct rtattr **tb)
911 {
912 struct crypto_attr_type *algt;
913
914 algt = crypto_get_attr_type(tb);
915 if (IS_ERR(algt))
916 return PTR_ERR(algt);
917
918 switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) {
919 case CRYPTO_ALG_TYPE_BLKCIPHER:
920 return cryptd_create_skcipher(tmpl, tb, &queue);
921 case CRYPTO_ALG_TYPE_DIGEST:
922 return cryptd_create_hash(tmpl, tb, &queue);
923 case CRYPTO_ALG_TYPE_AEAD:
924 return cryptd_create_aead(tmpl, tb, &queue);
925 }
926
927 return -EINVAL;
928 }
929
930 static void cryptd_free(struct crypto_instance *inst)
931 {
932 struct cryptd_instance_ctx *ctx = crypto_instance_ctx(inst);
933 struct hashd_instance_ctx *hctx = crypto_instance_ctx(inst);
934 struct aead_instance_ctx *aead_ctx = crypto_instance_ctx(inst);
935
936 switch (inst->alg.cra_flags & CRYPTO_ALG_TYPE_MASK) {
937 case CRYPTO_ALG_TYPE_AHASH:
938 crypto_drop_shash(&hctx->spawn);
939 kfree(ahash_instance(inst));
940 return;
941 case CRYPTO_ALG_TYPE_AEAD:
942 crypto_drop_aead(&aead_ctx->aead_spawn);
943 kfree(aead_instance(inst));
944 return;
945 default:
946 crypto_drop_spawn(&ctx->spawn);
947 kfree(inst);
948 }
949 }
950
951 static struct crypto_template cryptd_tmpl = {
952 .name = "cryptd",
953 .create = cryptd_create,
954 .free = cryptd_free,
955 .module = THIS_MODULE,
956 };
957
958 struct cryptd_skcipher *cryptd_alloc_skcipher(const char *alg_name,
959 u32 type, u32 mask)
960 {
961 char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
962 struct cryptd_skcipher_ctx *ctx;
963 struct crypto_skcipher *tfm;
964
965 if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
966 "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
967 return ERR_PTR(-EINVAL);
968
969 tfm = crypto_alloc_skcipher(cryptd_alg_name, type, mask);
970 if (IS_ERR(tfm))
971 return ERR_CAST(tfm);
972
973 if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
974 crypto_free_skcipher(tfm);
975 return ERR_PTR(-EINVAL);
976 }
977
978 ctx = crypto_skcipher_ctx(tfm);
979 atomic_set(&ctx->refcnt, 1);
980
981 return container_of(tfm, struct cryptd_skcipher, base);
982 }
983 EXPORT_SYMBOL_GPL(cryptd_alloc_skcipher);
984
985 struct crypto_skcipher *cryptd_skcipher_child(struct cryptd_skcipher *tfm)
986 {
987 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base);
988
989 return &ctx->child->base;
990 }
991 EXPORT_SYMBOL_GPL(cryptd_skcipher_child);
992
993 bool cryptd_skcipher_queued(struct cryptd_skcipher *tfm)
994 {
995 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base);
996
997 return atomic_read(&ctx->refcnt) - 1;
998 }
999 EXPORT_SYMBOL_GPL(cryptd_skcipher_queued);
1000
1001 void cryptd_free_skcipher(struct cryptd_skcipher *tfm)
1002 {
1003 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base);
1004
1005 if (atomic_dec_and_test(&ctx->refcnt))
1006 crypto_free_skcipher(&tfm->base);
1007 }
1008 EXPORT_SYMBOL_GPL(cryptd_free_skcipher);
1009
1010 struct cryptd_ahash *cryptd_alloc_ahash(const char *alg_name,
1011 u32 type, u32 mask)
1012 {
1013 char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
1014 struct cryptd_hash_ctx *ctx;
1015 struct crypto_ahash *tfm;
1016
1017 if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
1018 "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
1019 return ERR_PTR(-EINVAL);
1020 tfm = crypto_alloc_ahash(cryptd_alg_name, type, mask);
1021 if (IS_ERR(tfm))
1022 return ERR_CAST(tfm);
1023 if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
1024 crypto_free_ahash(tfm);
1025 return ERR_PTR(-EINVAL);
1026 }
1027
1028 ctx = crypto_ahash_ctx(tfm);
1029 atomic_set(&ctx->refcnt, 1);
1030
1031 return __cryptd_ahash_cast(tfm);
1032 }
1033 EXPORT_SYMBOL_GPL(cryptd_alloc_ahash);
1034
1035 struct crypto_shash *cryptd_ahash_child(struct cryptd_ahash *tfm)
1036 {
1037 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
1038
1039 return ctx->child;
1040 }
1041 EXPORT_SYMBOL_GPL(cryptd_ahash_child);
1042
1043 struct shash_desc *cryptd_shash_desc(struct ahash_request *req)
1044 {
1045 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
1046 return &rctx->desc;
1047 }
1048 EXPORT_SYMBOL_GPL(cryptd_shash_desc);
1049
1050 bool cryptd_ahash_queued(struct cryptd_ahash *tfm)
1051 {
1052 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
1053
1054 return atomic_read(&ctx->refcnt) - 1;
1055 }
1056 EXPORT_SYMBOL_GPL(cryptd_ahash_queued);
1057
1058 void cryptd_free_ahash(struct cryptd_ahash *tfm)
1059 {
1060 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
1061
1062 if (atomic_dec_and_test(&ctx->refcnt))
1063 crypto_free_ahash(&tfm->base);
1064 }
1065 EXPORT_SYMBOL_GPL(cryptd_free_ahash);
1066
1067 struct cryptd_aead *cryptd_alloc_aead(const char *alg_name,
1068 u32 type, u32 mask)
1069 {
1070 char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
1071 struct cryptd_aead_ctx *ctx;
1072 struct crypto_aead *tfm;
1073
1074 if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
1075 "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
1076 return ERR_PTR(-EINVAL);
1077 tfm = crypto_alloc_aead(cryptd_alg_name, type, mask);
1078 if (IS_ERR(tfm))
1079 return ERR_CAST(tfm);
1080 if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
1081 crypto_free_aead(tfm);
1082 return ERR_PTR(-EINVAL);
1083 }
1084
1085 ctx = crypto_aead_ctx(tfm);
1086 atomic_set(&ctx->refcnt, 1);
1087
1088 return __cryptd_aead_cast(tfm);
1089 }
1090 EXPORT_SYMBOL_GPL(cryptd_alloc_aead);
1091
1092 struct crypto_aead *cryptd_aead_child(struct cryptd_aead *tfm)
1093 {
1094 struct cryptd_aead_ctx *ctx;
1095 ctx = crypto_aead_ctx(&tfm->base);
1096 return ctx->child;
1097 }
1098 EXPORT_SYMBOL_GPL(cryptd_aead_child);
1099
1100 bool cryptd_aead_queued(struct cryptd_aead *tfm)
1101 {
1102 struct cryptd_aead_ctx *ctx = crypto_aead_ctx(&tfm->base);
1103
1104 return atomic_read(&ctx->refcnt) - 1;
1105 }
1106 EXPORT_SYMBOL_GPL(cryptd_aead_queued);
1107
1108 void cryptd_free_aead(struct cryptd_aead *tfm)
1109 {
1110 struct cryptd_aead_ctx *ctx = crypto_aead_ctx(&tfm->base);
1111
1112 if (atomic_dec_and_test(&ctx->refcnt))
1113 crypto_free_aead(&tfm->base);
1114 }
1115 EXPORT_SYMBOL_GPL(cryptd_free_aead);
1116
1117 static int __init cryptd_init(void)
1118 {
1119 int err;
1120
1121 err = cryptd_init_queue(&queue, cryptd_max_cpu_qlen);
1122 if (err)
1123 return err;
1124
1125 err = crypto_register_template(&cryptd_tmpl);
1126 if (err)
1127 cryptd_fini_queue(&queue);
1128
1129 return err;
1130 }
1131
1132 static void __exit cryptd_exit(void)
1133 {
1134 cryptd_fini_queue(&queue);
1135 crypto_unregister_template(&cryptd_tmpl);
1136 }
1137
1138 subsys_initcall(cryptd_init);
1139 module_exit(cryptd_exit);
1140
1141 MODULE_LICENSE("GPL");
1142 MODULE_DESCRIPTION("Software async crypto daemon");
1143 MODULE_ALIAS_CRYPTO("cryptd");