]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/threads_pthread.c
fd87ccfa033def8486be98c519fe3ddbad728a29
[thirdparty/openssl.git] / crypto / threads_pthread.c
1 /*
2 * Copyright 2016-2025 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 /* We need to use the OPENSSL_fork_*() deprecated APIs */
11 #define OPENSSL_SUPPRESS_DEPRECATED
12
13 #include <openssl/crypto.h>
14 #include <crypto/cryptlib.h>
15 #include <crypto/sparse_array.h>
16 #include "internal/cryptlib.h"
17 #include "internal/threads_common.h"
18 #include "internal/rcu.h"
19 #include "rcu_internal.h"
20
21 #if defined(__clang__) && defined(__has_feature)
22 # if __has_feature(thread_sanitizer)
23 # define __SANITIZE_THREAD__
24 # endif
25 #endif
26
27 #if defined(__SANITIZE_THREAD__)
28 # include <sanitizer/tsan_interface.h>
29 # define TSAN_FAKE_UNLOCK(x) __tsan_mutex_pre_unlock((x), 0); \
30 __tsan_mutex_post_unlock((x), 0)
31
32 # define TSAN_FAKE_LOCK(x) __tsan_mutex_pre_lock((x), 0); \
33 __tsan_mutex_post_lock((x), 0, 0)
34 #else
35 # define TSAN_FAKE_UNLOCK(x)
36 # define TSAN_FAKE_LOCK(x)
37 #endif
38
39 #if defined(__sun)
40 # include <atomic.h>
41 #endif
42
43 #if defined(__apple_build_version__) && __apple_build_version__ < 6000000
44 /*
45 * OS/X 10.7 and 10.8 had a weird version of clang which has __ATOMIC_ACQUIRE and
46 * __ATOMIC_ACQ_REL but which expects only one parameter for __atomic_is_lock_free()
47 * rather than two which has signature __atomic_is_lock_free(sizeof(_Atomic(T))).
48 * All of this makes impossible to use __atomic_is_lock_free here.
49 *
50 * See: https://github.com/llvm/llvm-project/commit/a4c2602b714e6c6edb98164550a5ae829b2de760
51 */
52 # define BROKEN_CLANG_ATOMICS
53 #endif
54
55 #if defined(OPENSSL_THREADS) && !defined(CRYPTO_TDEBUG) && !defined(OPENSSL_SYS_WINDOWS)
56
57 # if defined(OPENSSL_SYS_UNIX)
58 # include <sys/types.h>
59 # include <unistd.h>
60 # endif
61
62 # include <assert.h>
63
64 /*
65 * The Non-Stop KLT thread model currently seems broken in its rwlock
66 * implementation
67 */
68 # if defined(PTHREAD_RWLOCK_INITIALIZER) && !defined(_KLT_MODEL_)
69 # define USE_RWLOCK
70 # endif
71
72 /*
73 * For all GNU/clang atomic builtins, we also need fallbacks, to cover all
74 * other compilers.
75
76 * Unfortunately, we can't do that with some "generic type", because there's no
77 * guarantee that the chosen generic type is large enough to cover all cases.
78 * Therefore, we implement fallbacks for each applicable type, with composed
79 * names that include the type they handle.
80 *
81 * (an anecdote: we previously tried to use |void *| as the generic type, with
82 * the thought that the pointer itself is the largest type. However, this is
83 * not true on 32-bit pointer platforms, as a |uint64_t| is twice as large)
84 *
85 * All applicable ATOMIC_ macros take the intended type as first parameter, so
86 * they can map to the correct fallback function. In the GNU/clang case, that
87 * parameter is simply ignored.
88 */
89
90 /*
91 * Internal types used with the ATOMIC_ macros, to make it possible to compose
92 * fallback function names.
93 */
94 typedef void *pvoid;
95
96 # if defined(__GNUC__) && defined(__ATOMIC_ACQUIRE) && !defined(BROKEN_CLANG_ATOMICS) \
97 && !defined(USE_ATOMIC_FALLBACKS)
98 # define ATOMIC_LOAD_N(t, p, o) __atomic_load_n(p, o)
99 # define ATOMIC_STORE_N(t, p, v, o) __atomic_store_n(p, v, o)
100 # define ATOMIC_STORE(t, p, v, o) __atomic_store(p, v, o)
101 # define ATOMIC_ADD_FETCH(p, v, o) __atomic_add_fetch(p, v, o)
102 # define ATOMIC_SUB_FETCH(p, v, o) __atomic_sub_fetch(p, v, o)
103 # else
104 static pthread_mutex_t atomic_sim_lock = PTHREAD_MUTEX_INITIALIZER;
105
106 # define IMPL_fallback_atomic_load_n(t) \
107 static ossl_inline t fallback_atomic_load_n_##t(t *p) \
108 { \
109 t ret; \
110 \
111 pthread_mutex_lock(&atomic_sim_lock); \
112 ret = *p; \
113 pthread_mutex_unlock(&atomic_sim_lock); \
114 return ret; \
115 }
116 IMPL_fallback_atomic_load_n(uint32_t)
117 IMPL_fallback_atomic_load_n(uint64_t)
118 IMPL_fallback_atomic_load_n(pvoid)
119
120 # define ATOMIC_LOAD_N(t, p, o) fallback_atomic_load_n_##t(p)
121
122 # define IMPL_fallback_atomic_store_n(t) \
123 static ossl_inline t fallback_atomic_store_n_##t(t *p, t v) \
124 { \
125 t ret; \
126 \
127 pthread_mutex_lock(&atomic_sim_lock); \
128 ret = *p; \
129 *p = v; \
130 pthread_mutex_unlock(&atomic_sim_lock); \
131 return ret; \
132 }
133 IMPL_fallback_atomic_store_n(uint32_t)
134
135 # define ATOMIC_STORE_N(t, p, v, o) fallback_atomic_store_n_##t(p, v)
136
137 # define IMPL_fallback_atomic_store(t) \
138 static ossl_inline void fallback_atomic_store_##t(t *p, t *v) \
139 { \
140 pthread_mutex_lock(&atomic_sim_lock); \
141 *p = *v; \
142 pthread_mutex_unlock(&atomic_sim_lock); \
143 }
144 IMPL_fallback_atomic_store(pvoid)
145
146 # define ATOMIC_STORE(t, p, v, o) fallback_atomic_store_##t(p, v)
147
148 /*
149 * The fallbacks that follow don't need any per type implementation, as
150 * they are designed for uint64_t only. If there comes a time when multiple
151 * types need to be covered, it's relatively easy to refactor them the same
152 * way as the fallbacks above.
153 */
154
155 static ossl_inline uint64_t fallback_atomic_add_fetch(uint64_t *p, uint64_t v)
156 {
157 uint64_t ret;
158
159 pthread_mutex_lock(&atomic_sim_lock);
160 *p += v;
161 ret = *p;
162 pthread_mutex_unlock(&atomic_sim_lock);
163 return ret;
164 }
165
166 # define ATOMIC_ADD_FETCH(p, v, o) fallback_atomic_add_fetch(p, v)
167
168 static ossl_inline uint64_t fallback_atomic_sub_fetch(uint64_t *p, uint64_t v)
169 {
170 uint64_t ret;
171
172 pthread_mutex_lock(&atomic_sim_lock);
173 *p -= v;
174 ret = *p;
175 pthread_mutex_unlock(&atomic_sim_lock);
176 return ret;
177 }
178
179 # define ATOMIC_SUB_FETCH(p, v, o) fallback_atomic_sub_fetch(p, v)
180 # endif
181
182 /*
183 * This is the core of an rcu lock. It tracks the readers and writers for the
184 * current quiescence point for a given lock. Users is the 64 bit value that
185 * stores the READERS/ID as defined above
186 *
187 */
188 struct rcu_qp {
189 uint64_t users;
190 };
191
192 struct thread_qp {
193 struct rcu_qp *qp;
194 unsigned int depth;
195 CRYPTO_RCU_LOCK *lock;
196 };
197
198 # define MAX_QPS 10
199 /*
200 * This is the per thread tracking data
201 * that is assigned to each thread participating
202 * in an rcu qp
203 *
204 * qp points to the qp that it last acquired
205 *
206 */
207 struct rcu_thr_data {
208 struct thread_qp thread_qps[MAX_QPS];
209 };
210
211 /*
212 * This is the internal version of a CRYPTO_RCU_LOCK
213 * it is cast from CRYPTO_RCU_LOCK
214 */
215 struct rcu_lock_st {
216 /* Callbacks to call for next ossl_synchronize_rcu */
217 struct rcu_cb_item *cb_items;
218
219 /* The context we are being created against */
220 OSSL_LIB_CTX *ctx;
221
222 /* Array of quiescent points for synchronization */
223 struct rcu_qp *qp_group;
224
225 /* rcu generation counter for in-order retirement */
226 uint32_t id_ctr;
227
228 /* Number of elements in qp_group array */
229 uint32_t group_count;
230
231 /* Index of the current qp in the qp_group array */
232 uint32_t reader_idx;
233
234 /* value of the next id_ctr value to be retired */
235 uint32_t next_to_retire;
236
237 /* index of the next free rcu_qp in the qp_group */
238 uint32_t current_alloc_idx;
239
240 /* number of qp's in qp_group array currently being retired */
241 uint32_t writers_alloced;
242
243 /* lock protecting write side operations */
244 pthread_mutex_t write_lock;
245
246 /* lock protecting updates to writers_alloced/current_alloc_idx */
247 pthread_mutex_t alloc_lock;
248
249 /* signal to wake threads waiting on alloc_lock */
250 pthread_cond_t alloc_signal;
251
252 /* lock to enforce in-order retirement */
253 pthread_mutex_t prior_lock;
254
255 /* signal to wake threads waiting on prior_lock */
256 pthread_cond_t prior_signal;
257 };
258
259 /* Read side acquisition of the current qp */
260 static struct rcu_qp *get_hold_current_qp(struct rcu_lock_st *lock)
261 {
262 uint32_t qp_idx;
263
264 /* get the current qp index */
265 for (;;) {
266 qp_idx = ATOMIC_LOAD_N(uint32_t, &lock->reader_idx, __ATOMIC_RELAXED);
267
268 /*
269 * Notes on use of __ATOMIC_ACQUIRE
270 * We need to ensure the following:
271 * 1) That subsequent operations aren't optimized by hoisting them above
272 * this operation. Specifically, we don't want the below re-load of
273 * qp_idx to get optimized away
274 * 2) We want to ensure that any updating of reader_idx on the write side
275 * of the lock is flushed from a local cpu cache so that we see any
276 * updates prior to the load. This is a non-issue on cache coherent
277 * systems like x86, but is relevant on other arches
278 */
279 ATOMIC_ADD_FETCH(&lock->qp_group[qp_idx].users, (uint64_t)1,
280 __ATOMIC_ACQUIRE);
281
282 /* if the idx hasn't changed, we're good, else try again */
283 if (qp_idx == ATOMIC_LOAD_N(uint32_t, &lock->reader_idx,
284 __ATOMIC_RELAXED))
285 break;
286
287 ATOMIC_SUB_FETCH(&lock->qp_group[qp_idx].users, (uint64_t)1,
288 __ATOMIC_RELAXED);
289 }
290
291 return &lock->qp_group[qp_idx];
292 }
293
294 static void ossl_rcu_free_local_data(void *arg)
295 {
296 OSSL_LIB_CTX *ctx = arg;
297 struct rcu_thr_data *data = CRYPTO_THREAD_get_local_ex(CRYPTO_THREAD_LOCAL_RCU_KEY, ctx);
298
299 CRYPTO_THREAD_set_local_ex(CRYPTO_THREAD_LOCAL_RCU_KEY, ctx, NULL);
300 OPENSSL_free(data);
301 }
302
303 void ossl_rcu_read_lock(CRYPTO_RCU_LOCK *lock)
304 {
305 struct rcu_thr_data *data;
306 int i, available_qp = -1;
307
308 /*
309 * we're going to access current_qp here so ask the
310 * processor to fetch it
311 */
312 data = CRYPTO_THREAD_get_local_ex(CRYPTO_THREAD_LOCAL_RCU_KEY, lock->ctx);
313
314 if (data == NULL) {
315 data = OPENSSL_zalloc(sizeof(*data));
316 OPENSSL_assert(data != NULL);
317 CRYPTO_THREAD_set_local_ex(CRYPTO_THREAD_LOCAL_RCU_KEY, lock->ctx, data);
318 ossl_init_thread_start(NULL, lock->ctx, ossl_rcu_free_local_data);
319 }
320
321 for (i = 0; i < MAX_QPS; i++) {
322 if (data->thread_qps[i].qp == NULL && available_qp == -1)
323 available_qp = i;
324 /* If we have a hold on this lock already, we're good */
325 if (data->thread_qps[i].lock == lock) {
326 data->thread_qps[i].depth++;
327 return;
328 }
329 }
330
331 /*
332 * if we get here, then we don't have a hold on this lock yet
333 */
334 assert(available_qp != -1);
335
336 data->thread_qps[available_qp].qp = get_hold_current_qp(lock);
337 data->thread_qps[available_qp].depth = 1;
338 data->thread_qps[available_qp].lock = lock;
339 }
340
341 void ossl_rcu_read_unlock(CRYPTO_RCU_LOCK *lock)
342 {
343 int i;
344 struct rcu_thr_data *data = CRYPTO_THREAD_get_local_ex(CRYPTO_THREAD_LOCAL_RCU_KEY, lock->ctx);
345 uint64_t ret;
346
347 assert(data != NULL);
348
349 for (i = 0; i < MAX_QPS; i++) {
350 if (data->thread_qps[i].lock == lock) {
351 /*
352 * we have to use __ATOMIC_RELEASE here
353 * to ensure that all preceding read instructions complete
354 * before the decrement is visible to ossl_synchronize_rcu
355 */
356 data->thread_qps[i].depth--;
357 if (data->thread_qps[i].depth == 0) {
358 ret = ATOMIC_SUB_FETCH(&data->thread_qps[i].qp->users,
359 (uint64_t)1, __ATOMIC_RELEASE);
360 OPENSSL_assert(ret != UINT64_MAX);
361 data->thread_qps[i].qp = NULL;
362 data->thread_qps[i].lock = NULL;
363 }
364 return;
365 }
366 }
367 /*
368 * If we get here, we're trying to unlock a lock that we never acquired -
369 * that's fatal.
370 */
371 assert(0);
372 }
373
374 /*
375 * Write side allocation routine to get the current qp
376 * and replace it with a new one
377 */
378 static struct rcu_qp *update_qp(CRYPTO_RCU_LOCK *lock, uint32_t *curr_id)
379 {
380 uint32_t current_idx;
381
382 pthread_mutex_lock(&lock->alloc_lock);
383
384 /*
385 * we need at least one qp to be available with one
386 * left over, so that readers can start working on
387 * one that isn't yet being waited on
388 */
389 while (lock->group_count - lock->writers_alloced < 2)
390 /* we have to wait for one to be free */
391 pthread_cond_wait(&lock->alloc_signal, &lock->alloc_lock);
392
393 current_idx = lock->current_alloc_idx;
394
395 /* Allocate the qp */
396 lock->writers_alloced++;
397
398 /* increment the allocation index */
399 lock->current_alloc_idx =
400 (lock->current_alloc_idx + 1) % lock->group_count;
401
402 *curr_id = lock->id_ctr;
403 lock->id_ctr++;
404
405 ATOMIC_STORE_N(uint32_t, &lock->reader_idx, lock->current_alloc_idx,
406 __ATOMIC_RELAXED);
407
408 /*
409 * this should make sure that the new value of reader_idx is visible in
410 * get_hold_current_qp, directly after incrementing the users count
411 */
412 ATOMIC_ADD_FETCH(&lock->qp_group[current_idx].users, (uint64_t)0,
413 __ATOMIC_RELEASE);
414
415 /* wake up any waiters */
416 pthread_cond_signal(&lock->alloc_signal);
417 pthread_mutex_unlock(&lock->alloc_lock);
418 return &lock->qp_group[current_idx];
419 }
420
421 static void retire_qp(CRYPTO_RCU_LOCK *lock, struct rcu_qp *qp)
422 {
423 pthread_mutex_lock(&lock->alloc_lock);
424 lock->writers_alloced--;
425 pthread_cond_signal(&lock->alloc_signal);
426 pthread_mutex_unlock(&lock->alloc_lock);
427 }
428
429 static struct rcu_qp *allocate_new_qp_group(CRYPTO_RCU_LOCK *lock,
430 uint32_t count)
431 {
432 struct rcu_qp *new =
433 OPENSSL_zalloc(sizeof(*new) * count);
434
435 lock->group_count = count;
436 return new;
437 }
438
439 void ossl_rcu_write_lock(CRYPTO_RCU_LOCK *lock)
440 {
441 pthread_mutex_lock(&lock->write_lock);
442 TSAN_FAKE_UNLOCK(&lock->write_lock);
443 }
444
445 void ossl_rcu_write_unlock(CRYPTO_RCU_LOCK *lock)
446 {
447 TSAN_FAKE_LOCK(&lock->write_lock);
448 pthread_mutex_unlock(&lock->write_lock);
449 }
450
451 void ossl_synchronize_rcu(CRYPTO_RCU_LOCK *lock)
452 {
453 struct rcu_qp *qp;
454 uint64_t count;
455 uint32_t curr_id;
456 struct rcu_cb_item *cb_items, *tmpcb;
457
458 pthread_mutex_lock(&lock->write_lock);
459 cb_items = lock->cb_items;
460 lock->cb_items = NULL;
461 pthread_mutex_unlock(&lock->write_lock);
462
463 qp = update_qp(lock, &curr_id);
464
465 /* retire in order */
466 pthread_mutex_lock(&lock->prior_lock);
467 while (lock->next_to_retire != curr_id)
468 pthread_cond_wait(&lock->prior_signal, &lock->prior_lock);
469
470 /*
471 * wait for the reader count to reach zero
472 * Note the use of __ATOMIC_ACQUIRE here to ensure that any
473 * prior __ATOMIC_RELEASE write operation in ossl_rcu_read_unlock
474 * is visible prior to our read
475 * however this is likely just necessary to silence a tsan warning
476 * because the read side should not do any write operation
477 * outside the atomic itself
478 */
479 do {
480 count = ATOMIC_LOAD_N(uint64_t, &qp->users, __ATOMIC_ACQUIRE);
481 } while (count != (uint64_t)0);
482
483 lock->next_to_retire++;
484 pthread_cond_broadcast(&lock->prior_signal);
485 pthread_mutex_unlock(&lock->prior_lock);
486
487 retire_qp(lock, qp);
488
489 /* handle any callbacks that we have */
490 while (cb_items != NULL) {
491 tmpcb = cb_items;
492 cb_items = cb_items->next;
493 tmpcb->fn(tmpcb->data);
494 OPENSSL_free(tmpcb);
495 }
496 }
497
498 /*
499 * Note: This call assumes its made under the protection of
500 * ossl_rcu_write_lock
501 */
502 int ossl_rcu_call(CRYPTO_RCU_LOCK *lock, rcu_cb_fn cb, void *data)
503 {
504 struct rcu_cb_item *new =
505 OPENSSL_zalloc(sizeof(*new));
506
507 if (new == NULL)
508 return 0;
509
510 new->data = data;
511 new->fn = cb;
512
513 new->next = lock->cb_items;
514 lock->cb_items = new;
515
516 return 1;
517 }
518
519 void *ossl_rcu_uptr_deref(void **p)
520 {
521 return ATOMIC_LOAD_N(pvoid, p, __ATOMIC_ACQUIRE);
522 }
523
524 void ossl_rcu_assign_uptr(void **p, void **v)
525 {
526 ATOMIC_STORE(pvoid, p, v, __ATOMIC_RELEASE);
527 }
528
529 CRYPTO_RCU_LOCK *ossl_rcu_lock_new(int num_writers, OSSL_LIB_CTX *ctx)
530 {
531 struct rcu_lock_st *new;
532
533 /*
534 * We need a minimum of 2 qp's
535 */
536 if (num_writers < 2)
537 num_writers = 2;
538
539 ctx = ossl_lib_ctx_get_concrete(ctx);
540 if (ctx == NULL)
541 return 0;
542
543 new = OPENSSL_zalloc(sizeof(*new));
544 if (new == NULL)
545 return NULL;
546
547 new->ctx = ctx;
548 pthread_mutex_init(&new->write_lock, NULL);
549 pthread_mutex_init(&new->prior_lock, NULL);
550 pthread_mutex_init(&new->alloc_lock, NULL);
551 pthread_cond_init(&new->prior_signal, NULL);
552 pthread_cond_init(&new->alloc_signal, NULL);
553
554 new->qp_group = allocate_new_qp_group(new, num_writers);
555 if (new->qp_group == NULL) {
556 OPENSSL_free(new);
557 new = NULL;
558 }
559
560 return new;
561 }
562
563 void ossl_rcu_lock_free(CRYPTO_RCU_LOCK *lock)
564 {
565 struct rcu_lock_st *rlock = (struct rcu_lock_st *)lock;
566
567 if (lock == NULL)
568 return;
569
570 /* make sure we're synchronized */
571 ossl_synchronize_rcu(rlock);
572
573 OPENSSL_free(rlock->qp_group);
574 /* There should only be a single qp left now */
575 OPENSSL_free(rlock);
576 }
577
578 CRYPTO_RWLOCK *CRYPTO_THREAD_lock_new(void)
579 {
580 # ifdef USE_RWLOCK
581 CRYPTO_RWLOCK *lock;
582
583 if ((lock = OPENSSL_zalloc(sizeof(pthread_rwlock_t))) == NULL)
584 /* Don't set error, to avoid recursion blowup. */
585 return NULL;
586
587 if (pthread_rwlock_init(lock, NULL) != 0) {
588 OPENSSL_free(lock);
589 return NULL;
590 }
591 # else
592 pthread_mutexattr_t attr;
593 CRYPTO_RWLOCK *lock;
594
595 if ((lock = OPENSSL_zalloc(sizeof(pthread_mutex_t))) == NULL)
596 /* Don't set error, to avoid recursion blowup. */
597 return NULL;
598
599 /*
600 * We don't use recursive mutexes, but try to catch errors if we do.
601 */
602 pthread_mutexattr_init(&attr);
603 # if !defined (__TANDEM) && !defined (_SPT_MODEL_)
604 # if !defined(NDEBUG) && !defined(OPENSSL_NO_MUTEX_ERRORCHECK)
605 pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK);
606 # endif
607 # else
608 /* The SPT Thread Library does not define MUTEX attributes. */
609 # endif
610
611 if (pthread_mutex_init(lock, &attr) != 0) {
612 pthread_mutexattr_destroy(&attr);
613 OPENSSL_free(lock);
614 return NULL;
615 }
616
617 pthread_mutexattr_destroy(&attr);
618 # endif
619
620 return lock;
621 }
622
623 __owur int CRYPTO_THREAD_read_lock(CRYPTO_RWLOCK *lock)
624 {
625 # ifdef USE_RWLOCK
626 if (!ossl_assert(pthread_rwlock_rdlock(lock) == 0))
627 return 0;
628 # else
629 if (pthread_mutex_lock(lock) != 0) {
630 assert(errno != EDEADLK && errno != EBUSY);
631 return 0;
632 }
633 # endif
634
635 return 1;
636 }
637
638 __owur int CRYPTO_THREAD_write_lock(CRYPTO_RWLOCK *lock)
639 {
640 # ifdef USE_RWLOCK
641 if (!ossl_assert(pthread_rwlock_wrlock(lock) == 0))
642 return 0;
643 # else
644 if (pthread_mutex_lock(lock) != 0) {
645 assert(errno != EDEADLK && errno != EBUSY);
646 return 0;
647 }
648 # endif
649
650 return 1;
651 }
652
653 int CRYPTO_THREAD_unlock(CRYPTO_RWLOCK *lock)
654 {
655 # ifdef USE_RWLOCK
656 if (pthread_rwlock_unlock(lock) != 0)
657 return 0;
658 # else
659 if (pthread_mutex_unlock(lock) != 0) {
660 assert(errno != EPERM);
661 return 0;
662 }
663 # endif
664
665 return 1;
666 }
667
668 void CRYPTO_THREAD_lock_free(CRYPTO_RWLOCK *lock)
669 {
670 if (lock == NULL)
671 return;
672
673 # ifdef USE_RWLOCK
674 pthread_rwlock_destroy(lock);
675 # else
676 pthread_mutex_destroy(lock);
677 # endif
678 OPENSSL_free(lock);
679
680 return;
681 }
682
683 int CRYPTO_THREAD_run_once(CRYPTO_ONCE *once, void (*init)(void))
684 {
685 if (pthread_once(once, init) != 0)
686 return 0;
687
688 return 1;
689 }
690
691 int CRYPTO_THREAD_init_local(CRYPTO_THREAD_LOCAL *key, void (*cleanup)(void *))
692 {
693 if (pthread_key_create(key, cleanup) != 0)
694 return 0;
695
696 return 1;
697 }
698
699 void *CRYPTO_THREAD_get_local(CRYPTO_THREAD_LOCAL *key)
700 {
701 return pthread_getspecific(*key);
702 }
703
704 int CRYPTO_THREAD_set_local(CRYPTO_THREAD_LOCAL *key, void *val)
705 {
706 if (pthread_setspecific(*key, val) != 0)
707 return 0;
708
709 return 1;
710 }
711
712 int CRYPTO_THREAD_cleanup_local(CRYPTO_THREAD_LOCAL *key)
713 {
714 if (pthread_key_delete(*key) != 0)
715 return 0;
716
717 return 1;
718 }
719
720 CRYPTO_THREAD_ID CRYPTO_THREAD_get_current_id(void)
721 {
722 return pthread_self();
723 }
724
725 int CRYPTO_THREAD_compare_id(CRYPTO_THREAD_ID a, CRYPTO_THREAD_ID b)
726 {
727 return pthread_equal(a, b);
728 }
729
730 int CRYPTO_atomic_add(int *val, int amount, int *ret, CRYPTO_RWLOCK *lock)
731 {
732 # if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
733 if (__atomic_is_lock_free(sizeof(*val), val)) {
734 *ret = __atomic_add_fetch(val, amount, __ATOMIC_ACQ_REL);
735 return 1;
736 }
737 # elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
738 /* This will work for all future Solaris versions. */
739 if (ret != NULL) {
740 *ret = atomic_add_int_nv((volatile unsigned int *)val, amount);
741 return 1;
742 }
743 # endif
744 if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
745 return 0;
746
747 *val += amount;
748 *ret = *val;
749
750 if (!CRYPTO_THREAD_unlock(lock))
751 return 0;
752
753 return 1;
754 }
755
756 int CRYPTO_atomic_add64(uint64_t *val, uint64_t op, uint64_t *ret,
757 CRYPTO_RWLOCK *lock)
758 {
759 # if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
760 if (__atomic_is_lock_free(sizeof(*val), val)) {
761 *ret = __atomic_add_fetch(val, op, __ATOMIC_ACQ_REL);
762 return 1;
763 }
764 # elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
765 /* This will work for all future Solaris versions. */
766 if (ret != NULL) {
767 *ret = atomic_add_64_nv(val, op);
768 return 1;
769 }
770 # endif
771 if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
772 return 0;
773 *val += op;
774 *ret = *val;
775
776 if (!CRYPTO_THREAD_unlock(lock))
777 return 0;
778
779 return 1;
780 }
781
782 int CRYPTO_atomic_and(uint64_t *val, uint64_t op, uint64_t *ret,
783 CRYPTO_RWLOCK *lock)
784 {
785 # if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
786 if (__atomic_is_lock_free(sizeof(*val), val)) {
787 *ret = __atomic_and_fetch(val, op, __ATOMIC_ACQ_REL);
788 return 1;
789 }
790 # elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
791 /* This will work for all future Solaris versions. */
792 if (ret != NULL) {
793 *ret = atomic_and_64_nv(val, op);
794 return 1;
795 }
796 # endif
797 if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
798 return 0;
799 *val &= op;
800 *ret = *val;
801
802 if (!CRYPTO_THREAD_unlock(lock))
803 return 0;
804
805 return 1;
806 }
807
808 int CRYPTO_atomic_or(uint64_t *val, uint64_t op, uint64_t *ret,
809 CRYPTO_RWLOCK *lock)
810 {
811 # if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
812 if (__atomic_is_lock_free(sizeof(*val), val)) {
813 *ret = __atomic_or_fetch(val, op, __ATOMIC_ACQ_REL);
814 return 1;
815 }
816 # elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
817 /* This will work for all future Solaris versions. */
818 if (ret != NULL) {
819 *ret = atomic_or_64_nv(val, op);
820 return 1;
821 }
822 # endif
823 if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
824 return 0;
825 *val |= op;
826 *ret = *val;
827
828 if (!CRYPTO_THREAD_unlock(lock))
829 return 0;
830
831 return 1;
832 }
833
834 int CRYPTO_atomic_load(uint64_t *val, uint64_t *ret, CRYPTO_RWLOCK *lock)
835 {
836 # if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
837 if (__atomic_is_lock_free(sizeof(*val), val)) {
838 __atomic_load(val, ret, __ATOMIC_ACQUIRE);
839 return 1;
840 }
841 # elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
842 /* This will work for all future Solaris versions. */
843 if (ret != NULL) {
844 *ret = atomic_or_64_nv(val, 0);
845 return 1;
846 }
847 # endif
848 if (lock == NULL || !CRYPTO_THREAD_read_lock(lock))
849 return 0;
850 *ret = *val;
851 if (!CRYPTO_THREAD_unlock(lock))
852 return 0;
853
854 return 1;
855 }
856
857 int CRYPTO_atomic_store(uint64_t *dst, uint64_t val, CRYPTO_RWLOCK *lock)
858 {
859 # if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
860 if (__atomic_is_lock_free(sizeof(*dst), dst)) {
861 __atomic_store(dst, &val, __ATOMIC_RELEASE);
862 return 1;
863 }
864 # elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
865 /* This will work for all future Solaris versions. */
866 if (dst != NULL) {
867 atomic_swap_64(dst, val);
868 return 1;
869 }
870 # endif
871 if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
872 return 0;
873 *dst = val;
874 if (!CRYPTO_THREAD_unlock(lock))
875 return 0;
876
877 return 1;
878 }
879
880 int CRYPTO_atomic_load_int(int *val, int *ret, CRYPTO_RWLOCK *lock)
881 {
882 # if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
883 if (__atomic_is_lock_free(sizeof(*val), val)) {
884 __atomic_load(val, ret, __ATOMIC_ACQUIRE);
885 return 1;
886 }
887 # elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
888 /* This will work for all future Solaris versions. */
889 if (ret != NULL) {
890 *ret = (int)atomic_or_uint_nv((unsigned int *)val, 0);
891 return 1;
892 }
893 # endif
894 if (lock == NULL || !CRYPTO_THREAD_read_lock(lock))
895 return 0;
896 *ret = *val;
897 if (!CRYPTO_THREAD_unlock(lock))
898 return 0;
899
900 return 1;
901 }
902
903 # ifndef FIPS_MODULE
904 int openssl_init_fork_handlers(void)
905 {
906 return 1;
907 }
908 # endif /* FIPS_MODULE */
909
910 int openssl_get_fork_id(void)
911 {
912 return getpid();
913 }
914 #endif