]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/rsa/rsa_lib.c
a8a6d6c758e92a0b65824fbe0613bce780fd21b0
[thirdparty/openssl.git] / crypto / rsa / rsa_lib.c
1 /*
2 * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 /*
11 * RSA low level APIs are deprecated for public use, but still ok for
12 * internal use.
13 */
14 #include "internal/deprecated.h"
15
16 #include <openssl/crypto.h>
17 #include <openssl/core_names.h>
18 #ifndef FIPS_MODULE
19 # include <openssl/engine.h>
20 #endif
21 #include <openssl/evp.h>
22 #include <openssl/param_build.h>
23 #include "internal/cryptlib.h"
24 #include "internal/refcount.h"
25 #include "crypto/bn.h"
26 #include "crypto/evp.h"
27 #include "crypto/rsa.h"
28 #include "crypto/security_bits.h"
29 #include "rsa_local.h"
30
31 static RSA *rsa_new_intern(ENGINE *engine, OSSL_LIB_CTX *libctx);
32
33 #ifndef FIPS_MODULE
34 RSA *RSA_new(void)
35 {
36 return rsa_new_intern(NULL, NULL);
37 }
38
39 const RSA_METHOD *RSA_get_method(const RSA *rsa)
40 {
41 return rsa->meth;
42 }
43
44 int RSA_set_method(RSA *rsa, const RSA_METHOD *meth)
45 {
46 /*
47 * NB: The caller is specifically setting a method, so it's not up to us
48 * to deal with which ENGINE it comes from.
49 */
50 const RSA_METHOD *mtmp;
51 mtmp = rsa->meth;
52 if (mtmp->finish)
53 mtmp->finish(rsa);
54 #ifndef OPENSSL_NO_ENGINE
55 ENGINE_finish(rsa->engine);
56 rsa->engine = NULL;
57 #endif
58 rsa->meth = meth;
59 if (meth->init)
60 meth->init(rsa);
61 return 1;
62 }
63
64 RSA *RSA_new_method(ENGINE *engine)
65 {
66 return rsa_new_intern(engine, NULL);
67 }
68 #endif
69
70 RSA *ossl_rsa_new_with_ctx(OSSL_LIB_CTX *libctx)
71 {
72 return rsa_new_intern(NULL, libctx);
73 }
74
75 static RSA *rsa_new_intern(ENGINE *engine, OSSL_LIB_CTX *libctx)
76 {
77 RSA *ret = OPENSSL_zalloc(sizeof(*ret));
78
79 if (ret == NULL) {
80 ERR_raise(ERR_LIB_RSA, ERR_R_MALLOC_FAILURE);
81 return NULL;
82 }
83
84 ret->references = 1;
85 ret->lock = CRYPTO_THREAD_lock_new();
86 if (ret->lock == NULL) {
87 ERR_raise(ERR_LIB_RSA, ERR_R_MALLOC_FAILURE);
88 OPENSSL_free(ret);
89 return NULL;
90 }
91
92 ret->libctx = libctx;
93 ret->meth = RSA_get_default_method();
94 #if !defined(OPENSSL_NO_ENGINE) && !defined(FIPS_MODULE)
95 ret->flags = ret->meth->flags & ~RSA_FLAG_NON_FIPS_ALLOW;
96 if (engine) {
97 if (!ENGINE_init(engine)) {
98 ERR_raise(ERR_LIB_RSA, ERR_R_ENGINE_LIB);
99 goto err;
100 }
101 ret->engine = engine;
102 } else {
103 ret->engine = ENGINE_get_default_RSA();
104 }
105 if (ret->engine) {
106 ret->meth = ENGINE_get_RSA(ret->engine);
107 if (ret->meth == NULL) {
108 ERR_raise(ERR_LIB_RSA, ERR_R_ENGINE_LIB);
109 goto err;
110 }
111 }
112 #endif
113
114 ret->flags = ret->meth->flags & ~RSA_FLAG_NON_FIPS_ALLOW;
115 #ifndef FIPS_MODULE
116 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_RSA, ret, &ret->ex_data)) {
117 goto err;
118 }
119 #endif
120
121 if ((ret->meth->init != NULL) && !ret->meth->init(ret)) {
122 ERR_raise(ERR_LIB_RSA, ERR_R_INIT_FAIL);
123 goto err;
124 }
125
126 return ret;
127
128 err:
129 RSA_free(ret);
130 return NULL;
131 }
132
133 void RSA_free(RSA *r)
134 {
135 int i;
136
137 if (r == NULL)
138 return;
139
140 CRYPTO_DOWN_REF(&r->references, &i, r->lock);
141 REF_PRINT_COUNT("RSA", r);
142 if (i > 0)
143 return;
144 REF_ASSERT_ISNT(i < 0);
145
146 if (r->meth != NULL && r->meth->finish != NULL)
147 r->meth->finish(r);
148 #if !defined(OPENSSL_NO_ENGINE) && !defined(FIPS_MODULE)
149 ENGINE_finish(r->engine);
150 #endif
151
152 #ifndef FIPS_MODULE
153 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_RSA, r, &r->ex_data);
154 #endif
155
156 CRYPTO_THREAD_lock_free(r->lock);
157
158 BN_free(r->n);
159 BN_free(r->e);
160 BN_clear_free(r->d);
161 BN_clear_free(r->p);
162 BN_clear_free(r->q);
163 BN_clear_free(r->dmp1);
164 BN_clear_free(r->dmq1);
165 BN_clear_free(r->iqmp);
166
167 #if defined(FIPS_MODULE) && !defined(OPENSSL_NO_ACVP_TESTS)
168 ossl_rsa_acvp_test_free(r->acvp_test);
169 #endif
170
171 #ifndef FIPS_MODULE
172 RSA_PSS_PARAMS_free(r->pss);
173 sk_RSA_PRIME_INFO_pop_free(r->prime_infos, ossl_rsa_multip_info_free);
174 #endif
175 BN_BLINDING_free(r->blinding);
176 BN_BLINDING_free(r->mt_blinding);
177 OPENSSL_free(r);
178 }
179
180 int RSA_up_ref(RSA *r)
181 {
182 int i;
183
184 if (CRYPTO_UP_REF(&r->references, &i, r->lock) <= 0)
185 return 0;
186
187 REF_PRINT_COUNT("RSA", r);
188 REF_ASSERT_ISNT(i < 2);
189 return i > 1 ? 1 : 0;
190 }
191
192 OSSL_LIB_CTX *ossl_rsa_get0_libctx(RSA *r)
193 {
194 return r->libctx;
195 }
196
197 void ossl_rsa_set0_libctx(RSA *r, OSSL_LIB_CTX *libctx)
198 {
199 r->libctx = libctx;
200 }
201
202 #ifndef FIPS_MODULE
203 int RSA_set_ex_data(RSA *r, int idx, void *arg)
204 {
205 return CRYPTO_set_ex_data(&r->ex_data, idx, arg);
206 }
207
208 void *RSA_get_ex_data(const RSA *r, int idx)
209 {
210 return CRYPTO_get_ex_data(&r->ex_data, idx);
211 }
212 #endif
213
214 /*
215 * Define a scaling constant for our fixed point arithmetic.
216 * This value must be a power of two because the base two logarithm code
217 * makes this assumption. The exponent must also be a multiple of three so
218 * that the scale factor has an exact cube root. Finally, the scale factor
219 * should not be so large that a multiplication of two scaled numbers
220 * overflows a 64 bit unsigned integer.
221 */
222 static const unsigned int scale = 1 << 18;
223 static const unsigned int cbrt_scale = 1 << (2 * 18 / 3);
224
225 /* Define some constants, none exceed 32 bits */
226 static const unsigned int log_2 = 0x02c5c8; /* scale * log(2) */
227 static const unsigned int log_e = 0x05c551; /* scale * log2(M_E) */
228 static const unsigned int c1_923 = 0x07b126; /* scale * 1.923 */
229 static const unsigned int c4_690 = 0x12c28f; /* scale * 4.690 */
230
231 /*
232 * Multiply two scaled integers together and rescale the result.
233 */
234 static ossl_inline uint64_t mul2(uint64_t a, uint64_t b)
235 {
236 return a * b / scale;
237 }
238
239 /*
240 * Calculate the cube root of a 64 bit scaled integer.
241 * Although the cube root of a 64 bit number does fit into a 32 bit unsigned
242 * integer, this is not guaranteed after scaling, so this function has a
243 * 64 bit return. This uses the shifting nth root algorithm with some
244 * algebraic simplifications.
245 */
246 static uint64_t icbrt64(uint64_t x)
247 {
248 uint64_t r = 0;
249 uint64_t b;
250 int s;
251
252 for (s = 63; s >= 0; s -= 3) {
253 r <<= 1;
254 b = 3 * r * (r + 1) + 1;
255 if ((x >> s) >= b) {
256 x -= b << s;
257 r++;
258 }
259 }
260 return r * cbrt_scale;
261 }
262
263 /*
264 * Calculate the natural logarithm of a 64 bit scaled integer.
265 * This is done by calculating a base two logarithm and scaling.
266 * The maximum logarithm (base 2) is 64 and this reduces base e, so
267 * a 32 bit result should not overflow. The argument passed must be
268 * greater than unity so we don't need to handle negative results.
269 */
270 static uint32_t ilog_e(uint64_t v)
271 {
272 uint32_t i, r = 0;
273
274 /*
275 * Scale down the value into the range 1 .. 2.
276 *
277 * If fractional numbers need to be processed, another loop needs
278 * to go here that checks v < scale and if so multiplies it by 2 and
279 * reduces r by scale. This also means making r signed.
280 */
281 while (v >= 2 * scale) {
282 v >>= 1;
283 r += scale;
284 }
285 for (i = scale / 2; i != 0; i /= 2) {
286 v = mul2(v, v);
287 if (v >= 2 * scale) {
288 v >>= 1;
289 r += i;
290 }
291 }
292 r = (r * (uint64_t)scale) / log_e;
293 return r;
294 }
295
296 /*
297 * NIST SP 800-56B rev 2 Appendix D: Maximum Security Strength Estimates for IFC
298 * Modulus Lengths.
299 *
300 * Note that this formula is also referred to in SP800-56A rev3 Appendix D:
301 * for FFC safe prime groups for modp and ffdhe.
302 * After Table 25 and Table 26 it refers to
303 * "The maximum security strength estimates were calculated using the formula in
304 * Section 7.5 of the FIPS 140 IG and rounded to the nearest multiple of eight
305 * bits".
306 *
307 * The formula is:
308 *
309 * E = \frac{1.923 \sqrt[3]{nBits \cdot log_e(2)}
310 * \cdot(log_e(nBits \cdot log_e(2))^{2/3} - 4.69}{log_e(2)}
311 * The two cube roots are merged together here.
312 */
313 uint16_t ossl_ifc_ffc_compute_security_bits(int n)
314 {
315 uint64_t x;
316 uint32_t lx;
317 uint16_t y, cap;
318
319 /*
320 * Look for common values as listed in standards.
321 * These values are not exactly equal to the results from the formulae in
322 * the standards but are defined to be canonical.
323 */
324 switch (n) {
325 case 2048: /* SP 800-56B rev 2 Appendix D and FIPS 140-2 IG 7.5 */
326 return 112;
327 case 3072: /* SP 800-56B rev 2 Appendix D and FIPS 140-2 IG 7.5 */
328 return 128;
329 case 4096: /* SP 800-56B rev 2 Appendix D */
330 return 152;
331 case 6144: /* SP 800-56B rev 2 Appendix D */
332 return 176;
333 case 7680: /* FIPS 140-2 IG 7.5 */
334 return 192;
335 case 8192: /* SP 800-56B rev 2 Appendix D */
336 return 200;
337 case 15360: /* FIPS 140-2 IG 7.5 */
338 return 256;
339 }
340
341 /*
342 * The first incorrect result (i.e. not accurate or off by one low) occurs
343 * for n = 699668. The true value here is 1200. Instead of using this n
344 * as the check threshold, the smallest n such that the correct result is
345 * 1200 is used instead.
346 */
347 if (n >= 687737)
348 return 1200;
349 if (n < 8)
350 return 0;
351
352 /*
353 * To ensure that the output is non-decreasing with respect to n,
354 * a cap needs to be applied to the two values where the function over
355 * estimates the strength (according to the above fast path).
356 */
357 if (n <= 7680)
358 cap = 192;
359 else if (n <= 15360)
360 cap = 256;
361 else
362 cap = 1200;
363
364 x = n * (uint64_t)log_2;
365 lx = ilog_e(x);
366 y = (uint16_t)((mul2(c1_923, icbrt64(mul2(mul2(x, lx), lx))) - c4_690)
367 / log_2);
368 y = (y + 4) & ~7;
369 if (y > cap)
370 y = cap;
371 return y;
372 }
373
374
375
376 int RSA_security_bits(const RSA *rsa)
377 {
378 int bits = BN_num_bits(rsa->n);
379
380 #ifndef FIPS_MODULE
381 if (rsa->version == RSA_ASN1_VERSION_MULTI) {
382 /* This ought to mean that we have private key at hand. */
383 int ex_primes = sk_RSA_PRIME_INFO_num(rsa->prime_infos);
384
385 if (ex_primes <= 0 || (ex_primes + 2) > ossl_rsa_multip_cap(bits))
386 return 0;
387 }
388 #endif
389 return ossl_ifc_ffc_compute_security_bits(bits);
390 }
391
392 int RSA_set0_key(RSA *r, BIGNUM *n, BIGNUM *e, BIGNUM *d)
393 {
394 /* If the fields n and e in r are NULL, the corresponding input
395 * parameters MUST be non-NULL for n and e. d may be
396 * left NULL (in case only the public key is used).
397 */
398 if ((r->n == NULL && n == NULL)
399 || (r->e == NULL && e == NULL))
400 return 0;
401
402 if (n != NULL) {
403 BN_free(r->n);
404 r->n = n;
405 }
406 if (e != NULL) {
407 BN_free(r->e);
408 r->e = e;
409 }
410 if (d != NULL) {
411 BN_clear_free(r->d);
412 r->d = d;
413 BN_set_flags(r->d, BN_FLG_CONSTTIME);
414 }
415 r->dirty_cnt++;
416
417 return 1;
418 }
419
420 int RSA_set0_factors(RSA *r, BIGNUM *p, BIGNUM *q)
421 {
422 /* If the fields p and q in r are NULL, the corresponding input
423 * parameters MUST be non-NULL.
424 */
425 if ((r->p == NULL && p == NULL)
426 || (r->q == NULL && q == NULL))
427 return 0;
428
429 if (p != NULL) {
430 BN_clear_free(r->p);
431 r->p = p;
432 BN_set_flags(r->p, BN_FLG_CONSTTIME);
433 }
434 if (q != NULL) {
435 BN_clear_free(r->q);
436 r->q = q;
437 BN_set_flags(r->q, BN_FLG_CONSTTIME);
438 }
439 r->dirty_cnt++;
440
441 return 1;
442 }
443
444 int RSA_set0_crt_params(RSA *r, BIGNUM *dmp1, BIGNUM *dmq1, BIGNUM *iqmp)
445 {
446 /* If the fields dmp1, dmq1 and iqmp in r are NULL, the corresponding input
447 * parameters MUST be non-NULL.
448 */
449 if ((r->dmp1 == NULL && dmp1 == NULL)
450 || (r->dmq1 == NULL && dmq1 == NULL)
451 || (r->iqmp == NULL && iqmp == NULL))
452 return 0;
453
454 if (dmp1 != NULL) {
455 BN_clear_free(r->dmp1);
456 r->dmp1 = dmp1;
457 BN_set_flags(r->dmp1, BN_FLG_CONSTTIME);
458 }
459 if (dmq1 != NULL) {
460 BN_clear_free(r->dmq1);
461 r->dmq1 = dmq1;
462 BN_set_flags(r->dmq1, BN_FLG_CONSTTIME);
463 }
464 if (iqmp != NULL) {
465 BN_clear_free(r->iqmp);
466 r->iqmp = iqmp;
467 BN_set_flags(r->iqmp, BN_FLG_CONSTTIME);
468 }
469 r->dirty_cnt++;
470
471 return 1;
472 }
473
474 #ifndef FIPS_MODULE
475 /*
476 * Is it better to export RSA_PRIME_INFO structure
477 * and related functions to let user pass a triplet?
478 */
479 int RSA_set0_multi_prime_params(RSA *r, BIGNUM *primes[], BIGNUM *exps[],
480 BIGNUM *coeffs[], int pnum)
481 {
482 STACK_OF(RSA_PRIME_INFO) *prime_infos, *old = NULL;
483 RSA_PRIME_INFO *pinfo;
484 int i;
485
486 if (primes == NULL || exps == NULL || coeffs == NULL || pnum == 0)
487 return 0;
488
489 prime_infos = sk_RSA_PRIME_INFO_new_reserve(NULL, pnum);
490 if (prime_infos == NULL)
491 return 0;
492
493 if (r->prime_infos != NULL)
494 old = r->prime_infos;
495
496 for (i = 0; i < pnum; i++) {
497 pinfo = ossl_rsa_multip_info_new();
498 if (pinfo == NULL)
499 goto err;
500 if (primes[i] != NULL && exps[i] != NULL && coeffs[i] != NULL) {
501 BN_clear_free(pinfo->r);
502 BN_clear_free(pinfo->d);
503 BN_clear_free(pinfo->t);
504 pinfo->r = primes[i];
505 pinfo->d = exps[i];
506 pinfo->t = coeffs[i];
507 BN_set_flags(pinfo->r, BN_FLG_CONSTTIME);
508 BN_set_flags(pinfo->d, BN_FLG_CONSTTIME);
509 BN_set_flags(pinfo->t, BN_FLG_CONSTTIME);
510 } else {
511 ossl_rsa_multip_info_free(pinfo);
512 goto err;
513 }
514 (void)sk_RSA_PRIME_INFO_push(prime_infos, pinfo);
515 }
516
517 r->prime_infos = prime_infos;
518
519 if (!ossl_rsa_multip_calc_product(r)) {
520 r->prime_infos = old;
521 goto err;
522 }
523
524 if (old != NULL) {
525 /*
526 * This is hard to deal with, since the old infos could
527 * also be set by this function and r, d, t should not
528 * be freed in that case. So currently, stay consistent
529 * with other *set0* functions: just free it...
530 */
531 sk_RSA_PRIME_INFO_pop_free(old, ossl_rsa_multip_info_free);
532 }
533
534 r->version = RSA_ASN1_VERSION_MULTI;
535 r->dirty_cnt++;
536
537 return 1;
538 err:
539 /* r, d, t should not be freed */
540 sk_RSA_PRIME_INFO_pop_free(prime_infos, ossl_rsa_multip_info_free_ex);
541 return 0;
542 }
543 #endif
544
545 void RSA_get0_key(const RSA *r,
546 const BIGNUM **n, const BIGNUM **e, const BIGNUM **d)
547 {
548 if (n != NULL)
549 *n = r->n;
550 if (e != NULL)
551 *e = r->e;
552 if (d != NULL)
553 *d = r->d;
554 }
555
556 void RSA_get0_factors(const RSA *r, const BIGNUM **p, const BIGNUM **q)
557 {
558 if (p != NULL)
559 *p = r->p;
560 if (q != NULL)
561 *q = r->q;
562 }
563
564 #ifndef FIPS_MODULE
565 int RSA_get_multi_prime_extra_count(const RSA *r)
566 {
567 int pnum;
568
569 pnum = sk_RSA_PRIME_INFO_num(r->prime_infos);
570 if (pnum <= 0)
571 pnum = 0;
572 return pnum;
573 }
574
575 int RSA_get0_multi_prime_factors(const RSA *r, const BIGNUM *primes[])
576 {
577 int pnum, i;
578 RSA_PRIME_INFO *pinfo;
579
580 if ((pnum = RSA_get_multi_prime_extra_count(r)) == 0)
581 return 0;
582
583 /*
584 * return other primes
585 * it's caller's responsibility to allocate oth_primes[pnum]
586 */
587 for (i = 0; i < pnum; i++) {
588 pinfo = sk_RSA_PRIME_INFO_value(r->prime_infos, i);
589 primes[i] = pinfo->r;
590 }
591
592 return 1;
593 }
594 #endif
595
596 void RSA_get0_crt_params(const RSA *r,
597 const BIGNUM **dmp1, const BIGNUM **dmq1,
598 const BIGNUM **iqmp)
599 {
600 if (dmp1 != NULL)
601 *dmp1 = r->dmp1;
602 if (dmq1 != NULL)
603 *dmq1 = r->dmq1;
604 if (iqmp != NULL)
605 *iqmp = r->iqmp;
606 }
607
608 #ifndef FIPS_MODULE
609 int RSA_get0_multi_prime_crt_params(const RSA *r, const BIGNUM *exps[],
610 const BIGNUM *coeffs[])
611 {
612 int pnum;
613
614 if ((pnum = RSA_get_multi_prime_extra_count(r)) == 0)
615 return 0;
616
617 /* return other primes */
618 if (exps != NULL || coeffs != NULL) {
619 RSA_PRIME_INFO *pinfo;
620 int i;
621
622 /* it's the user's job to guarantee the buffer length */
623 for (i = 0; i < pnum; i++) {
624 pinfo = sk_RSA_PRIME_INFO_value(r->prime_infos, i);
625 if (exps != NULL)
626 exps[i] = pinfo->d;
627 if (coeffs != NULL)
628 coeffs[i] = pinfo->t;
629 }
630 }
631
632 return 1;
633 }
634 #endif
635
636 const BIGNUM *RSA_get0_n(const RSA *r)
637 {
638 return r->n;
639 }
640
641 const BIGNUM *RSA_get0_e(const RSA *r)
642 {
643 return r->e;
644 }
645
646 const BIGNUM *RSA_get0_d(const RSA *r)
647 {
648 return r->d;
649 }
650
651 const BIGNUM *RSA_get0_p(const RSA *r)
652 {
653 return r->p;
654 }
655
656 const BIGNUM *RSA_get0_q(const RSA *r)
657 {
658 return r->q;
659 }
660
661 const BIGNUM *RSA_get0_dmp1(const RSA *r)
662 {
663 return r->dmp1;
664 }
665
666 const BIGNUM *RSA_get0_dmq1(const RSA *r)
667 {
668 return r->dmq1;
669 }
670
671 const BIGNUM *RSA_get0_iqmp(const RSA *r)
672 {
673 return r->iqmp;
674 }
675
676 const RSA_PSS_PARAMS *RSA_get0_pss_params(const RSA *r)
677 {
678 #ifdef FIPS_MODULE
679 return NULL;
680 #else
681 return r->pss;
682 #endif
683 }
684
685 /* Internal */
686 int ossl_rsa_set0_pss_params(RSA *r, RSA_PSS_PARAMS *pss)
687 {
688 #ifdef FIPS_MODULE
689 return 0;
690 #else
691 RSA_PSS_PARAMS_free(r->pss);
692 r->pss = pss;
693 return 1;
694 #endif
695 }
696
697 /* Internal */
698 RSA_PSS_PARAMS_30 *ossl_rsa_get0_pss_params_30(RSA *r)
699 {
700 return &r->pss_params;
701 }
702
703 void RSA_clear_flags(RSA *r, int flags)
704 {
705 r->flags &= ~flags;
706 }
707
708 int RSA_test_flags(const RSA *r, int flags)
709 {
710 return r->flags & flags;
711 }
712
713 void RSA_set_flags(RSA *r, int flags)
714 {
715 r->flags |= flags;
716 }
717
718 int RSA_get_version(RSA *r)
719 {
720 /* { two-prime(0), multi(1) } */
721 return r->version;
722 }
723
724 #ifndef FIPS_MODULE
725 ENGINE *RSA_get0_engine(const RSA *r)
726 {
727 return r->engine;
728 }
729
730 int RSA_pkey_ctx_ctrl(EVP_PKEY_CTX *ctx, int optype, int cmd, int p1, void *p2)
731 {
732 /* If key type not RSA or RSA-PSS return error */
733 if (ctx != NULL && ctx->pmeth != NULL
734 && ctx->pmeth->pkey_id != EVP_PKEY_RSA
735 && ctx->pmeth->pkey_id != EVP_PKEY_RSA_PSS)
736 return -1;
737 return EVP_PKEY_CTX_ctrl(ctx, -1, optype, cmd, p1, p2);
738 }
739 #endif
740
741 DEFINE_STACK_OF(BIGNUM)
742
743 int ossl_rsa_set0_all_params(RSA *r, const STACK_OF(BIGNUM) *primes,
744 const STACK_OF(BIGNUM) *exps,
745 const STACK_OF(BIGNUM) *coeffs)
746 {
747 #ifndef FIPS_MODULE
748 STACK_OF(RSA_PRIME_INFO) *prime_infos, *old_infos = NULL;
749 #endif
750 int pnum;
751
752 if (primes == NULL || exps == NULL || coeffs == NULL)
753 return 0;
754
755 pnum = sk_BIGNUM_num(primes);
756 if (pnum < 2
757 || pnum != sk_BIGNUM_num(exps)
758 || pnum != sk_BIGNUM_num(coeffs) + 1)
759 return 0;
760
761 if (!RSA_set0_factors(r, sk_BIGNUM_value(primes, 0),
762 sk_BIGNUM_value(primes, 1))
763 || !RSA_set0_crt_params(r, sk_BIGNUM_value(exps, 0),
764 sk_BIGNUM_value(exps, 1),
765 sk_BIGNUM_value(coeffs, 0)))
766 return 0;
767
768 #ifndef FIPS_MODULE
769 old_infos = r->prime_infos;
770 #endif
771
772 if (pnum > 2) {
773 #ifndef FIPS_MODULE
774 int i;
775
776 prime_infos = sk_RSA_PRIME_INFO_new_reserve(NULL, pnum);
777 if (prime_infos == NULL)
778 return 0;
779
780 for (i = 2; i < pnum; i++) {
781 BIGNUM *prime = sk_BIGNUM_value(primes, i);
782 BIGNUM *exp = sk_BIGNUM_value(exps, i);
783 BIGNUM *coeff = sk_BIGNUM_value(coeffs, i - 1);
784 RSA_PRIME_INFO *pinfo = NULL;
785
786 if (!ossl_assert(prime != NULL && exp != NULL && coeff != NULL))
787 goto err;
788
789 /* Using ossl_rsa_multip_info_new() is wasteful, so allocate directly */
790 if ((pinfo = OPENSSL_zalloc(sizeof(*pinfo))) == NULL) {
791 ERR_raise(ERR_LIB_RSA, ERR_R_MALLOC_FAILURE);
792 goto err;
793 }
794
795 pinfo->r = prime;
796 pinfo->d = exp;
797 pinfo->t = coeff;
798 BN_set_flags(pinfo->r, BN_FLG_CONSTTIME);
799 BN_set_flags(pinfo->d, BN_FLG_CONSTTIME);
800 BN_set_flags(pinfo->t, BN_FLG_CONSTTIME);
801 (void)sk_RSA_PRIME_INFO_push(prime_infos, pinfo);
802 }
803
804 r->prime_infos = prime_infos;
805
806 if (!ossl_rsa_multip_calc_product(r)) {
807 r->prime_infos = old_infos;
808 goto err;
809 }
810 #else
811 return 0;
812 #endif
813 }
814
815 #ifndef FIPS_MODULE
816 if (old_infos != NULL) {
817 /*
818 * This is hard to deal with, since the old infos could
819 * also be set by this function and r, d, t should not
820 * be freed in that case. So currently, stay consistent
821 * with other *set0* functions: just free it...
822 */
823 sk_RSA_PRIME_INFO_pop_free(old_infos, ossl_rsa_multip_info_free);
824 }
825 #endif
826
827 r->version = pnum > 2 ? RSA_ASN1_VERSION_MULTI : RSA_ASN1_VERSION_DEFAULT;
828 r->dirty_cnt++;
829
830 return 1;
831 #ifndef FIPS_MODULE
832 err:
833 /* r, d, t should not be freed */
834 sk_RSA_PRIME_INFO_pop_free(prime_infos, ossl_rsa_multip_info_free_ex);
835 return 0;
836 #endif
837 }
838
839 DEFINE_SPECIAL_STACK_OF_CONST(BIGNUM_const, BIGNUM)
840
841 int ossl_rsa_get0_all_params(RSA *r, STACK_OF(BIGNUM_const) *primes,
842 STACK_OF(BIGNUM_const) *exps,
843 STACK_OF(BIGNUM_const) *coeffs)
844 {
845 #ifndef FIPS_MODULE
846 RSA_PRIME_INFO *pinfo;
847 int i, pnum;
848 #endif
849
850 if (r == NULL)
851 return 0;
852
853 /* If |p| is NULL, there are no CRT parameters */
854 if (RSA_get0_p(r) == NULL)
855 return 1;
856
857 sk_BIGNUM_const_push(primes, RSA_get0_p(r));
858 sk_BIGNUM_const_push(primes, RSA_get0_q(r));
859 sk_BIGNUM_const_push(exps, RSA_get0_dmp1(r));
860 sk_BIGNUM_const_push(exps, RSA_get0_dmq1(r));
861 sk_BIGNUM_const_push(coeffs, RSA_get0_iqmp(r));
862
863 #ifndef FIPS_MODULE
864 pnum = RSA_get_multi_prime_extra_count(r);
865 for (i = 0; i < pnum; i++) {
866 pinfo = sk_RSA_PRIME_INFO_value(r->prime_infos, i);
867 sk_BIGNUM_const_push(primes, pinfo->r);
868 sk_BIGNUM_const_push(exps, pinfo->d);
869 sk_BIGNUM_const_push(coeffs, pinfo->t);
870 }
871 #endif
872
873 return 1;
874 }
875
876 #ifndef FIPS_MODULE
877 /* Helpers to set or get diverse hash algorithm names */
878 static int int_set_rsa_md_name(EVP_PKEY_CTX *ctx,
879 /* For checks */
880 int keytype, int optype,
881 /* For EVP_PKEY_CTX_set_params() */
882 const char *mdkey, const char *mdname,
883 const char *propkey, const char *mdprops)
884 {
885 OSSL_PARAM params[3], *p = params;
886
887 if (ctx == NULL || mdname == NULL || (ctx->operation & optype) == 0) {
888 ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
889 /* Uses the same return values as EVP_PKEY_CTX_ctrl */
890 return -2;
891 }
892
893 /* If key type not RSA return error */
894 switch (keytype) {
895 case -1:
896 if (!EVP_PKEY_CTX_is_a(ctx, "RSA")
897 && !EVP_PKEY_CTX_is_a(ctx, "RSA-PSS"))
898 return -1;
899 break;
900 default:
901 if (!EVP_PKEY_CTX_is_a(ctx, evp_pkey_type2name(keytype)))
902 return -1;
903 break;
904 }
905
906 /* Cast away the const. This is read only so should be safe */
907 *p++ = OSSL_PARAM_construct_utf8_string(mdkey, (char *)mdname, 0);
908 if (evp_pkey_ctx_is_provided(ctx) && mdprops != NULL) {
909 /* Cast away the const. This is read only so should be safe */
910 *p++ = OSSL_PARAM_construct_utf8_string(propkey, (char *)mdprops, 0);
911 }
912 *p++ = OSSL_PARAM_construct_end();
913
914 return evp_pkey_ctx_set_params_strict(ctx, params);
915 }
916
917 /* Helpers to set or get diverse hash algorithm names */
918 static int int_get_rsa_md_name(EVP_PKEY_CTX *ctx,
919 /* For checks */
920 int keytype, int optype,
921 /* For EVP_PKEY_CTX_get_params() */
922 const char *mdkey,
923 char *mdname, size_t mdnamesize)
924 {
925 OSSL_PARAM params[2], *p = params;
926
927 if (ctx == NULL || mdname == NULL || (ctx->operation & optype) == 0) {
928 ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
929 /* Uses the same return values as EVP_PKEY_CTX_ctrl */
930 return -2;
931 }
932
933 /* If key type not RSA return error */
934 switch (keytype) {
935 case -1:
936 if (!EVP_PKEY_CTX_is_a(ctx, "RSA")
937 && !EVP_PKEY_CTX_is_a(ctx, "RSA-PSS"))
938 return -1;
939 break;
940 default:
941 if (!EVP_PKEY_CTX_is_a(ctx, evp_pkey_type2name(keytype)))
942 return -1;
943 break;
944 }
945
946 /* Cast away the const. This is read only so should be safe */
947 *p++ = OSSL_PARAM_construct_utf8_string(mdkey, (char *)mdname, mdnamesize);
948 *p++ = OSSL_PARAM_construct_end();
949
950 return evp_pkey_ctx_get_params_strict(ctx, params);
951 }
952
953 /*
954 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
955 * simply because that's easier.
956 */
957 int EVP_PKEY_CTX_set_rsa_padding(EVP_PKEY_CTX *ctx, int pad_mode)
958 {
959 return RSA_pkey_ctx_ctrl(ctx, -1, EVP_PKEY_CTRL_RSA_PADDING,
960 pad_mode, NULL);
961 }
962
963 /*
964 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
965 * simply because that's easier.
966 */
967 int EVP_PKEY_CTX_get_rsa_padding(EVP_PKEY_CTX *ctx, int *pad_mode)
968 {
969 return RSA_pkey_ctx_ctrl(ctx, -1, EVP_PKEY_CTRL_GET_RSA_PADDING,
970 0, pad_mode);
971 }
972
973 /*
974 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
975 * simply because that's easier.
976 */
977 int EVP_PKEY_CTX_set_rsa_pss_keygen_md(EVP_PKEY_CTX *ctx, const EVP_MD *md)
978 {
979 return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_KEYGEN,
980 EVP_PKEY_CTRL_MD, 0, (void *)(md));
981 }
982
983 int EVP_PKEY_CTX_set_rsa_pss_keygen_md_name(EVP_PKEY_CTX *ctx,
984 const char *mdname,
985 const char *mdprops)
986 {
987 return int_set_rsa_md_name(ctx, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_KEYGEN,
988 OSSL_PKEY_PARAM_RSA_DIGEST, mdname,
989 OSSL_PKEY_PARAM_RSA_DIGEST_PROPS, mdprops);
990 }
991
992 /*
993 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
994 * simply because that's easier.
995 */
996 int EVP_PKEY_CTX_set_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD *md)
997 {
998 return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT,
999 EVP_PKEY_CTRL_RSA_OAEP_MD, 0, (void *)(md));
1000 }
1001
1002 int EVP_PKEY_CTX_set_rsa_oaep_md_name(EVP_PKEY_CTX *ctx, const char *mdname,
1003 const char *mdprops)
1004 {
1005 return
1006 int_set_rsa_md_name(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT,
1007 OSSL_ASYM_CIPHER_PARAM_OAEP_DIGEST, mdname,
1008 OSSL_ASYM_CIPHER_PARAM_OAEP_DIGEST_PROPS, mdprops);
1009 }
1010
1011 int EVP_PKEY_CTX_get_rsa_oaep_md_name(EVP_PKEY_CTX *ctx, char *name,
1012 size_t namesize)
1013 {
1014 return int_get_rsa_md_name(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT,
1015 OSSL_ASYM_CIPHER_PARAM_OAEP_DIGEST,
1016 name, namesize);
1017 }
1018
1019 /*
1020 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1021 * simply because that's easier.
1022 */
1023 int EVP_PKEY_CTX_get_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD **md)
1024 {
1025 return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT,
1026 EVP_PKEY_CTRL_GET_RSA_OAEP_MD, 0, (void *)md);
1027 }
1028
1029 /*
1030 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1031 * simply because that's easier.
1032 */
1033 int EVP_PKEY_CTX_set_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD *md)
1034 {
1035 return RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_TYPE_SIG | EVP_PKEY_OP_TYPE_CRYPT,
1036 EVP_PKEY_CTRL_RSA_MGF1_MD, 0, (void *)(md));
1037 }
1038
1039 int EVP_PKEY_CTX_set_rsa_mgf1_md_name(EVP_PKEY_CTX *ctx, const char *mdname,
1040 const char *mdprops)
1041 {
1042 return int_set_rsa_md_name(ctx, -1,
1043 EVP_PKEY_OP_TYPE_CRYPT | EVP_PKEY_OP_TYPE_SIG,
1044 OSSL_PKEY_PARAM_MGF1_DIGEST, mdname,
1045 OSSL_PKEY_PARAM_MGF1_PROPERTIES, mdprops);
1046 }
1047
1048 int EVP_PKEY_CTX_get_rsa_mgf1_md_name(EVP_PKEY_CTX *ctx, char *name,
1049 size_t namesize)
1050 {
1051 return int_get_rsa_md_name(ctx, -1,
1052 EVP_PKEY_OP_TYPE_CRYPT | EVP_PKEY_OP_TYPE_SIG,
1053 OSSL_PKEY_PARAM_MGF1_DIGEST, name, namesize);
1054 }
1055
1056 /*
1057 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1058 * simply because that's easier.
1059 */
1060 int EVP_PKEY_CTX_set_rsa_pss_keygen_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD *md)
1061 {
1062 return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_KEYGEN,
1063 EVP_PKEY_CTRL_RSA_MGF1_MD, 0, (void *)(md));
1064 }
1065
1066 int EVP_PKEY_CTX_set_rsa_pss_keygen_mgf1_md_name(EVP_PKEY_CTX *ctx,
1067 const char *mdname)
1068 {
1069 return int_set_rsa_md_name(ctx, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_KEYGEN,
1070 OSSL_PKEY_PARAM_MGF1_DIGEST, mdname,
1071 NULL, NULL);
1072 }
1073
1074 /*
1075 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1076 * simply because that's easier.
1077 */
1078 int EVP_PKEY_CTX_get_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD **md)
1079 {
1080 return RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_TYPE_SIG | EVP_PKEY_OP_TYPE_CRYPT,
1081 EVP_PKEY_CTRL_GET_RSA_MGF1_MD, 0, (void *)(md));
1082 }
1083
1084 int EVP_PKEY_CTX_set0_rsa_oaep_label(EVP_PKEY_CTX *ctx, void *label, int llen)
1085 {
1086 OSSL_PARAM rsa_params[2], *p = rsa_params;
1087
1088 if (ctx == NULL || !EVP_PKEY_CTX_IS_ASYM_CIPHER_OP(ctx)) {
1089 ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
1090 /* Uses the same return values as EVP_PKEY_CTX_ctrl */
1091 return -2;
1092 }
1093
1094 /* If key type not RSA return error */
1095 if (!EVP_PKEY_CTX_is_a(ctx, "RSA"))
1096 return -1;
1097
1098 /* Cast away the const. This is read only so should be safe */
1099 *p++ = OSSL_PARAM_construct_octet_string(OSSL_ASYM_CIPHER_PARAM_OAEP_LABEL,
1100 (void *)label, (size_t)llen);
1101 *p++ = OSSL_PARAM_construct_end();
1102
1103 if (!evp_pkey_ctx_set_params_strict(ctx, rsa_params))
1104 return 0;
1105
1106 /* Ownership is supposed to be transfered to the callee. */
1107 OPENSSL_free(label);
1108 return 1;
1109 }
1110
1111 int EVP_PKEY_CTX_get0_rsa_oaep_label(EVP_PKEY_CTX *ctx, unsigned char **label)
1112 {
1113 OSSL_PARAM rsa_params[2], *p = rsa_params;
1114 size_t labellen;
1115
1116 if (ctx == NULL || !EVP_PKEY_CTX_IS_ASYM_CIPHER_OP(ctx)) {
1117 ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
1118 /* Uses the same return values as EVP_PKEY_CTX_ctrl */
1119 return -2;
1120 }
1121
1122 /* If key type not RSA return error */
1123 if (!EVP_PKEY_CTX_is_a(ctx, "RSA"))
1124 return -1;
1125
1126 *p++ = OSSL_PARAM_construct_octet_ptr(OSSL_ASYM_CIPHER_PARAM_OAEP_LABEL,
1127 (void **)label, 0);
1128 *p++ = OSSL_PARAM_construct_end();
1129
1130 if (!EVP_PKEY_CTX_get_params(ctx, rsa_params))
1131 return -1;
1132
1133 labellen = rsa_params[0].return_size;
1134 if (labellen > INT_MAX)
1135 return -1;
1136
1137 return (int)labellen;
1138 }
1139
1140 /*
1141 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1142 * simply because that's easier.
1143 */
1144 int EVP_PKEY_CTX_set_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int saltlen)
1145 {
1146 /*
1147 * For some reason, the optype was set to this:
1148 *
1149 * EVP_PKEY_OP_SIGN|EVP_PKEY_OP_VERIFY
1150 *
1151 * However, we do use RSA-PSS with the whole gamut of diverse signature
1152 * and verification operations, so the optype gets upgraded to this:
1153 *
1154 * EVP_PKEY_OP_TYPE_SIG
1155 */
1156 return RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_TYPE_SIG,
1157 EVP_PKEY_CTRL_RSA_PSS_SALTLEN, saltlen, NULL);
1158 }
1159
1160 /*
1161 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1162 * simply because that's easier.
1163 */
1164 int EVP_PKEY_CTX_get_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int *saltlen)
1165 {
1166 /*
1167 * Because of circumstances, the optype is updated from:
1168 *
1169 * EVP_PKEY_OP_SIGN|EVP_PKEY_OP_VERIFY
1170 *
1171 * to:
1172 *
1173 * EVP_PKEY_OP_TYPE_SIG
1174 */
1175 return RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_TYPE_SIG,
1176 EVP_PKEY_CTRL_GET_RSA_PSS_SALTLEN, 0, saltlen);
1177 }
1178
1179 int EVP_PKEY_CTX_set_rsa_pss_keygen_saltlen(EVP_PKEY_CTX *ctx, int saltlen)
1180 {
1181 OSSL_PARAM pad_params[2], *p = pad_params;
1182
1183 if (ctx == NULL || !EVP_PKEY_CTX_IS_GEN_OP(ctx)) {
1184 ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
1185 /* Uses the same return values as EVP_PKEY_CTX_ctrl */
1186 return -2;
1187 }
1188
1189 if (!EVP_PKEY_CTX_is_a(ctx, "RSA-PSS"))
1190 return -1;
1191
1192 *p++ = OSSL_PARAM_construct_int(OSSL_SIGNATURE_PARAM_PSS_SALTLEN,
1193 &saltlen);
1194 *p++ = OSSL_PARAM_construct_end();
1195
1196 return evp_pkey_ctx_set_params_strict(ctx, pad_params);
1197 }
1198
1199 int EVP_PKEY_CTX_set_rsa_keygen_bits(EVP_PKEY_CTX *ctx, int bits)
1200 {
1201 OSSL_PARAM params[2], *p = params;
1202 size_t bits2 = bits;
1203
1204 if (ctx == NULL || !EVP_PKEY_CTX_IS_GEN_OP(ctx)) {
1205 ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
1206 /* Uses the same return values as EVP_PKEY_CTX_ctrl */
1207 return -2;
1208 }
1209
1210 /* If key type not RSA return error */
1211 if (!EVP_PKEY_CTX_is_a(ctx, "RSA")
1212 && !EVP_PKEY_CTX_is_a(ctx, "RSA-PSS"))
1213 return -1;
1214
1215 *p++ = OSSL_PARAM_construct_size_t(OSSL_PKEY_PARAM_RSA_BITS, &bits2);
1216 *p++ = OSSL_PARAM_construct_end();
1217
1218 return evp_pkey_ctx_set_params_strict(ctx, params);
1219 }
1220
1221 int EVP_PKEY_CTX_set_rsa_keygen_pubexp(EVP_PKEY_CTX *ctx, BIGNUM *pubexp)
1222 {
1223 int ret = RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_KEYGEN,
1224 EVP_PKEY_CTRL_RSA_KEYGEN_PUBEXP, 0, pubexp);
1225
1226 /*
1227 * Satisfy memory semantics for pre-3.0 callers of
1228 * EVP_PKEY_CTX_set_rsa_keygen_pubexp(): their expectation is that input
1229 * pubexp BIGNUM becomes managed by the EVP_PKEY_CTX on success.
1230 */
1231 if (ret > 0 && evp_pkey_ctx_is_provided(ctx)) {
1232 BN_free(ctx->rsa_pubexp);
1233 ctx->rsa_pubexp = pubexp;
1234 }
1235
1236 return ret;
1237 }
1238
1239 int EVP_PKEY_CTX_set1_rsa_keygen_pubexp(EVP_PKEY_CTX *ctx, BIGNUM *pubexp)
1240 {
1241 int ret = 0;
1242
1243 /*
1244 * When we're dealing with a provider, there's no need to duplicate
1245 * pubexp, as it gets copied when transforming to an OSSL_PARAM anyway.
1246 */
1247 if (evp_pkey_ctx_is_legacy(ctx)) {
1248 pubexp = BN_dup(pubexp);
1249 if (pubexp == NULL)
1250 return 0;
1251 }
1252 ret = EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_KEYGEN,
1253 EVP_PKEY_CTRL_RSA_KEYGEN_PUBEXP, 0, pubexp);
1254 if (evp_pkey_ctx_is_legacy(ctx) && ret <= 0)
1255 BN_free(pubexp);
1256 return ret;
1257 }
1258
1259 int EVP_PKEY_CTX_set_rsa_keygen_primes(EVP_PKEY_CTX *ctx, int primes)
1260 {
1261 OSSL_PARAM params[2], *p = params;
1262 size_t primes2 = primes;
1263
1264 if (ctx == NULL || !EVP_PKEY_CTX_IS_GEN_OP(ctx)) {
1265 ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
1266 /* Uses the same return values as EVP_PKEY_CTX_ctrl */
1267 return -2;
1268 }
1269
1270 /* If key type not RSA return error */
1271 if (!EVP_PKEY_CTX_is_a(ctx, "RSA")
1272 && !EVP_PKEY_CTX_is_a(ctx, "RSA-PSS"))
1273 return -1;
1274
1275 *p++ = OSSL_PARAM_construct_size_t(OSSL_PKEY_PARAM_RSA_PRIMES, &primes2);
1276 *p++ = OSSL_PARAM_construct_end();
1277
1278 return evp_pkey_ctx_set_params_strict(ctx, params);
1279 }
1280 #endif