]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/jpake/jpake.c
mark all block comments that need format preserving so that
[thirdparty/openssl.git] / crypto / jpake / jpake.c
1 #include "jpake.h"
2
3 #include <openssl/crypto.h>
4 #include <openssl/sha.h>
5 #include <openssl/err.h>
6 #include <memory.h>
7 #include <string.h>
8
9 /*
10 * In the definition, (xa, xb, xc, xd) are Alice's (x1, x2, x3, x4) or
11 * Bob's (x3, x4, x1, x2). If you see what I mean.
12 */
13
14 typedef struct
15 {
16 char *name; /* Must be unique */
17 char *peer_name;
18 BIGNUM *p;
19 BIGNUM *g;
20 BIGNUM *q;
21 BIGNUM *gxc; /* Alice's g^{x3} or Bob's g^{x1} */
22 BIGNUM *gxd; /* Alice's g^{x4} or Bob's g^{x2} */
23 } JPAKE_CTX_PUBLIC;
24
25 struct JPAKE_CTX
26 {
27 JPAKE_CTX_PUBLIC p;
28 BIGNUM *secret; /* The shared secret */
29 BN_CTX *ctx;
30 BIGNUM *xa; /* Alice's x1 or Bob's x3 */
31 BIGNUM *xb; /* Alice's x2 or Bob's x4 */
32 BIGNUM *key; /* The calculated (shared) key */
33 };
34
35 static void JPAKE_ZKP_init(JPAKE_ZKP *zkp)
36 {
37 zkp->gr = BN_new();
38 zkp->b = BN_new();
39 }
40
41 static void JPAKE_ZKP_release(JPAKE_ZKP *zkp)
42 {
43 BN_free(zkp->b);
44 BN_free(zkp->gr);
45 }
46
47 /* Two birds with one stone - make the global name as expected */
48 #define JPAKE_STEP_PART_init JPAKE_STEP2_init
49 #define JPAKE_STEP_PART_release JPAKE_STEP2_release
50
51 void JPAKE_STEP_PART_init(JPAKE_STEP_PART *p)
52 {
53 p->gx = BN_new();
54 JPAKE_ZKP_init(&p->zkpx);
55 }
56
57 void JPAKE_STEP_PART_release(JPAKE_STEP_PART *p)
58 {
59 JPAKE_ZKP_release(&p->zkpx);
60 BN_free(p->gx);
61 }
62
63 void JPAKE_STEP1_init(JPAKE_STEP1 *s1)
64 {
65 JPAKE_STEP_PART_init(&s1->p1);
66 JPAKE_STEP_PART_init(&s1->p2);
67 }
68
69 void JPAKE_STEP1_release(JPAKE_STEP1 *s1)
70 {
71 JPAKE_STEP_PART_release(&s1->p2);
72 JPAKE_STEP_PART_release(&s1->p1);
73 }
74
75 static void JPAKE_CTX_init(JPAKE_CTX *ctx, const char *name,
76 const char *peer_name, const BIGNUM *p,
77 const BIGNUM *g, const BIGNUM *q,
78 const BIGNUM *secret)
79 {
80 ctx->p.name = OPENSSL_strdup(name);
81 ctx->p.peer_name = OPENSSL_strdup(peer_name);
82 ctx->p.p = BN_dup(p);
83 ctx->p.g = BN_dup(g);
84 ctx->p.q = BN_dup(q);
85 ctx->secret = BN_dup(secret);
86
87 ctx->p.gxc = BN_new();
88 ctx->p.gxd = BN_new();
89
90 ctx->xa = BN_new();
91 ctx->xb = BN_new();
92 ctx->key = BN_new();
93 ctx->ctx = BN_CTX_new();
94 }
95
96 static void JPAKE_CTX_release(JPAKE_CTX *ctx)
97 {
98 BN_CTX_free(ctx->ctx);
99 BN_clear_free(ctx->key);
100 BN_clear_free(ctx->xb);
101 BN_clear_free(ctx->xa);
102
103 BN_free(ctx->p.gxd);
104 BN_free(ctx->p.gxc);
105
106 BN_clear_free(ctx->secret);
107 BN_free(ctx->p.q);
108 BN_free(ctx->p.g);
109 BN_free(ctx->p.p);
110 OPENSSL_free(ctx->p.peer_name);
111 OPENSSL_free(ctx->p.name);
112
113 memset(ctx, '\0', sizeof *ctx);
114 }
115
116 JPAKE_CTX *JPAKE_CTX_new(const char *name, const char *peer_name,
117 const BIGNUM *p, const BIGNUM *g, const BIGNUM *q,
118 const BIGNUM *secret)
119 {
120 JPAKE_CTX *ctx = OPENSSL_malloc(sizeof *ctx);
121
122 JPAKE_CTX_init(ctx, name, peer_name, p, g, q, secret);
123
124 return ctx;
125 }
126
127 void JPAKE_CTX_free(JPAKE_CTX *ctx)
128 {
129 JPAKE_CTX_release(ctx);
130 OPENSSL_free(ctx);
131 }
132
133 static void hashlength(SHA_CTX *sha, size_t l)
134 {
135 unsigned char b[2];
136
137 OPENSSL_assert(l <= 0xffff);
138 b[0] = l >> 8;
139 b[1] = l&0xff;
140 SHA1_Update(sha, b, 2);
141 }
142
143 static void hashstring(SHA_CTX *sha, const char *string)
144 {
145 size_t l = strlen(string);
146
147 hashlength(sha, l);
148 SHA1_Update(sha, string, l);
149 }
150
151 static void hashbn(SHA_CTX *sha, const BIGNUM *bn)
152 {
153 size_t l = BN_num_bytes(bn);
154 unsigned char *bin = OPENSSL_malloc(l);
155
156 hashlength(sha, l);
157 BN_bn2bin(bn, bin);
158 SHA1_Update(sha, bin, l);
159 OPENSSL_free(bin);
160 }
161
162 /* h=hash(g, g^r, g^x, name) */
163 static void zkp_hash(BIGNUM *h, const BIGNUM *zkpg, const JPAKE_STEP_PART *p,
164 const char *proof_name)
165 {
166 unsigned char md[SHA_DIGEST_LENGTH];
167 SHA_CTX sha;
168
169 /*
170 * XXX: hash should not allow moving of the boundaries - Java code
171 * is flawed in this respect. Length encoding seems simplest.
172 */
173 SHA1_Init(&sha);
174 hashbn(&sha, zkpg);
175 OPENSSL_assert(!BN_is_zero(p->zkpx.gr));
176 hashbn(&sha, p->zkpx.gr);
177 hashbn(&sha, p->gx);
178 hashstring(&sha, proof_name);
179 SHA1_Final(md, &sha);
180 BN_bin2bn(md, SHA_DIGEST_LENGTH, h);
181 }
182
183 /*
184 * Prove knowledge of x
185 * Note that p->gx has already been calculated
186 */
187 static void generate_zkp(JPAKE_STEP_PART *p, const BIGNUM *x,
188 const BIGNUM *zkpg, JPAKE_CTX *ctx)
189 {
190 BIGNUM *r = BN_new();
191 BIGNUM *h = BN_new();
192 BIGNUM *t = BN_new();
193
194 /*
195 * r in [0,q)
196 * XXX: Java chooses r in [0, 2^160) - i.e. distribution not uniform
197 */
198 BN_rand_range(r, ctx->p.q);
199 /* g^r */
200 BN_mod_exp(p->zkpx.gr, zkpg, r, ctx->p.p, ctx->ctx);
201
202 /* h=hash... */
203 zkp_hash(h, zkpg, p, ctx->p.name);
204
205 /* b = r - x*h */
206 BN_mod_mul(t, x, h, ctx->p.q, ctx->ctx);
207 BN_mod_sub(p->zkpx.b, r, t, ctx->p.q, ctx->ctx);
208
209 /* cleanup */
210 BN_free(t);
211 BN_free(h);
212 BN_free(r);
213 }
214
215 static int verify_zkp(const JPAKE_STEP_PART *p, const BIGNUM *zkpg,
216 JPAKE_CTX *ctx)
217 {
218 BIGNUM *h = BN_new();
219 BIGNUM *t1 = BN_new();
220 BIGNUM *t2 = BN_new();
221 BIGNUM *t3 = BN_new();
222 int ret = 0;
223
224 zkp_hash(h, zkpg, p, ctx->p.peer_name);
225
226 /* t1 = g^b */
227 BN_mod_exp(t1, zkpg, p->zkpx.b, ctx->p.p, ctx->ctx);
228 /* t2 = (g^x)^h = g^{hx} */
229 BN_mod_exp(t2, p->gx, h, ctx->p.p, ctx->ctx);
230 /* t3 = t1 * t2 = g^{hx} * g^b = g^{hx+b} = g^r (allegedly) */
231 BN_mod_mul(t3, t1, t2, ctx->p.p, ctx->ctx);
232
233 /* verify t3 == g^r */
234 if(BN_cmp(t3, p->zkpx.gr) == 0)
235 ret = 1;
236 else
237 JPAKEerr(JPAKE_F_VERIFY_ZKP, JPAKE_R_ZKP_VERIFY_FAILED);
238
239 /* cleanup */
240 BN_free(t3);
241 BN_free(t2);
242 BN_free(t1);
243 BN_free(h);
244
245 return ret;
246 }
247
248 static void generate_step_part(JPAKE_STEP_PART *p, const BIGNUM *x,
249 const BIGNUM *g, JPAKE_CTX *ctx)
250 {
251 BN_mod_exp(p->gx, g, x, ctx->p.p, ctx->ctx);
252 generate_zkp(p, x, g, ctx);
253 }
254
255 /* Generate each party's random numbers. xa is in [0, q), xb is in [1, q). */
256 static void genrand(JPAKE_CTX *ctx)
257 {
258 BIGNUM *qm1;
259
260 /* xa in [0, q) */
261 BN_rand_range(ctx->xa, ctx->p.q);
262
263 /* q-1 */
264 qm1 = BN_new();
265 BN_copy(qm1, ctx->p.q);
266 BN_sub_word(qm1, 1);
267
268 /* ... and xb in [0, q-1) */
269 BN_rand_range(ctx->xb, qm1);
270 /* [1, q) */
271 BN_add_word(ctx->xb, 1);
272
273 /* cleanup */
274 BN_free(qm1);
275 }
276
277 int JPAKE_STEP1_generate(JPAKE_STEP1 *send, JPAKE_CTX *ctx)
278 {
279 genrand(ctx);
280 generate_step_part(&send->p1, ctx->xa, ctx->p.g, ctx);
281 generate_step_part(&send->p2, ctx->xb, ctx->p.g, ctx);
282
283 return 1;
284 }
285
286 /* g^x is a legal value */
287 static int is_legal(const BIGNUM *gx, const JPAKE_CTX *ctx)
288 {
289 BIGNUM *t;
290 int res;
291
292 if(BN_is_negative(gx) || BN_is_zero(gx) || BN_cmp(gx, ctx->p.p) >= 0)
293 return 0;
294
295 t = BN_new();
296 BN_mod_exp(t, gx, ctx->p.q, ctx->p.p, ctx->ctx);
297 res = BN_is_one(t);
298 BN_free(t);
299
300 return res;
301 }
302
303 int JPAKE_STEP1_process(JPAKE_CTX *ctx, const JPAKE_STEP1 *received)
304 {
305 if(!is_legal(received->p1.gx, ctx))
306 {
307 JPAKEerr(JPAKE_F_JPAKE_STEP1_PROCESS, JPAKE_R_G_TO_THE_X3_IS_NOT_LEGAL);
308 return 0;
309 }
310
311 if(!is_legal(received->p2.gx, ctx))
312 {
313 JPAKEerr(JPAKE_F_JPAKE_STEP1_PROCESS, JPAKE_R_G_TO_THE_X4_IS_NOT_LEGAL);
314 return 0;
315 }
316
317 /* verify their ZKP(xc) */
318 if(!verify_zkp(&received->p1, ctx->p.g, ctx))
319 {
320 JPAKEerr(JPAKE_F_JPAKE_STEP1_PROCESS, JPAKE_R_VERIFY_X3_FAILED);
321 return 0;
322 }
323
324 /* verify their ZKP(xd) */
325 if(!verify_zkp(&received->p2, ctx->p.g, ctx))
326 {
327 JPAKEerr(JPAKE_F_JPAKE_STEP1_PROCESS, JPAKE_R_VERIFY_X4_FAILED);
328 return 0;
329 }
330
331 /* g^xd != 1 */
332 if(BN_is_one(received->p2.gx))
333 {
334 JPAKEerr(JPAKE_F_JPAKE_STEP1_PROCESS, JPAKE_R_G_TO_THE_X4_IS_ONE);
335 return 0;
336 }
337
338 /* Save the bits we need for later */
339 BN_copy(ctx->p.gxc, received->p1.gx);
340 BN_copy(ctx->p.gxd, received->p2.gx);
341
342 return 1;
343 }
344
345
346 int JPAKE_STEP2_generate(JPAKE_STEP2 *send, JPAKE_CTX *ctx)
347 {
348 BIGNUM *t1 = BN_new();
349 BIGNUM *t2 = BN_new();
350
351 /*-
352 * X = g^{(xa + xc + xd) * xb * s}
353 * t1 = g^xa
354 */
355 BN_mod_exp(t1, ctx->p.g, ctx->xa, ctx->p.p, ctx->ctx);
356 /* t2 = t1 * g^{xc} = g^{xa} * g^{xc} = g^{xa + xc} */
357 BN_mod_mul(t2, t1, ctx->p.gxc, ctx->p.p, ctx->ctx);
358 /* t1 = t2 * g^{xd} = g^{xa + xc + xd} */
359 BN_mod_mul(t1, t2, ctx->p.gxd, ctx->p.p, ctx->ctx);
360 /* t2 = xb * s */
361 BN_mod_mul(t2, ctx->xb, ctx->secret, ctx->p.q, ctx->ctx);
362
363 /*-
364 * ZKP(xb * s)
365 * XXX: this is kinda funky, because we're using
366 *
367 * g' = g^{xa + xc + xd}
368 *
369 * as the generator, which means X is g'^{xb * s}
370 * X = t1^{t2} = t1^{xb * s} = g^{(xa + xc + xd) * xb * s}
371 */
372 generate_step_part(send, t2, t1, ctx);
373
374 /* cleanup */
375 BN_free(t1);
376 BN_free(t2);
377
378 return 1;
379 }
380
381 /* gx = g^{xc + xa + xb} * xd * s */
382 static int compute_key(JPAKE_CTX *ctx, const BIGNUM *gx)
383 {
384 BIGNUM *t1 = BN_new();
385 BIGNUM *t2 = BN_new();
386 BIGNUM *t3 = BN_new();
387
388 /*-
389 * K = (gx/g^{xb * xd * s})^{xb}
390 * = (g^{(xc + xa + xb) * xd * s - xb * xd *s})^{xb}
391 * = (g^{(xa + xc) * xd * s})^{xb}
392 * = g^{(xa + xc) * xb * xd * s}
393 * [which is the same regardless of who calculates it]
394 */
395
396 /* t1 = (g^{xd})^{xb} = g^{xb * xd} */
397 BN_mod_exp(t1, ctx->p.gxd, ctx->xb, ctx->p.p, ctx->ctx);
398 /* t2 = -s = q-s */
399 BN_sub(t2, ctx->p.q, ctx->secret);
400 /* t3 = t1^t2 = g^{-xb * xd * s} */
401 BN_mod_exp(t3, t1, t2, ctx->p.p, ctx->ctx);
402 /* t1 = gx * t3 = X/g^{xb * xd * s} */
403 BN_mod_mul(t1, gx, t3, ctx->p.p, ctx->ctx);
404 /* K = t1^{xb} */
405 BN_mod_exp(ctx->key, t1, ctx->xb, ctx->p.p, ctx->ctx);
406
407 /* cleanup */
408 BN_free(t3);
409 BN_free(t2);
410 BN_free(t1);
411
412 return 1;
413 }
414
415 int JPAKE_STEP2_process(JPAKE_CTX *ctx, const JPAKE_STEP2 *received)
416 {
417 BIGNUM *t1 = BN_new();
418 BIGNUM *t2 = BN_new();
419 int ret = 0;
420
421 /*-
422 * g' = g^{xc + xa + xb} [from our POV]
423 * t1 = xa + xb
424 */
425 BN_mod_add(t1, ctx->xa, ctx->xb, ctx->p.q, ctx->ctx);
426 /* t2 = g^{t1} = g^{xa+xb} */
427 BN_mod_exp(t2, ctx->p.g, t1, ctx->p.p, ctx->ctx);
428 /* t1 = g^{xc} * t2 = g^{xc + xa + xb} */
429 BN_mod_mul(t1, ctx->p.gxc, t2, ctx->p.p, ctx->ctx);
430
431 if(verify_zkp(received, t1, ctx))
432 ret = 1;
433 else
434 JPAKEerr(JPAKE_F_JPAKE_STEP2_PROCESS, JPAKE_R_VERIFY_B_FAILED);
435
436 compute_key(ctx, received->gx);
437
438 /* cleanup */
439 BN_free(t2);
440 BN_free(t1);
441
442 return ret;
443 }
444
445 static void quickhashbn(unsigned char *md, const BIGNUM *bn)
446 {
447 SHA_CTX sha;
448
449 SHA1_Init(&sha);
450 hashbn(&sha, bn);
451 SHA1_Final(md, &sha);
452 }
453
454 void JPAKE_STEP3A_init(JPAKE_STEP3A *s3a)
455 {}
456
457 int JPAKE_STEP3A_generate(JPAKE_STEP3A *send, JPAKE_CTX *ctx)
458 {
459 quickhashbn(send->hhk, ctx->key);
460 SHA1(send->hhk, sizeof send->hhk, send->hhk);
461
462 return 1;
463 }
464
465 int JPAKE_STEP3A_process(JPAKE_CTX *ctx, const JPAKE_STEP3A *received)
466 {
467 unsigned char hhk[SHA_DIGEST_LENGTH];
468
469 quickhashbn(hhk, ctx->key);
470 SHA1(hhk, sizeof hhk, hhk);
471 if(memcmp(hhk, received->hhk, sizeof hhk))
472 {
473 JPAKEerr(JPAKE_F_JPAKE_STEP3A_PROCESS, JPAKE_R_HASH_OF_HASH_OF_KEY_MISMATCH);
474 return 0;
475 }
476 return 1;
477 }
478
479 void JPAKE_STEP3A_release(JPAKE_STEP3A *s3a)
480 {}
481
482 void JPAKE_STEP3B_init(JPAKE_STEP3B *s3b)
483 {}
484
485 int JPAKE_STEP3B_generate(JPAKE_STEP3B *send, JPAKE_CTX *ctx)
486 {
487 quickhashbn(send->hk, ctx->key);
488
489 return 1;
490 }
491
492 int JPAKE_STEP3B_process(JPAKE_CTX *ctx, const JPAKE_STEP3B *received)
493 {
494 unsigned char hk[SHA_DIGEST_LENGTH];
495
496 quickhashbn(hk, ctx->key);
497 if(memcmp(hk, received->hk, sizeof hk))
498 {
499 JPAKEerr(JPAKE_F_JPAKE_STEP3B_PROCESS, JPAKE_R_HASH_OF_KEY_MISMATCH);
500 return 0;
501 }
502 return 1;
503 }
504
505 void JPAKE_STEP3B_release(JPAKE_STEP3B *s3b)
506 {}
507
508 const BIGNUM *JPAKE_get_shared_key(JPAKE_CTX *ctx)
509 {
510 return ctx->key;
511 }
512