]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/stack/stack.c
bdf90546886fda4d75d520c01a8ab8c987740029
[thirdparty/openssl.git] / crypto / stack / stack.c
1 /*
2 * Copyright 1995-2024 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #include <stdio.h>
11 #include "internal/cryptlib.h"
12 #include "internal/numbers.h"
13 #include "internal/safe_math.h"
14 #include <openssl/stack.h>
15 #include <errno.h>
16 #include <openssl/e_os2.h> /* For ossl_inline */
17
18 OSSL_SAFE_MATH_SIGNED(int, int)
19
20 /*
21 * The initial number of nodes in the array.
22 */
23 static const int min_nodes = 4;
24 static const int max_nodes = SIZE_MAX / sizeof(void *) < INT_MAX
25 ? (int)(SIZE_MAX / sizeof(void *)) : INT_MAX;
26
27 struct stack_st {
28 int num;
29 const void **data;
30 int sorted;
31 int num_alloc;
32 OPENSSL_sk_compfunc comp;
33 OPENSSL_sk_freefunc_thunk free_thunk;
34 };
35
36 OPENSSL_sk_compfunc OPENSSL_sk_set_cmp_func(OPENSSL_STACK *sk,
37 OPENSSL_sk_compfunc c)
38 {
39 OPENSSL_sk_compfunc old = sk->comp;
40
41 if (sk->comp != c)
42 sk->sorted = 0;
43 sk->comp = c;
44
45 return old;
46 }
47
48 OPENSSL_STACK *OPENSSL_sk_dup(const OPENSSL_STACK *sk)
49 {
50 OPENSSL_STACK *ret;
51
52 if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL)
53 goto err;
54
55 if (sk == NULL) {
56 ret->num = 0;
57 ret->sorted = 0;
58 ret->comp = NULL;
59 } else {
60 /* direct structure assignment */
61 *ret = *sk;
62 }
63
64 if (sk == NULL || sk->num == 0) {
65 /* postpone |ret->data| allocation */
66 ret->data = NULL;
67 ret->num_alloc = 0;
68 return ret;
69 }
70
71 /* duplicate |sk->data| content */
72 ret->data = OPENSSL_malloc(sizeof(*ret->data) * sk->num_alloc);
73 if (ret->data == NULL)
74 goto err;
75 memcpy(ret->data, sk->data, sizeof(void *) * sk->num);
76 return ret;
77
78 err:
79 OPENSSL_sk_free(ret);
80 return NULL;
81 }
82
83 OPENSSL_STACK *OPENSSL_sk_deep_copy(const OPENSSL_STACK *sk,
84 OPENSSL_sk_copyfunc copy_func,
85 OPENSSL_sk_freefunc free_func)
86 {
87 OPENSSL_STACK *ret;
88 int i;
89
90 if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL)
91 goto err;
92
93 if (sk == NULL) {
94 ret->num = 0;
95 ret->sorted = 0;
96 ret->comp = NULL;
97 } else {
98 /* direct structure assignment */
99 *ret = *sk;
100 }
101
102 if (sk == NULL || sk->num == 0) {
103 /* postpone |ret| data allocation */
104 ret->data = NULL;
105 ret->num_alloc = 0;
106 return ret;
107 }
108
109 ret->num_alloc = sk->num > min_nodes ? sk->num : min_nodes;
110 ret->data = OPENSSL_zalloc(sizeof(*ret->data) * ret->num_alloc);
111 if (ret->data == NULL)
112 goto err;
113
114 for (i = 0; i < ret->num; ++i) {
115 if (sk->data[i] == NULL)
116 continue;
117 if ((ret->data[i] = copy_func(sk->data[i])) == NULL) {
118 while (--i >= 0)
119 if (ret->data[i] != NULL)
120 free_func((void *)ret->data[i]);
121 goto err;
122 }
123 }
124 return ret;
125
126 err:
127 OPENSSL_sk_free(ret);
128 return NULL;
129 }
130
131 OPENSSL_STACK *OPENSSL_sk_new_null(void)
132 {
133 return OPENSSL_sk_new_reserve(NULL, 0);
134 }
135
136 OPENSSL_STACK *OPENSSL_sk_new(OPENSSL_sk_compfunc c)
137 {
138 return OPENSSL_sk_new_reserve(c, 0);
139 }
140
141 /*
142 * Calculate the array growth based on the target size.
143 *
144 * The growth factor is a rational number and is defined by a numerator
145 * and a denominator. According to Andrew Koenig in his paper "Why Are
146 * Vectors Efficient?" from JOOP 11(5) 1998, this factor should be less
147 * than the golden ratio (1.618...).
148 *
149 * Considering only the Fibonacci ratios less than the golden ratio, the
150 * number of steps from the minimum allocation to integer overflow is:
151 * factor decimal growths
152 * 3/2 1.5 51
153 * 8/5 1.6 45
154 * 21/13 1.615... 44
155 *
156 * All larger factors have the same number of growths.
157 *
158 * 3/2 and 8/5 have nice power of two shifts, so seem like a good choice.
159 */
160 static ossl_inline int compute_growth(int target, int current)
161 {
162 int err = 0;
163
164 while (current < target) {
165 if (current >= max_nodes)
166 return 0;
167
168 current = safe_muldiv_int(current, 8, 5, &err);
169 if (err != 0)
170 return 0;
171 if (current >= max_nodes)
172 current = max_nodes;
173 }
174 return current;
175 }
176
177 /* internal STACK storage allocation */
178 static int sk_reserve(OPENSSL_STACK *st, int n, int exact)
179 {
180 const void **tmpdata;
181 int num_alloc;
182
183 /* Check to see the reservation isn't exceeding the hard limit */
184 if (n > max_nodes - st->num) {
185 ERR_raise(ERR_LIB_CRYPTO, CRYPTO_R_TOO_MANY_RECORDS);
186 return 0;
187 }
188
189 /* Figure out the new size */
190 num_alloc = st->num + n;
191 if (num_alloc < min_nodes)
192 num_alloc = min_nodes;
193
194 /* If |st->data| allocation was postponed */
195 if (st->data == NULL) {
196 /*
197 * At this point, |st->num_alloc| and |st->num| are 0;
198 * so |num_alloc| value is |n| or |min_nodes| if greater than |n|.
199 */
200 if ((st->data = OPENSSL_zalloc(sizeof(void *) * num_alloc)) == NULL)
201 return 0;
202 st->num_alloc = num_alloc;
203 return 1;
204 }
205
206 if (!exact) {
207 if (num_alloc <= st->num_alloc)
208 return 1;
209 num_alloc = compute_growth(num_alloc, st->num_alloc);
210 if (num_alloc == 0) {
211 ERR_raise(ERR_LIB_CRYPTO, CRYPTO_R_TOO_MANY_RECORDS);
212 return 0;
213 }
214 } else if (num_alloc == st->num_alloc) {
215 return 1;
216 }
217
218 tmpdata = OPENSSL_realloc((void *)st->data, sizeof(void *) * num_alloc);
219 if (tmpdata == NULL)
220 return 0;
221
222 st->data = tmpdata;
223 st->num_alloc = num_alloc;
224 return 1;
225 }
226
227 OPENSSL_STACK *OPENSSL_sk_new_reserve(OPENSSL_sk_compfunc c, int n)
228 {
229 OPENSSL_STACK *st = OPENSSL_zalloc(sizeof(OPENSSL_STACK));
230
231 if (st == NULL)
232 return NULL;
233
234 st->comp = c;
235
236 if (n <= 0)
237 return st;
238
239 if (!sk_reserve(st, n, 1)) {
240 OPENSSL_sk_free(st);
241 return NULL;
242 }
243
244 return st;
245 }
246
247 int OPENSSL_sk_reserve(OPENSSL_STACK *st, int n)
248 {
249 if (st == NULL) {
250 ERR_raise(ERR_LIB_CRYPTO, ERR_R_PASSED_NULL_PARAMETER);
251 return 0;
252 }
253
254 if (n < 0)
255 return 1;
256 return sk_reserve(st, n, 1);
257 }
258
259 OPENSSL_STACK *OPENSSL_sk_set_thunks(OPENSSL_STACK *st, OPENSSL_sk_freefunc_thunk f_thunk)
260 {
261 if (st != NULL)
262 st->free_thunk = f_thunk;
263
264 return st;
265 }
266
267 int OPENSSL_sk_insert(OPENSSL_STACK *st, const void *data, int loc)
268 {
269 if (st == NULL) {
270 ERR_raise(ERR_LIB_CRYPTO, ERR_R_PASSED_NULL_PARAMETER);
271 return 0;
272 }
273 if (st->num == max_nodes) {
274 ERR_raise(ERR_LIB_CRYPTO, CRYPTO_R_TOO_MANY_RECORDS);
275 return 0;
276 }
277
278 if (!sk_reserve(st, 1, 0))
279 return 0;
280
281 if ((loc >= st->num) || (loc < 0)) {
282 st->data[st->num] = data;
283 } else {
284 memmove(&st->data[loc + 1], &st->data[loc],
285 sizeof(st->data[0]) * (st->num - loc));
286 st->data[loc] = data;
287 }
288 st->num++;
289 st->sorted = 0;
290 return st->num;
291 }
292
293 static ossl_inline void *internal_delete(OPENSSL_STACK *st, int loc)
294 {
295 const void *ret = st->data[loc];
296
297 if (loc != st->num - 1)
298 memmove(&st->data[loc], &st->data[loc + 1],
299 sizeof(st->data[0]) * (st->num - loc - 1));
300 st->num--;
301
302 return (void *)ret;
303 }
304
305 void *OPENSSL_sk_delete_ptr(OPENSSL_STACK *st, const void *p)
306 {
307 int i;
308
309 if (st == NULL)
310 return NULL;
311
312 for (i = 0; i < st->num; i++)
313 if (st->data[i] == p)
314 return internal_delete(st, i);
315 return NULL;
316 }
317
318 void *OPENSSL_sk_delete(OPENSSL_STACK *st, int loc)
319 {
320 if (st == NULL || loc < 0 || loc >= st->num)
321 return NULL;
322
323 return internal_delete(st, loc);
324 }
325
326 static int internal_find(OPENSSL_STACK *st, const void *data,
327 int ret_val_options, int *pnum_matched)
328 {
329 const void *r;
330 int i, count = 0;
331 int *pnum = pnum_matched;
332
333 if (st == NULL || st->num == 0)
334 return -1;
335
336 if (pnum == NULL)
337 pnum = &count;
338
339 if (st->comp == NULL) {
340 for (i = 0; i < st->num; i++)
341 if (st->data[i] == data) {
342 *pnum = 1;
343 return i;
344 }
345 *pnum = 0;
346 return -1;
347 }
348
349 if (data == NULL)
350 return -1;
351
352 if (!st->sorted) {
353 int res = -1;
354
355 for (i = 0; i < st->num; i++)
356 if (st->comp(&data, st->data + i) == 0) {
357 if (res == -1)
358 res = i;
359 ++*pnum;
360 /* Check if only one result is wanted and exit if so */
361 if (pnum_matched == NULL)
362 return i;
363 }
364 if (res == -1)
365 *pnum = 0;
366 return res;
367 }
368
369 if (pnum_matched != NULL)
370 ret_val_options |= OSSL_BSEARCH_FIRST_VALUE_ON_MATCH;
371 r = ossl_bsearch(&data, st->data, st->num, sizeof(void *), st->comp,
372 ret_val_options);
373
374 if (pnum_matched != NULL) {
375 *pnum = 0;
376 if (r != NULL) {
377 const void **p = (const void **)r;
378
379 while (p < st->data + st->num) {
380 if (st->comp(&data, p) != 0)
381 break;
382 ++*pnum;
383 ++p;
384 }
385 }
386 }
387
388 return r == NULL ? -1 : (int)((const void **)r - st->data);
389 }
390
391 int OPENSSL_sk_find(OPENSSL_STACK *st, const void *data)
392 {
393 return internal_find(st, data, OSSL_BSEARCH_FIRST_VALUE_ON_MATCH, NULL);
394 }
395
396 int OPENSSL_sk_find_ex(OPENSSL_STACK *st, const void *data)
397 {
398 return internal_find(st, data, OSSL_BSEARCH_VALUE_ON_NOMATCH, NULL);
399 }
400
401 int OPENSSL_sk_find_all(OPENSSL_STACK *st, const void *data, int *pnum)
402 {
403 return internal_find(st, data, OSSL_BSEARCH_FIRST_VALUE_ON_MATCH, pnum);
404 }
405
406 int OPENSSL_sk_push(OPENSSL_STACK *st, const void *data)
407 {
408 if (st == NULL)
409 return 0;
410 return OPENSSL_sk_insert(st, data, st->num);
411 }
412
413 int OPENSSL_sk_unshift(OPENSSL_STACK *st, const void *data)
414 {
415 return OPENSSL_sk_insert(st, data, 0);
416 }
417
418 void *OPENSSL_sk_shift(OPENSSL_STACK *st)
419 {
420 if (st == NULL || st->num == 0)
421 return NULL;
422 return internal_delete(st, 0);
423 }
424
425 void *OPENSSL_sk_pop(OPENSSL_STACK *st)
426 {
427 if (st == NULL || st->num == 0)
428 return NULL;
429 return internal_delete(st, st->num - 1);
430 }
431
432 void OPENSSL_sk_zero(OPENSSL_STACK *st)
433 {
434 if (st == NULL || st->num == 0)
435 return;
436 memset(st->data, 0, sizeof(*st->data) * st->num);
437 st->num = 0;
438 }
439
440 void OPENSSL_sk_pop_free(OPENSSL_STACK *st, OPENSSL_sk_freefunc func)
441 {
442 int i;
443
444 if (st == NULL)
445 return;
446
447 for (i = 0; i < st->num; i++) {
448 if (st->data[i] != NULL) {
449 if (st->free_thunk != NULL)
450 st->free_thunk(func, (void *)st->data[i]);
451 else
452 func((void *)st->data[i]);
453 }
454 }
455 OPENSSL_sk_free(st);
456 }
457
458 void OPENSSL_sk_free(OPENSSL_STACK *st)
459 {
460 if (st == NULL)
461 return;
462 OPENSSL_free(st->data);
463 OPENSSL_free(st);
464 }
465
466 int OPENSSL_sk_num(const OPENSSL_STACK *st)
467 {
468 return st == NULL ? -1 : st->num;
469 }
470
471 void *OPENSSL_sk_value(const OPENSSL_STACK *st, int i)
472 {
473 if (st == NULL || i < 0 || i >= st->num)
474 return NULL;
475 return (void *)st->data[i];
476 }
477
478 void *OPENSSL_sk_set(OPENSSL_STACK *st, int i, const void *data)
479 {
480 if (st == NULL) {
481 ERR_raise(ERR_LIB_CRYPTO, ERR_R_PASSED_NULL_PARAMETER);
482 return NULL;
483 }
484 if (i < 0 || i >= st->num) {
485 ERR_raise_data(ERR_LIB_CRYPTO, ERR_R_PASSED_INVALID_ARGUMENT,
486 "i=%d", i);
487 return NULL;
488 }
489 st->data[i] = data;
490 st->sorted = 0;
491 return (void *)st->data[i];
492 }
493
494 void OPENSSL_sk_sort(OPENSSL_STACK *st)
495 {
496 if (st != NULL && !st->sorted && st->comp != NULL) {
497 if (st->num > 1)
498 qsort(st->data, st->num, sizeof(void *), st->comp);
499 st->sorted = 1; /* empty or single-element stack is considered sorted */
500 }
501 }
502
503 int OPENSSL_sk_is_sorted(const OPENSSL_STACK *st)
504 {
505 return st == NULL ? 1 : st->sorted;
506 }