]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/rand/md_rand.c
cfc78774f72fed7b76689983097a4366cd955a8e
[thirdparty/openssl.git] / crypto / rand / md_rand.c
1 /* crypto/rand/md_rand.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young's, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word 'cryptographic' can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58 /* ====================================================================
59 * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without
62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in
70 * the documentation and/or other materials provided with the
71 * distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 * software must display the following acknowledgment:
75 * "This product includes software developed by the OpenSSL Project
76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 * endorse or promote products derived from this software without
80 * prior written permission. For written permission, please contact
81 * openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 * nor may "OpenSSL" appear in their names without prior written
85 * permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 * acknowledgment:
89 * "This product includes software developed by the OpenSSL Project
90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ====================================================================
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com). This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */
111
112 #ifdef MD_RAND_DEBUG
113 # ifndef NDEBUG
114 # define NDEBUG
115 # endif
116 #endif
117
118 #include <assert.h>
119 #include <stdio.h>
120 #include <string.h>
121
122 #include "e_os.h"
123
124 #include <openssl/rand.h>
125 #include "rand_lcl.h"
126
127 #include <openssl/crypto.h>
128 #include <openssl/err.h>
129
130 #ifdef BN_DEBUG
131 # define PREDICT
132 #endif
133
134 /* #define PREDICT 1 */
135
136 #define STATE_SIZE 1023
137 static int state_num=0,state_index=0;
138 static unsigned char state[STATE_SIZE+MD_DIGEST_LENGTH];
139 static unsigned char md[MD_DIGEST_LENGTH];
140 static long md_count[2]={0,0};
141 static double entropy=0;
142 static int initialized=0;
143
144 static unsigned int crypto_lock_rand = 0; /* may be set only when a thread
145 * holds CRYPTO_LOCK_RAND
146 * (to prevent double locking) */
147 /* access to lockin_thread is synchronized by CRYPTO_LOCK_RAND2 */
148 static unsigned long locking_thread_id = 0; /* valid iff crypto_lock_rand is set */
149 static void *locking_thread_idptr = NULL; /* valid iff crypto_lock_rand is set */
150
151
152 #ifdef PREDICT
153 int rand_predictable=0;
154 #endif
155
156 const char RAND_version[]="RAND" OPENSSL_VERSION_PTEXT;
157
158 static void ssleay_rand_cleanup(void);
159 static void ssleay_rand_seed(const void *buf, int num);
160 static void ssleay_rand_add(const void *buf, int num, double add_entropy);
161 static int ssleay_rand_bytes(unsigned char *buf, int num);
162 static int ssleay_rand_pseudo_bytes(unsigned char *buf, int num);
163 static int ssleay_rand_status(void);
164
165 RAND_METHOD rand_ssleay_meth={
166 ssleay_rand_seed,
167 ssleay_rand_bytes,
168 ssleay_rand_cleanup,
169 ssleay_rand_add,
170 ssleay_rand_pseudo_bytes,
171 ssleay_rand_status
172 };
173
174 RAND_METHOD *RAND_SSLeay(void)
175 {
176 return(&rand_ssleay_meth);
177 }
178
179 static void ssleay_rand_cleanup(void)
180 {
181 OPENSSL_cleanse(state,sizeof(state));
182 state_num=0;
183 state_index=0;
184 OPENSSL_cleanse(md,MD_DIGEST_LENGTH);
185 md_count[0]=0;
186 md_count[1]=0;
187 entropy=0;
188 initialized=0;
189 }
190
191 static void ssleay_rand_add(const void *buf, int num, double add)
192 {
193 int i,j,k,st_idx;
194 long md_c[2];
195 unsigned char local_md[MD_DIGEST_LENGTH];
196 EVP_MD_CTX m;
197 int do_not_lock;
198
199 /*
200 * (Based on the rand(3) manpage)
201 *
202 * The input is chopped up into units of 20 bytes (or less for
203 * the last block). Each of these blocks is run through the hash
204 * function as follows: The data passed to the hash function
205 * is the current 'md', the same number of bytes from the 'state'
206 * (the location determined by in incremented looping index) as
207 * the current 'block', the new key data 'block', and 'count'
208 * (which is incremented after each use).
209 * The result of this is kept in 'md' and also xored into the
210 * 'state' at the same locations that were used as input into the
211 * hash function.
212 */
213
214 /* check if we already have the lock */
215 if (crypto_lock_rand)
216 {
217 CRYPTO_r_lock(CRYPTO_LOCK_RAND2);
218 do_not_lock = (locking_thread_id == CRYPTO_thread_id()) && (locking_thread_idptr == CRYPTO_thread_idptr());
219 CRYPTO_r_unlock(CRYPTO_LOCK_RAND2);
220 }
221 else
222 do_not_lock = 0;
223
224 if (!do_not_lock) CRYPTO_w_lock(CRYPTO_LOCK_RAND);
225 st_idx=state_index;
226
227 /* use our own copies of the counters so that even
228 * if a concurrent thread seeds with exactly the
229 * same data and uses the same subarray there's _some_
230 * difference */
231 md_c[0] = md_count[0];
232 md_c[1] = md_count[1];
233
234 memcpy(local_md, md, sizeof md);
235
236 /* state_index <= state_num <= STATE_SIZE */
237 state_index += num;
238 if (state_index >= STATE_SIZE)
239 {
240 state_index%=STATE_SIZE;
241 state_num=STATE_SIZE;
242 }
243 else if (state_num < STATE_SIZE)
244 {
245 if (state_index > state_num)
246 state_num=state_index;
247 }
248 /* state_index <= state_num <= STATE_SIZE */
249
250 /* state[st_idx], ..., state[(st_idx + num - 1) % STATE_SIZE]
251 * are what we will use now, but other threads may use them
252 * as well */
253
254 md_count[1] += (num / MD_DIGEST_LENGTH) + (num % MD_DIGEST_LENGTH > 0);
255
256 if (!do_not_lock) CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
257
258 EVP_MD_CTX_init(&m);
259 for (i=0; i<num; i+=MD_DIGEST_LENGTH)
260 {
261 j=(num-i);
262 j=(j > MD_DIGEST_LENGTH)?MD_DIGEST_LENGTH:j;
263
264 MD_Init(&m);
265 MD_Update(&m,local_md,MD_DIGEST_LENGTH);
266 k=(st_idx+j)-STATE_SIZE;
267 if (k > 0)
268 {
269 MD_Update(&m,&(state[st_idx]),j-k);
270 MD_Update(&m,&(state[0]),k);
271 }
272 else
273 MD_Update(&m,&(state[st_idx]),j);
274
275 MD_Update(&m,buf,j);
276 MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c));
277 MD_Final(&m,local_md);
278 md_c[1]++;
279
280 buf=(const char *)buf + j;
281
282 for (k=0; k<j; k++)
283 {
284 /* Parallel threads may interfere with this,
285 * but always each byte of the new state is
286 * the XOR of some previous value of its
287 * and local_md (itermediate values may be lost).
288 * Alway using locking could hurt performance more
289 * than necessary given that conflicts occur only
290 * when the total seeding is longer than the random
291 * state. */
292 state[st_idx++]^=local_md[k];
293 if (st_idx >= STATE_SIZE)
294 st_idx=0;
295 }
296 }
297 EVP_MD_CTX_cleanup(&m);
298
299 if (!do_not_lock) CRYPTO_w_lock(CRYPTO_LOCK_RAND);
300 /* Don't just copy back local_md into md -- this could mean that
301 * other thread's seeding remains without effect (except for
302 * the incremented counter). By XORing it we keep at least as
303 * much entropy as fits into md. */
304 for (k = 0; k < (int)sizeof(md); k++)
305 {
306 md[k] ^= local_md[k];
307 }
308 if (entropy < ENTROPY_NEEDED) /* stop counting when we have enough */
309 entropy += add;
310 if (!do_not_lock) CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
311
312 #if !defined(OPENSSL_THREADS) && !defined(OPENSSL_SYS_WIN32)
313 assert(md_c[1] == md_count[1]);
314 #endif
315 }
316
317 static void ssleay_rand_seed(const void *buf, int num)
318 {
319 ssleay_rand_add(buf, num, (double)num);
320 }
321
322 static int ssleay_rand_bytes(unsigned char *buf, int num)
323 {
324 static volatile int stirred_pool = 0;
325 int i,j,k,st_num,st_idx;
326 int num_ceil;
327 int ok;
328 long md_c[2];
329 unsigned char local_md[MD_DIGEST_LENGTH];
330 EVP_MD_CTX m;
331 #ifndef GETPID_IS_MEANINGLESS
332 pid_t curr_pid = getpid();
333 #endif
334 int do_stir_pool = 0;
335
336 #ifdef PREDICT
337 if (rand_predictable)
338 {
339 static unsigned char val=0;
340
341 for (i=0; i<num; i++)
342 buf[i]=val++;
343 return(1);
344 }
345 #endif
346
347 if (num <= 0)
348 return 1;
349
350 EVP_MD_CTX_init(&m);
351 /* round upwards to multiple of MD_DIGEST_LENGTH/2 */
352 num_ceil = (1 + (num-1)/(MD_DIGEST_LENGTH/2)) * (MD_DIGEST_LENGTH/2);
353
354 /*
355 * (Based on the rand(3) manpage:)
356 *
357 * For each group of 10 bytes (or less), we do the following:
358 *
359 * Input into the hash function the local 'md' (which is initialized from
360 * the global 'md' before any bytes are generated), the bytes that are to
361 * be overwritten by the random bytes, and bytes from the 'state'
362 * (incrementing looping index). From this digest output (which is kept
363 * in 'md'), the top (up to) 10 bytes are returned to the caller and the
364 * bottom 10 bytes are xored into the 'state'.
365 *
366 * Finally, after we have finished 'num' random bytes for the
367 * caller, 'count' (which is incremented) and the local and global 'md'
368 * are fed into the hash function and the results are kept in the
369 * global 'md'.
370 */
371
372 CRYPTO_w_lock(CRYPTO_LOCK_RAND);
373
374 /* prevent ssleay_rand_bytes() from trying to obtain the lock again */
375 CRYPTO_w_lock(CRYPTO_LOCK_RAND2);
376 locking_thread_id = CRYPTO_thread_id();
377 locking_thread_idptr = CRYPTO_thread_idptr();
378 CRYPTO_w_unlock(CRYPTO_LOCK_RAND2);
379 crypto_lock_rand = 1;
380
381 if (!initialized)
382 {
383 RAND_poll();
384 initialized = 1;
385 }
386
387 if (!stirred_pool)
388 do_stir_pool = 1;
389
390 ok = (entropy >= ENTROPY_NEEDED);
391 if (!ok)
392 {
393 /* If the PRNG state is not yet unpredictable, then seeing
394 * the PRNG output may help attackers to determine the new
395 * state; thus we have to decrease the entropy estimate.
396 * Once we've had enough initial seeding we don't bother to
397 * adjust the entropy count, though, because we're not ambitious
398 * to provide *information-theoretic* randomness.
399 *
400 * NOTE: This approach fails if the program forks before
401 * we have enough entropy. Entropy should be collected
402 * in a separate input pool and be transferred to the
403 * output pool only when the entropy limit has been reached.
404 */
405 entropy -= num;
406 if (entropy < 0)
407 entropy = 0;
408 }
409
410 if (do_stir_pool)
411 {
412 /* In the output function only half of 'md' remains secret,
413 * so we better make sure that the required entropy gets
414 * 'evenly distributed' through 'state', our randomness pool.
415 * The input function (ssleay_rand_add) chains all of 'md',
416 * which makes it more suitable for this purpose.
417 */
418
419 int n = STATE_SIZE; /* so that the complete pool gets accessed */
420 while (n > 0)
421 {
422 #if MD_DIGEST_LENGTH > 20
423 # error "Please adjust DUMMY_SEED."
424 #endif
425 #define DUMMY_SEED "...................." /* at least MD_DIGEST_LENGTH */
426 /* Note that the seed does not matter, it's just that
427 * ssleay_rand_add expects to have something to hash. */
428 ssleay_rand_add(DUMMY_SEED, MD_DIGEST_LENGTH, 0.0);
429 n -= MD_DIGEST_LENGTH;
430 }
431 if (ok)
432 stirred_pool = 1;
433 }
434
435 st_idx=state_index;
436 st_num=state_num;
437 md_c[0] = md_count[0];
438 md_c[1] = md_count[1];
439 memcpy(local_md, md, sizeof md);
440
441 state_index+=num_ceil;
442 if (state_index > state_num)
443 state_index %= state_num;
444
445 /* state[st_idx], ..., state[(st_idx + num_ceil - 1) % st_num]
446 * are now ours (but other threads may use them too) */
447
448 md_count[0] += 1;
449
450 /* before unlocking, we must clear 'crypto_lock_rand' */
451 crypto_lock_rand = 0;
452 CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
453
454 while (num > 0)
455 {
456 /* num_ceil -= MD_DIGEST_LENGTH/2 */
457 j=(num >= MD_DIGEST_LENGTH/2)?MD_DIGEST_LENGTH/2:num;
458 num-=j;
459 MD_Init(&m);
460 #ifndef GETPID_IS_MEANINGLESS
461 if (curr_pid) /* just in the first iteration to save time */
462 {
463 MD_Update(&m,(unsigned char*)&curr_pid,sizeof curr_pid);
464 curr_pid = 0;
465 }
466 #endif
467 MD_Update(&m,local_md,MD_DIGEST_LENGTH);
468 MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c));
469 #ifndef PURIFY
470 MD_Update(&m,buf,j); /* purify complains */
471 #endif
472 k=(st_idx+MD_DIGEST_LENGTH/2)-st_num;
473 if (k > 0)
474 {
475 MD_Update(&m,&(state[st_idx]),MD_DIGEST_LENGTH/2-k);
476 MD_Update(&m,&(state[0]),k);
477 }
478 else
479 MD_Update(&m,&(state[st_idx]),MD_DIGEST_LENGTH/2);
480 MD_Final(&m,local_md);
481
482 for (i=0; i<MD_DIGEST_LENGTH/2; i++)
483 {
484 state[st_idx++]^=local_md[i]; /* may compete with other threads */
485 if (st_idx >= st_num)
486 st_idx=0;
487 if (i < j)
488 *(buf++)=local_md[i+MD_DIGEST_LENGTH/2];
489 }
490 }
491
492 MD_Init(&m);
493 MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c));
494 MD_Update(&m,local_md,MD_DIGEST_LENGTH);
495 CRYPTO_w_lock(CRYPTO_LOCK_RAND);
496 MD_Update(&m,md,MD_DIGEST_LENGTH);
497 MD_Final(&m,md);
498 CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
499
500 EVP_MD_CTX_cleanup(&m);
501 if (ok)
502 return(1);
503 else
504 {
505 RANDerr(RAND_F_SSLEAY_RAND_BYTES,RAND_R_PRNG_NOT_SEEDED);
506 ERR_add_error_data(1, "You need to read the OpenSSL FAQ, "
507 "http://www.openssl.org/support/faq.html");
508 return(0);
509 }
510 }
511
512 /* pseudo-random bytes that are guaranteed to be unique but not
513 unpredictable */
514 static int ssleay_rand_pseudo_bytes(unsigned char *buf, int num)
515 {
516 int ret;
517 unsigned long err;
518
519 ret = RAND_bytes(buf, num);
520 if (ret == 0)
521 {
522 err = ERR_peek_error();
523 if (ERR_GET_LIB(err) == ERR_LIB_RAND &&
524 ERR_GET_REASON(err) == RAND_R_PRNG_NOT_SEEDED)
525 ERR_clear_error();
526 }
527 return (ret);
528 }
529
530 static int ssleay_rand_status(void)
531 {
532 int ret;
533 int do_not_lock;
534
535 /* check if we already have the lock
536 * (could happen if a RAND_poll() implementation calls RAND_status()) */
537 if (crypto_lock_rand)
538 {
539 CRYPTO_r_lock(CRYPTO_LOCK_RAND2);
540 do_not_lock = (locking_thread_id == CRYPTO_thread_id()) && (locking_thread_idptr == CRYPTO_thread_idptr());
541 CRYPTO_r_unlock(CRYPTO_LOCK_RAND2);
542 }
543 else
544 do_not_lock = 0;
545
546 if (!do_not_lock)
547 {
548 CRYPTO_w_lock(CRYPTO_LOCK_RAND);
549
550 /* prevent ssleay_rand_bytes() from trying to obtain the lock again */
551 CRYPTO_w_lock(CRYPTO_LOCK_RAND2);
552 locking_thread_id = CRYPTO_thread_id();
553 locking_thread_idptr = CRYPTO_thread_idptr();
554 CRYPTO_w_unlock(CRYPTO_LOCK_RAND2);
555 crypto_lock_rand = 1;
556 }
557
558 if (!initialized)
559 {
560 RAND_poll();
561 initialized = 1;
562 }
563
564 ret = entropy >= ENTROPY_NEEDED;
565
566 if (!do_not_lock)
567 {
568 /* before unlocking, we must clear 'crypto_lock_rand' */
569 crypto_lock_rand = 0;
570
571 CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
572 }
573
574 return ret;
575 }