]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/x509/x509_vfy.c
8ab6381daf3983d30a02c4806e63c3da8ad25ad2
[thirdparty/openssl.git] / crypto / x509 / x509_vfy.c
1 /*
2 * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #include "internal/deprecated.h"
11
12 #include <stdio.h>
13 #include <time.h>
14 #include <errno.h>
15 #include <limits.h>
16
17 #include "crypto/ctype.h"
18 #include "internal/cryptlib.h"
19 #include <openssl/crypto.h>
20 #include <openssl/buffer.h>
21 #include <openssl/evp.h>
22 #include <openssl/asn1.h>
23 #include <openssl/x509.h>
24 #include <openssl/x509v3.h>
25 #include <openssl/objects.h>
26 #include <openssl/core_names.h>
27 #include "internal/dane.h"
28 #include "crypto/x509.h"
29 #include "x509_local.h"
30
31 /* CRL score values */
32
33 #define CRL_SCORE_NOCRITICAL 0x100 /* No unhandled critical extensions */
34 #define CRL_SCORE_SCOPE 0x080 /* certificate is within CRL scope */
35 #define CRL_SCORE_TIME 0x040 /* CRL times valid */
36 #define CRL_SCORE_ISSUER_NAME 0x020 /* Issuer name matches certificate */
37 #define CRL_SCORE_VALID /* If this score or above CRL is probably valid */ \
38 (CRL_SCORE_NOCRITICAL | CRL_SCORE_TIME | CRL_SCORE_SCOPE)
39 #define CRL_SCORE_ISSUER_CERT 0x018 /* CRL issuer is certificate issuer */
40 #define CRL_SCORE_SAME_PATH 0x008 /* CRL issuer is on certificate path */
41 #define CRL_SCORE_AKID 0x004 /* CRL issuer matches CRL AKID */
42 #define CRL_SCORE_TIME_DELTA 0x002 /* Have a delta CRL with valid times */
43
44 static int build_chain(X509_STORE_CTX *ctx);
45 static int verify_chain(X509_STORE_CTX *ctx);
46 static int dane_verify(X509_STORE_CTX *ctx);
47 static int null_callback(int ok, X509_STORE_CTX *e);
48 static int check_issued(X509_STORE_CTX *ctx, X509 *x, X509 *issuer);
49 static X509 *find_issuer(X509_STORE_CTX *ctx, STACK_OF(X509) *sk, X509 *x);
50 static int check_extensions(X509_STORE_CTX *ctx);
51 static int check_name_constraints(X509_STORE_CTX *ctx);
52 static int check_id(X509_STORE_CTX *ctx);
53 static int check_trust(X509_STORE_CTX *ctx, int num_untrusted);
54 static int check_revocation(X509_STORE_CTX *ctx);
55 static int check_cert(X509_STORE_CTX *ctx);
56 static int check_policy(X509_STORE_CTX *ctx);
57 static int get_issuer_sk(X509 **issuer, X509_STORE_CTX *ctx, X509 *x);
58 static int check_dane_issuer(X509_STORE_CTX *ctx, int depth);
59 static int check_key_level(X509_STORE_CTX *ctx, X509 *cert);
60 static int check_sig_level(X509_STORE_CTX *ctx, X509 *cert);
61 static int check_curve(X509 *cert);
62
63 static int get_crl_score(X509_STORE_CTX *ctx, X509 **pissuer,
64 unsigned int *preasons, X509_CRL *crl, X509 *x);
65 static int get_crl_delta(X509_STORE_CTX *ctx,
66 X509_CRL **pcrl, X509_CRL **pdcrl, X509 *x);
67 static void get_delta_sk(X509_STORE_CTX *ctx, X509_CRL **dcrl,
68 int *pcrl_score, X509_CRL *base,
69 STACK_OF(X509_CRL) *crls);
70 static void crl_akid_check(X509_STORE_CTX *ctx, X509_CRL *crl, X509 **pissuer,
71 int *pcrl_score);
72 static int crl_crldp_check(X509 *x, X509_CRL *crl, int crl_score,
73 unsigned int *preasons);
74 static int check_crl_path(X509_STORE_CTX *ctx, X509 *x);
75 static int check_crl_chain(X509_STORE_CTX *ctx,
76 STACK_OF(X509) *cert_path,
77 STACK_OF(X509) *crl_path);
78
79 static int internal_verify(X509_STORE_CTX *ctx);
80
81 static int null_callback(int ok, X509_STORE_CTX *e)
82 {
83 return ok;
84 }
85
86 /*-
87 * Return 1 if given cert is considered self-signed, 0 if not, or -1 on error.
88 * This actually verifies self-signedness only if requested.
89 * It calls ossl_x509v3_cache_extensions()
90 * to match issuer and subject names (i.e., the cert being self-issued) and any
91 * present authority key identifier to match the subject key identifier, etc.
92 */
93 int X509_self_signed(X509 *cert, int verify_signature)
94 {
95 EVP_PKEY *pkey;
96
97 if ((pkey = X509_get0_pubkey(cert)) == NULL) { /* handles cert == NULL */
98 ERR_raise(ERR_LIB_X509, X509_R_UNABLE_TO_GET_CERTS_PUBLIC_KEY);
99 return -1;
100 }
101 if (!ossl_x509v3_cache_extensions(cert))
102 return -1;
103 if ((cert->ex_flags & EXFLAG_SS) == 0)
104 return 0;
105 if (!verify_signature)
106 return 1;
107 return X509_verify(cert, pkey);
108 }
109
110 /*
111 * Given a certificate, try and find an exact match in the store.
112 * Returns 1 on success, 0 on not found, -1 on internal error.
113 */
114 static int lookup_cert_match(X509 **result, X509_STORE_CTX *ctx, X509 *x)
115 {
116 STACK_OF(X509) *certs;
117 X509 *xtmp = NULL;
118 int i, ret;
119
120 *result = NULL;
121 /* Lookup all certs with matching subject name */
122 ERR_set_mark();
123 certs = ctx->lookup_certs(ctx, X509_get_subject_name(x));
124 ERR_pop_to_mark();
125 if (certs == NULL)
126 return -1;
127 /* Look for exact match */
128 for (i = 0; i < sk_X509_num(certs); i++) {
129 xtmp = sk_X509_value(certs, i);
130 if (X509_cmp(xtmp, x) == 0)
131 break;
132 xtmp = NULL;
133 }
134 ret = xtmp != NULL;
135 if (ret) {
136 if (!X509_up_ref(xtmp))
137 ret = -1;
138 else
139 *result = xtmp;
140 }
141 sk_X509_pop_free(certs, X509_free);
142 return ret;
143 }
144
145 /*-
146 * Inform the verify callback of an error.
147 * The error code is set to |err| if |err| is not X509_V_OK, else
148 * |ctx->error| is left unchanged (under the assumption it is set elsewhere).
149 * The error depth is |depth| if >= 0, else it defaults to |ctx->error_depth|.
150 * The error cert is |x| if not NULL, else defaults to the chain cert at depth.
151 *
152 * Returns 0 to abort verification with an error, non-zero to continue.
153 */
154 static int verify_cb_cert(X509_STORE_CTX *ctx, X509 *x, int depth, int err)
155 {
156 if (depth < 0)
157 depth = ctx->error_depth;
158 else
159 ctx->error_depth = depth;
160 ctx->current_cert = (x != NULL) ? x : sk_X509_value(ctx->chain, depth);
161 if (err != X509_V_OK)
162 ctx->error = err;
163 return ctx->verify_cb(0, ctx);
164 }
165
166 #define CB_FAIL_IF(cond, ctx, cert, depth, err) \
167 if ((cond) && verify_cb_cert(ctx, cert, depth, err) == 0) \
168 return 0
169
170 /*-
171 * Inform the verify callback of an error, CRL-specific variant. Here, the
172 * error depth and certificate are already set, we just specify the error
173 * number.
174 *
175 * Returns 0 to abort verification with an error, non-zero to continue.
176 */
177 static int verify_cb_crl(X509_STORE_CTX *ctx, int err)
178 {
179 ctx->error = err;
180 return ctx->verify_cb(0, ctx);
181 }
182
183 static int check_auth_level(X509_STORE_CTX *ctx)
184 {
185 int i;
186 int num = sk_X509_num(ctx->chain);
187
188 if (ctx->param->auth_level <= 0)
189 return 1;
190
191 for (i = 0; i < num; ++i) {
192 X509 *cert = sk_X509_value(ctx->chain, i);
193
194 /*
195 * We've already checked the security of the leaf key, so here we only
196 * check the security of issuer keys.
197 */
198 CB_FAIL_IF(i > 0 && !check_key_level(ctx, cert),
199 ctx, cert, i, X509_V_ERR_CA_KEY_TOO_SMALL);
200 /*
201 * We also check the signature algorithm security of all certificates
202 * except those of the trust anchor at index num-1.
203 */
204 CB_FAIL_IF(i < num - 1 && !check_sig_level(ctx, cert),
205 ctx, cert, i, X509_V_ERR_CA_MD_TOO_WEAK);
206 }
207 return 1;
208 }
209
210 /* Returns -1 on internal error */
211 static int verify_chain(X509_STORE_CTX *ctx)
212 {
213 int err;
214 int ok;
215
216 if ((ok = build_chain(ctx)) <= 0
217 || (ok = check_extensions(ctx)) <= 0
218 || (ok = check_auth_level(ctx)) <= 0
219 || (ok = check_id(ctx)) <= 0
220 || (ok = X509_get_pubkey_parameters(NULL, ctx->chain) ? 1 : -1) <= 0
221 || (ok = ctx->check_revocation(ctx)) <= 0)
222 return ok;
223
224 err = X509_chain_check_suiteb(&ctx->error_depth, NULL, ctx->chain,
225 ctx->param->flags);
226 CB_FAIL_IF(err != X509_V_OK, ctx, NULL, ctx->error_depth, err);
227
228 /* Verify chain signatures and expiration times */
229 ok = ctx->verify != NULL ? ctx->verify(ctx) : internal_verify(ctx);
230 if (ok <= 0)
231 return ok;
232
233 if ((ok = check_name_constraints(ctx)) <= 0)
234 return ok;
235
236 #ifndef OPENSSL_NO_RFC3779
237 /* RFC 3779 path validation, now that CRL check has been done */
238 if ((ok = X509v3_asid_validate_path(ctx)) <= 0)
239 return ok;
240 if ((ok = X509v3_addr_validate_path(ctx)) <= 0)
241 return ok;
242 #endif
243
244 /* If we get this far evaluate policies */
245 if ((ctx->param->flags & X509_V_FLAG_POLICY_CHECK) != 0)
246 ok = ctx->check_policy(ctx);
247 return ok;
248 }
249
250 int X509_STORE_CTX_verify(X509_STORE_CTX *ctx)
251 {
252 if (ctx == NULL) {
253 ERR_raise(ERR_LIB_X509, ERR_R_PASSED_NULL_PARAMETER);
254 return -1;
255 }
256 if (ctx->cert == NULL && sk_X509_num(ctx->untrusted) >= 1)
257 ctx->cert = sk_X509_value(ctx->untrusted, 0);
258 return X509_verify_cert(ctx);
259 }
260
261 int X509_verify_cert(X509_STORE_CTX *ctx)
262 {
263 int ret;
264
265 if (ctx == NULL) {
266 ERR_raise(ERR_LIB_X509, ERR_R_PASSED_NULL_PARAMETER);
267 return -1;
268 }
269 if (ctx->cert == NULL) {
270 ERR_raise(ERR_LIB_X509, X509_R_NO_CERT_SET_FOR_US_TO_VERIFY);
271 ctx->error = X509_V_ERR_INVALID_CALL;
272 return -1;
273 }
274
275 if (ctx->chain != NULL) {
276 /*
277 * This X509_STORE_CTX has already been used to verify a cert. We
278 * cannot do another one.
279 */
280 ERR_raise(ERR_LIB_X509, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
281 ctx->error = X509_V_ERR_INVALID_CALL;
282 return -1;
283 }
284
285 if (!ossl_x509_add_cert_new(&ctx->chain, ctx->cert, X509_ADD_FLAG_UP_REF)) {
286 ctx->error = X509_V_ERR_OUT_OF_MEM;
287 return -1;
288 }
289 ctx->num_untrusted = 1;
290
291 /* If the peer's public key is too weak, we can stop early. */
292 CB_FAIL_IF(!check_key_level(ctx, ctx->cert),
293 ctx, ctx->cert, 0, X509_V_ERR_EE_KEY_TOO_SMALL);
294
295 ret = DANETLS_ENABLED(ctx->dane) ? dane_verify(ctx) : verify_chain(ctx);
296
297 /*
298 * Safety-net. If we are returning an error, we must also set ctx->error,
299 * so that the chain is not considered verified should the error be ignored
300 * (e.g. TLS with SSL_VERIFY_NONE).
301 */
302 if (ret <= 0 && ctx->error == X509_V_OK)
303 ctx->error = X509_V_ERR_UNSPECIFIED;
304 return ret;
305 }
306
307 static int sk_X509_contains(STACK_OF(X509) *sk, X509 *cert)
308 {
309 int i, n = sk_X509_num(sk);
310
311 for (i = 0; i < n; i++)
312 if (X509_cmp(sk_X509_value(sk, i), cert) == 0)
313 return 1;
314 return 0;
315 }
316
317 /*
318 * Find in given STACK_OF(X509) |sk| an issuer cert (if any) of given cert |x|.
319 * The issuer must not yet be in |ctx->chain|, yet allowing the exception that
320 * |x| is self-issued and |ctx->chain| has just one element.
321 * Prefer the first non-expired one, else take the most recently expired one.
322 */
323 static X509 *find_issuer(X509_STORE_CTX *ctx, STACK_OF(X509) *sk, X509 *x)
324 {
325 int i;
326 X509 *issuer, *rv = NULL;
327
328 for (i = 0; i < sk_X509_num(sk); i++) {
329 issuer = sk_X509_value(sk, i);
330 if (ctx->check_issued(ctx, x, issuer)
331 && (((x->ex_flags & EXFLAG_SI) != 0 && sk_X509_num(ctx->chain) == 1)
332 || !sk_X509_contains(ctx->chain, issuer))) {
333 if (ossl_x509_check_cert_time(ctx, issuer, -1))
334 return issuer;
335 if (rv == NULL || ASN1_TIME_compare(X509_get0_notAfter(issuer),
336 X509_get0_notAfter(rv)) > 0)
337 rv = issuer;
338 }
339 }
340 return rv;
341 }
342
343 /* Check that the given certificate 'x' is issued by the certificate 'issuer' */
344 static int check_issued(ossl_unused X509_STORE_CTX *ctx, X509 *x, X509 *issuer)
345 {
346 int err = ossl_x509_likely_issued(issuer, x);
347
348 if (err == X509_V_OK)
349 return 1;
350 /*
351 * SUBJECT_ISSUER_MISMATCH just means 'x' is clearly not issued by 'issuer'.
352 * Every other error code likely indicates a real error.
353 */
354 if (err != X509_V_ERR_SUBJECT_ISSUER_MISMATCH)
355 ctx->error = err;
356 return 0;
357 }
358
359 /*-
360 * Alternative get_issuer method: look up from a STACK_OF(X509) in other_ctx.
361 * Returns -1 on internal error.
362 */
363 static int get_issuer_sk(X509 **issuer, X509_STORE_CTX *ctx, X509 *x)
364 {
365 *issuer = find_issuer(ctx, ctx->other_ctx, x);
366 if (*issuer != NULL)
367 return X509_up_ref(*issuer) ? 1 : -1;
368 return 0;
369 }
370
371 /*-
372 * Alternative lookup method: look from a STACK stored in other_ctx.
373 * Returns NULL on internal error (such as out of memory).
374 */
375 static STACK_OF(X509) *lookup_certs_sk(X509_STORE_CTX *ctx,
376 const X509_NAME *nm)
377 {
378 STACK_OF(X509) *sk = sk_X509_new_null();
379 X509 *x;
380 int i;
381
382 if (sk == NULL)
383 return NULL;
384 for (i = 0; i < sk_X509_num(ctx->other_ctx); i++) {
385 x = sk_X509_value(ctx->other_ctx, i);
386 if (X509_NAME_cmp(nm, X509_get_subject_name(x)) == 0) {
387 if (!X509_add_cert(sk, x, X509_ADD_FLAG_UP_REF)) {
388 sk_X509_pop_free(sk, X509_free);
389 ctx->error = X509_V_ERR_OUT_OF_MEM;
390 return NULL;
391 }
392 }
393 }
394 return sk;
395 }
396
397 /*
398 * Check EE or CA certificate purpose. For trusted certificates explicit local
399 * auxiliary trust can be used to override EKU-restrictions.
400 * Sadly, returns 0 also on internal error.
401 */
402 static int check_purpose(X509_STORE_CTX *ctx, X509 *x, int purpose, int depth,
403 int must_be_ca)
404 {
405 int tr_ok = X509_TRUST_UNTRUSTED;
406
407 /*
408 * For trusted certificates we want to see whether any auxiliary trust
409 * settings trump the purpose constraints.
410 *
411 * This is complicated by the fact that the trust ordinals in
412 * ctx->param->trust are entirely independent of the purpose ordinals in
413 * ctx->param->purpose!
414 *
415 * What connects them is their mutual initialization via calls from
416 * X509_STORE_CTX_set_default() into X509_VERIFY_PARAM_lookup() which sets
417 * related values of both param->trust and param->purpose. It is however
418 * typically possible to infer associated trust values from a purpose value
419 * via the X509_PURPOSE API.
420 *
421 * Therefore, we can only check for trust overrides when the purpose we're
422 * checking is the same as ctx->param->purpose and ctx->param->trust is
423 * also set.
424 */
425 if (depth >= ctx->num_untrusted && purpose == ctx->param->purpose)
426 tr_ok = X509_check_trust(x, ctx->param->trust, X509_TRUST_NO_SS_COMPAT);
427
428 switch (tr_ok) {
429 case X509_TRUST_TRUSTED:
430 return 1;
431 case X509_TRUST_REJECTED:
432 break;
433 default:
434 switch (X509_check_purpose(x, purpose, must_be_ca > 0)) {
435 case 1:
436 return 1;
437 case 0:
438 break;
439 default:
440 if ((ctx->param->flags & X509_V_FLAG_X509_STRICT) == 0)
441 return 1;
442 }
443 break;
444 }
445
446 return verify_cb_cert(ctx, x, depth, X509_V_ERR_INVALID_PURPOSE);
447 }
448
449 /*
450 * Check extensions of a cert chain for consistency with the supplied purpose.
451 * Sadly, returns 0 also on internal error.
452 */
453 static int check_extensions(X509_STORE_CTX *ctx)
454 {
455 int i, must_be_ca, plen = 0;
456 X509 *x;
457 int ret, proxy_path_length = 0;
458 int purpose, allow_proxy_certs, num = sk_X509_num(ctx->chain);
459
460 /*-
461 * must_be_ca can have 1 of 3 values:
462 * -1: we accept both CA and non-CA certificates, to allow direct
463 * use of self-signed certificates (which are marked as CA).
464 * 0: we only accept non-CA certificates. This is currently not
465 * used, but the possibility is present for future extensions.
466 * 1: we only accept CA certificates. This is currently used for
467 * all certificates in the chain except the leaf certificate.
468 */
469 must_be_ca = -1;
470
471 /* CRL path validation */
472 if (ctx->parent != NULL) {
473 allow_proxy_certs = 0;
474 purpose = X509_PURPOSE_CRL_SIGN;
475 } else {
476 allow_proxy_certs =
477 (ctx->param->flags & X509_V_FLAG_ALLOW_PROXY_CERTS) != 0;
478 purpose = ctx->param->purpose;
479 }
480
481 for (i = 0; i < num; i++) {
482 x = sk_X509_value(ctx->chain, i);
483 CB_FAIL_IF((ctx->param->flags & X509_V_FLAG_IGNORE_CRITICAL) == 0
484 && (x->ex_flags & EXFLAG_CRITICAL) != 0,
485 ctx, x, i, X509_V_ERR_UNHANDLED_CRITICAL_EXTENSION);
486 CB_FAIL_IF(!allow_proxy_certs && (x->ex_flags & EXFLAG_PROXY) != 0,
487 ctx, x, i, X509_V_ERR_PROXY_CERTIFICATES_NOT_ALLOWED);
488 ret = X509_check_ca(x);
489 switch (must_be_ca) {
490 case -1:
491 CB_FAIL_IF((ctx->param->flags & X509_V_FLAG_X509_STRICT) != 0
492 && ret != 1 && ret != 0,
493 ctx, x, i, X509_V_ERR_INVALID_CA);
494 break;
495 case 0:
496 CB_FAIL_IF(ret != 0, ctx, x, i, X509_V_ERR_INVALID_NON_CA);
497 break;
498 default:
499 /* X509_V_FLAG_X509_STRICT is implicit for intermediate CAs */
500 CB_FAIL_IF(ret == 0
501 || ((i + 1 < num
502 || (ctx->param->flags & X509_V_FLAG_X509_STRICT) != 0)
503 && ret != 1), ctx, x, i, X509_V_ERR_INVALID_CA);
504 break;
505 }
506 if (num > 1) {
507 /* Check for presence of explicit elliptic curve parameters */
508 ret = check_curve(x);
509 CB_FAIL_IF(ret < 0, ctx, x, i, X509_V_ERR_UNSPECIFIED);
510 CB_FAIL_IF(ret == 0, ctx, x, i, X509_V_ERR_EC_KEY_EXPLICIT_PARAMS);
511 }
512 /*
513 * Do the following set of checks only if strict checking is requested
514 * and not for self-issued (including self-signed) EE (non-CA) certs
515 * because RFC 5280 does not apply to them according RFC 6818 section 2.
516 */
517 if ((ctx->param->flags & X509_V_FLAG_X509_STRICT) != 0
518 && num > 1) { /*
519 * this should imply
520 * !(i == 0 && (x->ex_flags & EXFLAG_CA) == 0
521 * && (x->ex_flags & EXFLAG_SI) != 0)
522 */
523 /* Check Basic Constraints according to RFC 5280 section 4.2.1.9 */
524 if (x->ex_pathlen != -1) {
525 CB_FAIL_IF((x->ex_flags & EXFLAG_CA) == 0,
526 ctx, x, i, X509_V_ERR_PATHLEN_INVALID_FOR_NON_CA);
527 CB_FAIL_IF((x->ex_kusage & KU_KEY_CERT_SIGN) == 0, ctx,
528 x, i, X509_V_ERR_PATHLEN_WITHOUT_KU_KEY_CERT_SIGN);
529 }
530 CB_FAIL_IF((x->ex_flags & EXFLAG_CA) != 0
531 && (x->ex_flags & EXFLAG_BCONS) != 0
532 && (x->ex_flags & EXFLAG_BCONS_CRITICAL) == 0,
533 ctx, x, i, X509_V_ERR_CA_BCONS_NOT_CRITICAL);
534 /* Check Key Usage according to RFC 5280 section 4.2.1.3 */
535 if ((x->ex_flags & EXFLAG_CA) != 0) {
536 CB_FAIL_IF((x->ex_flags & EXFLAG_KUSAGE) == 0,
537 ctx, x, i, X509_V_ERR_CA_CERT_MISSING_KEY_USAGE);
538 } else {
539 CB_FAIL_IF((x->ex_kusage & KU_KEY_CERT_SIGN) != 0, ctx, x, i,
540 X509_V_ERR_KU_KEY_CERT_SIGN_INVALID_FOR_NON_CA);
541 }
542 /* Check issuer is non-empty acc. to RFC 5280 section 4.1.2.4 */
543 CB_FAIL_IF(X509_NAME_entry_count(X509_get_issuer_name(x)) == 0,
544 ctx, x, i, X509_V_ERR_ISSUER_NAME_EMPTY);
545 /* Check subject is non-empty acc. to RFC 5280 section 4.1.2.6 */
546 CB_FAIL_IF(((x->ex_flags & EXFLAG_CA) != 0
547 || (x->ex_kusage & KU_CRL_SIGN) != 0
548 || x->altname == NULL)
549 && X509_NAME_entry_count(X509_get_subject_name(x)) == 0,
550 ctx, x, i, X509_V_ERR_SUBJECT_NAME_EMPTY);
551 CB_FAIL_IF(X509_NAME_entry_count(X509_get_subject_name(x)) == 0
552 && x->altname != NULL
553 && (x->ex_flags & EXFLAG_SAN_CRITICAL) == 0,
554 ctx, x, i, X509_V_ERR_EMPTY_SUBJECT_SAN_NOT_CRITICAL);
555 /* Check SAN is non-empty according to RFC 5280 section 4.2.1.6 */
556 CB_FAIL_IF(x->altname != NULL
557 && sk_GENERAL_NAME_num(x->altname) <= 0,
558 ctx, x, i, X509_V_ERR_EMPTY_SUBJECT_ALT_NAME);
559 /* Check sig alg consistency acc. to RFC 5280 section 4.1.1.2 */
560 CB_FAIL_IF(X509_ALGOR_cmp(&x->sig_alg, &x->cert_info.signature) != 0,
561 ctx, x, i, X509_V_ERR_SIGNATURE_ALGORITHM_INCONSISTENCY);
562 CB_FAIL_IF(x->akid != NULL
563 && (x->ex_flags & EXFLAG_AKID_CRITICAL) != 0,
564 ctx, x, i, X509_V_ERR_AUTHORITY_KEY_IDENTIFIER_CRITICAL);
565 CB_FAIL_IF(x->skid != NULL
566 && (x->ex_flags & EXFLAG_SKID_CRITICAL) != 0,
567 ctx, x, i, X509_V_ERR_SUBJECT_KEY_IDENTIFIER_CRITICAL);
568 if (X509_get_version(x) >= X509_VERSION_3) {
569 /* Check AKID presence acc. to RFC 5280 section 4.2.1.1 */
570 CB_FAIL_IF(i + 1 < num /*
571 * this means not last cert in chain,
572 * taken as "generated by conforming CAs"
573 */
574 && (x->akid == NULL || x->akid->keyid == NULL), ctx,
575 x, i, X509_V_ERR_MISSING_AUTHORITY_KEY_IDENTIFIER);
576 /* Check SKID presence acc. to RFC 5280 section 4.2.1.2 */
577 CB_FAIL_IF((x->ex_flags & EXFLAG_CA) != 0 && x->skid == NULL,
578 ctx, x, i, X509_V_ERR_MISSING_SUBJECT_KEY_IDENTIFIER);
579 } else {
580 CB_FAIL_IF(sk_X509_EXTENSION_num(X509_get0_extensions(x)) > 0,
581 ctx, x, i, X509_V_ERR_EXTENSIONS_REQUIRE_VERSION_3);
582 }
583 }
584
585 /* check_purpose() makes the callback as needed */
586 if (purpose > 0 && !check_purpose(ctx, x, purpose, i, must_be_ca))
587 return 0;
588 /* Check path length */
589 CB_FAIL_IF(i > 1 && x->ex_pathlen != -1
590 && plen > x->ex_pathlen + proxy_path_length,
591 ctx, x, i, X509_V_ERR_PATH_LENGTH_EXCEEDED);
592 /* Increment path length if not a self-issued intermediate CA */
593 if (i > 0 && (x->ex_flags & EXFLAG_SI) == 0)
594 plen++;
595 /*
596 * If this certificate is a proxy certificate, the next certificate
597 * must be another proxy certificate or a EE certificate. If not,
598 * the next certificate must be a CA certificate.
599 */
600 if (x->ex_flags & EXFLAG_PROXY) {
601 /*
602 * RFC3820, 4.1.3 (b)(1) stipulates that if pCPathLengthConstraint
603 * is less than max_path_length, the former should be copied to
604 * the latter, and 4.1.4 (a) stipulates that max_path_length
605 * should be verified to be larger than zero and decrement it.
606 *
607 * Because we're checking the certs in the reverse order, we start
608 * with verifying that proxy_path_length isn't larger than pcPLC,
609 * and copy the latter to the former if it is, and finally,
610 * increment proxy_path_length.
611 */
612 if (x->ex_pcpathlen != -1) {
613 CB_FAIL_IF(proxy_path_length > x->ex_pcpathlen,
614 ctx, x, i, X509_V_ERR_PROXY_PATH_LENGTH_EXCEEDED);
615 proxy_path_length = x->ex_pcpathlen;
616 }
617 proxy_path_length++;
618 must_be_ca = 0;
619 } else {
620 must_be_ca = 1;
621 }
622 }
623 return 1;
624 }
625
626 static int has_san_id(X509 *x, int gtype)
627 {
628 int i;
629 int ret = 0;
630 GENERAL_NAMES *gs = X509_get_ext_d2i(x, NID_subject_alt_name, NULL, NULL);
631
632 if (gs == NULL)
633 return 0;
634
635 for (i = 0; i < sk_GENERAL_NAME_num(gs); i++) {
636 GENERAL_NAME *g = sk_GENERAL_NAME_value(gs, i);
637
638 if (g->type == gtype) {
639 ret = 1;
640 break;
641 }
642 }
643 GENERAL_NAMES_free(gs);
644 return ret;
645 }
646
647 /* Returns -1 on internal error */
648 static int check_name_constraints(X509_STORE_CTX *ctx)
649 {
650 int i;
651
652 /* Check name constraints for all certificates */
653 for (i = sk_X509_num(ctx->chain) - 1; i >= 0; i--) {
654 X509 *x = sk_X509_value(ctx->chain, i);
655 int j;
656
657 /* Ignore self-issued certs unless last in chain */
658 if (i != 0 && (x->ex_flags & EXFLAG_SI) != 0)
659 continue;
660
661 /*
662 * Proxy certificates policy has an extra constraint, where the
663 * certificate subject MUST be the issuer with a single CN entry
664 * added.
665 * (RFC 3820: 3.4, 4.1.3 (a)(4))
666 */
667 if ((x->ex_flags & EXFLAG_PROXY) != 0) {
668 X509_NAME *tmpsubject = X509_get_subject_name(x);
669 X509_NAME *tmpissuer = X509_get_issuer_name(x);
670 X509_NAME_ENTRY *tmpentry = NULL;
671 int last_nid = 0;
672 int err = X509_V_OK;
673 int last_loc = X509_NAME_entry_count(tmpsubject) - 1;
674
675 /* Check that there are at least two RDNs */
676 if (last_loc < 1) {
677 err = X509_V_ERR_PROXY_SUBJECT_NAME_VIOLATION;
678 goto proxy_name_done;
679 }
680
681 /*
682 * Check that there is exactly one more RDN in subject as
683 * there is in issuer.
684 */
685 if (X509_NAME_entry_count(tmpsubject)
686 != X509_NAME_entry_count(tmpissuer) + 1) {
687 err = X509_V_ERR_PROXY_SUBJECT_NAME_VIOLATION;
688 goto proxy_name_done;
689 }
690
691 /*
692 * Check that the last subject component isn't part of a
693 * multi-valued RDN
694 */
695 if (X509_NAME_ENTRY_set(X509_NAME_get_entry(tmpsubject, last_loc))
696 == X509_NAME_ENTRY_set(X509_NAME_get_entry(tmpsubject,
697 last_loc - 1))) {
698 err = X509_V_ERR_PROXY_SUBJECT_NAME_VIOLATION;
699 goto proxy_name_done;
700 }
701
702 /*
703 * Check that the last subject RDN is a commonName, and that
704 * all the previous RDNs match the issuer exactly
705 */
706 tmpsubject = X509_NAME_dup(tmpsubject);
707 if (tmpsubject == NULL) {
708 ERR_raise(ERR_LIB_X509, ERR_R_MALLOC_FAILURE);
709 ctx->error = X509_V_ERR_OUT_OF_MEM;
710 return -1;
711 }
712
713 tmpentry = X509_NAME_delete_entry(tmpsubject, last_loc);
714 last_nid = OBJ_obj2nid(X509_NAME_ENTRY_get_object(tmpentry));
715
716 if (last_nid != NID_commonName
717 || X509_NAME_cmp(tmpsubject, tmpissuer) != 0) {
718 err = X509_V_ERR_PROXY_SUBJECT_NAME_VIOLATION;
719 }
720
721 X509_NAME_ENTRY_free(tmpentry);
722 X509_NAME_free(tmpsubject);
723
724 proxy_name_done:
725 CB_FAIL_IF(err != X509_V_OK, ctx, x, i, err);
726 }
727
728 /*
729 * Check against constraints for all certificates higher in chain
730 * including trust anchor. Trust anchor not strictly speaking needed
731 * but if it includes constraints it is to be assumed it expects them
732 * to be obeyed.
733 */
734 for (j = sk_X509_num(ctx->chain) - 1; j > i; j--) {
735 NAME_CONSTRAINTS *nc = sk_X509_value(ctx->chain, j)->nc;
736
737 if (nc) {
738 int rv = NAME_CONSTRAINTS_check(x, nc);
739 int ret = 1;
740
741 /* If EE certificate check commonName too */
742 if (rv == X509_V_OK && i == 0
743 && (ctx->param->hostflags
744 & X509_CHECK_FLAG_NEVER_CHECK_SUBJECT) == 0
745 && ((ctx->param->hostflags
746 & X509_CHECK_FLAG_ALWAYS_CHECK_SUBJECT) != 0
747 || (ret = has_san_id(x, GEN_DNS)) == 0))
748 rv = NAME_CONSTRAINTS_check_CN(x, nc);
749 if (ret < 0)
750 return ret;
751
752 switch (rv) {
753 case X509_V_OK:
754 break;
755 case X509_V_ERR_OUT_OF_MEM:
756 return -1;
757 default:
758 CB_FAIL_IF(1, ctx, x, i, rv);
759 break;
760 }
761 }
762 }
763 }
764 return 1;
765 }
766
767 static int check_id_error(X509_STORE_CTX *ctx, int errcode)
768 {
769 return verify_cb_cert(ctx, ctx->cert, 0, errcode);
770 }
771
772 static int check_hosts(X509 *x, X509_VERIFY_PARAM *vpm)
773 {
774 int i;
775 int n = sk_OPENSSL_STRING_num(vpm->hosts);
776 char *name;
777
778 if (vpm->peername != NULL) {
779 OPENSSL_free(vpm->peername);
780 vpm->peername = NULL;
781 }
782 for (i = 0; i < n; ++i) {
783 name = sk_OPENSSL_STRING_value(vpm->hosts, i);
784 if (X509_check_host(x, name, 0, vpm->hostflags, &vpm->peername) > 0)
785 return 1;
786 }
787 return n == 0;
788 }
789
790 static int check_id(X509_STORE_CTX *ctx)
791 {
792 X509_VERIFY_PARAM *vpm = ctx->param;
793 X509 *x = ctx->cert;
794
795 if (vpm->hosts != NULL && check_hosts(x, vpm) <= 0) {
796 if (!check_id_error(ctx, X509_V_ERR_HOSTNAME_MISMATCH))
797 return 0;
798 }
799 if (vpm->email != NULL
800 && X509_check_email(x, vpm->email, vpm->emaillen, 0) <= 0) {
801 if (!check_id_error(ctx, X509_V_ERR_EMAIL_MISMATCH))
802 return 0;
803 }
804 if (vpm->ip != NULL && X509_check_ip(x, vpm->ip, vpm->iplen, 0) <= 0) {
805 if (!check_id_error(ctx, X509_V_ERR_IP_ADDRESS_MISMATCH))
806 return 0;
807 }
808 return 1;
809 }
810
811 /* Returns -1 on internal error */
812 static int check_trust(X509_STORE_CTX *ctx, int num_untrusted)
813 {
814 int i, res;
815 X509 *x = NULL;
816 X509 *mx;
817 SSL_DANE *dane = ctx->dane;
818 int num = sk_X509_num(ctx->chain);
819 int trust;
820
821 /*
822 * Check for a DANE issuer at depth 1 or greater, if it is a DANE-TA(2)
823 * match, we're done, otherwise we'll merely record the match depth.
824 */
825 if (DANETLS_HAS_TA(dane) && num_untrusted > 0 && num_untrusted < num) {
826 trust = check_dane_issuer(ctx, num_untrusted);
827 if (trust != X509_TRUST_UNTRUSTED)
828 return trust;
829 }
830
831 /*
832 * Check trusted certificates in chain at depth num_untrusted and up.
833 * Note, that depths 0..num_untrusted-1 may also contain trusted
834 * certificates, but the caller is expected to have already checked those,
835 * and wants to incrementally check just any added since.
836 */
837 for (i = num_untrusted; i < num; i++) {
838 x = sk_X509_value(ctx->chain, i);
839 trust = X509_check_trust(x, ctx->param->trust, 0);
840 /* If explicitly trusted (so not neutral nor rejected) return trusted */
841 if (trust == X509_TRUST_TRUSTED)
842 goto trusted;
843 if (trust == X509_TRUST_REJECTED)
844 goto rejected;
845 }
846
847 /*
848 * If we are looking at a trusted certificate, and accept partial chains,
849 * the chain is PKIX trusted.
850 */
851 if (num_untrusted < num) {
852 if ((ctx->param->flags & X509_V_FLAG_PARTIAL_CHAIN) != 0)
853 goto trusted;
854 return X509_TRUST_UNTRUSTED;
855 }
856
857 if (num_untrusted == num
858 && (ctx->param->flags & X509_V_FLAG_PARTIAL_CHAIN) != 0) {
859 /*
860 * Last-resort call with no new trusted certificates, check the leaf
861 * for a direct trust store match.
862 */
863 i = 0;
864 x = sk_X509_value(ctx->chain, i);
865 res = lookup_cert_match(&mx, ctx, x);
866 if (res < 0)
867 return res;
868 if (mx == NULL)
869 return X509_TRUST_UNTRUSTED;
870
871 /*
872 * Check explicit auxiliary trust/reject settings. If none are set,
873 * we'll accept X509_TRUST_UNTRUSTED when not self-signed.
874 */
875 trust = X509_check_trust(mx, ctx->param->trust, 0);
876 if (trust == X509_TRUST_REJECTED) {
877 X509_free(mx);
878 goto rejected;
879 }
880
881 /* Replace leaf with trusted match */
882 (void)sk_X509_set(ctx->chain, 0, mx);
883 X509_free(x);
884 ctx->num_untrusted = 0;
885 goto trusted;
886 }
887
888 /*
889 * If no trusted certs in chain at all return untrusted and allow
890 * standard (no issuer cert) etc errors to be indicated.
891 */
892 return X509_TRUST_UNTRUSTED;
893
894 rejected:
895 return verify_cb_cert(ctx, x, i, X509_V_ERR_CERT_REJECTED) == 0
896 ? X509_TRUST_REJECTED : X509_TRUST_UNTRUSTED;
897
898 trusted:
899 if (!DANETLS_ENABLED(dane))
900 return X509_TRUST_TRUSTED;
901 if (dane->pdpth < 0)
902 dane->pdpth = num_untrusted;
903 /* With DANE, PKIX alone is not trusted until we have both */
904 if (dane->mdpth >= 0)
905 return X509_TRUST_TRUSTED;
906 return X509_TRUST_UNTRUSTED;
907 }
908
909 /* Sadly, returns 0 also on internal error. */
910 static int check_revocation(X509_STORE_CTX *ctx)
911 {
912 int i = 0, last = 0, ok = 0;
913
914 if ((ctx->param->flags & X509_V_FLAG_CRL_CHECK) == 0)
915 return 1;
916 if ((ctx->param->flags & X509_V_FLAG_CRL_CHECK_ALL) != 0) {
917 last = sk_X509_num(ctx->chain) - 1;
918 } else {
919 /* If checking CRL paths this isn't the EE certificate */
920 if (ctx->parent)
921 return 1;
922 last = 0;
923 }
924 for (i = 0; i <= last; i++) {
925 ctx->error_depth = i;
926 ok = check_cert(ctx);
927 if (!ok)
928 return ok;
929 }
930 return 1;
931 }
932
933 /* Sadly, returns 0 also on internal error. */
934 static int check_cert(X509_STORE_CTX *ctx)
935 {
936 X509_CRL *crl = NULL, *dcrl = NULL;
937 int ok = 0;
938 int cnum = ctx->error_depth;
939 X509 *x = sk_X509_value(ctx->chain, cnum);
940
941 ctx->current_cert = x;
942 ctx->current_issuer = NULL;
943 ctx->current_crl_score = 0;
944 ctx->current_reasons = 0;
945
946 if ((x->ex_flags & EXFLAG_PROXY) != 0)
947 return 1;
948
949 while (ctx->current_reasons != CRLDP_ALL_REASONS) {
950 unsigned int last_reasons = ctx->current_reasons;
951
952 /* Try to retrieve relevant CRL */
953 if (ctx->get_crl != NULL)
954 ok = ctx->get_crl(ctx, &crl, x);
955 else
956 ok = get_crl_delta(ctx, &crl, &dcrl, x);
957 /* If error looking up CRL, nothing we can do except notify callback */
958 if (!ok) {
959 ok = verify_cb_crl(ctx, X509_V_ERR_UNABLE_TO_GET_CRL);
960 goto done;
961 }
962 ctx->current_crl = crl;
963 ok = ctx->check_crl(ctx, crl);
964 if (!ok)
965 goto done;
966
967 if (dcrl != NULL) {
968 ok = ctx->check_crl(ctx, dcrl);
969 if (!ok)
970 goto done;
971 ok = ctx->cert_crl(ctx, dcrl, x);
972 if (!ok)
973 goto done;
974 } else {
975 ok = 1;
976 }
977
978 /* Don't look in full CRL if delta reason is removefromCRL */
979 if (ok != 2) {
980 ok = ctx->cert_crl(ctx, crl, x);
981 if (!ok)
982 goto done;
983 }
984
985 X509_CRL_free(crl);
986 X509_CRL_free(dcrl);
987 crl = NULL;
988 dcrl = NULL;
989 /*
990 * If reasons not updated we won't get anywhere by another iteration,
991 * so exit loop.
992 */
993 if (last_reasons == ctx->current_reasons) {
994 ok = verify_cb_crl(ctx, X509_V_ERR_UNABLE_TO_GET_CRL);
995 goto done;
996 }
997 }
998 done:
999 X509_CRL_free(crl);
1000 X509_CRL_free(dcrl);
1001
1002 ctx->current_crl = NULL;
1003 return ok;
1004 }
1005
1006 /* Check CRL times against values in X509_STORE_CTX */
1007 static int check_crl_time(X509_STORE_CTX *ctx, X509_CRL *crl, int notify)
1008 {
1009 time_t *ptime;
1010 int i;
1011
1012 if (notify)
1013 ctx->current_crl = crl;
1014 if ((ctx->param->flags & X509_V_FLAG_USE_CHECK_TIME) != 0)
1015 ptime = &ctx->param->check_time;
1016 else if ((ctx->param->flags & X509_V_FLAG_NO_CHECK_TIME) != 0)
1017 return 1;
1018 else
1019 ptime = NULL;
1020
1021 i = X509_cmp_time(X509_CRL_get0_lastUpdate(crl), ptime);
1022 if (i == 0) {
1023 if (!notify)
1024 return 0;
1025 if (!verify_cb_crl(ctx, X509_V_ERR_ERROR_IN_CRL_LAST_UPDATE_FIELD))
1026 return 0;
1027 }
1028
1029 if (i > 0) {
1030 if (!notify)
1031 return 0;
1032 if (!verify_cb_crl(ctx, X509_V_ERR_CRL_NOT_YET_VALID))
1033 return 0;
1034 }
1035
1036 if (X509_CRL_get0_nextUpdate(crl)) {
1037 i = X509_cmp_time(X509_CRL_get0_nextUpdate(crl), ptime);
1038
1039 if (i == 0) {
1040 if (!notify)
1041 return 0;
1042 if (!verify_cb_crl(ctx, X509_V_ERR_ERROR_IN_CRL_NEXT_UPDATE_FIELD))
1043 return 0;
1044 }
1045 /* Ignore expiration of base CRL is delta is valid */
1046 if (i < 0 && (ctx->current_crl_score & CRL_SCORE_TIME_DELTA) == 0) {
1047 if (!notify || !verify_cb_crl(ctx, X509_V_ERR_CRL_HAS_EXPIRED))
1048 return 0;
1049 }
1050 }
1051
1052 if (notify)
1053 ctx->current_crl = NULL;
1054
1055 return 1;
1056 }
1057
1058 static int get_crl_sk(X509_STORE_CTX *ctx, X509_CRL **pcrl, X509_CRL **pdcrl,
1059 X509 **pissuer, int *pscore, unsigned int *preasons,
1060 STACK_OF(X509_CRL) *crls)
1061 {
1062 int i, crl_score, best_score = *pscore;
1063 unsigned int reasons, best_reasons = 0;
1064 X509 *x = ctx->current_cert;
1065 X509_CRL *crl, *best_crl = NULL;
1066 X509 *crl_issuer = NULL, *best_crl_issuer = NULL;
1067
1068 for (i = 0; i < sk_X509_CRL_num(crls); i++) {
1069 crl = sk_X509_CRL_value(crls, i);
1070 reasons = *preasons;
1071 crl_score = get_crl_score(ctx, &crl_issuer, &reasons, crl, x);
1072 if (crl_score < best_score || crl_score == 0)
1073 continue;
1074 /* If current CRL is equivalent use it if it is newer */
1075 if (crl_score == best_score && best_crl != NULL) {
1076 int day, sec;
1077
1078 if (ASN1_TIME_diff(&day, &sec, X509_CRL_get0_lastUpdate(best_crl),
1079 X509_CRL_get0_lastUpdate(crl)) == 0)
1080 continue;
1081 /*
1082 * ASN1_TIME_diff never returns inconsistent signs for |day|
1083 * and |sec|.
1084 */
1085 if (day <= 0 && sec <= 0)
1086 continue;
1087 }
1088 best_crl = crl;
1089 best_crl_issuer = crl_issuer;
1090 best_score = crl_score;
1091 best_reasons = reasons;
1092 }
1093
1094 if (best_crl != NULL) {
1095 X509_CRL_free(*pcrl);
1096 *pcrl = best_crl;
1097 *pissuer = best_crl_issuer;
1098 *pscore = best_score;
1099 *preasons = best_reasons;
1100 X509_CRL_up_ref(best_crl);
1101 X509_CRL_free(*pdcrl);
1102 *pdcrl = NULL;
1103 get_delta_sk(ctx, pdcrl, pscore, best_crl, crls);
1104 }
1105
1106 if (best_score >= CRL_SCORE_VALID)
1107 return 1;
1108
1109 return 0;
1110 }
1111
1112 /*
1113 * Compare two CRL extensions for delta checking purposes. They should be
1114 * both present or both absent. If both present all fields must be identical.
1115 */
1116 static int crl_extension_match(X509_CRL *a, X509_CRL *b, int nid)
1117 {
1118 ASN1_OCTET_STRING *exta = NULL, *extb = NULL;
1119 int i = X509_CRL_get_ext_by_NID(a, nid, -1);
1120
1121 if (i >= 0) {
1122 /* Can't have multiple occurrences */
1123 if (X509_CRL_get_ext_by_NID(a, nid, i) != -1)
1124 return 0;
1125 exta = X509_EXTENSION_get_data(X509_CRL_get_ext(a, i));
1126 }
1127
1128 i = X509_CRL_get_ext_by_NID(b, nid, -1);
1129 if (i >= 0) {
1130 if (X509_CRL_get_ext_by_NID(b, nid, i) != -1)
1131 return 0;
1132 extb = X509_EXTENSION_get_data(X509_CRL_get_ext(b, i));
1133 }
1134
1135 if (exta == NULL && extb == NULL)
1136 return 1;
1137
1138 if (exta == NULL || extb == NULL)
1139 return 0;
1140
1141 return ASN1_OCTET_STRING_cmp(exta, extb) == 0;
1142 }
1143
1144 /* See if a base and delta are compatible */
1145 static int check_delta_base(X509_CRL *delta, X509_CRL *base)
1146 {
1147 /* Delta CRL must be a delta */
1148 if (delta->base_crl_number == NULL)
1149 return 0;
1150 /* Base must have a CRL number */
1151 if (base->crl_number == NULL)
1152 return 0;
1153 /* Issuer names must match */
1154 if (X509_NAME_cmp(X509_CRL_get_issuer(base),
1155 X509_CRL_get_issuer(delta)) != 0)
1156 return 0;
1157 /* AKID and IDP must match */
1158 if (!crl_extension_match(delta, base, NID_authority_key_identifier))
1159 return 0;
1160 if (!crl_extension_match(delta, base, NID_issuing_distribution_point))
1161 return 0;
1162 /* Delta CRL base number must not exceed Full CRL number. */
1163 if (ASN1_INTEGER_cmp(delta->base_crl_number, base->crl_number) > 0)
1164 return 0;
1165 /* Delta CRL number must exceed full CRL number */
1166 return ASN1_INTEGER_cmp(delta->crl_number, base->crl_number) > 0;
1167 }
1168
1169 /*
1170 * For a given base CRL find a delta... maybe extend to delta scoring or
1171 * retrieve a chain of deltas...
1172 */
1173 static void get_delta_sk(X509_STORE_CTX *ctx, X509_CRL **dcrl, int *pscore,
1174 X509_CRL *base, STACK_OF(X509_CRL) *crls)
1175 {
1176 X509_CRL *delta;
1177 int i;
1178
1179 if ((ctx->param->flags & X509_V_FLAG_USE_DELTAS) == 0)
1180 return;
1181 if (((ctx->current_cert->ex_flags | base->flags) & EXFLAG_FRESHEST) == 0)
1182 return;
1183 for (i = 0; i < sk_X509_CRL_num(crls); i++) {
1184 delta = sk_X509_CRL_value(crls, i);
1185 if (check_delta_base(delta, base)) {
1186 if (check_crl_time(ctx, delta, 0))
1187 *pscore |= CRL_SCORE_TIME_DELTA;
1188 X509_CRL_up_ref(delta);
1189 *dcrl = delta;
1190 return;
1191 }
1192 }
1193 *dcrl = NULL;
1194 }
1195
1196 /*
1197 * For a given CRL return how suitable it is for the supplied certificate
1198 * 'x'. The return value is a mask of several criteria. If the issuer is not
1199 * the certificate issuer this is returned in *pissuer. The reasons mask is
1200 * also used to determine if the CRL is suitable: if no new reasons the CRL
1201 * is rejected, otherwise reasons is updated.
1202 */
1203 static int get_crl_score(X509_STORE_CTX *ctx, X509 **pissuer,
1204 unsigned int *preasons, X509_CRL *crl, X509 *x)
1205 {
1206 int crl_score = 0;
1207 unsigned int tmp_reasons = *preasons, crl_reasons;
1208
1209 /* First see if we can reject CRL straight away */
1210
1211 /* Invalid IDP cannot be processed */
1212 if ((crl->idp_flags & IDP_INVALID) != 0)
1213 return 0;
1214 /* Reason codes or indirect CRLs need extended CRL support */
1215 if ((ctx->param->flags & X509_V_FLAG_EXTENDED_CRL_SUPPORT) == 0) {
1216 if (crl->idp_flags & (IDP_INDIRECT | IDP_REASONS))
1217 return 0;
1218 } else if ((crl->idp_flags & IDP_REASONS) != 0) {
1219 /* If no new reasons reject */
1220 if ((crl->idp_reasons & ~tmp_reasons) == 0)
1221 return 0;
1222 }
1223 /* Don't process deltas at this stage */
1224 else if (crl->base_crl_number != NULL)
1225 return 0;
1226 /* If issuer name doesn't match certificate need indirect CRL */
1227 if (X509_NAME_cmp(X509_get_issuer_name(x), X509_CRL_get_issuer(crl)) != 0) {
1228 if ((crl->idp_flags & IDP_INDIRECT) == 0)
1229 return 0;
1230 } else {
1231 crl_score |= CRL_SCORE_ISSUER_NAME;
1232 }
1233
1234 if ((crl->flags & EXFLAG_CRITICAL) == 0)
1235 crl_score |= CRL_SCORE_NOCRITICAL;
1236
1237 /* Check expiration */
1238 if (check_crl_time(ctx, crl, 0))
1239 crl_score |= CRL_SCORE_TIME;
1240
1241 /* Check authority key ID and locate certificate issuer */
1242 crl_akid_check(ctx, crl, pissuer, &crl_score);
1243
1244 /* If we can't locate certificate issuer at this point forget it */
1245 if ((crl_score & CRL_SCORE_AKID) == 0)
1246 return 0;
1247
1248 /* Check cert for matching CRL distribution points */
1249 if (crl_crldp_check(x, crl, crl_score, &crl_reasons)) {
1250 /* If no new reasons reject */
1251 if ((crl_reasons & ~tmp_reasons) == 0)
1252 return 0;
1253 tmp_reasons |= crl_reasons;
1254 crl_score |= CRL_SCORE_SCOPE;
1255 }
1256
1257 *preasons = tmp_reasons;
1258
1259 return crl_score;
1260
1261 }
1262
1263 static void crl_akid_check(X509_STORE_CTX *ctx, X509_CRL *crl,
1264 X509 **pissuer, int *pcrl_score)
1265 {
1266 X509 *crl_issuer = NULL;
1267 const X509_NAME *cnm = X509_CRL_get_issuer(crl);
1268 int cidx = ctx->error_depth;
1269 int i;
1270
1271 if (cidx != sk_X509_num(ctx->chain) - 1)
1272 cidx++;
1273
1274 crl_issuer = sk_X509_value(ctx->chain, cidx);
1275
1276 if (X509_check_akid(crl_issuer, crl->akid) == X509_V_OK) {
1277 if (*pcrl_score & CRL_SCORE_ISSUER_NAME) {
1278 *pcrl_score |= CRL_SCORE_AKID | CRL_SCORE_ISSUER_CERT;
1279 *pissuer = crl_issuer;
1280 return;
1281 }
1282 }
1283
1284 for (cidx++; cidx < sk_X509_num(ctx->chain); cidx++) {
1285 crl_issuer = sk_X509_value(ctx->chain, cidx);
1286 if (X509_NAME_cmp(X509_get_subject_name(crl_issuer), cnm))
1287 continue;
1288 if (X509_check_akid(crl_issuer, crl->akid) == X509_V_OK) {
1289 *pcrl_score |= CRL_SCORE_AKID | CRL_SCORE_SAME_PATH;
1290 *pissuer = crl_issuer;
1291 return;
1292 }
1293 }
1294
1295 /* Anything else needs extended CRL support */
1296 if ((ctx->param->flags & X509_V_FLAG_EXTENDED_CRL_SUPPORT) == 0)
1297 return;
1298
1299 /*
1300 * Otherwise the CRL issuer is not on the path. Look for it in the set of
1301 * untrusted certificates.
1302 */
1303 for (i = 0; i < sk_X509_num(ctx->untrusted); i++) {
1304 crl_issuer = sk_X509_value(ctx->untrusted, i);
1305 if (X509_NAME_cmp(X509_get_subject_name(crl_issuer), cnm) != 0)
1306 continue;
1307 if (X509_check_akid(crl_issuer, crl->akid) == X509_V_OK) {
1308 *pissuer = crl_issuer;
1309 *pcrl_score |= CRL_SCORE_AKID;
1310 return;
1311 }
1312 }
1313 }
1314
1315 /*
1316 * Check the path of a CRL issuer certificate. This creates a new
1317 * X509_STORE_CTX and populates it with most of the parameters from the
1318 * parent. This could be optimised somewhat since a lot of path checking will
1319 * be duplicated by the parent, but this will rarely be used in practice.
1320 */
1321 static int check_crl_path(X509_STORE_CTX *ctx, X509 *x)
1322 {
1323 X509_STORE_CTX crl_ctx = {0};
1324 int ret;
1325
1326 /* Don't allow recursive CRL path validation */
1327 if (ctx->parent != NULL)
1328 return 0;
1329 if (!X509_STORE_CTX_init(&crl_ctx, ctx->store, x, ctx->untrusted))
1330 return -1;
1331
1332 crl_ctx.crls = ctx->crls;
1333 /* Copy verify params across */
1334 X509_STORE_CTX_set0_param(&crl_ctx, ctx->param);
1335
1336 crl_ctx.parent = ctx;
1337 crl_ctx.verify_cb = ctx->verify_cb;
1338
1339 /* Verify CRL issuer */
1340 ret = X509_verify_cert(&crl_ctx);
1341 if (ret <= 0)
1342 goto err;
1343
1344 /* Check chain is acceptable */
1345 ret = check_crl_chain(ctx, ctx->chain, crl_ctx.chain);
1346 err:
1347 X509_STORE_CTX_cleanup(&crl_ctx);
1348 return ret;
1349 }
1350
1351 /*
1352 * RFC3280 says nothing about the relationship between CRL path and
1353 * certificate path, which could lead to situations where a certificate could
1354 * be revoked or validated by a CA not authorized to do so. RFC5280 is more
1355 * strict and states that the two paths must end in the same trust anchor,
1356 * though some discussions remain... until this is resolved we use the
1357 * RFC5280 version
1358 */
1359 static int check_crl_chain(X509_STORE_CTX *ctx,
1360 STACK_OF(X509) *cert_path,
1361 STACK_OF(X509) *crl_path)
1362 {
1363 X509 *cert_ta = sk_X509_value(cert_path, sk_X509_num(cert_path) - 1);
1364 X509 *crl_ta = sk_X509_value(crl_path, sk_X509_num(crl_path) - 1);
1365
1366 return X509_cmp(cert_ta, crl_ta) == 0;
1367 }
1368
1369 /*-
1370 * Check for match between two dist point names: three separate cases.
1371 * 1. Both are relative names and compare X509_NAME types.
1372 * 2. One full, one relative. Compare X509_NAME to GENERAL_NAMES.
1373 * 3. Both are full names and compare two GENERAL_NAMES.
1374 * 4. One is NULL: automatic match.
1375 */
1376 static int idp_check_dp(DIST_POINT_NAME *a, DIST_POINT_NAME *b)
1377 {
1378 X509_NAME *nm = NULL;
1379 GENERAL_NAMES *gens = NULL;
1380 GENERAL_NAME *gena, *genb;
1381 int i, j;
1382
1383 if (a == NULL || b == NULL)
1384 return 1;
1385 if (a->type == 1) {
1386 if (a->dpname == NULL)
1387 return 0;
1388 /* Case 1: two X509_NAME */
1389 if (b->type == 1) {
1390 if (b->dpname == NULL)
1391 return 0;
1392 return X509_NAME_cmp(a->dpname, b->dpname) == 0;
1393 }
1394 /* Case 2: set name and GENERAL_NAMES appropriately */
1395 nm = a->dpname;
1396 gens = b->name.fullname;
1397 } else if (b->type == 1) {
1398 if (b->dpname == NULL)
1399 return 0;
1400 /* Case 2: set name and GENERAL_NAMES appropriately */
1401 gens = a->name.fullname;
1402 nm = b->dpname;
1403 }
1404
1405 /* Handle case 2 with one GENERAL_NAMES and one X509_NAME */
1406 if (nm != NULL) {
1407 for (i = 0; i < sk_GENERAL_NAME_num(gens); i++) {
1408 gena = sk_GENERAL_NAME_value(gens, i);
1409 if (gena->type != GEN_DIRNAME)
1410 continue;
1411 if (X509_NAME_cmp(nm, gena->d.directoryName) == 0)
1412 return 1;
1413 }
1414 return 0;
1415 }
1416
1417 /* Else case 3: two GENERAL_NAMES */
1418
1419 for (i = 0; i < sk_GENERAL_NAME_num(a->name.fullname); i++) {
1420 gena = sk_GENERAL_NAME_value(a->name.fullname, i);
1421 for (j = 0; j < sk_GENERAL_NAME_num(b->name.fullname); j++) {
1422 genb = sk_GENERAL_NAME_value(b->name.fullname, j);
1423 if (GENERAL_NAME_cmp(gena, genb) == 0)
1424 return 1;
1425 }
1426 }
1427
1428 return 0;
1429
1430 }
1431
1432 static int crldp_check_crlissuer(DIST_POINT *dp, X509_CRL *crl, int crl_score)
1433 {
1434 int i;
1435 const X509_NAME *nm = X509_CRL_get_issuer(crl);
1436
1437 /* If no CRLissuer return is successful iff don't need a match */
1438 if (dp->CRLissuer == NULL)
1439 return (crl_score & CRL_SCORE_ISSUER_NAME) != 0;
1440 for (i = 0; i < sk_GENERAL_NAME_num(dp->CRLissuer); i++) {
1441 GENERAL_NAME *gen = sk_GENERAL_NAME_value(dp->CRLissuer, i);
1442
1443 if (gen->type != GEN_DIRNAME)
1444 continue;
1445 if (X509_NAME_cmp(gen->d.directoryName, nm) == 0)
1446 return 1;
1447 }
1448 return 0;
1449 }
1450
1451 /* Check CRLDP and IDP */
1452 static int crl_crldp_check(X509 *x, X509_CRL *crl, int crl_score,
1453 unsigned int *preasons)
1454 {
1455 int i;
1456
1457 if ((crl->idp_flags & IDP_ONLYATTR) != 0)
1458 return 0;
1459 if ((x->ex_flags & EXFLAG_CA) != 0) {
1460 if ((crl->idp_flags & IDP_ONLYUSER) != 0)
1461 return 0;
1462 } else {
1463 if ((crl->idp_flags & IDP_ONLYCA) != 0)
1464 return 0;
1465 }
1466 *preasons = crl->idp_reasons;
1467 for (i = 0; i < sk_DIST_POINT_num(x->crldp); i++) {
1468 DIST_POINT *dp = sk_DIST_POINT_value(x->crldp, i);
1469
1470 if (crldp_check_crlissuer(dp, crl, crl_score)) {
1471 if (crl->idp == NULL
1472 || idp_check_dp(dp->distpoint, crl->idp->distpoint)) {
1473 *preasons &= dp->dp_reasons;
1474 return 1;
1475 }
1476 }
1477 }
1478 return (crl->idp == NULL || crl->idp->distpoint == NULL)
1479 && (crl_score & CRL_SCORE_ISSUER_NAME) != 0;
1480 }
1481
1482 /*
1483 * Retrieve CRL corresponding to current certificate. If deltas enabled try
1484 * to find a delta CRL too
1485 */
1486 static int get_crl_delta(X509_STORE_CTX *ctx,
1487 X509_CRL **pcrl, X509_CRL **pdcrl, X509 *x)
1488 {
1489 int ok;
1490 X509 *issuer = NULL;
1491 int crl_score = 0;
1492 unsigned int reasons;
1493 X509_CRL *crl = NULL, *dcrl = NULL;
1494 STACK_OF(X509_CRL) *skcrl;
1495 const X509_NAME *nm = X509_get_issuer_name(x);
1496
1497 reasons = ctx->current_reasons;
1498 ok = get_crl_sk(ctx, &crl, &dcrl,
1499 &issuer, &crl_score, &reasons, ctx->crls);
1500 if (ok)
1501 goto done;
1502
1503 /* Lookup CRLs from store */
1504 skcrl = ctx->lookup_crls(ctx, nm);
1505
1506 /* If no CRLs found and a near match from get_crl_sk use that */
1507 if (skcrl == NULL && crl != NULL)
1508 goto done;
1509
1510 get_crl_sk(ctx, &crl, &dcrl, &issuer, &crl_score, &reasons, skcrl);
1511
1512 sk_X509_CRL_pop_free(skcrl, X509_CRL_free);
1513
1514 done:
1515 /* If we got any kind of CRL use it and return success */
1516 if (crl != NULL) {
1517 ctx->current_issuer = issuer;
1518 ctx->current_crl_score = crl_score;
1519 ctx->current_reasons = reasons;
1520 *pcrl = crl;
1521 *pdcrl = dcrl;
1522 return 1;
1523 }
1524 return 0;
1525 }
1526
1527 /* Check CRL validity */
1528 static int check_crl(X509_STORE_CTX *ctx, X509_CRL *crl)
1529 {
1530 X509 *issuer = NULL;
1531 EVP_PKEY *ikey = NULL;
1532 int cnum = ctx->error_depth;
1533 int chnum = sk_X509_num(ctx->chain) - 1;
1534
1535 /* If we have an alternative CRL issuer cert use that */
1536 if (ctx->current_issuer != NULL) {
1537 issuer = ctx->current_issuer;
1538 /*
1539 * Else find CRL issuer: if not last certificate then issuer is next
1540 * certificate in chain.
1541 */
1542 } else if (cnum < chnum) {
1543 issuer = sk_X509_value(ctx->chain, cnum + 1);
1544 } else {
1545 issuer = sk_X509_value(ctx->chain, chnum);
1546 /* If not self-issued, can't check signature */
1547 if (!ctx->check_issued(ctx, issuer, issuer) &&
1548 !verify_cb_crl(ctx, X509_V_ERR_UNABLE_TO_GET_CRL_ISSUER))
1549 return 0;
1550 }
1551
1552 if (issuer == NULL)
1553 return 1;
1554
1555 /*
1556 * Skip most tests for deltas because they have already been done
1557 */
1558 if (crl->base_crl_number == NULL) {
1559 /* Check for cRLSign bit if keyUsage present */
1560 if ((issuer->ex_flags & EXFLAG_KUSAGE) != 0 &&
1561 (issuer->ex_kusage & KU_CRL_SIGN) == 0 &&
1562 !verify_cb_crl(ctx, X509_V_ERR_KEYUSAGE_NO_CRL_SIGN))
1563 return 0;
1564
1565 if ((ctx->current_crl_score & CRL_SCORE_SCOPE) == 0 &&
1566 !verify_cb_crl(ctx, X509_V_ERR_DIFFERENT_CRL_SCOPE))
1567 return 0;
1568
1569 if ((ctx->current_crl_score & CRL_SCORE_SAME_PATH) == 0 &&
1570 check_crl_path(ctx, ctx->current_issuer) <= 0 &&
1571 !verify_cb_crl(ctx, X509_V_ERR_CRL_PATH_VALIDATION_ERROR))
1572 return 0;
1573
1574 if ((crl->idp_flags & IDP_INVALID) != 0 &&
1575 !verify_cb_crl(ctx, X509_V_ERR_INVALID_EXTENSION))
1576 return 0;
1577 }
1578
1579 if ((ctx->current_crl_score & CRL_SCORE_TIME) == 0 &&
1580 !check_crl_time(ctx, crl, 1))
1581 return 0;
1582
1583 /* Attempt to get issuer certificate public key */
1584 ikey = X509_get0_pubkey(issuer);
1585 if (ikey == NULL &&
1586 !verify_cb_crl(ctx, X509_V_ERR_UNABLE_TO_DECODE_ISSUER_PUBLIC_KEY))
1587 return 0;
1588
1589 if (ikey != NULL) {
1590 int rv = X509_CRL_check_suiteb(crl, ikey, ctx->param->flags);
1591
1592 if (rv != X509_V_OK && !verify_cb_crl(ctx, rv))
1593 return 0;
1594 /* Verify CRL signature */
1595 if (X509_CRL_verify(crl, ikey) <= 0 &&
1596 !verify_cb_crl(ctx, X509_V_ERR_CRL_SIGNATURE_FAILURE))
1597 return 0;
1598 }
1599 return 1;
1600 }
1601
1602 /* Check certificate against CRL */
1603 static int cert_crl(X509_STORE_CTX *ctx, X509_CRL *crl, X509 *x)
1604 {
1605 X509_REVOKED *rev;
1606
1607 /*
1608 * The rules changed for this... previously if a CRL contained unhandled
1609 * critical extensions it could still be used to indicate a certificate
1610 * was revoked. This has since been changed since critical extensions can
1611 * change the meaning of CRL entries.
1612 */
1613 if ((ctx->param->flags & X509_V_FLAG_IGNORE_CRITICAL) == 0
1614 && (crl->flags & EXFLAG_CRITICAL) != 0 &&
1615 !verify_cb_crl(ctx, X509_V_ERR_UNHANDLED_CRITICAL_CRL_EXTENSION))
1616 return 0;
1617 /*
1618 * Look for serial number of certificate in CRL. If found, make sure
1619 * reason is not removeFromCRL.
1620 */
1621 if (X509_CRL_get0_by_cert(crl, &rev, x)) {
1622 if (rev->reason == CRL_REASON_REMOVE_FROM_CRL)
1623 return 2;
1624 if (!verify_cb_crl(ctx, X509_V_ERR_CERT_REVOKED))
1625 return 0;
1626 }
1627
1628 return 1;
1629 }
1630
1631 static int check_policy(X509_STORE_CTX *ctx)
1632 {
1633 int ret;
1634
1635 if (ctx->parent)
1636 return 1;
1637 /*
1638 * With DANE, the trust anchor might be a bare public key, not a
1639 * certificate! In that case our chain does not have the trust anchor
1640 * certificate as a top-most element. This comports well with RFC5280
1641 * chain verification, since there too, the trust anchor is not part of the
1642 * chain to be verified. In particular, X509_policy_check() does not look
1643 * at the TA cert, but assumes that it is present as the top-most chain
1644 * element. We therefore temporarily push a NULL cert onto the chain if it
1645 * was verified via a bare public key, and pop it off right after the
1646 * X509_policy_check() call.
1647 */
1648 if (ctx->bare_ta_signed && !sk_X509_push(ctx->chain, NULL))
1649 goto memerr;
1650 ret = X509_policy_check(&ctx->tree, &ctx->explicit_policy, ctx->chain,
1651 ctx->param->policies, ctx->param->flags);
1652 if (ctx->bare_ta_signed)
1653 (void)sk_X509_pop(ctx->chain);
1654
1655 if (ret == X509_PCY_TREE_INTERNAL)
1656 goto memerr;
1657 /* Invalid or inconsistent extensions */
1658 if (ret == X509_PCY_TREE_INVALID) {
1659 int i;
1660
1661 /* Locate certificates with bad extensions and notify callback. */
1662 for (i = 1; i < sk_X509_num(ctx->chain); i++) {
1663 X509 *x = sk_X509_value(ctx->chain, i);
1664
1665 CB_FAIL_IF((x->ex_flags & EXFLAG_INVALID_POLICY) != 0,
1666 ctx, x, i, X509_V_ERR_INVALID_POLICY_EXTENSION);
1667 }
1668 return 1;
1669 }
1670 if (ret == X509_PCY_TREE_FAILURE) {
1671 ctx->current_cert = NULL;
1672 ctx->error = X509_V_ERR_NO_EXPLICIT_POLICY;
1673 return ctx->verify_cb(0, ctx);
1674 }
1675 if (ret != X509_PCY_TREE_VALID) {
1676 ERR_raise(ERR_LIB_X509, ERR_R_INTERNAL_ERROR);
1677 return 0;
1678 }
1679
1680 if ((ctx->param->flags & X509_V_FLAG_NOTIFY_POLICY) != 0) {
1681 ctx->current_cert = NULL;
1682 /*
1683 * Verification errors need to be "sticky", a callback may have allowed
1684 * an SSL handshake to continue despite an error, and we must then
1685 * remain in an error state. Therefore, we MUST NOT clear earlier
1686 * verification errors by setting the error to X509_V_OK.
1687 */
1688 if (!ctx->verify_cb(2, ctx))
1689 return 0;
1690 }
1691
1692 return 1;
1693
1694 memerr:
1695 ERR_raise(ERR_LIB_X509, ERR_R_MALLOC_FAILURE);
1696 ctx->error = X509_V_ERR_OUT_OF_MEM;
1697 return -1;
1698 }
1699
1700 /*-
1701 * Check certificate validity times.
1702 * If depth >= 0, invoke verification callbacks on error, otherwise just return
1703 * the validation status.
1704 *
1705 * Return 1 on success, 0 otherwise.
1706 */
1707 int ossl_x509_check_cert_time(X509_STORE_CTX *ctx, X509 *x, int depth)
1708 {
1709 time_t *ptime;
1710 int i;
1711
1712 if ((ctx->param->flags & X509_V_FLAG_USE_CHECK_TIME) != 0)
1713 ptime = &ctx->param->check_time;
1714 else if ((ctx->param->flags & X509_V_FLAG_NO_CHECK_TIME) != 0)
1715 return 1;
1716 else
1717 ptime = NULL;
1718
1719 i = X509_cmp_time(X509_get0_notBefore(x), ptime);
1720 if (i >= 0 && depth < 0)
1721 return 0;
1722 CB_FAIL_IF(i == 0, ctx, x, depth, X509_V_ERR_ERROR_IN_CERT_NOT_BEFORE_FIELD);
1723 CB_FAIL_IF(i > 0, ctx, x, depth, X509_V_ERR_CERT_NOT_YET_VALID);
1724
1725 i = X509_cmp_time(X509_get0_notAfter(x), ptime);
1726 if (i <= 0 && depth < 0)
1727 return 0;
1728 CB_FAIL_IF(i == 0, ctx, x, depth, X509_V_ERR_ERROR_IN_CERT_NOT_AFTER_FIELD);
1729 CB_FAIL_IF(i < 0, ctx, x, depth, X509_V_ERR_CERT_HAS_EXPIRED);
1730 return 1;
1731 }
1732
1733 /*
1734 * Verify the issuer signatures and cert times of ctx->chain.
1735 * Sadly, returns 0 also on internal error.
1736 */
1737 static int internal_verify(X509_STORE_CTX *ctx)
1738 {
1739 int n = sk_X509_num(ctx->chain) - 1;
1740 X509 *xi = sk_X509_value(ctx->chain, n);
1741 X509 *xs = xi;
1742
1743 ctx->error_depth = n;
1744 if (ctx->bare_ta_signed) {
1745 /*
1746 * With DANE-verified bare public key TA signatures,
1747 * on the top certificate we check only the timestamps.
1748 * We report the issuer as NULL because all we have is a bare key.
1749 */
1750 xi = NULL;
1751 } else if (ossl_x509_likely_issued(xi, xi) != X509_V_OK
1752 /* exceptional case: last cert in the chain is not self-issued */
1753 && ((ctx->param->flags & X509_V_FLAG_PARTIAL_CHAIN) == 0)) {
1754 if (n > 0) {
1755 n--;
1756 ctx->error_depth = n;
1757 xs = sk_X509_value(ctx->chain, n);
1758 } else {
1759 CB_FAIL_IF(1, ctx, xi, 0,
1760 X509_V_ERR_UNABLE_TO_VERIFY_LEAF_SIGNATURE);
1761 }
1762 /*
1763 * The below code will certainly not do a
1764 * self-signature check on xi because it is not self-issued.
1765 */
1766 }
1767
1768 /*
1769 * Do not clear error (by ctx->error = X509_V_OK), it must be "sticky",
1770 * only the user's callback is allowed to reset errors (at its own peril).
1771 */
1772 while (n >= 0) {
1773 /*-
1774 * For each iteration of this loop:
1775 * n is the subject depth
1776 * xs is the subject cert, for which the signature is to be checked
1777 * xi is NULL for DANE-verified bare public key TA signatures
1778 * else the supposed issuer cert containing the public key to use
1779 * Initially xs == xi if the last cert in the chain is self-issued.
1780 */
1781 /*
1782 * Do signature check for self-signed certificates only if explicitly
1783 * asked for because it does not add any security and just wastes time.
1784 */
1785 if (xi != NULL
1786 && (xs != xi
1787 || ((ctx->param->flags & X509_V_FLAG_CHECK_SS_SIGNATURE) != 0
1788 && (xi->ex_flags & EXFLAG_SS) != 0))) {
1789 EVP_PKEY *pkey;
1790 /*
1791 * If the issuer's public key is not available or its key usage
1792 * does not support issuing the subject cert, report the issuer
1793 * cert and its depth (rather than n, the depth of the subject).
1794 */
1795 int issuer_depth = n + (xs == xi ? 0 : 1);
1796 /*
1797 * According to https://tools.ietf.org/html/rfc5280#section-6.1.4
1798 * step (n) we must check any given key usage extension in a CA cert
1799 * when preparing the verification of a certificate issued by it.
1800 * According to https://tools.ietf.org/html/rfc5280#section-4.2.1.3
1801 * we must not verify a certificate signature if the key usage of
1802 * the CA certificate that issued the certificate prohibits signing.
1803 * In case the 'issuing' certificate is the last in the chain and is
1804 * not a CA certificate but a 'self-issued' end-entity cert (i.e.,
1805 * xs == xi && !(xi->ex_flags & EXFLAG_CA)) RFC 5280 does not apply
1806 * (see https://tools.ietf.org/html/rfc6818#section-2) and thus
1807 * we are free to ignore any key usage restrictions on such certs.
1808 */
1809 int ret = xs == xi && (xi->ex_flags & EXFLAG_CA) == 0
1810 ? X509_V_OK : ossl_x509_signing_allowed(xi, xs);
1811
1812 CB_FAIL_IF(ret != X509_V_OK, ctx, xi, issuer_depth, ret);
1813 if ((pkey = X509_get0_pubkey(xi)) == NULL) {
1814 CB_FAIL_IF(1, ctx, xi, issuer_depth,
1815 X509_V_ERR_UNABLE_TO_DECODE_ISSUER_PUBLIC_KEY);
1816 } else {
1817 CB_FAIL_IF(X509_verify(xs, pkey) <= 0,
1818 ctx, xs, n, X509_V_ERR_CERT_SIGNATURE_FAILURE);
1819 }
1820 }
1821
1822 /* In addition to RFC 5280 requirements do also for trust anchor cert */
1823 /* Calls verify callback as needed */
1824 if (!ossl_x509_check_cert_time(ctx, xs, n))
1825 return 0;
1826
1827 /*
1828 * Signal success at this depth. However, the previous error (if any)
1829 * is retained.
1830 */
1831 ctx->current_issuer = xi;
1832 ctx->current_cert = xs;
1833 ctx->error_depth = n;
1834 if (!ctx->verify_cb(1, ctx))
1835 return 0;
1836
1837 if (--n >= 0) {
1838 xi = xs;
1839 xs = sk_X509_value(ctx->chain, n);
1840 }
1841 }
1842 return 1;
1843 }
1844
1845 int X509_cmp_current_time(const ASN1_TIME *ctm)
1846 {
1847 return X509_cmp_time(ctm, NULL);
1848 }
1849
1850 int X509_cmp_time(const ASN1_TIME *ctm, time_t *cmp_time)
1851 {
1852 static const size_t utctime_length = sizeof("YYMMDDHHMMSSZ") - 1;
1853 static const size_t generalizedtime_length = sizeof("YYYYMMDDHHMMSSZ") - 1;
1854 ASN1_TIME *asn1_cmp_time = NULL;
1855 int i, day, sec, ret = 0;
1856 #ifdef CHARSET_EBCDIC
1857 const char upper_z = 0x5A;
1858 #else
1859 const char upper_z = 'Z';
1860 #endif
1861
1862 /*-
1863 * Note that ASN.1 allows much more slack in the time format than RFC5280.
1864 * In RFC5280, the representation is fixed:
1865 * UTCTime: YYMMDDHHMMSSZ
1866 * GeneralizedTime: YYYYMMDDHHMMSSZ
1867 *
1868 * We do NOT currently enforce the following RFC 5280 requirement:
1869 * "CAs conforming to this profile MUST always encode certificate
1870 * validity dates through the year 2049 as UTCTime; certificate validity
1871 * dates in 2050 or later MUST be encoded as GeneralizedTime."
1872 */
1873 switch (ctm->type) {
1874 case V_ASN1_UTCTIME:
1875 if (ctm->length != (int)(utctime_length))
1876 return 0;
1877 break;
1878 case V_ASN1_GENERALIZEDTIME:
1879 if (ctm->length != (int)(generalizedtime_length))
1880 return 0;
1881 break;
1882 default:
1883 return 0;
1884 }
1885
1886 /**
1887 * Verify the format: the ASN.1 functions we use below allow a more
1888 * flexible format than what's mandated by RFC 5280.
1889 * Digit and date ranges will be verified in the conversion methods.
1890 */
1891 for (i = 0; i < ctm->length - 1; i++) {
1892 if (!ossl_ascii_isdigit(ctm->data[i]))
1893 return 0;
1894 }
1895 if (ctm->data[ctm->length - 1] != upper_z)
1896 return 0;
1897
1898 /*
1899 * There is ASN1_UTCTIME_cmp_time_t but no
1900 * ASN1_GENERALIZEDTIME_cmp_time_t or ASN1_TIME_cmp_time_t,
1901 * so we go through ASN.1
1902 */
1903 asn1_cmp_time = X509_time_adj(NULL, 0, cmp_time);
1904 if (asn1_cmp_time == NULL)
1905 goto err;
1906 if (ASN1_TIME_diff(&day, &sec, ctm, asn1_cmp_time) == 0)
1907 goto err;
1908
1909 /*
1910 * X509_cmp_time comparison is <=.
1911 * The return value 0 is reserved for errors.
1912 */
1913 ret = (day >= 0 && sec >= 0) ? -1 : 1;
1914
1915 err:
1916 ASN1_TIME_free(asn1_cmp_time);
1917 return ret;
1918 }
1919
1920 /*
1921 * Return 0 if time should not be checked or reference time is in range,
1922 * or else 1 if it is past the end, or -1 if it is before the start
1923 */
1924 int X509_cmp_timeframe(const X509_VERIFY_PARAM *vpm,
1925 const ASN1_TIME *start, const ASN1_TIME *end)
1926 {
1927 time_t ref_time;
1928 time_t *time = NULL;
1929 unsigned long flags = vpm == NULL ? 0 : X509_VERIFY_PARAM_get_flags(vpm);
1930
1931 if ((flags & X509_V_FLAG_USE_CHECK_TIME) != 0) {
1932 ref_time = X509_VERIFY_PARAM_get_time(vpm);
1933 time = &ref_time;
1934 } else if ((flags & X509_V_FLAG_NO_CHECK_TIME) != 0) {
1935 return 0; /* this means ok */
1936 } /* else reference time is the current time */
1937
1938 if (end != NULL && X509_cmp_time(end, time) < 0)
1939 return 1;
1940 if (start != NULL && X509_cmp_time(start, time) > 0)
1941 return -1;
1942 return 0;
1943 }
1944
1945 ASN1_TIME *X509_gmtime_adj(ASN1_TIME *s, long adj)
1946 {
1947 return X509_time_adj(s, adj, NULL);
1948 }
1949
1950 ASN1_TIME *X509_time_adj(ASN1_TIME *s, long offset_sec, time_t *in_tm)
1951 {
1952 return X509_time_adj_ex(s, 0, offset_sec, in_tm);
1953 }
1954
1955 ASN1_TIME *X509_time_adj_ex(ASN1_TIME *s,
1956 int offset_day, long offset_sec, time_t *in_tm)
1957 {
1958 time_t t;
1959
1960 if (in_tm)
1961 t = *in_tm;
1962 else
1963 time(&t);
1964
1965 if (s != NULL && (s->flags & ASN1_STRING_FLAG_MSTRING) == 0) {
1966 if (s->type == V_ASN1_UTCTIME)
1967 return ASN1_UTCTIME_adj(s, t, offset_day, offset_sec);
1968 if (s->type == V_ASN1_GENERALIZEDTIME)
1969 return ASN1_GENERALIZEDTIME_adj(s, t, offset_day, offset_sec);
1970 }
1971 return ASN1_TIME_adj(s, t, offset_day, offset_sec);
1972 }
1973
1974 /* Copy any missing public key parameters up the chain towards pkey */
1975 int X509_get_pubkey_parameters(EVP_PKEY *pkey, STACK_OF(X509) *chain)
1976 {
1977 EVP_PKEY *ktmp = NULL, *ktmp2;
1978 int i, j;
1979
1980 if (pkey != NULL && !EVP_PKEY_missing_parameters(pkey))
1981 return 1;
1982
1983 for (i = 0; i < sk_X509_num(chain); i++) {
1984 ktmp = X509_get0_pubkey(sk_X509_value(chain, i));
1985 if (ktmp == NULL) {
1986 ERR_raise(ERR_LIB_X509, X509_R_UNABLE_TO_GET_CERTS_PUBLIC_KEY);
1987 return 0;
1988 }
1989 if (!EVP_PKEY_missing_parameters(ktmp))
1990 break;
1991 ktmp = NULL;
1992 }
1993 if (ktmp == NULL) {
1994 ERR_raise(ERR_LIB_X509, X509_R_UNABLE_TO_FIND_PARAMETERS_IN_CHAIN);
1995 return 0;
1996 }
1997
1998 /* first, populate the other certs */
1999 for (j = i - 1; j >= 0; j--) {
2000 ktmp2 = X509_get0_pubkey(sk_X509_value(chain, j));
2001 if (!EVP_PKEY_copy_parameters(ktmp2, ktmp))
2002 return 0;
2003 }
2004
2005 if (pkey != NULL)
2006 return EVP_PKEY_copy_parameters(pkey, ktmp);
2007 return 1;
2008 }
2009
2010 /*
2011 * Make a delta CRL as the difference between two full CRLs.
2012 * Sadly, returns NULL also on internal error.
2013 */
2014 X509_CRL *X509_CRL_diff(X509_CRL *base, X509_CRL *newer,
2015 EVP_PKEY *skey, const EVP_MD *md, unsigned int flags)
2016 {
2017 X509_CRL *crl = NULL;
2018 int i;
2019
2020 STACK_OF(X509_REVOKED) *revs = NULL;
2021 /* CRLs can't be delta already */
2022 if (base->base_crl_number != NULL || newer->base_crl_number != NULL) {
2023 ERR_raise(ERR_LIB_X509, X509_R_CRL_ALREADY_DELTA);
2024 return NULL;
2025 }
2026 /* Base and new CRL must have a CRL number */
2027 if (base->crl_number == NULL || newer->crl_number == NULL) {
2028 ERR_raise(ERR_LIB_X509, X509_R_NO_CRL_NUMBER);
2029 return NULL;
2030 }
2031 /* Issuer names must match */
2032 if (X509_NAME_cmp(X509_CRL_get_issuer(base),
2033 X509_CRL_get_issuer(newer)) != 0) {
2034 ERR_raise(ERR_LIB_X509, X509_R_ISSUER_MISMATCH);
2035 return NULL;
2036 }
2037 /* AKID and IDP must match */
2038 if (!crl_extension_match(base, newer, NID_authority_key_identifier)) {
2039 ERR_raise(ERR_LIB_X509, X509_R_AKID_MISMATCH);
2040 return NULL;
2041 }
2042 if (!crl_extension_match(base, newer, NID_issuing_distribution_point)) {
2043 ERR_raise(ERR_LIB_X509, X509_R_IDP_MISMATCH);
2044 return NULL;
2045 }
2046 /* Newer CRL number must exceed full CRL number */
2047 if (ASN1_INTEGER_cmp(newer->crl_number, base->crl_number) <= 0) {
2048 ERR_raise(ERR_LIB_X509, X509_R_NEWER_CRL_NOT_NEWER);
2049 return NULL;
2050 }
2051 /* CRLs must verify */
2052 if (skey != NULL && (X509_CRL_verify(base, skey) <= 0 ||
2053 X509_CRL_verify(newer, skey) <= 0)) {
2054 ERR_raise(ERR_LIB_X509, X509_R_CRL_VERIFY_FAILURE);
2055 return NULL;
2056 }
2057 /* Create new CRL */
2058 crl = X509_CRL_new_ex(base->libctx, base->propq);
2059 if (crl == NULL || !X509_CRL_set_version(crl, X509_CRL_VERSION_2))
2060 goto memerr;
2061 /* Set issuer name */
2062 if (!X509_CRL_set_issuer_name(crl, X509_CRL_get_issuer(newer)))
2063 goto memerr;
2064
2065 if (!X509_CRL_set1_lastUpdate(crl, X509_CRL_get0_lastUpdate(newer)))
2066 goto memerr;
2067 if (!X509_CRL_set1_nextUpdate(crl, X509_CRL_get0_nextUpdate(newer)))
2068 goto memerr;
2069
2070 /* Set base CRL number: must be critical */
2071 if (!X509_CRL_add1_ext_i2d(crl, NID_delta_crl, base->crl_number, 1, 0))
2072 goto memerr;
2073
2074 /*
2075 * Copy extensions across from newest CRL to delta: this will set CRL
2076 * number to correct value too.
2077 */
2078 for (i = 0; i < X509_CRL_get_ext_count(newer); i++) {
2079 X509_EXTENSION *ext = X509_CRL_get_ext(newer, i);
2080
2081 if (!X509_CRL_add_ext(crl, ext, -1))
2082 goto memerr;
2083 }
2084
2085 /* Go through revoked entries, copying as needed */
2086 revs = X509_CRL_get_REVOKED(newer);
2087
2088 for (i = 0; i < sk_X509_REVOKED_num(revs); i++) {
2089 X509_REVOKED *rvn, *rvtmp;
2090
2091 rvn = sk_X509_REVOKED_value(revs, i);
2092 /*
2093 * Add only if not also in base.
2094 * Need something cleverer here for some more complex CRLs covering
2095 * multiple CAs.
2096 */
2097 if (!X509_CRL_get0_by_serial(base, &rvtmp, &rvn->serialNumber)) {
2098 rvtmp = X509_REVOKED_dup(rvn);
2099 if (rvtmp == NULL)
2100 goto memerr;
2101 if (!X509_CRL_add0_revoked(crl, rvtmp)) {
2102 X509_REVOKED_free(rvtmp);
2103 goto memerr;
2104 }
2105 }
2106 }
2107
2108 if (skey != NULL && md != NULL && !X509_CRL_sign(crl, skey, md))
2109 goto memerr;
2110
2111 return crl;
2112
2113 memerr:
2114 ERR_raise(ERR_LIB_X509, ERR_R_MALLOC_FAILURE);
2115 X509_CRL_free(crl);
2116 return NULL;
2117 }
2118
2119 int X509_STORE_CTX_set_ex_data(X509_STORE_CTX *ctx, int idx, void *data)
2120 {
2121 return CRYPTO_set_ex_data(&ctx->ex_data, idx, data);
2122 }
2123
2124 void *X509_STORE_CTX_get_ex_data(const X509_STORE_CTX *ctx, int idx)
2125 {
2126 return CRYPTO_get_ex_data(&ctx->ex_data, idx);
2127 }
2128
2129 int X509_STORE_CTX_get_error(const X509_STORE_CTX *ctx)
2130 {
2131 return ctx->error;
2132 }
2133
2134 void X509_STORE_CTX_set_error(X509_STORE_CTX *ctx, int err)
2135 {
2136 ctx->error = err;
2137 }
2138
2139 int X509_STORE_CTX_get_error_depth(const X509_STORE_CTX *ctx)
2140 {
2141 return ctx->error_depth;
2142 }
2143
2144 void X509_STORE_CTX_set_error_depth(X509_STORE_CTX *ctx, int depth)
2145 {
2146 ctx->error_depth = depth;
2147 }
2148
2149 X509 *X509_STORE_CTX_get_current_cert(const X509_STORE_CTX *ctx)
2150 {
2151 return ctx->current_cert;
2152 }
2153
2154 void X509_STORE_CTX_set_current_cert(X509_STORE_CTX *ctx, X509 *x)
2155 {
2156 ctx->current_cert = x;
2157 }
2158
2159 STACK_OF(X509) *X509_STORE_CTX_get0_chain(const X509_STORE_CTX *ctx)
2160 {
2161 return ctx->chain;
2162 }
2163
2164 STACK_OF(X509) *X509_STORE_CTX_get1_chain(const X509_STORE_CTX *ctx)
2165 {
2166 if (ctx->chain == NULL)
2167 return NULL;
2168 return X509_chain_up_ref(ctx->chain);
2169 }
2170
2171 X509 *X509_STORE_CTX_get0_current_issuer(const X509_STORE_CTX *ctx)
2172 {
2173 return ctx->current_issuer;
2174 }
2175
2176 X509_CRL *X509_STORE_CTX_get0_current_crl(const X509_STORE_CTX *ctx)
2177 {
2178 return ctx->current_crl;
2179 }
2180
2181 X509_STORE_CTX *X509_STORE_CTX_get0_parent_ctx(const X509_STORE_CTX *ctx)
2182 {
2183 return ctx->parent;
2184 }
2185
2186 void X509_STORE_CTX_set_cert(X509_STORE_CTX *ctx, X509 *x)
2187 {
2188 ctx->cert = x;
2189 }
2190
2191 void X509_STORE_CTX_set0_crls(X509_STORE_CTX *ctx, STACK_OF(X509_CRL) *sk)
2192 {
2193 ctx->crls = sk;
2194 }
2195
2196 int X509_STORE_CTX_set_purpose(X509_STORE_CTX *ctx, int purpose)
2197 {
2198 /*
2199 * XXX: Why isn't this function always used to set the associated trust?
2200 * Should there even be a VPM->trust field at all? Or should the trust
2201 * always be inferred from the purpose by X509_STORE_CTX_init().
2202 */
2203 return X509_STORE_CTX_purpose_inherit(ctx, 0, purpose, 0);
2204 }
2205
2206 int X509_STORE_CTX_set_trust(X509_STORE_CTX *ctx, int trust)
2207 {
2208 /*
2209 * XXX: See above, this function would only be needed when the default
2210 * trust for the purpose needs an override in a corner case.
2211 */
2212 return X509_STORE_CTX_purpose_inherit(ctx, 0, 0, trust);
2213 }
2214
2215 /*
2216 * This function is used to set the X509_STORE_CTX purpose and trust values.
2217 * This is intended to be used when another structure has its own trust and
2218 * purpose values which (if set) will be inherited by the ctx. If they aren't
2219 * set then we will usually have a default purpose in mind which should then
2220 * be used to set the trust value. An example of this is SSL use: an SSL
2221 * structure will have its own purpose and trust settings which the
2222 * application can set: if they aren't set then we use the default of SSL
2223 * client/server.
2224 */
2225 int X509_STORE_CTX_purpose_inherit(X509_STORE_CTX *ctx, int def_purpose,
2226 int purpose, int trust)
2227 {
2228 int idx;
2229
2230 /* If purpose not set use default */
2231 if (purpose == 0)
2232 purpose = def_purpose;
2233 /* If we have a purpose then check it is valid */
2234 if (purpose != 0) {
2235 X509_PURPOSE *ptmp;
2236
2237 idx = X509_PURPOSE_get_by_id(purpose);
2238 if (idx == -1) {
2239 ERR_raise(ERR_LIB_X509, X509_R_UNKNOWN_PURPOSE_ID);
2240 return 0;
2241 }
2242 ptmp = X509_PURPOSE_get0(idx);
2243 if (ptmp->trust == X509_TRUST_DEFAULT) {
2244 idx = X509_PURPOSE_get_by_id(def_purpose);
2245 /*
2246 * XXX: In the two callers above def_purpose is always 0, which is
2247 * not a known value, so idx will always be -1. How is the
2248 * X509_TRUST_DEFAULT case actually supposed to be handled?
2249 */
2250 if (idx == -1) {
2251 ERR_raise(ERR_LIB_X509, X509_R_UNKNOWN_PURPOSE_ID);
2252 return 0;
2253 }
2254 ptmp = X509_PURPOSE_get0(idx);
2255 }
2256 /* If trust not set then get from purpose default */
2257 if (trust == 0)
2258 trust = ptmp->trust;
2259 }
2260 if (trust != 0) {
2261 idx = X509_TRUST_get_by_id(trust);
2262 if (idx == -1) {
2263 ERR_raise(ERR_LIB_X509, X509_R_UNKNOWN_TRUST_ID);
2264 return 0;
2265 }
2266 }
2267
2268 if (ctx->param->purpose == 0 && purpose != 0)
2269 ctx->param->purpose = purpose;
2270 if (ctx->param->trust == 0 && trust != 0)
2271 ctx->param->trust = trust;
2272 return 1;
2273 }
2274
2275 X509_STORE_CTX *X509_STORE_CTX_new_ex(OSSL_LIB_CTX *libctx, const char *propq)
2276 {
2277 X509_STORE_CTX *ctx = OPENSSL_zalloc(sizeof(*ctx));
2278
2279 if (ctx == NULL) {
2280 ERR_raise(ERR_LIB_X509, ERR_R_MALLOC_FAILURE);
2281 return NULL;
2282 }
2283
2284 ctx->libctx = libctx;
2285 if (propq != NULL) {
2286 ctx->propq = OPENSSL_strdup(propq);
2287 if (ctx->propq == NULL) {
2288 OPENSSL_free(ctx);
2289 ERR_raise(ERR_LIB_X509, ERR_R_MALLOC_FAILURE);
2290 return NULL;
2291 }
2292 }
2293
2294 return ctx;
2295 }
2296
2297 X509_STORE_CTX *X509_STORE_CTX_new(void)
2298 {
2299 return X509_STORE_CTX_new_ex(NULL, NULL);
2300 }
2301
2302 void X509_STORE_CTX_free(X509_STORE_CTX *ctx)
2303 {
2304 if (ctx == NULL)
2305 return;
2306
2307 X509_STORE_CTX_cleanup(ctx);
2308
2309 /* libctx and propq survive X509_STORE_CTX_cleanup() */
2310 OPENSSL_free(ctx->propq);
2311 OPENSSL_free(ctx);
2312 }
2313
2314 int X509_STORE_CTX_init(X509_STORE_CTX *ctx, X509_STORE *store, X509 *x509,
2315 STACK_OF(X509) *chain)
2316 {
2317 int ret = 1;
2318
2319 if (ctx == NULL) {
2320 ERR_raise(ERR_LIB_X509, ERR_R_PASSED_NULL_PARAMETER);
2321 return 0;
2322 }
2323 X509_STORE_CTX_cleanup(ctx);
2324
2325 ctx->store = store;
2326 ctx->cert = x509;
2327 ctx->untrusted = chain;
2328 ctx->crls = NULL;
2329 ctx->num_untrusted = 0;
2330 ctx->other_ctx = NULL;
2331 ctx->valid = 0;
2332 ctx->chain = NULL;
2333 ctx->error = X509_V_OK;
2334 ctx->explicit_policy = 0;
2335 ctx->error_depth = 0;
2336 ctx->current_cert = NULL;
2337 ctx->current_issuer = NULL;
2338 ctx->current_crl = NULL;
2339 ctx->current_crl_score = 0;
2340 ctx->current_reasons = 0;
2341 ctx->tree = NULL;
2342 ctx->parent = NULL;
2343 ctx->dane = NULL;
2344 ctx->bare_ta_signed = 0;
2345 /* Zero ex_data to make sure we're cleanup-safe */
2346 memset(&ctx->ex_data, 0, sizeof(ctx->ex_data));
2347
2348 /* store->cleanup is always 0 in OpenSSL, if set must be idempotent */
2349 if (store != NULL)
2350 ctx->cleanup = store->cleanup;
2351 else
2352 ctx->cleanup = NULL;
2353
2354 if (store != NULL && store->check_issued != NULL)
2355 ctx->check_issued = store->check_issued;
2356 else
2357 ctx->check_issued = check_issued;
2358
2359 if (store != NULL && store->get_issuer != NULL)
2360 ctx->get_issuer = store->get_issuer;
2361 else
2362 ctx->get_issuer = X509_STORE_CTX_get1_issuer;
2363
2364 if (store != NULL && store->verify_cb != NULL)
2365 ctx->verify_cb = store->verify_cb;
2366 else
2367 ctx->verify_cb = null_callback;
2368
2369 if (store != NULL && store->verify != NULL)
2370 ctx->verify = store->verify;
2371 else
2372 ctx->verify = internal_verify;
2373
2374 if (store != NULL && store->check_revocation != NULL)
2375 ctx->check_revocation = store->check_revocation;
2376 else
2377 ctx->check_revocation = check_revocation;
2378
2379 if (store != NULL && store->get_crl != NULL)
2380 ctx->get_crl = store->get_crl;
2381 else
2382 ctx->get_crl = NULL;
2383
2384 if (store != NULL && store->check_crl != NULL)
2385 ctx->check_crl = store->check_crl;
2386 else
2387 ctx->check_crl = check_crl;
2388
2389 if (store != NULL && store->cert_crl != NULL)
2390 ctx->cert_crl = store->cert_crl;
2391 else
2392 ctx->cert_crl = cert_crl;
2393
2394 if (store != NULL && store->check_policy != NULL)
2395 ctx->check_policy = store->check_policy;
2396 else
2397 ctx->check_policy = check_policy;
2398
2399 if (store != NULL && store->lookup_certs != NULL)
2400 ctx->lookup_certs = store->lookup_certs;
2401 else
2402 ctx->lookup_certs = X509_STORE_CTX_get1_certs;
2403
2404 if (store != NULL && store->lookup_crls != NULL)
2405 ctx->lookup_crls = store->lookup_crls;
2406 else
2407 ctx->lookup_crls = X509_STORE_CTX_get1_crls;
2408
2409 ctx->param = X509_VERIFY_PARAM_new();
2410 if (ctx->param == NULL) {
2411 ERR_raise(ERR_LIB_X509, ERR_R_MALLOC_FAILURE);
2412 goto err;
2413 }
2414
2415 /* Inherit callbacks and flags from X509_STORE if not set use defaults. */
2416 if (store != NULL)
2417 ret = X509_VERIFY_PARAM_inherit(ctx->param, store->param);
2418 else
2419 ctx->param->inh_flags |= X509_VP_FLAG_DEFAULT | X509_VP_FLAG_ONCE;
2420
2421 if (ret)
2422 ret = X509_VERIFY_PARAM_inherit(ctx->param,
2423 X509_VERIFY_PARAM_lookup("default"));
2424
2425 if (ret == 0) {
2426 ERR_raise(ERR_LIB_X509, ERR_R_MALLOC_FAILURE);
2427 goto err;
2428 }
2429
2430 /*
2431 * XXX: For now, continue to inherit trust from VPM, but infer from the
2432 * purpose if this still yields the default value.
2433 */
2434 if (ctx->param->trust == X509_TRUST_DEFAULT) {
2435 int idx = X509_PURPOSE_get_by_id(ctx->param->purpose);
2436 X509_PURPOSE *xp = X509_PURPOSE_get0(idx);
2437
2438 if (xp != NULL)
2439 ctx->param->trust = X509_PURPOSE_get_trust(xp);
2440 }
2441
2442 if (CRYPTO_new_ex_data(CRYPTO_EX_INDEX_X509_STORE_CTX, ctx,
2443 &ctx->ex_data))
2444 return 1;
2445 ERR_raise(ERR_LIB_X509, ERR_R_MALLOC_FAILURE);
2446
2447 err:
2448 /*
2449 * On error clean up allocated storage, if the store context was not
2450 * allocated with X509_STORE_CTX_new() this is our last chance to do so.
2451 */
2452 X509_STORE_CTX_cleanup(ctx);
2453 return 0;
2454 }
2455
2456 /*
2457 * Set alternative get_issuer method: just from a STACK of trusted certificates.
2458 * This avoids the complexity of X509_STORE where it is not needed.
2459 */
2460 void X509_STORE_CTX_set0_trusted_stack(X509_STORE_CTX *ctx, STACK_OF(X509) *sk)
2461 {
2462 ctx->other_ctx = sk;
2463 ctx->get_issuer = get_issuer_sk;
2464 ctx->lookup_certs = lookup_certs_sk;
2465 }
2466
2467 void X509_STORE_CTX_cleanup(X509_STORE_CTX *ctx)
2468 {
2469 /*
2470 * We need to be idempotent because, unfortunately, free() also calls
2471 * cleanup(), so the natural call sequence new(), init(), cleanup(), free()
2472 * calls cleanup() for the same object twice! Thus we must zero the
2473 * pointers below after they're freed!
2474 */
2475 /* Seems to always be NULL in OpenSSL, do this at most once. */
2476 if (ctx->cleanup != NULL) {
2477 ctx->cleanup(ctx);
2478 ctx->cleanup = NULL;
2479 }
2480 if (ctx->param != NULL) {
2481 if (ctx->parent == NULL)
2482 X509_VERIFY_PARAM_free(ctx->param);
2483 ctx->param = NULL;
2484 }
2485 X509_policy_tree_free(ctx->tree);
2486 ctx->tree = NULL;
2487 sk_X509_pop_free(ctx->chain, X509_free);
2488 ctx->chain = NULL;
2489 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_X509_STORE_CTX, ctx, &(ctx->ex_data));
2490 memset(&ctx->ex_data, 0, sizeof(ctx->ex_data));
2491 }
2492
2493 void X509_STORE_CTX_set_depth(X509_STORE_CTX *ctx, int depth)
2494 {
2495 X509_VERIFY_PARAM_set_depth(ctx->param, depth);
2496 }
2497
2498 void X509_STORE_CTX_set_flags(X509_STORE_CTX *ctx, unsigned long flags)
2499 {
2500 X509_VERIFY_PARAM_set_flags(ctx->param, flags);
2501 }
2502
2503 void X509_STORE_CTX_set_time(X509_STORE_CTX *ctx, unsigned long flags,
2504 time_t t)
2505 {
2506 X509_VERIFY_PARAM_set_time(ctx->param, t);
2507 }
2508
2509 X509 *X509_STORE_CTX_get0_cert(const X509_STORE_CTX *ctx)
2510 {
2511 return ctx->cert;
2512 }
2513
2514 STACK_OF(X509) *X509_STORE_CTX_get0_untrusted(const X509_STORE_CTX *ctx)
2515 {
2516 return ctx->untrusted;
2517 }
2518
2519 void X509_STORE_CTX_set0_untrusted(X509_STORE_CTX *ctx, STACK_OF(X509) *sk)
2520 {
2521 ctx->untrusted = sk;
2522 }
2523
2524 void X509_STORE_CTX_set0_verified_chain(X509_STORE_CTX *ctx, STACK_OF(X509) *sk)
2525 {
2526 sk_X509_pop_free(ctx->chain, X509_free);
2527 ctx->chain = sk;
2528 }
2529
2530 void X509_STORE_CTX_set_verify_cb(X509_STORE_CTX *ctx,
2531 X509_STORE_CTX_verify_cb verify_cb)
2532 {
2533 ctx->verify_cb = verify_cb;
2534 }
2535
2536 X509_STORE_CTX_verify_cb X509_STORE_CTX_get_verify_cb(const X509_STORE_CTX *ctx)
2537 {
2538 return ctx->verify_cb;
2539 }
2540
2541 void X509_STORE_CTX_set_verify(X509_STORE_CTX *ctx,
2542 X509_STORE_CTX_verify_fn verify)
2543 {
2544 ctx->verify = verify;
2545 }
2546
2547 X509_STORE_CTX_verify_fn X509_STORE_CTX_get_verify(const X509_STORE_CTX *ctx)
2548 {
2549 return ctx->verify;
2550 }
2551
2552 X509_STORE_CTX_get_issuer_fn
2553 X509_STORE_CTX_get_get_issuer(const X509_STORE_CTX *ctx)
2554 {
2555 return ctx->get_issuer;
2556 }
2557
2558 X509_STORE_CTX_check_issued_fn
2559 X509_STORE_CTX_get_check_issued(const X509_STORE_CTX *ctx)
2560 {
2561 return ctx->check_issued;
2562 }
2563
2564 X509_STORE_CTX_check_revocation_fn
2565 X509_STORE_CTX_get_check_revocation(const X509_STORE_CTX *ctx)
2566 {
2567 return ctx->check_revocation;
2568 }
2569
2570 X509_STORE_CTX_get_crl_fn X509_STORE_CTX_get_get_crl(const X509_STORE_CTX *ctx)
2571 {
2572 return ctx->get_crl;
2573 }
2574
2575 X509_STORE_CTX_check_crl_fn
2576 X509_STORE_CTX_get_check_crl(const X509_STORE_CTX *ctx)
2577 {
2578 return ctx->check_crl;
2579 }
2580
2581 X509_STORE_CTX_cert_crl_fn
2582 X509_STORE_CTX_get_cert_crl(const X509_STORE_CTX *ctx)
2583 {
2584 return ctx->cert_crl;
2585 }
2586
2587 X509_STORE_CTX_check_policy_fn
2588 X509_STORE_CTX_get_check_policy(const X509_STORE_CTX *ctx)
2589 {
2590 return ctx->check_policy;
2591 }
2592
2593 X509_STORE_CTX_lookup_certs_fn
2594 X509_STORE_CTX_get_lookup_certs(const X509_STORE_CTX *ctx)
2595 {
2596 return ctx->lookup_certs;
2597 }
2598
2599 X509_STORE_CTX_lookup_crls_fn
2600 X509_STORE_CTX_get_lookup_crls(const X509_STORE_CTX *ctx)
2601 {
2602 return ctx->lookup_crls;
2603 }
2604
2605 X509_STORE_CTX_cleanup_fn X509_STORE_CTX_get_cleanup(const X509_STORE_CTX *ctx)
2606 {
2607 return ctx->cleanup;
2608 }
2609
2610 X509_POLICY_TREE *X509_STORE_CTX_get0_policy_tree(const X509_STORE_CTX *ctx)
2611 {
2612 return ctx->tree;
2613 }
2614
2615 int X509_STORE_CTX_get_explicit_policy(const X509_STORE_CTX *ctx)
2616 {
2617 return ctx->explicit_policy;
2618 }
2619
2620 int X509_STORE_CTX_get_num_untrusted(const X509_STORE_CTX *ctx)
2621 {
2622 return ctx->num_untrusted;
2623 }
2624
2625 int X509_STORE_CTX_set_default(X509_STORE_CTX *ctx, const char *name)
2626 {
2627 const X509_VERIFY_PARAM *param;
2628
2629 param = X509_VERIFY_PARAM_lookup(name);
2630 if (param == NULL)
2631 return 0;
2632 return X509_VERIFY_PARAM_inherit(ctx->param, param);
2633 }
2634
2635 X509_VERIFY_PARAM *X509_STORE_CTX_get0_param(const X509_STORE_CTX *ctx)
2636 {
2637 return ctx->param;
2638 }
2639
2640 void X509_STORE_CTX_set0_param(X509_STORE_CTX *ctx, X509_VERIFY_PARAM *param)
2641 {
2642 X509_VERIFY_PARAM_free(ctx->param);
2643 ctx->param = param;
2644 }
2645
2646 void X509_STORE_CTX_set0_dane(X509_STORE_CTX *ctx, SSL_DANE *dane)
2647 {
2648 ctx->dane = dane;
2649 }
2650
2651 static unsigned char *dane_i2d(X509 *cert, uint8_t selector,
2652 unsigned int *i2dlen)
2653 {
2654 unsigned char *buf = NULL;
2655 int len;
2656
2657 /*
2658 * Extract ASN.1 DER form of certificate or public key.
2659 */
2660 switch (selector) {
2661 case DANETLS_SELECTOR_CERT:
2662 len = i2d_X509(cert, &buf);
2663 break;
2664 case DANETLS_SELECTOR_SPKI:
2665 len = i2d_X509_PUBKEY(X509_get_X509_PUBKEY(cert), &buf);
2666 break;
2667 default:
2668 ERR_raise(ERR_LIB_X509, X509_R_BAD_SELECTOR);
2669 return NULL;
2670 }
2671
2672 if (len < 0 || buf == NULL) {
2673 ERR_raise(ERR_LIB_X509, ERR_R_MALLOC_FAILURE);
2674 return NULL;
2675 }
2676
2677 *i2dlen = (unsigned int)len;
2678 return buf;
2679 }
2680
2681 #define DANETLS_NONE 256 /* impossible uint8_t */
2682
2683 /* Returns -1 on internal error */
2684 static int dane_match(X509_STORE_CTX *ctx, X509 *cert, int depth)
2685 {
2686 SSL_DANE *dane = ctx->dane;
2687 unsigned usage = DANETLS_NONE;
2688 unsigned selector = DANETLS_NONE;
2689 unsigned ordinal = DANETLS_NONE;
2690 unsigned mtype = DANETLS_NONE;
2691 unsigned char *i2dbuf = NULL;
2692 unsigned int i2dlen = 0;
2693 unsigned char mdbuf[EVP_MAX_MD_SIZE];
2694 unsigned char *cmpbuf = NULL;
2695 unsigned int cmplen = 0;
2696 int i;
2697 int recnum;
2698 int matched = 0;
2699 danetls_record *t = NULL;
2700 uint32_t mask;
2701
2702 mask = (depth == 0) ? DANETLS_EE_MASK : DANETLS_TA_MASK;
2703
2704 /* The trust store is not applicable with DANE-TA(2) */
2705 if (depth >= ctx->num_untrusted)
2706 mask &= DANETLS_PKIX_MASK;
2707
2708 /*
2709 * If we've previously matched a PKIX-?? record, no need to test any
2710 * further PKIX-?? records, it remains to just build the PKIX chain.
2711 * Had the match been a DANE-?? record, we'd be done already.
2712 */
2713 if (dane->mdpth >= 0)
2714 mask &= ~DANETLS_PKIX_MASK;
2715
2716 /*-
2717 * https://tools.ietf.org/html/rfc7671#section-5.1
2718 * https://tools.ietf.org/html/rfc7671#section-5.2
2719 * https://tools.ietf.org/html/rfc7671#section-5.3
2720 * https://tools.ietf.org/html/rfc7671#section-5.4
2721 *
2722 * We handle DANE-EE(3) records first as they require no chain building
2723 * and no expiration or hostname checks. We also process digests with
2724 * higher ordinals first and ignore lower priorities except Full(0) which
2725 * is always processed (last). If none match, we then process PKIX-EE(1).
2726 *
2727 * NOTE: This relies on DANE usages sorting before the corresponding PKIX
2728 * usages in SSL_dane_tlsa_add(), and also on descending sorting of digest
2729 * priorities. See twin comment in ssl/ssl_lib.c.
2730 *
2731 * We expect that most TLSA RRsets will have just a single usage, so we
2732 * don't go out of our way to cache multiple selector-specific i2d buffers
2733 * across usages, but if the selector happens to remain the same as switch
2734 * usages, that's OK. Thus, a set of "3 1 1", "3 0 1", "1 1 1", "1 0 1",
2735 * records would result in us generating each of the certificate and public
2736 * key DER forms twice, but more typically we'd just see multiple "3 1 1"
2737 * or multiple "3 0 1" records.
2738 *
2739 * As soon as we find a match at any given depth, we stop, because either
2740 * we've matched a DANE-?? record and the peer is authenticated, or, after
2741 * exhausting all DANE-?? records, we've matched a PKIX-?? record, which is
2742 * sufficient for DANE, and what remains to do is ordinary PKIX validation.
2743 */
2744 recnum = (dane->umask & mask) != 0 ? sk_danetls_record_num(dane->trecs) : 0;
2745 for (i = 0; matched == 0 && i < recnum; ++i) {
2746 t = sk_danetls_record_value(dane->trecs, i);
2747 if ((DANETLS_USAGE_BIT(t->usage) & mask) == 0)
2748 continue;
2749 if (t->usage != usage) {
2750 usage = t->usage;
2751
2752 /* Reset digest agility for each usage/selector pair */
2753 mtype = DANETLS_NONE;
2754 ordinal = dane->dctx->mdord[t->mtype];
2755 }
2756 if (t->selector != selector) {
2757 selector = t->selector;
2758
2759 /* Update per-selector state */
2760 OPENSSL_free(i2dbuf);
2761 i2dbuf = dane_i2d(cert, selector, &i2dlen);
2762 if (i2dbuf == NULL)
2763 return -1;
2764
2765 /* Reset digest agility for each usage/selector pair */
2766 mtype = DANETLS_NONE;
2767 ordinal = dane->dctx->mdord[t->mtype];
2768 } else if (t->mtype != DANETLS_MATCHING_FULL) {
2769 /*-
2770 * Digest agility:
2771 *
2772 * <https://tools.ietf.org/html/rfc7671#section-9>
2773 *
2774 * For a fixed selector, after processing all records with the
2775 * highest mtype ordinal, ignore all mtypes with lower ordinals
2776 * other than "Full".
2777 */
2778 if (dane->dctx->mdord[t->mtype] < ordinal)
2779 continue;
2780 }
2781
2782 /*
2783 * Each time we hit a (new selector or) mtype, re-compute the relevant
2784 * digest, more complex caching is not worth the code space.
2785 */
2786 if (t->mtype != mtype) {
2787 const EVP_MD *md = dane->dctx->mdevp[mtype = t->mtype];
2788
2789 cmpbuf = i2dbuf;
2790 cmplen = i2dlen;
2791
2792 if (md != NULL) {
2793 cmpbuf = mdbuf;
2794 if (!EVP_Digest(i2dbuf, i2dlen, cmpbuf, &cmplen, md, 0)) {
2795 matched = -1;
2796 break;
2797 }
2798 }
2799 }
2800
2801 /*
2802 * Squirrel away the certificate and depth if we have a match. Any
2803 * DANE match is dispositive, but with PKIX we still need to build a
2804 * full chain.
2805 */
2806 if (cmplen == t->dlen &&
2807 memcmp(cmpbuf, t->data, cmplen) == 0) {
2808 if (DANETLS_USAGE_BIT(usage) & DANETLS_DANE_MASK)
2809 matched = 1;
2810 if (matched || dane->mdpth < 0) {
2811 dane->mdpth = depth;
2812 dane->mtlsa = t;
2813 OPENSSL_free(dane->mcert);
2814 dane->mcert = cert;
2815 X509_up_ref(cert);
2816 }
2817 break;
2818 }
2819 }
2820
2821 /* Clear the one-element DER cache */
2822 OPENSSL_free(i2dbuf);
2823 return matched;
2824 }
2825
2826 /* Returns -1 on internal error */
2827 static int check_dane_issuer(X509_STORE_CTX *ctx, int depth)
2828 {
2829 SSL_DANE *dane = ctx->dane;
2830 int matched = 0;
2831 X509 *cert;
2832
2833 if (!DANETLS_HAS_TA(dane) || depth == 0)
2834 return X509_TRUST_UNTRUSTED;
2835
2836 /*
2837 * Record any DANE trust anchor matches, for the first depth to test, if
2838 * there's one at that depth. (This'll be false for length 1 chains looking
2839 * for an exact match for the leaf certificate).
2840 */
2841 cert = sk_X509_value(ctx->chain, depth);
2842 if (cert != NULL && (matched = dane_match(ctx, cert, depth)) < 0)
2843 return matched;
2844 if (matched > 0) {
2845 ctx->num_untrusted = depth - 1;
2846 return X509_TRUST_TRUSTED;
2847 }
2848
2849 return X509_TRUST_UNTRUSTED;
2850 }
2851
2852 static int check_dane_pkeys(X509_STORE_CTX *ctx)
2853 {
2854 SSL_DANE *dane = ctx->dane;
2855 danetls_record *t;
2856 int num = ctx->num_untrusted;
2857 X509 *cert = sk_X509_value(ctx->chain, num - 1);
2858 int recnum = sk_danetls_record_num(dane->trecs);
2859 int i;
2860
2861 for (i = 0; i < recnum; ++i) {
2862 t = sk_danetls_record_value(dane->trecs, i);
2863 if (t->usage != DANETLS_USAGE_DANE_TA ||
2864 t->selector != DANETLS_SELECTOR_SPKI ||
2865 t->mtype != DANETLS_MATCHING_FULL ||
2866 X509_verify(cert, t->spki) <= 0)
2867 continue;
2868
2869 /* Clear any PKIX-?? matches that failed to extend to a full chain */
2870 X509_free(dane->mcert);
2871 dane->mcert = NULL;
2872
2873 /* Record match via a bare TA public key */
2874 ctx->bare_ta_signed = 1;
2875 dane->mdpth = num - 1;
2876 dane->mtlsa = t;
2877
2878 /* Prune any excess chain certificates */
2879 num = sk_X509_num(ctx->chain);
2880 for (; num > ctx->num_untrusted; --num)
2881 X509_free(sk_X509_pop(ctx->chain));
2882
2883 return X509_TRUST_TRUSTED;
2884 }
2885
2886 return X509_TRUST_UNTRUSTED;
2887 }
2888
2889 static void dane_reset(SSL_DANE *dane)
2890 {
2891 /* Reset state to verify another chain, or clear after failure. */
2892 X509_free(dane->mcert);
2893 dane->mcert = NULL;
2894 dane->mtlsa = NULL;
2895 dane->mdpth = -1;
2896 dane->pdpth = -1;
2897 }
2898
2899 static int check_leaf_suiteb(X509_STORE_CTX *ctx, X509 *cert)
2900 {
2901 int err = X509_chain_check_suiteb(NULL, cert, NULL, ctx->param->flags);
2902
2903 CB_FAIL_IF(err != X509_V_OK, ctx, cert, 0, err);
2904 return 1;
2905 }
2906
2907 /* Returns -1 on internal error */
2908 static int dane_verify(X509_STORE_CTX *ctx)
2909 {
2910 X509 *cert = ctx->cert;
2911 SSL_DANE *dane = ctx->dane;
2912 int matched;
2913 int done;
2914
2915 dane_reset(dane);
2916
2917 /*-
2918 * When testing the leaf certificate, if we match a DANE-EE(3) record,
2919 * dane_match() returns 1 and we're done. If however we match a PKIX-EE(1)
2920 * record, the match depth and matching TLSA record are recorded, but the
2921 * return value is 0, because we still need to find a PKIX trust anchor.
2922 * Therefore, when DANE authentication is enabled (required), we're done
2923 * if:
2924 * + matched < 0, internal error.
2925 * + matched == 1, we matched a DANE-EE(3) record
2926 * + matched == 0, mdepth < 0 (no PKIX-EE match) and there are no
2927 * DANE-TA(2) or PKIX-TA(0) to test.
2928 */
2929 matched = dane_match(ctx, ctx->cert, 0);
2930 done = matched != 0 || (!DANETLS_HAS_TA(dane) && dane->mdpth < 0);
2931
2932 if (done && !X509_get_pubkey_parameters(NULL, ctx->chain))
2933 return -1;
2934
2935 if (matched > 0) {
2936 /* Callback invoked as needed */
2937 if (!check_leaf_suiteb(ctx, cert))
2938 return 0;
2939 /* Callback invoked as needed */
2940 if ((dane->flags & DANE_FLAG_NO_DANE_EE_NAMECHECKS) == 0 &&
2941 !check_id(ctx))
2942 return 0;
2943 /* Bypass internal_verify(), issue depth 0 success callback */
2944 ctx->error_depth = 0;
2945 ctx->current_cert = cert;
2946 return ctx->verify_cb(1, ctx);
2947 }
2948
2949 if (matched < 0) {
2950 ctx->error_depth = 0;
2951 ctx->current_cert = cert;
2952 ctx->error = X509_V_ERR_OUT_OF_MEM;
2953 return -1;
2954 }
2955
2956 if (done) {
2957 /* Fail early, TA-based success is not possible */
2958 if (!check_leaf_suiteb(ctx, cert))
2959 return 0;
2960 return verify_cb_cert(ctx, cert, 0, X509_V_ERR_DANE_NO_MATCH);
2961 }
2962
2963 /*
2964 * Chain verification for usages 0/1/2. TLSA record matching of depth > 0
2965 * certificates happens in-line with building the rest of the chain.
2966 */
2967 return verify_chain(ctx);
2968 }
2969
2970 /*
2971 * Get trusted issuer, without duplicate suppression
2972 * Returns -1 on internal error.
2973 */
2974 static int get1_trusted_issuer(X509 **issuer, X509_STORE_CTX *ctx, X509 *cert)
2975 {
2976 STACK_OF(X509) *saved_chain = ctx->chain;
2977 int ok;
2978
2979 ctx->chain = NULL;
2980 ok = ctx->get_issuer(issuer, ctx, cert);
2981 ctx->chain = saved_chain;
2982
2983 return ok;
2984 }
2985
2986 /* Returns -1 on internal error */
2987 static int build_chain(X509_STORE_CTX *ctx)
2988 {
2989 SSL_DANE *dane = ctx->dane;
2990 int num = sk_X509_num(ctx->chain);
2991 STACK_OF(X509) *sk_untrusted = NULL;
2992 unsigned int search;
2993 int may_trusted = 0;
2994 int may_alternate = 0;
2995 int trust = X509_TRUST_UNTRUSTED;
2996 int alt_untrusted = 0;
2997 int max_depth;
2998 int ok = 0;
2999 int prev_error = ctx->error;
3000 int i;
3001
3002 /* Our chain starts with a single untrusted element. */
3003 if (!ossl_assert(num == 1 && ctx->num_untrusted == num))
3004 goto int_err;
3005
3006 #define S_DOUNTRUSTED (1 << 0) /* Search untrusted chain */
3007 #define S_DOTRUSTED (1 << 1) /* Search trusted store */
3008 #define S_DOALTERNATE (1 << 2) /* Retry with pruned alternate chain */
3009 /*
3010 * Set up search policy, untrusted if possible, trusted-first if enabled,
3011 * which is the default.
3012 * If we're doing DANE and not doing PKIX-TA/PKIX-EE, we never look in the
3013 * trust_store, otherwise we might look there first. If not trusted-first,
3014 * and alternate chains are not disabled, try building an alternate chain
3015 * if no luck with untrusted first.
3016 */
3017 search = ctx->untrusted != NULL ? S_DOUNTRUSTED : 0;
3018 if (DANETLS_HAS_PKIX(dane) || !DANETLS_HAS_DANE(dane)) {
3019 if (search == 0 || (ctx->param->flags & X509_V_FLAG_TRUSTED_FIRST) != 0)
3020 search |= S_DOTRUSTED;
3021 else if (!(ctx->param->flags & X509_V_FLAG_NO_ALT_CHAINS))
3022 may_alternate = 1;
3023 may_trusted = 1;
3024 }
3025
3026 /* Initialize empty untrusted stack. */
3027 if ((sk_untrusted = sk_X509_new_null()) == NULL)
3028 goto memerr;
3029
3030 /*
3031 * If we got any "Cert(0) Full(0)" trust anchors from DNS, *prepend* them
3032 * to our working copy of the untrusted certificate stack.
3033 */
3034 if (DANETLS_ENABLED(dane) && dane->certs != NULL
3035 && !X509_add_certs(sk_untrusted, dane->certs, X509_ADD_FLAG_DEFAULT))
3036 goto memerr;
3037
3038 /*
3039 * Shallow-copy the stack of untrusted certificates (with TLS, this is
3040 * typically the content of the peer's certificate message) so we can make
3041 * multiple passes over it, while free to remove elements as we go.
3042 */
3043 if (!X509_add_certs(sk_untrusted, ctx->untrusted, X509_ADD_FLAG_DEFAULT))
3044 goto memerr;
3045
3046 /*
3047 * Still absurdly large, but arithmetically safe, a lower hard upper bound
3048 * might be reasonable.
3049 */
3050 if (ctx->param->depth > INT_MAX / 2)
3051 ctx->param->depth = INT_MAX / 2;
3052
3053 /*
3054 * Try to extend the chain until we reach an ultimately trusted issuer.
3055 * Build chains up to one longer the limit, later fail if we hit the limit,
3056 * with an X509_V_ERR_CERT_CHAIN_TOO_LONG error code.
3057 */
3058 max_depth = ctx->param->depth + 1;
3059
3060 while (search != 0) {
3061 X509 *curr, *issuer = NULL;
3062
3063 num = sk_X509_num(ctx->chain);
3064 ctx->error_depth = num - 1;
3065 /*
3066 * Look in the trust store if enabled for first lookup, or we've run
3067 * out of untrusted issuers and search here is not disabled. When we
3068 * reach the depth limit, we stop extending the chain, if by that point
3069 * we've not found a trust anchor, any trusted chain would be too long.
3070 *
3071 * The error reported to the application verify callback is at the
3072 * maximal valid depth with the current certificate equal to the last
3073 * not ultimately-trusted issuer. For example, with verify_depth = 0,
3074 * the callback will report errors at depth=1 when the immediate issuer
3075 * of the leaf certificate is not a trust anchor. No attempt will be
3076 * made to locate an issuer for that certificate, since such a chain
3077 * would be a-priori too long.
3078 */
3079 if ((search & S_DOTRUSTED) != 0) {
3080 i = num;
3081 if ((search & S_DOALTERNATE) != 0) {
3082 /*
3083 * As high up the chain as we can, look for an alternative
3084 * trusted issuer of an untrusted certificate that currently
3085 * has an untrusted issuer. We use the alt_untrusted variable
3086 * to track how far up the chain we find the first match. It
3087 * is only if and when we find a match, that we prune the chain
3088 * and reset ctx->num_untrusted to the reduced count of
3089 * untrusted certificates. While we're searching for such a
3090 * match (which may never be found), it is neither safe nor
3091 * wise to preemptively modify either the chain or
3092 * ctx->num_untrusted.
3093 *
3094 * Note, like ctx->num_untrusted, alt_untrusted is a count of
3095 * untrusted certificates, not a "depth".
3096 */
3097 i = alt_untrusted;
3098 }
3099 curr = sk_X509_value(ctx->chain, i - 1);
3100
3101 /* Note: get1_trusted_issuer() must be used even if self-signed. */
3102 ok = num > max_depth ? 0 : get1_trusted_issuer(&issuer, ctx, curr);
3103
3104 if (ok < 0) {
3105 trust = -1;
3106 ctx->error = X509_V_ERR_STORE_LOOKUP;
3107 break;
3108 }
3109
3110 if (ok > 0) {
3111 int self_signed = X509_self_signed(curr, 0);
3112
3113 if (self_signed < 0) {
3114 X509_free(issuer);
3115 goto int_err;
3116 }
3117 /*
3118 * Alternative trusted issuer for a mid-chain untrusted cert?
3119 * Pop the untrusted cert's successors and retry. We might now
3120 * be able to complete a valid chain via the trust store. Note
3121 * that despite the current trust store match we might still
3122 * fail complete the chain to a suitable trust anchor, in which
3123 * case we may prune some more untrusted certificates and try
3124 * again. Thus the S_DOALTERNATE bit may yet be turned on
3125 * again with an even shorter untrusted chain!
3126 *
3127 * If in the process we threw away our matching PKIX-TA trust
3128 * anchor, reset DANE trust. We might find a suitable trusted
3129 * certificate among the ones from the trust store.
3130 */
3131 if ((search & S_DOALTERNATE) != 0) {
3132 if (!ossl_assert(num > i && i > 0 && !self_signed)) {
3133 X509_free(issuer);
3134 goto int_err;
3135 }
3136 search &= ~S_DOALTERNATE;
3137 for (; num > i; --num)
3138 X509_free(sk_X509_pop(ctx->chain));
3139 ctx->num_untrusted = num;
3140
3141 if (DANETLS_ENABLED(dane) &&
3142 dane->mdpth >= ctx->num_untrusted) {
3143 dane->mdpth = -1;
3144 X509_free(dane->mcert);
3145 dane->mcert = NULL;
3146 }
3147 if (DANETLS_ENABLED(dane) &&
3148 dane->pdpth >= ctx->num_untrusted)
3149 dane->pdpth = -1;
3150 }
3151
3152 /*
3153 * Self-signed untrusted certificates get replaced by their
3154 * trusted matching issuer. Otherwise, grow the chain.
3155 */
3156 if (!self_signed) {
3157 if (!sk_X509_push(ctx->chain, issuer)) {
3158 X509_free(issuer);
3159 goto memerr;
3160 }
3161 if ((self_signed = X509_self_signed(issuer, 0)) < 0)
3162 goto int_err;
3163 } else {
3164 /*
3165 * We have a self-signed certificate that has the same
3166 * subject name (and perhaps keyid and/or serial number) as
3167 * a trust anchor. We must have an exact match to avoid
3168 * possible impersonation via key substitution etc.
3169 */
3170 if (X509_cmp(curr, issuer) != 0) {
3171 /* Self-signed untrusted mimic. */
3172 X509_free(issuer);
3173 ok = 0;
3174 } else { /* curr "==" issuer */
3175 X509_free(curr);
3176 ctx->num_untrusted = --num;
3177 (void)sk_X509_set(ctx->chain, num, issuer);
3178 }
3179 }
3180
3181 /*
3182 * We've added a new trusted certificate to the chain, re-check
3183 * trust. If not done, and not self-signed look deeper.
3184 * Whether or not we're doing "trusted first", we no longer
3185 * look for untrusted certificates from the peer's chain.
3186 *
3187 * At this point ctx->num_trusted and num must reflect the
3188 * correct number of untrusted certificates, since the DANE
3189 * logic in check_trust() depends on distinguishing CAs from
3190 * "the wire" from CAs from the trust store. In particular, the
3191 * certificate at depth "num" should be the new trusted
3192 * certificate with ctx->num_untrusted <= num.
3193 */
3194 if (ok) {
3195 if (!ossl_assert(ctx->num_untrusted <= num))
3196 goto int_err;
3197 search &= ~S_DOUNTRUSTED;
3198 trust = check_trust(ctx, num);
3199 if (trust != X509_TRUST_UNTRUSTED)
3200 break;
3201 if (!self_signed)
3202 continue;
3203 }
3204 }
3205
3206 /*
3207 * No dispositive decision, and either self-signed or no match, if
3208 * we were doing untrusted-first, and alt-chains are not disabled,
3209 * do that, by repeatedly losing one untrusted element at a time,
3210 * and trying to extend the shorted chain.
3211 */
3212 if ((search & S_DOUNTRUSTED) == 0) {
3213 /* Continue search for a trusted issuer of a shorter chain? */
3214 if ((search & S_DOALTERNATE) != 0 && --alt_untrusted > 0)
3215 continue;
3216 /* Still no luck and no fallbacks left? */
3217 if (!may_alternate || (search & S_DOALTERNATE) != 0 ||
3218 ctx->num_untrusted < 2)
3219 break;
3220 /* Search for a trusted issuer of a shorter chain */
3221 search |= S_DOALTERNATE;
3222 alt_untrusted = ctx->num_untrusted - 1;
3223 }
3224 }
3225
3226 /*
3227 * Extend chain with peer-provided untrusted certificates
3228 */
3229 if ((search & S_DOUNTRUSTED) != 0) {
3230 num = sk_X509_num(ctx->chain);
3231 if (!ossl_assert(num == ctx->num_untrusted))
3232 goto int_err;
3233 curr = sk_X509_value(ctx->chain, num - 1);
3234 issuer = (X509_self_signed(curr, 0) > 0 || num > max_depth) ?
3235 NULL : find_issuer(ctx, sk_untrusted, curr);
3236 if (issuer == NULL) {
3237 /*
3238 * Once we have reached a self-signed cert or num > max_depth
3239 * or can't find an issuer in the untrusted list we stop looking
3240 * there and start looking only in the trust store if enabled.
3241 */
3242 search &= ~S_DOUNTRUSTED;
3243 if (may_trusted)
3244 search |= S_DOTRUSTED;
3245 continue;
3246 }
3247
3248 /* Drop this issuer from future consideration */
3249 (void)sk_X509_delete_ptr(sk_untrusted, issuer);
3250
3251 if (!X509_add_cert(ctx->chain, issuer, X509_ADD_FLAG_UP_REF))
3252 goto int_err;
3253
3254 ++ctx->num_untrusted;
3255
3256 /* Check for DANE-TA trust of the topmost untrusted certificate. */
3257 trust = check_dane_issuer(ctx, ctx->num_untrusted - 1);
3258 if (trust == X509_TRUST_TRUSTED || trust == X509_TRUST_REJECTED)
3259 break;
3260 }
3261 }
3262 sk_X509_free(sk_untrusted);
3263
3264 if (trust < 0) /* internal error */
3265 return trust;
3266
3267 /*
3268 * Last chance to make a trusted chain, either bare DANE-TA public-key
3269 * signers, or else direct leaf PKIX trust.
3270 */
3271 num = sk_X509_num(ctx->chain);
3272 if (num <= max_depth) {
3273 if (trust == X509_TRUST_UNTRUSTED && DANETLS_HAS_DANE_TA(dane))
3274 trust = check_dane_pkeys(ctx);
3275 if (trust == X509_TRUST_UNTRUSTED && num == ctx->num_untrusted)
3276 trust = check_trust(ctx, num);
3277 }
3278
3279 switch (trust) {
3280 case X509_TRUST_TRUSTED:
3281 /* Must restore any previous error value for backward compatibility */
3282 ctx->error = prev_error;
3283 return 1;
3284 case X509_TRUST_REJECTED:
3285 /* Callback already issued */
3286 return 0;
3287 case X509_TRUST_UNTRUSTED:
3288 default:
3289 switch (ctx->error) {
3290 case X509_V_ERR_ERROR_IN_CERT_NOT_BEFORE_FIELD:
3291 case X509_V_ERR_CERT_NOT_YET_VALID:
3292 case X509_V_ERR_ERROR_IN_CERT_NOT_AFTER_FIELD:
3293 case X509_V_ERR_CERT_HAS_EXPIRED:
3294 return 0; /* Callback already issued by ossl_x509_check_cert_time() */
3295 default: /* A preliminary error has become final */
3296 return verify_cb_cert(ctx, NULL, num - 1, ctx->error);
3297 case X509_V_OK:
3298 break;
3299 }
3300 CB_FAIL_IF(num > max_depth,
3301 ctx, NULL, num - 1, X509_V_ERR_CERT_CHAIN_TOO_LONG);
3302 CB_FAIL_IF(DANETLS_ENABLED(dane)
3303 && (!DANETLS_HAS_PKIX(dane) || dane->pdpth >= 0),
3304 ctx, NULL, num - 1, X509_V_ERR_DANE_NO_MATCH);
3305 if (X509_self_signed(sk_X509_value(ctx->chain, num - 1), 0) > 0)
3306 return verify_cb_cert(ctx, NULL, num - 1,
3307 num == 1
3308 ? X509_V_ERR_DEPTH_ZERO_SELF_SIGNED_CERT
3309 : X509_V_ERR_SELF_SIGNED_CERT_IN_CHAIN);
3310 return verify_cb_cert(ctx, NULL, num - 1,
3311 ctx->num_untrusted < num
3312 ? X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT
3313 : X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY);
3314 }
3315
3316 int_err:
3317 ERR_raise(ERR_LIB_X509, ERR_R_INTERNAL_ERROR);
3318 ctx->error = X509_V_ERR_UNSPECIFIED;
3319 sk_X509_free(sk_untrusted);
3320 return -1;
3321
3322 memerr:
3323 ERR_raise(ERR_LIB_X509, ERR_R_MALLOC_FAILURE);
3324 ctx->error = X509_V_ERR_OUT_OF_MEM;
3325 sk_X509_free(sk_untrusted);
3326 return -1;
3327 }
3328
3329 STACK_OF(X509) *X509_build_chain(X509 *target, STACK_OF(X509) *certs,
3330 X509_STORE *store, int with_self_signed,
3331 OSSL_LIB_CTX *libctx, const char *propq)
3332 {
3333 int finish_chain = store != NULL;
3334 X509_STORE_CTX *ctx;
3335 int flags = X509_ADD_FLAG_UP_REF;
3336 STACK_OF(X509) *result = NULL;
3337
3338 if (target == NULL) {
3339 ERR_raise(ERR_LIB_X509, ERR_R_PASSED_NULL_PARAMETER);
3340 return NULL;
3341 }
3342
3343 if ((ctx = X509_STORE_CTX_new_ex(libctx, propq)) == NULL)
3344 return NULL;
3345 if (!X509_STORE_CTX_init(ctx, store, target, finish_chain ? certs : NULL))
3346 goto err;
3347 if (!finish_chain)
3348 X509_STORE_CTX_set0_trusted_stack(ctx, certs);
3349 if (!ossl_x509_add_cert_new(&ctx->chain, target, X509_ADD_FLAG_UP_REF)) {
3350 ctx->error = X509_V_ERR_OUT_OF_MEM;
3351 goto err;
3352 }
3353 ctx->num_untrusted = 1;
3354
3355 if (!build_chain(ctx) && finish_chain)
3356 goto err;
3357
3358 /* result list to store the up_ref'ed certificates */
3359 if (sk_X509_num(ctx->chain) > 1 && !with_self_signed)
3360 flags |= X509_ADD_FLAG_NO_SS;
3361 if (!ossl_x509_add_certs_new(&result, ctx->chain, flags)) {
3362 sk_X509_free(result);
3363 result = NULL;
3364 }
3365
3366 err:
3367 X509_STORE_CTX_free(ctx);
3368 return result;
3369 }
3370
3371 /*
3372 * note that there's a corresponding minbits_table in ssl/ssl_cert.c
3373 * in ssl_get_security_level_bits that's used for selection of DH parameters
3374 */
3375 static const int minbits_table[] = { 80, 112, 128, 192, 256 };
3376 static const int NUM_AUTH_LEVELS = OSSL_NELEM(minbits_table);
3377
3378 /*-
3379 * Check whether the public key of `cert` meets the security level of `ctx`.
3380 * Returns 1 on success, 0 otherwise.
3381 */
3382 static int check_key_level(X509_STORE_CTX *ctx, X509 *cert)
3383 {
3384 EVP_PKEY *pkey = X509_get0_pubkey(cert);
3385 int level = ctx->param->auth_level;
3386
3387 /*
3388 * At security level zero, return without checking for a supported public
3389 * key type. Some engines support key types not understood outside the
3390 * engine, and we only need to understand the key when enforcing a security
3391 * floor.
3392 */
3393 if (level <= 0)
3394 return 1;
3395
3396 /* Unsupported or malformed keys are not secure */
3397 if (pkey == NULL)
3398 return 0;
3399
3400 if (level > NUM_AUTH_LEVELS)
3401 level = NUM_AUTH_LEVELS;
3402
3403 return EVP_PKEY_get_security_bits(pkey) >= minbits_table[level - 1];
3404 }
3405
3406 /*-
3407 * Check whether the public key of ``cert`` does not use explicit params
3408 * for an elliptic curve.
3409 *
3410 * Returns 1 on success, 0 if check fails, -1 for other errors.
3411 */
3412 static int check_curve(X509 *cert)
3413 {
3414 EVP_PKEY *pkey = X509_get0_pubkey(cert);
3415
3416 /* Unsupported or malformed key */
3417 if (pkey == NULL)
3418 return -1;
3419
3420 if (EVP_PKEY_get_id(pkey) == EVP_PKEY_EC) {
3421 int ret, val;
3422
3423 ret = EVP_PKEY_get_int_param(pkey,
3424 OSSL_PKEY_PARAM_EC_DECODED_FROM_EXPLICIT_PARAMS,
3425 &val);
3426 return ret < 0 ? ret : !val;
3427 }
3428
3429 return 1;
3430 }
3431
3432 /*-
3433 * Check whether the signature digest algorithm of ``cert`` meets the security
3434 * level of ``ctx``. Should not be checked for trust anchors (whether
3435 * self-signed or otherwise).
3436 *
3437 * Returns 1 on success, 0 otherwise.
3438 */
3439 static int check_sig_level(X509_STORE_CTX *ctx, X509 *cert)
3440 {
3441 int secbits = -1;
3442 int level = ctx->param->auth_level;
3443
3444 if (level <= 0)
3445 return 1;
3446 if (level > NUM_AUTH_LEVELS)
3447 level = NUM_AUTH_LEVELS;
3448
3449 if (!X509_get_signature_info(cert, NULL, NULL, &secbits, NULL))
3450 return 0;
3451
3452 return secbits >= minbits_table[level - 1];
3453 }