]> git.ipfire.org Git - u-boot.git/blob - disk/part_efi.c
gpt: part: Definition and declaration of GPT verification functions
[u-boot.git] / disk / part_efi.c
1 /*
2 * Copyright (C) 2008 RuggedCom, Inc.
3 * Richard Retanubun <RichardRetanubun@RuggedCom.com>
4 *
5 * SPDX-License-Identifier: GPL-2.0+
6 */
7
8 /*
9 * NOTE:
10 * when CONFIG_SYS_64BIT_LBA is not defined, lbaint_t is 32 bits; this
11 * limits the maximum size of addressable storage to < 2 Terra Bytes
12 */
13 #include <asm/unaligned.h>
14 #include <common.h>
15 #include <command.h>
16 #include <ide.h>
17 #include <inttypes.h>
18 #include <malloc.h>
19 #include <memalign.h>
20 #include <part_efi.h>
21 #include <linux/ctype.h>
22
23 DECLARE_GLOBAL_DATA_PTR;
24
25 #ifdef HAVE_BLOCK_DEVICE
26 /**
27 * efi_crc32() - EFI version of crc32 function
28 * @buf: buffer to calculate crc32 of
29 * @len - length of buf
30 *
31 * Description: Returns EFI-style CRC32 value for @buf
32 */
33 static inline u32 efi_crc32(const void *buf, u32 len)
34 {
35 return crc32(0, buf, len);
36 }
37
38 /*
39 * Private function prototypes
40 */
41
42 static int pmbr_part_valid(struct partition *part);
43 static int is_pmbr_valid(legacy_mbr * mbr);
44 static int is_gpt_valid(block_dev_desc_t *dev_desc, u64 lba,
45 gpt_header *pgpt_head, gpt_entry **pgpt_pte);
46 static gpt_entry *alloc_read_gpt_entries(block_dev_desc_t * dev_desc,
47 gpt_header * pgpt_head);
48 static int is_pte_valid(gpt_entry * pte);
49
50 static char *print_efiname(gpt_entry *pte)
51 {
52 static char name[PARTNAME_SZ + 1];
53 int i;
54 for (i = 0; i < PARTNAME_SZ; i++) {
55 u8 c;
56 c = pte->partition_name[i] & 0xff;
57 c = (c && !isprint(c)) ? '.' : c;
58 name[i] = c;
59 }
60 name[PARTNAME_SZ] = 0;
61 return name;
62 }
63
64 static efi_guid_t system_guid = PARTITION_SYSTEM_GUID;
65
66 static inline int is_bootable(gpt_entry *p)
67 {
68 return p->attributes.fields.legacy_bios_bootable ||
69 !memcmp(&(p->partition_type_guid), &system_guid,
70 sizeof(efi_guid_t));
71 }
72
73 static int validate_gpt_header(gpt_header *gpt_h, lbaint_t lba,
74 lbaint_t lastlba)
75 {
76 uint32_t crc32_backup = 0;
77 uint32_t calc_crc32;
78
79 /* Check the GPT header signature */
80 if (le64_to_cpu(gpt_h->signature) != GPT_HEADER_SIGNATURE) {
81 printf("%s signature is wrong: 0x%llX != 0x%llX\n",
82 "GUID Partition Table Header",
83 le64_to_cpu(gpt_h->signature),
84 GPT_HEADER_SIGNATURE);
85 return -1;
86 }
87
88 /* Check the GUID Partition Table CRC */
89 memcpy(&crc32_backup, &gpt_h->header_crc32, sizeof(crc32_backup));
90 memset(&gpt_h->header_crc32, 0, sizeof(gpt_h->header_crc32));
91
92 calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
93 le32_to_cpu(gpt_h->header_size));
94
95 memcpy(&gpt_h->header_crc32, &crc32_backup, sizeof(crc32_backup));
96
97 if (calc_crc32 != le32_to_cpu(crc32_backup)) {
98 printf("%s CRC is wrong: 0x%x != 0x%x\n",
99 "GUID Partition Table Header",
100 le32_to_cpu(crc32_backup), calc_crc32);
101 return -1;
102 }
103
104 /*
105 * Check that the my_lba entry points to the LBA that contains the GPT
106 */
107 if (le64_to_cpu(gpt_h->my_lba) != lba) {
108 printf("GPT: my_lba incorrect: %llX != " LBAF "\n",
109 le64_to_cpu(gpt_h->my_lba),
110 lba);
111 return -1;
112 }
113
114 /*
115 * Check that the first_usable_lba and that the last_usable_lba are
116 * within the disk.
117 */
118 if (le64_to_cpu(gpt_h->first_usable_lba) > lastlba) {
119 printf("GPT: first_usable_lba incorrect: %llX > " LBAF "\n",
120 le64_to_cpu(gpt_h->first_usable_lba), lastlba);
121 return -1;
122 }
123 if (le64_to_cpu(gpt_h->last_usable_lba) > lastlba) {
124 printf("GPT: last_usable_lba incorrect: %llX > " LBAF "\n",
125 le64_to_cpu(gpt_h->last_usable_lba), lastlba);
126 return -1;
127 }
128
129 debug("GPT: first_usable_lba: %llX last_usable_lba: %llX last lba: "
130 LBAF "\n", le64_to_cpu(gpt_h->first_usable_lba),
131 le64_to_cpu(gpt_h->last_usable_lba), lastlba);
132
133 return 0;
134 }
135
136 static int validate_gpt_entries(gpt_header *gpt_h, gpt_entry *gpt_e)
137 {
138 uint32_t calc_crc32;
139
140 /* Check the GUID Partition Table Entry Array CRC */
141 calc_crc32 = efi_crc32((const unsigned char *)gpt_e,
142 le32_to_cpu(gpt_h->num_partition_entries) *
143 le32_to_cpu(gpt_h->sizeof_partition_entry));
144
145 if (calc_crc32 != le32_to_cpu(gpt_h->partition_entry_array_crc32)) {
146 printf("%s: 0x%x != 0x%x\n",
147 "GUID Partition Table Entry Array CRC is wrong",
148 le32_to_cpu(gpt_h->partition_entry_array_crc32),
149 calc_crc32);
150 return -1;
151 }
152
153 return 0;
154 }
155
156 static void prepare_backup_gpt_header(gpt_header *gpt_h)
157 {
158 uint32_t calc_crc32;
159 uint64_t val;
160
161 /* recalculate the values for the Backup GPT Header */
162 val = le64_to_cpu(gpt_h->my_lba);
163 gpt_h->my_lba = gpt_h->alternate_lba;
164 gpt_h->alternate_lba = cpu_to_le64(val);
165 gpt_h->partition_entry_lba =
166 cpu_to_le64(le64_to_cpu(gpt_h->last_usable_lba) + 1);
167 gpt_h->header_crc32 = 0;
168
169 calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
170 le32_to_cpu(gpt_h->header_size));
171 gpt_h->header_crc32 = cpu_to_le32(calc_crc32);
172 }
173
174 #ifdef CONFIG_EFI_PARTITION
175 /*
176 * Public Functions (include/part.h)
177 */
178
179 void print_part_efi(block_dev_desc_t * dev_desc)
180 {
181 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz);
182 gpt_entry *gpt_pte = NULL;
183 int i = 0;
184 char uuid[37];
185 unsigned char *uuid_bin;
186
187 if (!dev_desc) {
188 printf("%s: Invalid Argument(s)\n", __func__);
189 return;
190 }
191 /* This function validates AND fills in the GPT header and PTE */
192 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA,
193 gpt_head, &gpt_pte) != 1) {
194 printf("%s: *** ERROR: Invalid GPT ***\n", __func__);
195 if (is_gpt_valid(dev_desc, (dev_desc->lba - 1),
196 gpt_head, &gpt_pte) != 1) {
197 printf("%s: *** ERROR: Invalid Backup GPT ***\n",
198 __func__);
199 return;
200 } else {
201 printf("%s: *** Using Backup GPT ***\n",
202 __func__);
203 }
204 }
205
206 debug("%s: gpt-entry at %p\n", __func__, gpt_pte);
207
208 printf("Part\tStart LBA\tEnd LBA\t\tName\n");
209 printf("\tAttributes\n");
210 printf("\tType GUID\n");
211 printf("\tPartition GUID\n");
212
213 for (i = 0; i < le32_to_cpu(gpt_head->num_partition_entries); i++) {
214 /* Stop at the first non valid PTE */
215 if (!is_pte_valid(&gpt_pte[i]))
216 break;
217
218 printf("%3d\t0x%08llx\t0x%08llx\t\"%s\"\n", (i + 1),
219 le64_to_cpu(gpt_pte[i].starting_lba),
220 le64_to_cpu(gpt_pte[i].ending_lba),
221 print_efiname(&gpt_pte[i]));
222 printf("\tattrs:\t0x%016llx\n", gpt_pte[i].attributes.raw);
223 uuid_bin = (unsigned char *)gpt_pte[i].partition_type_guid.b;
224 uuid_bin_to_str(uuid_bin, uuid, UUID_STR_FORMAT_GUID);
225 printf("\ttype:\t%s\n", uuid);
226 #ifdef CONFIG_PARTITION_TYPE_GUID
227 if (!uuid_guid_get_str(uuid_bin, uuid))
228 printf("\ttype:\t%s\n", uuid);
229 #endif
230 uuid_bin = (unsigned char *)gpt_pte[i].unique_partition_guid.b;
231 uuid_bin_to_str(uuid_bin, uuid, UUID_STR_FORMAT_GUID);
232 printf("\tguid:\t%s\n", uuid);
233 }
234
235 /* Remember to free pte */
236 free(gpt_pte);
237 return;
238 }
239
240 int get_partition_info_efi(block_dev_desc_t * dev_desc, int part,
241 disk_partition_t * info)
242 {
243 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz);
244 gpt_entry *gpt_pte = NULL;
245
246 /* "part" argument must be at least 1 */
247 if (!dev_desc || !info || part < 1) {
248 printf("%s: Invalid Argument(s)\n", __func__);
249 return -1;
250 }
251
252 /* This function validates AND fills in the GPT header and PTE */
253 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA,
254 gpt_head, &gpt_pte) != 1) {
255 printf("%s: *** ERROR: Invalid GPT ***\n", __func__);
256 if (is_gpt_valid(dev_desc, (dev_desc->lba - 1),
257 gpt_head, &gpt_pte) != 1) {
258 printf("%s: *** ERROR: Invalid Backup GPT ***\n",
259 __func__);
260 return -1;
261 } else {
262 printf("%s: *** Using Backup GPT ***\n",
263 __func__);
264 }
265 }
266
267 if (part > le32_to_cpu(gpt_head->num_partition_entries) ||
268 !is_pte_valid(&gpt_pte[part - 1])) {
269 debug("%s: *** ERROR: Invalid partition number %d ***\n",
270 __func__, part);
271 free(gpt_pte);
272 return -1;
273 }
274
275 /* The 'lbaint_t' casting may limit the maximum disk size to 2 TB */
276 info->start = (lbaint_t)le64_to_cpu(gpt_pte[part - 1].starting_lba);
277 /* The ending LBA is inclusive, to calculate size, add 1 to it */
278 info->size = (lbaint_t)le64_to_cpu(gpt_pte[part - 1].ending_lba) + 1
279 - info->start;
280 info->blksz = dev_desc->blksz;
281
282 sprintf((char *)info->name, "%s",
283 print_efiname(&gpt_pte[part - 1]));
284 sprintf((char *)info->type, "U-Boot");
285 info->bootable = is_bootable(&gpt_pte[part - 1]);
286 #ifdef CONFIG_PARTITION_UUIDS
287 uuid_bin_to_str(gpt_pte[part - 1].unique_partition_guid.b, info->uuid,
288 UUID_STR_FORMAT_GUID);
289 #endif
290 #ifdef CONFIG_PARTITION_TYPE_GUID
291 uuid_bin_to_str(gpt_pte[part - 1].partition_type_guid.b,
292 info->type_guid, UUID_STR_FORMAT_GUID);
293 #endif
294
295 debug("%s: start 0x" LBAF ", size 0x" LBAF ", name %s\n", __func__,
296 info->start, info->size, info->name);
297
298 /* Remember to free pte */
299 free(gpt_pte);
300 return 0;
301 }
302
303 int get_partition_info_efi_by_name(block_dev_desc_t *dev_desc,
304 const char *name, disk_partition_t *info)
305 {
306 int ret;
307 int i;
308 for (i = 1; i < GPT_ENTRY_NUMBERS; i++) {
309 ret = get_partition_info_efi(dev_desc, i, info);
310 if (ret != 0) {
311 /* no more entries in table */
312 return -1;
313 }
314 if (strcmp(name, (const char *)info->name) == 0) {
315 /* matched */
316 return 0;
317 }
318 }
319 return -2;
320 }
321
322 int test_part_efi(block_dev_desc_t * dev_desc)
323 {
324 ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, legacymbr, 1, dev_desc->blksz);
325
326 /* Read legacy MBR from block 0 and validate it */
327 if ((dev_desc->block_read(dev_desc->dev, 0, 1, (ulong *)legacymbr) != 1)
328 || (is_pmbr_valid(legacymbr) != 1)) {
329 return -1;
330 }
331 return 0;
332 }
333
334 /**
335 * set_protective_mbr(): Set the EFI protective MBR
336 * @param dev_desc - block device descriptor
337 *
338 * @return - zero on success, otherwise error
339 */
340 static int set_protective_mbr(block_dev_desc_t *dev_desc)
341 {
342 /* Setup the Protective MBR */
343 ALLOC_CACHE_ALIGN_BUFFER(legacy_mbr, p_mbr, 1);
344 memset(p_mbr, 0, sizeof(*p_mbr));
345
346 if (p_mbr == NULL) {
347 printf("%s: calloc failed!\n", __func__);
348 return -1;
349 }
350 /* Append signature */
351 p_mbr->signature = MSDOS_MBR_SIGNATURE;
352 p_mbr->partition_record[0].sys_ind = EFI_PMBR_OSTYPE_EFI_GPT;
353 p_mbr->partition_record[0].start_sect = 1;
354 p_mbr->partition_record[0].nr_sects = (u32) dev_desc->lba - 1;
355
356 /* Write MBR sector to the MMC device */
357 if (dev_desc->block_write(dev_desc->dev, 0, 1, p_mbr) != 1) {
358 printf("** Can't write to device %d **\n",
359 dev_desc->dev);
360 return -1;
361 }
362
363 return 0;
364 }
365
366 int write_gpt_table(block_dev_desc_t *dev_desc,
367 gpt_header *gpt_h, gpt_entry *gpt_e)
368 {
369 const int pte_blk_cnt = BLOCK_CNT((gpt_h->num_partition_entries
370 * sizeof(gpt_entry)), dev_desc);
371 u32 calc_crc32;
372
373 debug("max lba: %x\n", (u32) dev_desc->lba);
374 /* Setup the Protective MBR */
375 if (set_protective_mbr(dev_desc) < 0)
376 goto err;
377
378 /* Generate CRC for the Primary GPT Header */
379 calc_crc32 = efi_crc32((const unsigned char *)gpt_e,
380 le32_to_cpu(gpt_h->num_partition_entries) *
381 le32_to_cpu(gpt_h->sizeof_partition_entry));
382 gpt_h->partition_entry_array_crc32 = cpu_to_le32(calc_crc32);
383
384 calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
385 le32_to_cpu(gpt_h->header_size));
386 gpt_h->header_crc32 = cpu_to_le32(calc_crc32);
387
388 /* Write the First GPT to the block right after the Legacy MBR */
389 if (dev_desc->block_write(dev_desc->dev, 1, 1, gpt_h) != 1)
390 goto err;
391
392 if (dev_desc->block_write(dev_desc->dev, 2, pte_blk_cnt, gpt_e)
393 != pte_blk_cnt)
394 goto err;
395
396 prepare_backup_gpt_header(gpt_h);
397
398 if (dev_desc->block_write(dev_desc->dev,
399 (lbaint_t)le64_to_cpu(gpt_h->last_usable_lba)
400 + 1,
401 pte_blk_cnt, gpt_e) != pte_blk_cnt)
402 goto err;
403
404 if (dev_desc->block_write(dev_desc->dev,
405 (lbaint_t)le64_to_cpu(gpt_h->my_lba), 1,
406 gpt_h) != 1)
407 goto err;
408
409 debug("GPT successfully written to block device!\n");
410 return 0;
411
412 err:
413 printf("** Can't write to device %d **\n", dev_desc->dev);
414 return -1;
415 }
416
417 int gpt_fill_pte(gpt_header *gpt_h, gpt_entry *gpt_e,
418 disk_partition_t *partitions, int parts)
419 {
420 lbaint_t offset = (lbaint_t)le64_to_cpu(gpt_h->first_usable_lba);
421 lbaint_t start;
422 lbaint_t last_usable_lba = (lbaint_t)
423 le64_to_cpu(gpt_h->last_usable_lba);
424 int i, k;
425 size_t efiname_len, dosname_len;
426 #ifdef CONFIG_PARTITION_UUIDS
427 char *str_uuid;
428 unsigned char *bin_uuid;
429 #endif
430 #ifdef CONFIG_PARTITION_TYPE_GUID
431 char *str_type_guid;
432 unsigned char *bin_type_guid;
433 #endif
434
435 for (i = 0; i < parts; i++) {
436 /* partition starting lba */
437 start = partitions[i].start;
438 if (start && (start < offset)) {
439 printf("Partition overlap\n");
440 return -1;
441 }
442 if (start) {
443 gpt_e[i].starting_lba = cpu_to_le64(start);
444 offset = start + partitions[i].size;
445 } else {
446 gpt_e[i].starting_lba = cpu_to_le64(offset);
447 offset += partitions[i].size;
448 }
449 if (offset >= last_usable_lba) {
450 printf("Partitions layout exceds disk size\n");
451 return -1;
452 }
453 /* partition ending lba */
454 if ((i == parts - 1) && (partitions[i].size == 0))
455 /* extend the last partition to maximuim */
456 gpt_e[i].ending_lba = gpt_h->last_usable_lba;
457 else
458 gpt_e[i].ending_lba = cpu_to_le64(offset - 1);
459
460 #ifdef CONFIG_PARTITION_TYPE_GUID
461 str_type_guid = partitions[i].type_guid;
462 bin_type_guid = gpt_e[i].partition_type_guid.b;
463 if (strlen(str_type_guid)) {
464 if (uuid_str_to_bin(str_type_guid, bin_type_guid,
465 UUID_STR_FORMAT_GUID)) {
466 printf("Partition no. %d: invalid type guid: %s\n",
467 i, str_type_guid);
468 return -1;
469 }
470 } else {
471 /* default partition type GUID */
472 memcpy(bin_type_guid,
473 &PARTITION_BASIC_DATA_GUID, 16);
474 }
475 #else
476 /* partition type GUID */
477 memcpy(gpt_e[i].partition_type_guid.b,
478 &PARTITION_BASIC_DATA_GUID, 16);
479 #endif
480
481 #ifdef CONFIG_PARTITION_UUIDS
482 str_uuid = partitions[i].uuid;
483 bin_uuid = gpt_e[i].unique_partition_guid.b;
484
485 if (uuid_str_to_bin(str_uuid, bin_uuid, UUID_STR_FORMAT_STD)) {
486 printf("Partition no. %d: invalid guid: %s\n",
487 i, str_uuid);
488 return -1;
489 }
490 #endif
491
492 /* partition attributes */
493 memset(&gpt_e[i].attributes, 0,
494 sizeof(gpt_entry_attributes));
495
496 /* partition name */
497 efiname_len = sizeof(gpt_e[i].partition_name)
498 / sizeof(efi_char16_t);
499 dosname_len = sizeof(partitions[i].name);
500
501 memset(gpt_e[i].partition_name, 0,
502 sizeof(gpt_e[i].partition_name));
503
504 for (k = 0; k < min(dosname_len, efiname_len); k++)
505 gpt_e[i].partition_name[k] =
506 (efi_char16_t)(partitions[i].name[k]);
507
508 debug("%s: name: %s offset[%d]: 0x" LBAF
509 " size[%d]: 0x" LBAF "\n",
510 __func__, partitions[i].name, i,
511 offset, i, partitions[i].size);
512 }
513
514 return 0;
515 }
516
517 int gpt_fill_header(block_dev_desc_t *dev_desc, gpt_header *gpt_h,
518 char *str_guid, int parts_count)
519 {
520 gpt_h->signature = cpu_to_le64(GPT_HEADER_SIGNATURE);
521 gpt_h->revision = cpu_to_le32(GPT_HEADER_REVISION_V1);
522 gpt_h->header_size = cpu_to_le32(sizeof(gpt_header));
523 gpt_h->my_lba = cpu_to_le64(1);
524 gpt_h->alternate_lba = cpu_to_le64(dev_desc->lba - 1);
525 gpt_h->first_usable_lba = cpu_to_le64(34);
526 gpt_h->last_usable_lba = cpu_to_le64(dev_desc->lba - 34);
527 gpt_h->partition_entry_lba = cpu_to_le64(2);
528 gpt_h->num_partition_entries = cpu_to_le32(GPT_ENTRY_NUMBERS);
529 gpt_h->sizeof_partition_entry = cpu_to_le32(sizeof(gpt_entry));
530 gpt_h->header_crc32 = 0;
531 gpt_h->partition_entry_array_crc32 = 0;
532
533 if (uuid_str_to_bin(str_guid, gpt_h->disk_guid.b, UUID_STR_FORMAT_GUID))
534 return -1;
535
536 return 0;
537 }
538
539 int gpt_restore(block_dev_desc_t *dev_desc, char *str_disk_guid,
540 disk_partition_t *partitions, int parts_count)
541 {
542 int ret;
543
544 gpt_header *gpt_h = calloc(1, PAD_TO_BLOCKSIZE(sizeof(gpt_header),
545 dev_desc));
546 gpt_entry *gpt_e;
547
548 if (gpt_h == NULL) {
549 printf("%s: calloc failed!\n", __func__);
550 return -1;
551 }
552
553 gpt_e = calloc(1, PAD_TO_BLOCKSIZE(GPT_ENTRY_NUMBERS
554 * sizeof(gpt_entry),
555 dev_desc));
556 if (gpt_e == NULL) {
557 printf("%s: calloc failed!\n", __func__);
558 free(gpt_h);
559 return -1;
560 }
561
562 /* Generate Primary GPT header (LBA1) */
563 ret = gpt_fill_header(dev_desc, gpt_h, str_disk_guid, parts_count);
564 if (ret)
565 goto err;
566
567 /* Generate partition entries */
568 ret = gpt_fill_pte(gpt_h, gpt_e, partitions, parts_count);
569 if (ret)
570 goto err;
571
572 /* Write GPT partition table */
573 ret = write_gpt_table(dev_desc, gpt_h, gpt_e);
574
575 err:
576 free(gpt_e);
577 free(gpt_h);
578 return ret;
579 }
580
581 static void gpt_convert_efi_name_to_char(char *s, efi_char16_t *es, int n)
582 {
583 char *ess = (char *)es;
584 int i, j;
585
586 memset(s, '\0', n);
587
588 for (i = 0, j = 0; j < n; i += 2, j++) {
589 s[j] = ess[i];
590 if (!ess[i])
591 return;
592 }
593 }
594
595 int gpt_verify_headers(block_dev_desc_t *dev_desc, gpt_header *gpt_head,
596 gpt_entry **gpt_pte)
597 {
598 /*
599 * This function validates AND
600 * fills in the GPT header and PTE
601 */
602 if (is_gpt_valid(dev_desc,
603 GPT_PRIMARY_PARTITION_TABLE_LBA,
604 gpt_head, gpt_pte) != 1) {
605 printf("%s: *** ERROR: Invalid GPT ***\n",
606 __func__);
607 return -1;
608 }
609 if (is_gpt_valid(dev_desc, (dev_desc->lba - 1),
610 gpt_head, gpt_pte) != 1) {
611 printf("%s: *** ERROR: Invalid Backup GPT ***\n",
612 __func__);
613 return -1;
614 }
615
616 return 0;
617 }
618
619 int gpt_verify_partitions(block_dev_desc_t *dev_desc,
620 disk_partition_t *partitions, int parts,
621 gpt_header *gpt_head, gpt_entry **gpt_pte)
622 {
623 char efi_str[PARTNAME_SZ + 1];
624 u64 gpt_part_size;
625 gpt_entry *gpt_e;
626 int ret, i;
627
628 ret = gpt_verify_headers(dev_desc, gpt_head, gpt_pte);
629 if (ret)
630 return ret;
631
632 gpt_e = *gpt_pte;
633
634 for (i = 0; i < parts; i++) {
635 if (i == gpt_head->num_partition_entries) {
636 error("More partitions than allowed!\n");
637 return -1;
638 }
639
640 /* Check if GPT and ENV partition names match */
641 gpt_convert_efi_name_to_char(efi_str, gpt_e[i].partition_name,
642 PARTNAME_SZ + 1);
643
644 debug("%s: part: %2d name - GPT: %16s, ENV: %16s ",
645 __func__, i, efi_str, partitions[i].name);
646
647 if (strncmp(efi_str, (char *)partitions[i].name,
648 sizeof(partitions->name))) {
649 error("Partition name: %s does not match %s!\n",
650 efi_str, (char *)partitions[i].name);
651 return -1;
652 }
653
654 /* Check if GPT and ENV sizes match */
655 gpt_part_size = le64_to_cpu(gpt_e[i].ending_lba) -
656 le64_to_cpu(gpt_e[i].starting_lba) + 1;
657 debug("size(LBA) - GPT: %8llu, ENV: %8llu ",
658 gpt_part_size, (u64) partitions[i].size);
659
660 if (le64_to_cpu(gpt_part_size) != partitions[i].size) {
661 error("Partition %s size: %llu does not match %llu!\n",
662 efi_str, gpt_part_size, (u64) partitions[i].size);
663 return -1;
664 }
665
666 /*
667 * Start address is optional - check only if provided
668 * in '$partition' variable
669 */
670 if (!partitions[i].start) {
671 debug("\n");
672 continue;
673 }
674
675 /* Check if GPT and ENV start LBAs match */
676 debug("start LBA - GPT: %8llu, ENV: %8llu\n",
677 le64_to_cpu(gpt_e[i].starting_lba),
678 (u64) partitions[i].start);
679
680 if (le64_to_cpu(gpt_e[i].starting_lba) != partitions[i].start) {
681 error("Partition %s start: %llu does not match %llu!\n",
682 efi_str, le64_to_cpu(gpt_e[i].starting_lba),
683 (u64) partitions[i].start);
684 return -1;
685 }
686 }
687
688 return 0;
689 }
690
691 int is_valid_gpt_buf(block_dev_desc_t *dev_desc, void *buf)
692 {
693 gpt_header *gpt_h;
694 gpt_entry *gpt_e;
695
696 /* determine start of GPT Header in the buffer */
697 gpt_h = buf + (GPT_PRIMARY_PARTITION_TABLE_LBA *
698 dev_desc->blksz);
699 if (validate_gpt_header(gpt_h, GPT_PRIMARY_PARTITION_TABLE_LBA,
700 dev_desc->lba))
701 return -1;
702
703 /* determine start of GPT Entries in the buffer */
704 gpt_e = buf + (le64_to_cpu(gpt_h->partition_entry_lba) *
705 dev_desc->blksz);
706 if (validate_gpt_entries(gpt_h, gpt_e))
707 return -1;
708
709 return 0;
710 }
711
712 int write_mbr_and_gpt_partitions(block_dev_desc_t *dev_desc, void *buf)
713 {
714 gpt_header *gpt_h;
715 gpt_entry *gpt_e;
716 int gpt_e_blk_cnt;
717 lbaint_t lba;
718 int cnt;
719
720 if (is_valid_gpt_buf(dev_desc, buf))
721 return -1;
722
723 /* determine start of GPT Header in the buffer */
724 gpt_h = buf + (GPT_PRIMARY_PARTITION_TABLE_LBA *
725 dev_desc->blksz);
726
727 /* determine start of GPT Entries in the buffer */
728 gpt_e = buf + (le64_to_cpu(gpt_h->partition_entry_lba) *
729 dev_desc->blksz);
730 gpt_e_blk_cnt = BLOCK_CNT((le32_to_cpu(gpt_h->num_partition_entries) *
731 le32_to_cpu(gpt_h->sizeof_partition_entry)),
732 dev_desc);
733
734 /* write MBR */
735 lba = 0; /* MBR is always at 0 */
736 cnt = 1; /* MBR (1 block) */
737 if (dev_desc->block_write(dev_desc->dev, lba, cnt, buf) != cnt) {
738 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
739 __func__, "MBR", cnt, lba);
740 return 1;
741 }
742
743 /* write Primary GPT */
744 lba = GPT_PRIMARY_PARTITION_TABLE_LBA;
745 cnt = 1; /* GPT Header (1 block) */
746 if (dev_desc->block_write(dev_desc->dev, lba, cnt, gpt_h) != cnt) {
747 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
748 __func__, "Primary GPT Header", cnt, lba);
749 return 1;
750 }
751
752 lba = le64_to_cpu(gpt_h->partition_entry_lba);
753 cnt = gpt_e_blk_cnt;
754 if (dev_desc->block_write(dev_desc->dev, lba, cnt, gpt_e) != cnt) {
755 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
756 __func__, "Primary GPT Entries", cnt, lba);
757 return 1;
758 }
759
760 prepare_backup_gpt_header(gpt_h);
761
762 /* write Backup GPT */
763 lba = le64_to_cpu(gpt_h->partition_entry_lba);
764 cnt = gpt_e_blk_cnt;
765 if (dev_desc->block_write(dev_desc->dev, lba, cnt, gpt_e) != cnt) {
766 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
767 __func__, "Backup GPT Entries", cnt, lba);
768 return 1;
769 }
770
771 lba = le64_to_cpu(gpt_h->my_lba);
772 cnt = 1; /* GPT Header (1 block) */
773 if (dev_desc->block_write(dev_desc->dev, lba, cnt, gpt_h) != cnt) {
774 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
775 __func__, "Backup GPT Header", cnt, lba);
776 return 1;
777 }
778
779 return 0;
780 }
781 #endif
782
783 /*
784 * Private functions
785 */
786 /*
787 * pmbr_part_valid(): Check for EFI partition signature
788 *
789 * Returns: 1 if EFI GPT partition type is found.
790 */
791 static int pmbr_part_valid(struct partition *part)
792 {
793 if (part->sys_ind == EFI_PMBR_OSTYPE_EFI_GPT &&
794 get_unaligned_le32(&part->start_sect) == 1UL) {
795 return 1;
796 }
797
798 return 0;
799 }
800
801 /*
802 * is_pmbr_valid(): test Protective MBR for validity
803 *
804 * Returns: 1 if PMBR is valid, 0 otherwise.
805 * Validity depends on two things:
806 * 1) MSDOS signature is in the last two bytes of the MBR
807 * 2) One partition of type 0xEE is found, checked by pmbr_part_valid()
808 */
809 static int is_pmbr_valid(legacy_mbr * mbr)
810 {
811 int i = 0;
812
813 if (!mbr || le16_to_cpu(mbr->signature) != MSDOS_MBR_SIGNATURE)
814 return 0;
815
816 for (i = 0; i < 4; i++) {
817 if (pmbr_part_valid(&mbr->partition_record[i])) {
818 return 1;
819 }
820 }
821 return 0;
822 }
823
824 /**
825 * is_gpt_valid() - tests one GPT header and PTEs for validity
826 *
827 * lba is the logical block address of the GPT header to test
828 * gpt is a GPT header ptr, filled on return.
829 * ptes is a PTEs ptr, filled on return.
830 *
831 * Description: returns 1 if valid, 0 on error.
832 * If valid, returns pointers to PTEs.
833 */
834 static int is_gpt_valid(block_dev_desc_t *dev_desc, u64 lba,
835 gpt_header *pgpt_head, gpt_entry **pgpt_pte)
836 {
837 if (!dev_desc || !pgpt_head) {
838 printf("%s: Invalid Argument(s)\n", __func__);
839 return 0;
840 }
841
842 /* Read GPT Header from device */
843 if (dev_desc->block_read(dev_desc->dev, (lbaint_t)lba, 1, pgpt_head)
844 != 1) {
845 printf("*** ERROR: Can't read GPT header ***\n");
846 return 0;
847 }
848
849 if (validate_gpt_header(pgpt_head, (lbaint_t)lba, dev_desc->lba))
850 return 0;
851
852 /* Read and allocate Partition Table Entries */
853 *pgpt_pte = alloc_read_gpt_entries(dev_desc, pgpt_head);
854 if (*pgpt_pte == NULL) {
855 printf("GPT: Failed to allocate memory for PTE\n");
856 return 0;
857 }
858
859 if (validate_gpt_entries(pgpt_head, *pgpt_pte)) {
860 free(*pgpt_pte);
861 return 0;
862 }
863
864 /* We're done, all's well */
865 return 1;
866 }
867
868 /**
869 * alloc_read_gpt_entries(): reads partition entries from disk
870 * @dev_desc
871 * @gpt - GPT header
872 *
873 * Description: Returns ptes on success, NULL on error.
874 * Allocates space for PTEs based on information found in @gpt.
875 * Notes: remember to free pte when you're done!
876 */
877 static gpt_entry *alloc_read_gpt_entries(block_dev_desc_t * dev_desc,
878 gpt_header * pgpt_head)
879 {
880 size_t count = 0, blk_cnt;
881 gpt_entry *pte = NULL;
882
883 if (!dev_desc || !pgpt_head) {
884 printf("%s: Invalid Argument(s)\n", __func__);
885 return NULL;
886 }
887
888 count = le32_to_cpu(pgpt_head->num_partition_entries) *
889 le32_to_cpu(pgpt_head->sizeof_partition_entry);
890
891 debug("%s: count = %u * %u = %zu\n", __func__,
892 (u32) le32_to_cpu(pgpt_head->num_partition_entries),
893 (u32) le32_to_cpu(pgpt_head->sizeof_partition_entry), count);
894
895 /* Allocate memory for PTE, remember to FREE */
896 if (count != 0) {
897 pte = memalign(ARCH_DMA_MINALIGN,
898 PAD_TO_BLOCKSIZE(count, dev_desc));
899 }
900
901 if (count == 0 || pte == NULL) {
902 printf("%s: ERROR: Can't allocate 0x%zX "
903 "bytes for GPT Entries\n",
904 __func__, count);
905 return NULL;
906 }
907
908 /* Read GPT Entries from device */
909 blk_cnt = BLOCK_CNT(count, dev_desc);
910 if (dev_desc->block_read (dev_desc->dev,
911 (lbaint_t)le64_to_cpu(pgpt_head->partition_entry_lba),
912 (lbaint_t) (blk_cnt), pte)
913 != blk_cnt) {
914
915 printf("*** ERROR: Can't read GPT Entries ***\n");
916 free(pte);
917 return NULL;
918 }
919 return pte;
920 }
921
922 /**
923 * is_pte_valid(): validates a single Partition Table Entry
924 * @gpt_entry - Pointer to a single Partition Table Entry
925 *
926 * Description: returns 1 if valid, 0 on error.
927 */
928 static int is_pte_valid(gpt_entry * pte)
929 {
930 efi_guid_t unused_guid;
931
932 if (!pte) {
933 printf("%s: Invalid Argument(s)\n", __func__);
934 return 0;
935 }
936
937 /* Only one validation for now:
938 * The GUID Partition Type != Unused Entry (ALL-ZERO)
939 */
940 memset(unused_guid.b, 0, sizeof(unused_guid.b));
941
942 if (memcmp(pte->partition_type_guid.b, unused_guid.b,
943 sizeof(unused_guid.b)) == 0) {
944
945 debug("%s: Found an unused PTE GUID at 0x%08X\n", __func__,
946 (unsigned int)(uintptr_t)pte);
947
948 return 0;
949 } else {
950 return 1;
951 }
952 }
953 #endif