]> git.ipfire.org Git - thirdparty/linux.git/blob - crypto/simd.c
Merge tag 'pinctrl-v5.3-1' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[thirdparty/linux.git] / crypto / simd.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Shared crypto simd helpers
4 *
5 * Copyright (c) 2012 Jussi Kivilinna <jussi.kivilinna@mbnet.fi>
6 * Copyright (c) 2016 Herbert Xu <herbert@gondor.apana.org.au>
7 * Copyright (c) 2019 Google LLC
8 *
9 * Based on aesni-intel_glue.c by:
10 * Copyright (C) 2008, Intel Corp.
11 * Author: Huang Ying <ying.huang@intel.com>
12 */
13
14 /*
15 * Shared crypto SIMD helpers. These functions dynamically create and register
16 * an skcipher or AEAD algorithm that wraps another, internal algorithm. The
17 * wrapper ensures that the internal algorithm is only executed in a context
18 * where SIMD instructions are usable, i.e. where may_use_simd() returns true.
19 * If SIMD is already usable, the wrapper directly calls the internal algorithm.
20 * Otherwise it defers execution to a workqueue via cryptd.
21 *
22 * This is an alternative to the internal algorithm implementing a fallback for
23 * the !may_use_simd() case itself.
24 *
25 * Note that the wrapper algorithm is asynchronous, i.e. it has the
26 * CRYPTO_ALG_ASYNC flag set. Therefore it won't be found by users who
27 * explicitly allocate a synchronous algorithm.
28 */
29
30 #include <crypto/cryptd.h>
31 #include <crypto/internal/aead.h>
32 #include <crypto/internal/simd.h>
33 #include <crypto/internal/skcipher.h>
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/preempt.h>
37 #include <asm/simd.h>
38
39 /* skcipher support */
40
41 struct simd_skcipher_alg {
42 const char *ialg_name;
43 struct skcipher_alg alg;
44 };
45
46 struct simd_skcipher_ctx {
47 struct cryptd_skcipher *cryptd_tfm;
48 };
49
50 static int simd_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
51 unsigned int key_len)
52 {
53 struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
54 struct crypto_skcipher *child = &ctx->cryptd_tfm->base;
55 int err;
56
57 crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
58 crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(tfm) &
59 CRYPTO_TFM_REQ_MASK);
60 err = crypto_skcipher_setkey(child, key, key_len);
61 crypto_skcipher_set_flags(tfm, crypto_skcipher_get_flags(child) &
62 CRYPTO_TFM_RES_MASK);
63 return err;
64 }
65
66 static int simd_skcipher_encrypt(struct skcipher_request *req)
67 {
68 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
69 struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
70 struct skcipher_request *subreq;
71 struct crypto_skcipher *child;
72
73 subreq = skcipher_request_ctx(req);
74 *subreq = *req;
75
76 if (!crypto_simd_usable() ||
77 (in_atomic() && cryptd_skcipher_queued(ctx->cryptd_tfm)))
78 child = &ctx->cryptd_tfm->base;
79 else
80 child = cryptd_skcipher_child(ctx->cryptd_tfm);
81
82 skcipher_request_set_tfm(subreq, child);
83
84 return crypto_skcipher_encrypt(subreq);
85 }
86
87 static int simd_skcipher_decrypt(struct skcipher_request *req)
88 {
89 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
90 struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
91 struct skcipher_request *subreq;
92 struct crypto_skcipher *child;
93
94 subreq = skcipher_request_ctx(req);
95 *subreq = *req;
96
97 if (!crypto_simd_usable() ||
98 (in_atomic() && cryptd_skcipher_queued(ctx->cryptd_tfm)))
99 child = &ctx->cryptd_tfm->base;
100 else
101 child = cryptd_skcipher_child(ctx->cryptd_tfm);
102
103 skcipher_request_set_tfm(subreq, child);
104
105 return crypto_skcipher_decrypt(subreq);
106 }
107
108 static void simd_skcipher_exit(struct crypto_skcipher *tfm)
109 {
110 struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
111
112 cryptd_free_skcipher(ctx->cryptd_tfm);
113 }
114
115 static int simd_skcipher_init(struct crypto_skcipher *tfm)
116 {
117 struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
118 struct cryptd_skcipher *cryptd_tfm;
119 struct simd_skcipher_alg *salg;
120 struct skcipher_alg *alg;
121 unsigned reqsize;
122
123 alg = crypto_skcipher_alg(tfm);
124 salg = container_of(alg, struct simd_skcipher_alg, alg);
125
126 cryptd_tfm = cryptd_alloc_skcipher(salg->ialg_name,
127 CRYPTO_ALG_INTERNAL,
128 CRYPTO_ALG_INTERNAL);
129 if (IS_ERR(cryptd_tfm))
130 return PTR_ERR(cryptd_tfm);
131
132 ctx->cryptd_tfm = cryptd_tfm;
133
134 reqsize = crypto_skcipher_reqsize(cryptd_skcipher_child(cryptd_tfm));
135 reqsize = max(reqsize, crypto_skcipher_reqsize(&cryptd_tfm->base));
136 reqsize += sizeof(struct skcipher_request);
137
138 crypto_skcipher_set_reqsize(tfm, reqsize);
139
140 return 0;
141 }
142
143 struct simd_skcipher_alg *simd_skcipher_create_compat(const char *algname,
144 const char *drvname,
145 const char *basename)
146 {
147 struct simd_skcipher_alg *salg;
148 struct crypto_skcipher *tfm;
149 struct skcipher_alg *ialg;
150 struct skcipher_alg *alg;
151 int err;
152
153 tfm = crypto_alloc_skcipher(basename, CRYPTO_ALG_INTERNAL,
154 CRYPTO_ALG_INTERNAL | CRYPTO_ALG_ASYNC);
155 if (IS_ERR(tfm))
156 return ERR_CAST(tfm);
157
158 ialg = crypto_skcipher_alg(tfm);
159
160 salg = kzalloc(sizeof(*salg), GFP_KERNEL);
161 if (!salg) {
162 salg = ERR_PTR(-ENOMEM);
163 goto out_put_tfm;
164 }
165
166 salg->ialg_name = basename;
167 alg = &salg->alg;
168
169 err = -ENAMETOOLONG;
170 if (snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", algname) >=
171 CRYPTO_MAX_ALG_NAME)
172 goto out_free_salg;
173
174 if (snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
175 drvname) >= CRYPTO_MAX_ALG_NAME)
176 goto out_free_salg;
177
178 alg->base.cra_flags = CRYPTO_ALG_ASYNC;
179 alg->base.cra_priority = ialg->base.cra_priority;
180 alg->base.cra_blocksize = ialg->base.cra_blocksize;
181 alg->base.cra_alignmask = ialg->base.cra_alignmask;
182 alg->base.cra_module = ialg->base.cra_module;
183 alg->base.cra_ctxsize = sizeof(struct simd_skcipher_ctx);
184
185 alg->ivsize = ialg->ivsize;
186 alg->chunksize = ialg->chunksize;
187 alg->min_keysize = ialg->min_keysize;
188 alg->max_keysize = ialg->max_keysize;
189
190 alg->init = simd_skcipher_init;
191 alg->exit = simd_skcipher_exit;
192
193 alg->setkey = simd_skcipher_setkey;
194 alg->encrypt = simd_skcipher_encrypt;
195 alg->decrypt = simd_skcipher_decrypt;
196
197 err = crypto_register_skcipher(alg);
198 if (err)
199 goto out_free_salg;
200
201 out_put_tfm:
202 crypto_free_skcipher(tfm);
203 return salg;
204
205 out_free_salg:
206 kfree(salg);
207 salg = ERR_PTR(err);
208 goto out_put_tfm;
209 }
210 EXPORT_SYMBOL_GPL(simd_skcipher_create_compat);
211
212 struct simd_skcipher_alg *simd_skcipher_create(const char *algname,
213 const char *basename)
214 {
215 char drvname[CRYPTO_MAX_ALG_NAME];
216
217 if (snprintf(drvname, CRYPTO_MAX_ALG_NAME, "simd-%s", basename) >=
218 CRYPTO_MAX_ALG_NAME)
219 return ERR_PTR(-ENAMETOOLONG);
220
221 return simd_skcipher_create_compat(algname, drvname, basename);
222 }
223 EXPORT_SYMBOL_GPL(simd_skcipher_create);
224
225 void simd_skcipher_free(struct simd_skcipher_alg *salg)
226 {
227 crypto_unregister_skcipher(&salg->alg);
228 kfree(salg);
229 }
230 EXPORT_SYMBOL_GPL(simd_skcipher_free);
231
232 int simd_register_skciphers_compat(struct skcipher_alg *algs, int count,
233 struct simd_skcipher_alg **simd_algs)
234 {
235 int err;
236 int i;
237 const char *algname;
238 const char *drvname;
239 const char *basename;
240 struct simd_skcipher_alg *simd;
241
242 err = crypto_register_skciphers(algs, count);
243 if (err)
244 return err;
245
246 for (i = 0; i < count; i++) {
247 WARN_ON(strncmp(algs[i].base.cra_name, "__", 2));
248 WARN_ON(strncmp(algs[i].base.cra_driver_name, "__", 2));
249 algname = algs[i].base.cra_name + 2;
250 drvname = algs[i].base.cra_driver_name + 2;
251 basename = algs[i].base.cra_driver_name;
252 simd = simd_skcipher_create_compat(algname, drvname, basename);
253 err = PTR_ERR(simd);
254 if (IS_ERR(simd))
255 goto err_unregister;
256 simd_algs[i] = simd;
257 }
258 return 0;
259
260 err_unregister:
261 simd_unregister_skciphers(algs, count, simd_algs);
262 return err;
263 }
264 EXPORT_SYMBOL_GPL(simd_register_skciphers_compat);
265
266 void simd_unregister_skciphers(struct skcipher_alg *algs, int count,
267 struct simd_skcipher_alg **simd_algs)
268 {
269 int i;
270
271 crypto_unregister_skciphers(algs, count);
272
273 for (i = 0; i < count; i++) {
274 if (simd_algs[i]) {
275 simd_skcipher_free(simd_algs[i]);
276 simd_algs[i] = NULL;
277 }
278 }
279 }
280 EXPORT_SYMBOL_GPL(simd_unregister_skciphers);
281
282 /* AEAD support */
283
284 struct simd_aead_alg {
285 const char *ialg_name;
286 struct aead_alg alg;
287 };
288
289 struct simd_aead_ctx {
290 struct cryptd_aead *cryptd_tfm;
291 };
292
293 static int simd_aead_setkey(struct crypto_aead *tfm, const u8 *key,
294 unsigned int key_len)
295 {
296 struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
297 struct crypto_aead *child = &ctx->cryptd_tfm->base;
298 int err;
299
300 crypto_aead_clear_flags(child, CRYPTO_TFM_REQ_MASK);
301 crypto_aead_set_flags(child, crypto_aead_get_flags(tfm) &
302 CRYPTO_TFM_REQ_MASK);
303 err = crypto_aead_setkey(child, key, key_len);
304 crypto_aead_set_flags(tfm, crypto_aead_get_flags(child) &
305 CRYPTO_TFM_RES_MASK);
306 return err;
307 }
308
309 static int simd_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
310 {
311 struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
312 struct crypto_aead *child = &ctx->cryptd_tfm->base;
313
314 return crypto_aead_setauthsize(child, authsize);
315 }
316
317 static int simd_aead_encrypt(struct aead_request *req)
318 {
319 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
320 struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
321 struct aead_request *subreq;
322 struct crypto_aead *child;
323
324 subreq = aead_request_ctx(req);
325 *subreq = *req;
326
327 if (!crypto_simd_usable() ||
328 (in_atomic() && cryptd_aead_queued(ctx->cryptd_tfm)))
329 child = &ctx->cryptd_tfm->base;
330 else
331 child = cryptd_aead_child(ctx->cryptd_tfm);
332
333 aead_request_set_tfm(subreq, child);
334
335 return crypto_aead_encrypt(subreq);
336 }
337
338 static int simd_aead_decrypt(struct aead_request *req)
339 {
340 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
341 struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
342 struct aead_request *subreq;
343 struct crypto_aead *child;
344
345 subreq = aead_request_ctx(req);
346 *subreq = *req;
347
348 if (!crypto_simd_usable() ||
349 (in_atomic() && cryptd_aead_queued(ctx->cryptd_tfm)))
350 child = &ctx->cryptd_tfm->base;
351 else
352 child = cryptd_aead_child(ctx->cryptd_tfm);
353
354 aead_request_set_tfm(subreq, child);
355
356 return crypto_aead_decrypt(subreq);
357 }
358
359 static void simd_aead_exit(struct crypto_aead *tfm)
360 {
361 struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
362
363 cryptd_free_aead(ctx->cryptd_tfm);
364 }
365
366 static int simd_aead_init(struct crypto_aead *tfm)
367 {
368 struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
369 struct cryptd_aead *cryptd_tfm;
370 struct simd_aead_alg *salg;
371 struct aead_alg *alg;
372 unsigned reqsize;
373
374 alg = crypto_aead_alg(tfm);
375 salg = container_of(alg, struct simd_aead_alg, alg);
376
377 cryptd_tfm = cryptd_alloc_aead(salg->ialg_name, CRYPTO_ALG_INTERNAL,
378 CRYPTO_ALG_INTERNAL);
379 if (IS_ERR(cryptd_tfm))
380 return PTR_ERR(cryptd_tfm);
381
382 ctx->cryptd_tfm = cryptd_tfm;
383
384 reqsize = crypto_aead_reqsize(cryptd_aead_child(cryptd_tfm));
385 reqsize = max(reqsize, crypto_aead_reqsize(&cryptd_tfm->base));
386 reqsize += sizeof(struct aead_request);
387
388 crypto_aead_set_reqsize(tfm, reqsize);
389
390 return 0;
391 }
392
393 struct simd_aead_alg *simd_aead_create_compat(const char *algname,
394 const char *drvname,
395 const char *basename)
396 {
397 struct simd_aead_alg *salg;
398 struct crypto_aead *tfm;
399 struct aead_alg *ialg;
400 struct aead_alg *alg;
401 int err;
402
403 tfm = crypto_alloc_aead(basename, CRYPTO_ALG_INTERNAL,
404 CRYPTO_ALG_INTERNAL | CRYPTO_ALG_ASYNC);
405 if (IS_ERR(tfm))
406 return ERR_CAST(tfm);
407
408 ialg = crypto_aead_alg(tfm);
409
410 salg = kzalloc(sizeof(*salg), GFP_KERNEL);
411 if (!salg) {
412 salg = ERR_PTR(-ENOMEM);
413 goto out_put_tfm;
414 }
415
416 salg->ialg_name = basename;
417 alg = &salg->alg;
418
419 err = -ENAMETOOLONG;
420 if (snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", algname) >=
421 CRYPTO_MAX_ALG_NAME)
422 goto out_free_salg;
423
424 if (snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
425 drvname) >= CRYPTO_MAX_ALG_NAME)
426 goto out_free_salg;
427
428 alg->base.cra_flags = CRYPTO_ALG_ASYNC;
429 alg->base.cra_priority = ialg->base.cra_priority;
430 alg->base.cra_blocksize = ialg->base.cra_blocksize;
431 alg->base.cra_alignmask = ialg->base.cra_alignmask;
432 alg->base.cra_module = ialg->base.cra_module;
433 alg->base.cra_ctxsize = sizeof(struct simd_aead_ctx);
434
435 alg->ivsize = ialg->ivsize;
436 alg->maxauthsize = ialg->maxauthsize;
437 alg->chunksize = ialg->chunksize;
438
439 alg->init = simd_aead_init;
440 alg->exit = simd_aead_exit;
441
442 alg->setkey = simd_aead_setkey;
443 alg->setauthsize = simd_aead_setauthsize;
444 alg->encrypt = simd_aead_encrypt;
445 alg->decrypt = simd_aead_decrypt;
446
447 err = crypto_register_aead(alg);
448 if (err)
449 goto out_free_salg;
450
451 out_put_tfm:
452 crypto_free_aead(tfm);
453 return salg;
454
455 out_free_salg:
456 kfree(salg);
457 salg = ERR_PTR(err);
458 goto out_put_tfm;
459 }
460 EXPORT_SYMBOL_GPL(simd_aead_create_compat);
461
462 struct simd_aead_alg *simd_aead_create(const char *algname,
463 const char *basename)
464 {
465 char drvname[CRYPTO_MAX_ALG_NAME];
466
467 if (snprintf(drvname, CRYPTO_MAX_ALG_NAME, "simd-%s", basename) >=
468 CRYPTO_MAX_ALG_NAME)
469 return ERR_PTR(-ENAMETOOLONG);
470
471 return simd_aead_create_compat(algname, drvname, basename);
472 }
473 EXPORT_SYMBOL_GPL(simd_aead_create);
474
475 void simd_aead_free(struct simd_aead_alg *salg)
476 {
477 crypto_unregister_aead(&salg->alg);
478 kfree(salg);
479 }
480 EXPORT_SYMBOL_GPL(simd_aead_free);
481
482 int simd_register_aeads_compat(struct aead_alg *algs, int count,
483 struct simd_aead_alg **simd_algs)
484 {
485 int err;
486 int i;
487 const char *algname;
488 const char *drvname;
489 const char *basename;
490 struct simd_aead_alg *simd;
491
492 err = crypto_register_aeads(algs, count);
493 if (err)
494 return err;
495
496 for (i = 0; i < count; i++) {
497 WARN_ON(strncmp(algs[i].base.cra_name, "__", 2));
498 WARN_ON(strncmp(algs[i].base.cra_driver_name, "__", 2));
499 algname = algs[i].base.cra_name + 2;
500 drvname = algs[i].base.cra_driver_name + 2;
501 basename = algs[i].base.cra_driver_name;
502 simd = simd_aead_create_compat(algname, drvname, basename);
503 err = PTR_ERR(simd);
504 if (IS_ERR(simd))
505 goto err_unregister;
506 simd_algs[i] = simd;
507 }
508 return 0;
509
510 err_unregister:
511 simd_unregister_aeads(algs, count, simd_algs);
512 return err;
513 }
514 EXPORT_SYMBOL_GPL(simd_register_aeads_compat);
515
516 void simd_unregister_aeads(struct aead_alg *algs, int count,
517 struct simd_aead_alg **simd_algs)
518 {
519 int i;
520
521 crypto_unregister_aeads(algs, count);
522
523 for (i = 0; i < count; i++) {
524 if (simd_algs[i]) {
525 simd_aead_free(simd_algs[i]);
526 simd_algs[i] = NULL;
527 }
528 }
529 }
530 EXPORT_SYMBOL_GPL(simd_unregister_aeads);
531
532 MODULE_LICENSE("GPL");