]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/rsa/rsa_gen.c
Deprecate the low level RSA functions.
[thirdparty/openssl.git] / crypto / rsa / rsa_gen.c
1 /*
2 * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 /*
11 * NB: these functions have been "upgraded", the deprecated versions (which
12 * are compatibility wrappers using these functions) are in rsa_depr.c. -
13 * Geoff
14 */
15
16 /*
17 * RSA low level APIs are deprecated for public use, but still ok for
18 * internal use.
19 */
20 #include "internal/deprecated.h"
21
22 #include <stdio.h>
23 #include <time.h>
24 #include "internal/cryptlib.h"
25 #include <openssl/bn.h>
26 #include "rsa_local.h"
27
28 static int rsa_builtin_keygen(RSA *rsa, int bits, int primes, BIGNUM *e_value,
29 BN_GENCB *cb);
30
31 /*
32 * NB: this wrapper would normally be placed in rsa_lib.c and the static
33 * implementation would probably be in rsa_eay.c. Nonetheless, is kept here
34 * so that we don't introduce a new linker dependency. Eg. any application
35 * that wasn't previously linking object code related to key-generation won't
36 * have to now just because key-generation is part of RSA_METHOD.
37 */
38 int RSA_generate_key_ex(RSA *rsa, int bits, BIGNUM *e_value, BN_GENCB *cb)
39 {
40 if (rsa->meth->rsa_keygen != NULL)
41 return rsa->meth->rsa_keygen(rsa, bits, e_value, cb);
42
43 return RSA_generate_multi_prime_key(rsa, bits, RSA_DEFAULT_PRIME_NUM,
44 e_value, cb);
45 }
46
47 int RSA_generate_multi_prime_key(RSA *rsa, int bits, int primes,
48 BIGNUM *e_value, BN_GENCB *cb)
49 {
50 #ifndef FIPS_MODE
51 /* multi-prime is only supported with the builtin key generation */
52 if (rsa->meth->rsa_multi_prime_keygen != NULL) {
53 return rsa->meth->rsa_multi_prime_keygen(rsa, bits, primes,
54 e_value, cb);
55 } else if (rsa->meth->rsa_keygen != NULL) {
56 /*
57 * However, if rsa->meth implements only rsa_keygen, then we
58 * have to honour it in 2-prime case and assume that it wouldn't
59 * know what to do with multi-prime key generated by builtin
60 * subroutine...
61 */
62 if (primes == 2)
63 return rsa->meth->rsa_keygen(rsa, bits, e_value, cb);
64 else
65 return 0;
66 }
67 #endif /* FIPS_MODE */
68 return rsa_builtin_keygen(rsa, bits, primes, e_value, cb);
69 }
70
71 static int rsa_builtin_keygen(RSA *rsa, int bits, int primes, BIGNUM *e_value,
72 BN_GENCB *cb)
73 {
74 #ifdef FIPS_MODE
75 if (primes != 2)
76 return 0;
77 return rsa_sp800_56b_generate_key(rsa, bits, e_value, cb);
78 #else
79 BIGNUM *r0 = NULL, *r1 = NULL, *r2 = NULL, *tmp, *prime;
80 int ok = -1, n = 0, bitsr[RSA_MAX_PRIME_NUM], bitse = 0;
81 int i = 0, quo = 0, rmd = 0, adj = 0, retries = 0;
82 RSA_PRIME_INFO *pinfo = NULL;
83 STACK_OF(RSA_PRIME_INFO) *prime_infos = NULL;
84 BN_CTX *ctx = NULL;
85 BN_ULONG bitst = 0;
86 unsigned long error = 0;
87
88 if (bits < RSA_MIN_MODULUS_BITS) {
89 ok = 0; /* we set our own err */
90 RSAerr(RSA_F_RSA_BUILTIN_KEYGEN, RSA_R_KEY_SIZE_TOO_SMALL);
91 goto err;
92 }
93
94 if (primes < RSA_DEFAULT_PRIME_NUM || primes > rsa_multip_cap(bits)) {
95 ok = 0; /* we set our own err */
96 RSAerr(RSA_F_RSA_BUILTIN_KEYGEN, RSA_R_KEY_PRIME_NUM_INVALID);
97 goto err;
98 }
99
100 ctx = BN_CTX_new();
101 if (ctx == NULL)
102 goto err;
103 BN_CTX_start(ctx);
104 r0 = BN_CTX_get(ctx);
105 r1 = BN_CTX_get(ctx);
106 r2 = BN_CTX_get(ctx);
107 if (r2 == NULL)
108 goto err;
109
110 /* divide bits into 'primes' pieces evenly */
111 quo = bits / primes;
112 rmd = bits % primes;
113
114 for (i = 0; i < primes; i++)
115 bitsr[i] = (i < rmd) ? quo + 1 : quo;
116
117 rsa->dirty_cnt++;
118
119 /* We need the RSA components non-NULL */
120 if (!rsa->n && ((rsa->n = BN_new()) == NULL))
121 goto err;
122 if (!rsa->d && ((rsa->d = BN_secure_new()) == NULL))
123 goto err;
124 if (!rsa->e && ((rsa->e = BN_new()) == NULL))
125 goto err;
126 if (!rsa->p && ((rsa->p = BN_secure_new()) == NULL))
127 goto err;
128 if (!rsa->q && ((rsa->q = BN_secure_new()) == NULL))
129 goto err;
130 if (!rsa->dmp1 && ((rsa->dmp1 = BN_secure_new()) == NULL))
131 goto err;
132 if (!rsa->dmq1 && ((rsa->dmq1 = BN_secure_new()) == NULL))
133 goto err;
134 if (!rsa->iqmp && ((rsa->iqmp = BN_secure_new()) == NULL))
135 goto err;
136
137 /* initialize multi-prime components */
138 if (primes > RSA_DEFAULT_PRIME_NUM) {
139 rsa->version = RSA_ASN1_VERSION_MULTI;
140 prime_infos = sk_RSA_PRIME_INFO_new_reserve(NULL, primes - 2);
141 if (prime_infos == NULL)
142 goto err;
143 if (rsa->prime_infos != NULL) {
144 /* could this happen? */
145 sk_RSA_PRIME_INFO_pop_free(rsa->prime_infos, rsa_multip_info_free);
146 }
147 rsa->prime_infos = prime_infos;
148
149 /* prime_info from 2 to |primes| -1 */
150 for (i = 2; i < primes; i++) {
151 pinfo = rsa_multip_info_new();
152 if (pinfo == NULL)
153 goto err;
154 (void)sk_RSA_PRIME_INFO_push(prime_infos, pinfo);
155 }
156 }
157
158 if (BN_copy(rsa->e, e_value) == NULL)
159 goto err;
160
161 /* generate p, q and other primes (if any) */
162 for (i = 0; i < primes; i++) {
163 adj = 0;
164 retries = 0;
165
166 if (i == 0) {
167 prime = rsa->p;
168 } else if (i == 1) {
169 prime = rsa->q;
170 } else {
171 pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);
172 prime = pinfo->r;
173 }
174 BN_set_flags(prime, BN_FLG_CONSTTIME);
175
176 for (;;) {
177 redo:
178 if (!BN_generate_prime_ex(prime, bitsr[i] + adj, 0, NULL, NULL, cb))
179 goto err;
180 /*
181 * prime should not be equal to p, q, r_3...
182 * (those primes prior to this one)
183 */
184 {
185 int j;
186
187 for (j = 0; j < i; j++) {
188 BIGNUM *prev_prime;
189
190 if (j == 0)
191 prev_prime = rsa->p;
192 else if (j == 1)
193 prev_prime = rsa->q;
194 else
195 prev_prime = sk_RSA_PRIME_INFO_value(prime_infos,
196 j - 2)->r;
197
198 if (!BN_cmp(prime, prev_prime)) {
199 goto redo;
200 }
201 }
202 }
203 if (!BN_sub(r2, prime, BN_value_one()))
204 goto err;
205 ERR_set_mark();
206 BN_set_flags(r2, BN_FLG_CONSTTIME);
207 if (BN_mod_inverse(r1, r2, rsa->e, ctx) != NULL) {
208 /* GCD == 1 since inverse exists */
209 break;
210 }
211 error = ERR_peek_last_error();
212 if (ERR_GET_LIB(error) == ERR_LIB_BN
213 && ERR_GET_REASON(error) == BN_R_NO_INVERSE) {
214 /* GCD != 1 */
215 ERR_pop_to_mark();
216 } else {
217 goto err;
218 }
219 if (!BN_GENCB_call(cb, 2, n++))
220 goto err;
221 }
222
223 bitse += bitsr[i];
224
225 /* calculate n immediately to see if it's sufficient */
226 if (i == 1) {
227 /* we get at least 2 primes */
228 if (!BN_mul(r1, rsa->p, rsa->q, ctx))
229 goto err;
230 } else if (i != 0) {
231 /* modulus n = p * q * r_3 * r_4 ... */
232 if (!BN_mul(r1, rsa->n, prime, ctx))
233 goto err;
234 } else {
235 /* i == 0, do nothing */
236 if (!BN_GENCB_call(cb, 3, i))
237 goto err;
238 continue;
239 }
240 /*
241 * if |r1|, product of factors so far, is not as long as expected
242 * (by checking the first 4 bits are less than 0x9 or greater than
243 * 0xF). If so, re-generate the last prime.
244 *
245 * NOTE: This actually can't happen in two-prime case, because of
246 * the way factors are generated.
247 *
248 * Besides, another consideration is, for multi-prime case, even the
249 * length modulus is as long as expected, the modulus could start at
250 * 0x8, which could be utilized to distinguish a multi-prime private
251 * key by using the modulus in a certificate. This is also covered
252 * by checking the length should not be less than 0x9.
253 */
254 if (!BN_rshift(r2, r1, bitse - 4))
255 goto err;
256 bitst = BN_get_word(r2);
257
258 if (bitst < 0x9 || bitst > 0xF) {
259 /*
260 * For keys with more than 4 primes, we attempt longer factor to
261 * meet length requirement.
262 *
263 * Otherwise, we just re-generate the prime with the same length.
264 *
265 * This strategy has the following goals:
266 *
267 * 1. 1024-bit factors are efficient when using 3072 and 4096-bit key
268 * 2. stay the same logic with normal 2-prime key
269 */
270 bitse -= bitsr[i];
271 if (!BN_GENCB_call(cb, 2, n++))
272 goto err;
273 if (primes > 4) {
274 if (bitst < 0x9)
275 adj++;
276 else
277 adj--;
278 } else if (retries == 4) {
279 /*
280 * re-generate all primes from scratch, mainly used
281 * in 4 prime case to avoid long loop. Max retry times
282 * is set to 4.
283 */
284 i = -1;
285 bitse = 0;
286 continue;
287 }
288 retries++;
289 goto redo;
290 }
291 /* save product of primes for further use, for multi-prime only */
292 if (i > 1 && BN_copy(pinfo->pp, rsa->n) == NULL)
293 goto err;
294 if (BN_copy(rsa->n, r1) == NULL)
295 goto err;
296 if (!BN_GENCB_call(cb, 3, i))
297 goto err;
298 }
299
300 if (BN_cmp(rsa->p, rsa->q) < 0) {
301 tmp = rsa->p;
302 rsa->p = rsa->q;
303 rsa->q = tmp;
304 }
305
306 /* calculate d */
307
308 /* p - 1 */
309 if (!BN_sub(r1, rsa->p, BN_value_one()))
310 goto err;
311 /* q - 1 */
312 if (!BN_sub(r2, rsa->q, BN_value_one()))
313 goto err;
314 /* (p - 1)(q - 1) */
315 if (!BN_mul(r0, r1, r2, ctx))
316 goto err;
317 /* multi-prime */
318 for (i = 2; i < primes; i++) {
319 pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);
320 /* save r_i - 1 to pinfo->d temporarily */
321 if (!BN_sub(pinfo->d, pinfo->r, BN_value_one()))
322 goto err;
323 if (!BN_mul(r0, r0, pinfo->d, ctx))
324 goto err;
325 }
326
327 {
328 BIGNUM *pr0 = BN_new();
329
330 if (pr0 == NULL)
331 goto err;
332
333 BN_with_flags(pr0, r0, BN_FLG_CONSTTIME);
334 if (!BN_mod_inverse(rsa->d, rsa->e, pr0, ctx)) {
335 BN_free(pr0);
336 goto err; /* d */
337 }
338 /* We MUST free pr0 before any further use of r0 */
339 BN_free(pr0);
340 }
341
342 {
343 BIGNUM *d = BN_new();
344
345 if (d == NULL)
346 goto err;
347
348 BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME);
349
350 /* calculate d mod (p-1) and d mod (q - 1) */
351 if (!BN_mod(rsa->dmp1, d, r1, ctx)
352 || !BN_mod(rsa->dmq1, d, r2, ctx)) {
353 BN_free(d);
354 goto err;
355 }
356
357 /* calculate CRT exponents */
358 for (i = 2; i < primes; i++) {
359 pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);
360 /* pinfo->d == r_i - 1 */
361 if (!BN_mod(pinfo->d, d, pinfo->d, ctx)) {
362 BN_free(d);
363 goto err;
364 }
365 }
366
367 /* We MUST free d before any further use of rsa->d */
368 BN_free(d);
369 }
370
371 {
372 BIGNUM *p = BN_new();
373
374 if (p == NULL)
375 goto err;
376 BN_with_flags(p, rsa->p, BN_FLG_CONSTTIME);
377
378 /* calculate inverse of q mod p */
379 if (!BN_mod_inverse(rsa->iqmp, rsa->q, p, ctx)) {
380 BN_free(p);
381 goto err;
382 }
383
384 /* calculate CRT coefficient for other primes */
385 for (i = 2; i < primes; i++) {
386 pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);
387 BN_with_flags(p, pinfo->r, BN_FLG_CONSTTIME);
388 if (!BN_mod_inverse(pinfo->t, pinfo->pp, p, ctx)) {
389 BN_free(p);
390 goto err;
391 }
392 }
393
394 /* We MUST free p before any further use of rsa->p */
395 BN_free(p);
396 }
397
398 ok = 1;
399 err:
400 if (ok == -1) {
401 RSAerr(RSA_F_RSA_BUILTIN_KEYGEN, ERR_LIB_BN);
402 ok = 0;
403 }
404 BN_CTX_end(ctx);
405 BN_CTX_free(ctx);
406 return ok;
407 #endif /* FIPS_MODE */
408 }