]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/evp/bio_ok.c
8658f88a0599c6588b8aa335a3386735c0500b01
[thirdparty/openssl.git] / crypto / evp / bio_ok.c
1 /* crypto/evp/bio_ok.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young's, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word 'cryptographic' can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58
59 /*-
60 From: Arne Ansper <arne@cyber.ee>
61
62 Why BIO_f_reliable?
63
64 I wrote function which took BIO* as argument, read data from it
65 and processed it. Then I wanted to store the input file in
66 encrypted form. OK I pushed BIO_f_cipher to the BIO stack
67 and everything was OK. BUT if user types wrong password
68 BIO_f_cipher outputs only garbage and my function crashes. Yes
69 I can and I should fix my function, but BIO_f_cipher is
70 easy way to add encryption support to many existing applications
71 and it's hard to debug and fix them all.
72
73 So I wanted another BIO which would catch the incorrect passwords and
74 file damages which cause garbage on BIO_f_cipher's output.
75
76 The easy way is to push the BIO_f_md and save the checksum at
77 the end of the file. However there are several problems with this
78 approach:
79
80 1) you must somehow separate checksum from actual data.
81 2) you need lot's of memory when reading the file, because you
82 must read to the end of the file and verify the checksum before
83 letting the application to read the data.
84
85 BIO_f_reliable tries to solve both problems, so that you can
86 read and write arbitrary long streams using only fixed amount
87 of memory.
88
89 BIO_f_reliable splits data stream into blocks. Each block is prefixed
90 with it's length and suffixed with it's digest. So you need only
91 several Kbytes of memory to buffer single block before verifying
92 it's digest.
93
94 BIO_f_reliable goes further and adds several important capabilities:
95
96 1) the digest of the block is computed over the whole stream
97 -- so nobody can rearrange the blocks or remove or replace them.
98
99 2) to detect invalid passwords right at the start BIO_f_reliable
100 adds special prefix to the stream. In order to avoid known plain-text
101 attacks this prefix is generated as follows:
102
103 *) digest is initialized with random seed instead of
104 standardized one.
105 *) same seed is written to output
106 *) well-known text is then hashed and the output
107 of the digest is also written to output.
108
109 reader can now read the seed from stream, hash the same string
110 and then compare the digest output.
111
112 Bad things: BIO_f_reliable knows what's going on in EVP_Digest. I
113 initially wrote and tested this code on x86 machine and wrote the
114 digests out in machine-dependent order :( There are people using
115 this code and I cannot change this easily without making existing
116 data files unreadable.
117
118 */
119
120 #include <stdio.h>
121 #include <errno.h>
122 #include <assert.h>
123 #include "internal/cryptlib.h"
124 #include <openssl/buffer.h>
125 #include <openssl/bio.h>
126 #include <openssl/evp.h>
127 #include <openssl/rand.h>
128
129 static int ok_write(BIO *h, const char *buf, int num);
130 static int ok_read(BIO *h, char *buf, int size);
131 static long ok_ctrl(BIO *h, int cmd, long arg1, void *arg2);
132 static int ok_new(BIO *h);
133 static int ok_free(BIO *data);
134 static long ok_callback_ctrl(BIO *h, int cmd, bio_info_cb *fp);
135
136 static __owur int sig_out(BIO *b);
137 static __owur int sig_in(BIO *b);
138 static __owur int block_out(BIO *b);
139 static __owur int block_in(BIO *b);
140 #define OK_BLOCK_SIZE (1024*4)
141 #define OK_BLOCK_BLOCK 4
142 #define IOBS (OK_BLOCK_SIZE+ OK_BLOCK_BLOCK+ 3*EVP_MAX_MD_SIZE)
143 #define WELLKNOWN "The quick brown fox jumped over the lazy dog's back."
144
145 typedef struct ok_struct {
146 size_t buf_len;
147 size_t buf_off;
148 size_t buf_len_save;
149 size_t buf_off_save;
150 int cont; /* <= 0 when finished */
151 int finished;
152 EVP_MD_CTX md;
153 int blockout; /* output block is ready */
154 int sigio; /* must process signature */
155 unsigned char buf[IOBS];
156 } BIO_OK_CTX;
157
158 static BIO_METHOD methods_ok = {
159 BIO_TYPE_CIPHER, "reliable",
160 ok_write,
161 ok_read,
162 NULL, /* ok_puts, */
163 NULL, /* ok_gets, */
164 ok_ctrl,
165 ok_new,
166 ok_free,
167 ok_callback_ctrl,
168 };
169
170 BIO_METHOD *BIO_f_reliable(void)
171 {
172 return (&methods_ok);
173 }
174
175 static int ok_new(BIO *bi)
176 {
177 BIO_OK_CTX *ctx;
178
179 ctx = OPENSSL_zalloc(sizeof(*ctx));
180 if (ctx == NULL)
181 return (0);
182
183 ctx->cont = 1;
184 ctx->sigio = 1;
185 EVP_MD_CTX_init(&ctx->md);
186 bi->init = 0;
187 bi->ptr = (char *)ctx;
188 bi->flags = 0;
189 return (1);
190 }
191
192 static int ok_free(BIO *a)
193 {
194 if (a == NULL)
195 return (0);
196 EVP_MD_CTX_cleanup(&((BIO_OK_CTX *)a->ptr)->md);
197 OPENSSL_clear_free(a->ptr, sizeof(BIO_OK_CTX));
198 a->ptr = NULL;
199 a->init = 0;
200 a->flags = 0;
201 return (1);
202 }
203
204 static int ok_read(BIO *b, char *out, int outl)
205 {
206 int ret = 0, i, n;
207 BIO_OK_CTX *ctx;
208
209 if (out == NULL)
210 return (0);
211 ctx = (BIO_OK_CTX *)b->ptr;
212
213 if ((ctx == NULL) || (b->next_bio == NULL) || (b->init == 0))
214 return (0);
215
216 while (outl > 0) {
217
218 /* copy clean bytes to output buffer */
219 if (ctx->blockout) {
220 i = ctx->buf_len - ctx->buf_off;
221 if (i > outl)
222 i = outl;
223 memcpy(out, &(ctx->buf[ctx->buf_off]), i);
224 ret += i;
225 out += i;
226 outl -= i;
227 ctx->buf_off += i;
228
229 /* all clean bytes are out */
230 if (ctx->buf_len == ctx->buf_off) {
231 ctx->buf_off = 0;
232
233 /*
234 * copy start of the next block into proper place
235 */
236 if (ctx->buf_len_save - ctx->buf_off_save > 0) {
237 ctx->buf_len = ctx->buf_len_save - ctx->buf_off_save;
238 memmove(ctx->buf, &(ctx->buf[ctx->buf_off_save]),
239 ctx->buf_len);
240 } else {
241 ctx->buf_len = 0;
242 }
243 ctx->blockout = 0;
244 }
245 }
246
247 /* output buffer full -- cancel */
248 if (outl == 0)
249 break;
250
251 /* no clean bytes in buffer -- fill it */
252 n = IOBS - ctx->buf_len;
253 i = BIO_read(b->next_bio, &(ctx->buf[ctx->buf_len]), n);
254
255 if (i <= 0)
256 break; /* nothing new */
257
258 ctx->buf_len += i;
259
260 /* no signature yet -- check if we got one */
261 if (ctx->sigio == 1) {
262 if (!sig_in(b)) {
263 BIO_clear_retry_flags(b);
264 return 0;
265 }
266 }
267
268 /* signature ok -- check if we got block */
269 if (ctx->sigio == 0) {
270 if (!block_in(b)) {
271 BIO_clear_retry_flags(b);
272 return 0;
273 }
274 }
275
276 /* invalid block -- cancel */
277 if (ctx->cont <= 0)
278 break;
279
280 }
281
282 BIO_clear_retry_flags(b);
283 BIO_copy_next_retry(b);
284 return (ret);
285 }
286
287 static int ok_write(BIO *b, const char *in, int inl)
288 {
289 int ret = 0, n, i;
290 BIO_OK_CTX *ctx;
291
292 if (inl <= 0)
293 return inl;
294
295 ctx = (BIO_OK_CTX *)b->ptr;
296 ret = inl;
297
298 if ((ctx == NULL) || (b->next_bio == NULL) || (b->init == 0))
299 return (0);
300
301 if (ctx->sigio && !sig_out(b))
302 return 0;
303
304 do {
305 BIO_clear_retry_flags(b);
306 n = ctx->buf_len - ctx->buf_off;
307 while (ctx->blockout && n > 0) {
308 i = BIO_write(b->next_bio, &(ctx->buf[ctx->buf_off]), n);
309 if (i <= 0) {
310 BIO_copy_next_retry(b);
311 if (!BIO_should_retry(b))
312 ctx->cont = 0;
313 return (i);
314 }
315 ctx->buf_off += i;
316 n -= i;
317 }
318
319 /* at this point all pending data has been written */
320 ctx->blockout = 0;
321 if (ctx->buf_len == ctx->buf_off) {
322 ctx->buf_len = OK_BLOCK_BLOCK;
323 ctx->buf_off = 0;
324 }
325
326 if ((in == NULL) || (inl <= 0))
327 return (0);
328
329 n = (inl + ctx->buf_len > OK_BLOCK_SIZE + OK_BLOCK_BLOCK) ?
330 (int)(OK_BLOCK_SIZE + OK_BLOCK_BLOCK - ctx->buf_len) : inl;
331
332 memcpy(&ctx->buf[ctx->buf_len], in, n);
333 ctx->buf_len += n;
334 inl -= n;
335 in += n;
336
337 if (ctx->buf_len >= OK_BLOCK_SIZE + OK_BLOCK_BLOCK) {
338 if (!block_out(b)) {
339 BIO_clear_retry_flags(b);
340 return 0;
341 }
342 }
343 } while (inl > 0);
344
345 BIO_clear_retry_flags(b);
346 BIO_copy_next_retry(b);
347 return (ret);
348 }
349
350 static long ok_ctrl(BIO *b, int cmd, long num, void *ptr)
351 {
352 BIO_OK_CTX *ctx;
353 EVP_MD *md;
354 const EVP_MD **ppmd;
355 long ret = 1;
356 int i;
357
358 ctx = b->ptr;
359
360 switch (cmd) {
361 case BIO_CTRL_RESET:
362 ctx->buf_len = 0;
363 ctx->buf_off = 0;
364 ctx->buf_len_save = 0;
365 ctx->buf_off_save = 0;
366 ctx->cont = 1;
367 ctx->finished = 0;
368 ctx->blockout = 0;
369 ctx->sigio = 1;
370 ret = BIO_ctrl(b->next_bio, cmd, num, ptr);
371 break;
372 case BIO_CTRL_EOF: /* More to read */
373 if (ctx->cont <= 0)
374 ret = 1;
375 else
376 ret = BIO_ctrl(b->next_bio, cmd, num, ptr);
377 break;
378 case BIO_CTRL_PENDING: /* More to read in buffer */
379 case BIO_CTRL_WPENDING: /* More to read in buffer */
380 ret = ctx->blockout ? ctx->buf_len - ctx->buf_off : 0;
381 if (ret <= 0)
382 ret = BIO_ctrl(b->next_bio, cmd, num, ptr);
383 break;
384 case BIO_CTRL_FLUSH:
385 /* do a final write */
386 if (ctx->blockout == 0)
387 if (!block_out(b))
388 return 0;
389
390 while (ctx->blockout) {
391 i = ok_write(b, NULL, 0);
392 if (i < 0) {
393 ret = i;
394 break;
395 }
396 }
397
398 ctx->finished = 1;
399 ctx->buf_off = ctx->buf_len = 0;
400 ctx->cont = (int)ret;
401
402 /* Finally flush the underlying BIO */
403 ret = BIO_ctrl(b->next_bio, cmd, num, ptr);
404 break;
405 case BIO_C_DO_STATE_MACHINE:
406 BIO_clear_retry_flags(b);
407 ret = BIO_ctrl(b->next_bio, cmd, num, ptr);
408 BIO_copy_next_retry(b);
409 break;
410 case BIO_CTRL_INFO:
411 ret = (long)ctx->cont;
412 break;
413 case BIO_C_SET_MD:
414 md = ptr;
415 if (!EVP_DigestInit_ex(&ctx->md, md, NULL))
416 return 0;
417 b->init = 1;
418 break;
419 case BIO_C_GET_MD:
420 if (b->init) {
421 ppmd = ptr;
422 *ppmd = ctx->md.digest;
423 } else
424 ret = 0;
425 break;
426 default:
427 ret = BIO_ctrl(b->next_bio, cmd, num, ptr);
428 break;
429 }
430 return (ret);
431 }
432
433 static long ok_callback_ctrl(BIO *b, int cmd, bio_info_cb *fp)
434 {
435 long ret = 1;
436
437 if (b->next_bio == NULL)
438 return (0);
439 switch (cmd) {
440 default:
441 ret = BIO_callback_ctrl(b->next_bio, cmd, fp);
442 break;
443 }
444 return (ret);
445 }
446
447 static void longswap(void *_ptr, size_t len)
448 {
449 const union {
450 long one;
451 char little;
452 } is_endian = {
453 1
454 };
455
456 if (is_endian.little) {
457 size_t i;
458 unsigned char *p = _ptr, c;
459
460 for (i = 0; i < len; i += 4) {
461 c = p[0], p[0] = p[3], p[3] = c;
462 c = p[1], p[1] = p[2], p[2] = c;
463 }
464 }
465 }
466
467 static int sig_out(BIO *b)
468 {
469 BIO_OK_CTX *ctx;
470 EVP_MD_CTX *md;
471
472 ctx = b->ptr;
473 md = &ctx->md;
474
475 if (ctx->buf_len + 2 * md->digest->md_size > OK_BLOCK_SIZE)
476 return 1;
477
478 if (!EVP_DigestInit_ex(md, md->digest, NULL))
479 goto berr;
480 /*
481 * FIXME: there's absolutely no guarantee this makes any sense at all,
482 * particularly now EVP_MD_CTX has been restructured.
483 */
484 if (RAND_bytes(md->md_data, md->digest->md_size) <= 0)
485 goto berr;
486 memcpy(&(ctx->buf[ctx->buf_len]), md->md_data, md->digest->md_size);
487 longswap(&(ctx->buf[ctx->buf_len]), md->digest->md_size);
488 ctx->buf_len += md->digest->md_size;
489
490 if (!EVP_DigestUpdate(md, WELLKNOWN, strlen(WELLKNOWN)))
491 goto berr;
492 if (!EVP_DigestFinal_ex(md, &(ctx->buf[ctx->buf_len]), NULL))
493 goto berr;
494 ctx->buf_len += md->digest->md_size;
495 ctx->blockout = 1;
496 ctx->sigio = 0;
497 return 1;
498 berr:
499 BIO_clear_retry_flags(b);
500 return 0;
501 }
502
503 static int sig_in(BIO *b)
504 {
505 BIO_OK_CTX *ctx;
506 EVP_MD_CTX *md;
507 unsigned char tmp[EVP_MAX_MD_SIZE];
508 int ret = 0;
509
510 ctx = b->ptr;
511 md = &ctx->md;
512
513 if ((int)(ctx->buf_len - ctx->buf_off) < 2 * md->digest->md_size)
514 return 1;
515
516 if (!EVP_DigestInit_ex(md, md->digest, NULL))
517 goto berr;
518 memcpy(md->md_data, &(ctx->buf[ctx->buf_off]), md->digest->md_size);
519 longswap(md->md_data, md->digest->md_size);
520 ctx->buf_off += md->digest->md_size;
521
522 if (!EVP_DigestUpdate(md, WELLKNOWN, strlen(WELLKNOWN)))
523 goto berr;
524 if (!EVP_DigestFinal_ex(md, tmp, NULL))
525 goto berr;
526 ret = memcmp(&(ctx->buf[ctx->buf_off]), tmp, md->digest->md_size) == 0;
527 ctx->buf_off += md->digest->md_size;
528 if (ret == 1) {
529 ctx->sigio = 0;
530 if (ctx->buf_len != ctx->buf_off) {
531 memmove(ctx->buf, &(ctx->buf[ctx->buf_off]),
532 ctx->buf_len - ctx->buf_off);
533 }
534 ctx->buf_len -= ctx->buf_off;
535 ctx->buf_off = 0;
536 } else {
537 ctx->cont = 0;
538 }
539 return 1;
540 berr:
541 BIO_clear_retry_flags(b);
542 return 0;
543 }
544
545 static int block_out(BIO *b)
546 {
547 BIO_OK_CTX *ctx;
548 EVP_MD_CTX *md;
549 unsigned long tl;
550
551 ctx = b->ptr;
552 md = &ctx->md;
553
554 tl = ctx->buf_len - OK_BLOCK_BLOCK;
555 ctx->buf[0] = (unsigned char)(tl >> 24);
556 ctx->buf[1] = (unsigned char)(tl >> 16);
557 ctx->buf[2] = (unsigned char)(tl >> 8);
558 ctx->buf[3] = (unsigned char)(tl);
559 if (!EVP_DigestUpdate(md,
560 (unsigned char *)&(ctx->buf[OK_BLOCK_BLOCK]), tl))
561 goto berr;
562 if (!EVP_DigestFinal_ex(md, &(ctx->buf[ctx->buf_len]), NULL))
563 goto berr;
564 ctx->buf_len += md->digest->md_size;
565 ctx->blockout = 1;
566 return 1;
567 berr:
568 BIO_clear_retry_flags(b);
569 return 0;
570 }
571
572 static int block_in(BIO *b)
573 {
574 BIO_OK_CTX *ctx;
575 EVP_MD_CTX *md;
576 unsigned long tl = 0;
577 unsigned char tmp[EVP_MAX_MD_SIZE];
578
579 ctx = b->ptr;
580 md = &ctx->md;
581
582 assert(sizeof(tl) >= OK_BLOCK_BLOCK); /* always true */
583 tl = ctx->buf[0];
584 tl <<= 8;
585 tl |= ctx->buf[1];
586 tl <<= 8;
587 tl |= ctx->buf[2];
588 tl <<= 8;
589 tl |= ctx->buf[3];
590
591 if (ctx->buf_len < tl + OK_BLOCK_BLOCK + md->digest->md_size)
592 return 1;
593
594 if (!EVP_DigestUpdate(md,
595 (unsigned char *)&(ctx->buf[OK_BLOCK_BLOCK]), tl))
596 goto berr;
597 if (!EVP_DigestFinal_ex(md, tmp, NULL))
598 goto berr;
599 if (memcmp(&(ctx->buf[tl + OK_BLOCK_BLOCK]), tmp, md->digest->md_size) ==
600 0) {
601 /* there might be parts from next block lurking around ! */
602 ctx->buf_off_save = tl + OK_BLOCK_BLOCK + md->digest->md_size;
603 ctx->buf_len_save = ctx->buf_len;
604 ctx->buf_off = OK_BLOCK_BLOCK;
605 ctx->buf_len = tl + OK_BLOCK_BLOCK;
606 ctx->blockout = 1;
607 } else {
608 ctx->cont = 0;
609 }
610 return 1;
611 berr:
612 BIO_clear_retry_flags(b);
613 return 0;
614 }