]> git.ipfire.org Git - people/ms/u-boot.git/blob - disk/part_efi.c
i2c: designware: Allow sending restart conditions
[people/ms/u-boot.git] / disk / part_efi.c
1 /*
2 * Copyright (C) 2008 RuggedCom, Inc.
3 * Richard Retanubun <RichardRetanubun@RuggedCom.com>
4 *
5 * SPDX-License-Identifier: GPL-2.0+
6 */
7
8 /*
9 * NOTE:
10 * when CONFIG_SYS_64BIT_LBA is not defined, lbaint_t is 32 bits; this
11 * limits the maximum size of addressable storage to < 2 Terra Bytes
12 */
13 #include <asm/unaligned.h>
14 #include <common.h>
15 #include <command.h>
16 #include <fdtdec.h>
17 #include <ide.h>
18 #include <inttypes.h>
19 #include <malloc.h>
20 #include <memalign.h>
21 #include <part_efi.h>
22 #include <linux/compiler.h>
23 #include <linux/ctype.h>
24
25 DECLARE_GLOBAL_DATA_PTR;
26
27 #ifdef HAVE_BLOCK_DEVICE
28 /**
29 * efi_crc32() - EFI version of crc32 function
30 * @buf: buffer to calculate crc32 of
31 * @len - length of buf
32 *
33 * Description: Returns EFI-style CRC32 value for @buf
34 */
35 static inline u32 efi_crc32(const void *buf, u32 len)
36 {
37 return crc32(0, buf, len);
38 }
39
40 /*
41 * Private function prototypes
42 */
43
44 static int pmbr_part_valid(struct partition *part);
45 static int is_pmbr_valid(legacy_mbr * mbr);
46 static int is_gpt_valid(struct blk_desc *dev_desc, u64 lba,
47 gpt_header *pgpt_head, gpt_entry **pgpt_pte);
48 static gpt_entry *alloc_read_gpt_entries(struct blk_desc *dev_desc,
49 gpt_header *pgpt_head);
50 static int is_pte_valid(gpt_entry * pte);
51
52 static char *print_efiname(gpt_entry *pte)
53 {
54 static char name[PARTNAME_SZ + 1];
55 int i;
56 for (i = 0; i < PARTNAME_SZ; i++) {
57 u8 c;
58 c = pte->partition_name[i] & 0xff;
59 c = (c && !isprint(c)) ? '.' : c;
60 name[i] = c;
61 }
62 name[PARTNAME_SZ] = 0;
63 return name;
64 }
65
66 static efi_guid_t system_guid = PARTITION_SYSTEM_GUID;
67
68 static inline int is_bootable(gpt_entry *p)
69 {
70 return p->attributes.fields.legacy_bios_bootable ||
71 !memcmp(&(p->partition_type_guid), &system_guid,
72 sizeof(efi_guid_t));
73 }
74
75 static int validate_gpt_header(gpt_header *gpt_h, lbaint_t lba,
76 lbaint_t lastlba)
77 {
78 uint32_t crc32_backup = 0;
79 uint32_t calc_crc32;
80
81 /* Check the GPT header signature */
82 if (le64_to_cpu(gpt_h->signature) != GPT_HEADER_SIGNATURE) {
83 printf("%s signature is wrong: 0x%llX != 0x%llX\n",
84 "GUID Partition Table Header",
85 le64_to_cpu(gpt_h->signature),
86 GPT_HEADER_SIGNATURE);
87 return -1;
88 }
89
90 /* Check the GUID Partition Table CRC */
91 memcpy(&crc32_backup, &gpt_h->header_crc32, sizeof(crc32_backup));
92 memset(&gpt_h->header_crc32, 0, sizeof(gpt_h->header_crc32));
93
94 calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
95 le32_to_cpu(gpt_h->header_size));
96
97 memcpy(&gpt_h->header_crc32, &crc32_backup, sizeof(crc32_backup));
98
99 if (calc_crc32 != le32_to_cpu(crc32_backup)) {
100 printf("%s CRC is wrong: 0x%x != 0x%x\n",
101 "GUID Partition Table Header",
102 le32_to_cpu(crc32_backup), calc_crc32);
103 return -1;
104 }
105
106 /*
107 * Check that the my_lba entry points to the LBA that contains the GPT
108 */
109 if (le64_to_cpu(gpt_h->my_lba) != lba) {
110 printf("GPT: my_lba incorrect: %llX != " LBAF "\n",
111 le64_to_cpu(gpt_h->my_lba),
112 lba);
113 return -1;
114 }
115
116 /*
117 * Check that the first_usable_lba and that the last_usable_lba are
118 * within the disk.
119 */
120 if (le64_to_cpu(gpt_h->first_usable_lba) > lastlba) {
121 printf("GPT: first_usable_lba incorrect: %llX > " LBAF "\n",
122 le64_to_cpu(gpt_h->first_usable_lba), lastlba);
123 return -1;
124 }
125 if (le64_to_cpu(gpt_h->last_usable_lba) > lastlba) {
126 printf("GPT: last_usable_lba incorrect: %llX > " LBAF "\n",
127 le64_to_cpu(gpt_h->last_usable_lba), lastlba);
128 return -1;
129 }
130
131 debug("GPT: first_usable_lba: %llX last_usable_lba: %llX last lba: "
132 LBAF "\n", le64_to_cpu(gpt_h->first_usable_lba),
133 le64_to_cpu(gpt_h->last_usable_lba), lastlba);
134
135 return 0;
136 }
137
138 static int validate_gpt_entries(gpt_header *gpt_h, gpt_entry *gpt_e)
139 {
140 uint32_t calc_crc32;
141
142 /* Check the GUID Partition Table Entry Array CRC */
143 calc_crc32 = efi_crc32((const unsigned char *)gpt_e,
144 le32_to_cpu(gpt_h->num_partition_entries) *
145 le32_to_cpu(gpt_h->sizeof_partition_entry));
146
147 if (calc_crc32 != le32_to_cpu(gpt_h->partition_entry_array_crc32)) {
148 printf("%s: 0x%x != 0x%x\n",
149 "GUID Partition Table Entry Array CRC is wrong",
150 le32_to_cpu(gpt_h->partition_entry_array_crc32),
151 calc_crc32);
152 return -1;
153 }
154
155 return 0;
156 }
157
158 static void prepare_backup_gpt_header(gpt_header *gpt_h)
159 {
160 uint32_t calc_crc32;
161 uint64_t val;
162
163 /* recalculate the values for the Backup GPT Header */
164 val = le64_to_cpu(gpt_h->my_lba);
165 gpt_h->my_lba = gpt_h->alternate_lba;
166 gpt_h->alternate_lba = cpu_to_le64(val);
167 gpt_h->partition_entry_lba =
168 cpu_to_le64(le64_to_cpu(gpt_h->last_usable_lba) + 1);
169 gpt_h->header_crc32 = 0;
170
171 calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
172 le32_to_cpu(gpt_h->header_size));
173 gpt_h->header_crc32 = cpu_to_le32(calc_crc32);
174 }
175
176 #if CONFIG_IS_ENABLED(EFI_PARTITION)
177 /*
178 * Public Functions (include/part.h)
179 */
180
181 /*
182 * UUID is displayed as 32 hexadecimal digits, in 5 groups,
183 * separated by hyphens, in the form 8-4-4-4-12 for a total of 36 characters
184 */
185 int get_disk_guid(struct blk_desc * dev_desc, char *guid)
186 {
187 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz);
188 gpt_entry *gpt_pte = NULL;
189 unsigned char *guid_bin;
190
191 /* This function validates AND fills in the GPT header and PTE */
192 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA,
193 gpt_head, &gpt_pte) != 1) {
194 printf("%s: *** ERROR: Invalid GPT ***\n", __func__);
195 if (is_gpt_valid(dev_desc, dev_desc->lba - 1,
196 gpt_head, &gpt_pte) != 1) {
197 printf("%s: *** ERROR: Invalid Backup GPT ***\n",
198 __func__);
199 return -EINVAL;
200 } else {
201 printf("%s: *** Using Backup GPT ***\n",
202 __func__);
203 }
204 }
205
206 guid_bin = gpt_head->disk_guid.b;
207 uuid_bin_to_str(guid_bin, guid, UUID_STR_FORMAT_GUID);
208
209 return 0;
210 }
211
212 void part_print_efi(struct blk_desc *dev_desc)
213 {
214 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz);
215 gpt_entry *gpt_pte = NULL;
216 int i = 0;
217 char uuid[UUID_STR_LEN + 1];
218 unsigned char *uuid_bin;
219
220 /* This function validates AND fills in the GPT header and PTE */
221 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA,
222 gpt_head, &gpt_pte) != 1) {
223 printf("%s: *** ERROR: Invalid GPT ***\n", __func__);
224 if (is_gpt_valid(dev_desc, (dev_desc->lba - 1),
225 gpt_head, &gpt_pte) != 1) {
226 printf("%s: *** ERROR: Invalid Backup GPT ***\n",
227 __func__);
228 return;
229 } else {
230 printf("%s: *** Using Backup GPT ***\n",
231 __func__);
232 }
233 }
234
235 debug("%s: gpt-entry at %p\n", __func__, gpt_pte);
236
237 printf("Part\tStart LBA\tEnd LBA\t\tName\n");
238 printf("\tAttributes\n");
239 printf("\tType GUID\n");
240 printf("\tPartition GUID\n");
241
242 for (i = 0; i < le32_to_cpu(gpt_head->num_partition_entries); i++) {
243 /* Stop at the first non valid PTE */
244 if (!is_pte_valid(&gpt_pte[i]))
245 break;
246
247 printf("%3d\t0x%08llx\t0x%08llx\t\"%s\"\n", (i + 1),
248 le64_to_cpu(gpt_pte[i].starting_lba),
249 le64_to_cpu(gpt_pte[i].ending_lba),
250 print_efiname(&gpt_pte[i]));
251 printf("\tattrs:\t0x%016llx\n", gpt_pte[i].attributes.raw);
252 uuid_bin = (unsigned char *)gpt_pte[i].partition_type_guid.b;
253 uuid_bin_to_str(uuid_bin, uuid, UUID_STR_FORMAT_GUID);
254 printf("\ttype:\t%s\n", uuid);
255 #ifdef CONFIG_PARTITION_TYPE_GUID
256 if (!uuid_guid_get_str(uuid_bin, uuid))
257 printf("\ttype:\t%s\n", uuid);
258 #endif
259 uuid_bin = (unsigned char *)gpt_pte[i].unique_partition_guid.b;
260 uuid_bin_to_str(uuid_bin, uuid, UUID_STR_FORMAT_GUID);
261 printf("\tguid:\t%s\n", uuid);
262 }
263
264 /* Remember to free pte */
265 free(gpt_pte);
266 return;
267 }
268
269 int part_get_info_efi(struct blk_desc *dev_desc, int part,
270 disk_partition_t *info)
271 {
272 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz);
273 gpt_entry *gpt_pte = NULL;
274
275 /* "part" argument must be at least 1 */
276 if (part < 1) {
277 printf("%s: Invalid Argument(s)\n", __func__);
278 return -1;
279 }
280
281 /* This function validates AND fills in the GPT header and PTE */
282 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA,
283 gpt_head, &gpt_pte) != 1) {
284 printf("%s: *** ERROR: Invalid GPT ***\n", __func__);
285 if (is_gpt_valid(dev_desc, (dev_desc->lba - 1),
286 gpt_head, &gpt_pte) != 1) {
287 printf("%s: *** ERROR: Invalid Backup GPT ***\n",
288 __func__);
289 return -1;
290 } else {
291 printf("%s: *** Using Backup GPT ***\n",
292 __func__);
293 }
294 }
295
296 if (part > le32_to_cpu(gpt_head->num_partition_entries) ||
297 !is_pte_valid(&gpt_pte[part - 1])) {
298 debug("%s: *** ERROR: Invalid partition number %d ***\n",
299 __func__, part);
300 free(gpt_pte);
301 return -1;
302 }
303
304 /* The 'lbaint_t' casting may limit the maximum disk size to 2 TB */
305 info->start = (lbaint_t)le64_to_cpu(gpt_pte[part - 1].starting_lba);
306 /* The ending LBA is inclusive, to calculate size, add 1 to it */
307 info->size = (lbaint_t)le64_to_cpu(gpt_pte[part - 1].ending_lba) + 1
308 - info->start;
309 info->blksz = dev_desc->blksz;
310
311 sprintf((char *)info->name, "%s",
312 print_efiname(&gpt_pte[part - 1]));
313 strcpy((char *)info->type, "U-Boot");
314 info->bootable = is_bootable(&gpt_pte[part - 1]);
315 #if CONFIG_IS_ENABLED(PARTITION_UUIDS)
316 uuid_bin_to_str(gpt_pte[part - 1].unique_partition_guid.b, info->uuid,
317 UUID_STR_FORMAT_GUID);
318 #endif
319 #ifdef CONFIG_PARTITION_TYPE_GUID
320 uuid_bin_to_str(gpt_pte[part - 1].partition_type_guid.b,
321 info->type_guid, UUID_STR_FORMAT_GUID);
322 #endif
323
324 debug("%s: start 0x" LBAF ", size 0x" LBAF ", name %s\n", __func__,
325 info->start, info->size, info->name);
326
327 /* Remember to free pte */
328 free(gpt_pte);
329 return 0;
330 }
331
332 static int part_test_efi(struct blk_desc *dev_desc)
333 {
334 ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, legacymbr, 1, dev_desc->blksz);
335
336 /* Read legacy MBR from block 0 and validate it */
337 if ((blk_dread(dev_desc, 0, 1, (ulong *)legacymbr) != 1)
338 || (is_pmbr_valid(legacymbr) != 1)) {
339 return -1;
340 }
341 return 0;
342 }
343
344 /**
345 * set_protective_mbr(): Set the EFI protective MBR
346 * @param dev_desc - block device descriptor
347 *
348 * @return - zero on success, otherwise error
349 */
350 static int set_protective_mbr(struct blk_desc *dev_desc)
351 {
352 /* Setup the Protective MBR */
353 ALLOC_CACHE_ALIGN_BUFFER(legacy_mbr, p_mbr, 1);
354 memset(p_mbr, 0, sizeof(*p_mbr));
355
356 if (p_mbr == NULL) {
357 printf("%s: calloc failed!\n", __func__);
358 return -1;
359 }
360
361 /* Read MBR to backup boot code if it exists */
362 if (blk_dread(dev_desc, 0, 1, p_mbr) != 1) {
363 error("** Can't read from device %d **\n", dev_desc->devnum);
364 return -1;
365 }
366
367 /* Append signature */
368 p_mbr->signature = MSDOS_MBR_SIGNATURE;
369 p_mbr->partition_record[0].sys_ind = EFI_PMBR_OSTYPE_EFI_GPT;
370 p_mbr->partition_record[0].start_sect = 1;
371 p_mbr->partition_record[0].nr_sects = (u32) dev_desc->lba - 1;
372
373 /* Write MBR sector to the MMC device */
374 if (blk_dwrite(dev_desc, 0, 1, p_mbr) != 1) {
375 printf("** Can't write to device %d **\n",
376 dev_desc->devnum);
377 return -1;
378 }
379
380 return 0;
381 }
382
383 int write_gpt_table(struct blk_desc *dev_desc,
384 gpt_header *gpt_h, gpt_entry *gpt_e)
385 {
386 const int pte_blk_cnt = BLOCK_CNT((gpt_h->num_partition_entries
387 * sizeof(gpt_entry)), dev_desc);
388 u32 calc_crc32;
389
390 debug("max lba: %x\n", (u32) dev_desc->lba);
391 /* Setup the Protective MBR */
392 if (set_protective_mbr(dev_desc) < 0)
393 goto err;
394
395 /* Generate CRC for the Primary GPT Header */
396 calc_crc32 = efi_crc32((const unsigned char *)gpt_e,
397 le32_to_cpu(gpt_h->num_partition_entries) *
398 le32_to_cpu(gpt_h->sizeof_partition_entry));
399 gpt_h->partition_entry_array_crc32 = cpu_to_le32(calc_crc32);
400
401 calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
402 le32_to_cpu(gpt_h->header_size));
403 gpt_h->header_crc32 = cpu_to_le32(calc_crc32);
404
405 /* Write the First GPT to the block right after the Legacy MBR */
406 if (blk_dwrite(dev_desc, 1, 1, gpt_h) != 1)
407 goto err;
408
409 if (blk_dwrite(dev_desc, le64_to_cpu(gpt_h->partition_entry_lba),
410 pte_blk_cnt, gpt_e) != pte_blk_cnt)
411 goto err;
412
413 prepare_backup_gpt_header(gpt_h);
414
415 if (blk_dwrite(dev_desc, (lbaint_t)le64_to_cpu(gpt_h->last_usable_lba)
416 + 1, pte_blk_cnt, gpt_e) != pte_blk_cnt)
417 goto err;
418
419 if (blk_dwrite(dev_desc, (lbaint_t)le64_to_cpu(gpt_h->my_lba), 1,
420 gpt_h) != 1)
421 goto err;
422
423 debug("GPT successfully written to block device!\n");
424 return 0;
425
426 err:
427 printf("** Can't write to device %d **\n", dev_desc->devnum);
428 return -1;
429 }
430
431 int gpt_fill_pte(gpt_header *gpt_h, gpt_entry *gpt_e,
432 disk_partition_t *partitions, int parts)
433 {
434 lbaint_t offset = (lbaint_t)le64_to_cpu(gpt_h->first_usable_lba);
435 lbaint_t start;
436 lbaint_t last_usable_lba = (lbaint_t)
437 le64_to_cpu(gpt_h->last_usable_lba);
438 int i, k;
439 size_t efiname_len, dosname_len;
440 #if CONFIG_IS_ENABLED(PARTITION_UUIDS)
441 char *str_uuid;
442 unsigned char *bin_uuid;
443 #endif
444 #ifdef CONFIG_PARTITION_TYPE_GUID
445 char *str_type_guid;
446 unsigned char *bin_type_guid;
447 #endif
448
449 for (i = 0; i < parts; i++) {
450 /* partition starting lba */
451 start = partitions[i].start;
452 if (start && (start < offset)) {
453 printf("Partition overlap\n");
454 return -1;
455 }
456 if (start) {
457 gpt_e[i].starting_lba = cpu_to_le64(start);
458 offset = start + partitions[i].size;
459 } else {
460 gpt_e[i].starting_lba = cpu_to_le64(offset);
461 offset += partitions[i].size;
462 }
463 if (offset > (last_usable_lba + 1)) {
464 printf("Partitions layout exceds disk size\n");
465 return -1;
466 }
467 /* partition ending lba */
468 if ((i == parts - 1) && (partitions[i].size == 0))
469 /* extend the last partition to maximuim */
470 gpt_e[i].ending_lba = gpt_h->last_usable_lba;
471 else
472 gpt_e[i].ending_lba = cpu_to_le64(offset - 1);
473
474 #ifdef CONFIG_PARTITION_TYPE_GUID
475 str_type_guid = partitions[i].type_guid;
476 bin_type_guid = gpt_e[i].partition_type_guid.b;
477 if (strlen(str_type_guid)) {
478 if (uuid_str_to_bin(str_type_guid, bin_type_guid,
479 UUID_STR_FORMAT_GUID)) {
480 printf("Partition no. %d: invalid type guid: %s\n",
481 i, str_type_guid);
482 return -1;
483 }
484 } else {
485 /* default partition type GUID */
486 memcpy(bin_type_guid,
487 &PARTITION_BASIC_DATA_GUID, 16);
488 }
489 #else
490 /* partition type GUID */
491 memcpy(gpt_e[i].partition_type_guid.b,
492 &PARTITION_BASIC_DATA_GUID, 16);
493 #endif
494
495 #if CONFIG_IS_ENABLED(PARTITION_UUIDS)
496 str_uuid = partitions[i].uuid;
497 bin_uuid = gpt_e[i].unique_partition_guid.b;
498
499 if (uuid_str_to_bin(str_uuid, bin_uuid, UUID_STR_FORMAT_GUID)) {
500 printf("Partition no. %d: invalid guid: %s\n",
501 i, str_uuid);
502 return -1;
503 }
504 #endif
505
506 /* partition attributes */
507 memset(&gpt_e[i].attributes, 0,
508 sizeof(gpt_entry_attributes));
509
510 if (partitions[i].bootable)
511 gpt_e[i].attributes.fields.legacy_bios_bootable = 1;
512
513 /* partition name */
514 efiname_len = sizeof(gpt_e[i].partition_name)
515 / sizeof(efi_char16_t);
516 dosname_len = sizeof(partitions[i].name);
517
518 memset(gpt_e[i].partition_name, 0,
519 sizeof(gpt_e[i].partition_name));
520
521 for (k = 0; k < min(dosname_len, efiname_len); k++)
522 gpt_e[i].partition_name[k] =
523 (efi_char16_t)(partitions[i].name[k]);
524
525 debug("%s: name: %s offset[%d]: 0x" LBAF
526 " size[%d]: 0x" LBAF "\n",
527 __func__, partitions[i].name, i,
528 offset, i, partitions[i].size);
529 }
530
531 return 0;
532 }
533
534 static uint32_t partition_entries_offset(struct blk_desc *dev_desc)
535 {
536 uint32_t offset_blks = 2;
537 int __maybe_unused config_offset;
538
539 #if defined(CONFIG_EFI_PARTITION_ENTRIES_OFF)
540 /*
541 * Some architectures require their SPL loader at a fixed
542 * address within the first 16KB of the disk. To avoid an
543 * overlap with the partition entries of the EFI partition
544 * table, the first safe offset (in bytes, from the start of
545 * the disk) for the entries can be set in
546 * CONFIG_EFI_PARTITION_ENTRIES_OFF.
547 */
548 offset_blks =
549 PAD_TO_BLOCKSIZE(CONFIG_EFI_PARTITION_ENTRIES_OFF, dev_desc);
550 #endif
551
552 #if defined(CONFIG_OF_CONTROL)
553 /*
554 * Allow the offset of the first partition entires (in bytes
555 * from the start of the device) to be specified as a property
556 * of the device tree '/config' node.
557 */
558 config_offset = fdtdec_get_config_int(gd->fdt_blob,
559 "u-boot,efi-partition-entries-offset",
560 -EINVAL);
561 if (config_offset != -EINVAL)
562 offset_blks = PAD_TO_BLOCKSIZE(config_offset, dev_desc);
563 #endif
564
565 debug("efi: partition entries offset (in blocks): %d\n", offset_blks);
566
567 /*
568 * The earliest LBA this can be at is LBA#2 (i.e. right behind
569 * the (protective) MBR and the GPT header.
570 */
571 if (offset_blks < 2)
572 offset_blks = 2;
573
574 return offset_blks;
575 }
576
577 int gpt_fill_header(struct blk_desc *dev_desc, gpt_header *gpt_h,
578 char *str_guid, int parts_count)
579 {
580 gpt_h->signature = cpu_to_le64(GPT_HEADER_SIGNATURE);
581 gpt_h->revision = cpu_to_le32(GPT_HEADER_REVISION_V1);
582 gpt_h->header_size = cpu_to_le32(sizeof(gpt_header));
583 gpt_h->my_lba = cpu_to_le64(1);
584 gpt_h->alternate_lba = cpu_to_le64(dev_desc->lba - 1);
585 gpt_h->last_usable_lba = cpu_to_le64(dev_desc->lba - 34);
586 gpt_h->partition_entry_lba =
587 cpu_to_le64(partition_entries_offset(dev_desc));
588 gpt_h->first_usable_lba =
589 cpu_to_le64(le64_to_cpu(gpt_h->partition_entry_lba) + 32);
590 gpt_h->num_partition_entries = cpu_to_le32(GPT_ENTRY_NUMBERS);
591 gpt_h->sizeof_partition_entry = cpu_to_le32(sizeof(gpt_entry));
592 gpt_h->header_crc32 = 0;
593 gpt_h->partition_entry_array_crc32 = 0;
594
595 if (uuid_str_to_bin(str_guid, gpt_h->disk_guid.b, UUID_STR_FORMAT_GUID))
596 return -1;
597
598 return 0;
599 }
600
601 int gpt_restore(struct blk_desc *dev_desc, char *str_disk_guid,
602 disk_partition_t *partitions, int parts_count)
603 {
604 int ret;
605
606 gpt_header *gpt_h = calloc(1, PAD_TO_BLOCKSIZE(sizeof(gpt_header),
607 dev_desc));
608 gpt_entry *gpt_e;
609
610 if (gpt_h == NULL) {
611 printf("%s: calloc failed!\n", __func__);
612 return -1;
613 }
614
615 gpt_e = calloc(1, PAD_TO_BLOCKSIZE(GPT_ENTRY_NUMBERS
616 * sizeof(gpt_entry),
617 dev_desc));
618 if (gpt_e == NULL) {
619 printf("%s: calloc failed!\n", __func__);
620 free(gpt_h);
621 return -1;
622 }
623
624 /* Generate Primary GPT header (LBA1) */
625 ret = gpt_fill_header(dev_desc, gpt_h, str_disk_guid, parts_count);
626 if (ret)
627 goto err;
628
629 /* Generate partition entries */
630 ret = gpt_fill_pte(gpt_h, gpt_e, partitions, parts_count);
631 if (ret)
632 goto err;
633
634 /* Write GPT partition table */
635 ret = write_gpt_table(dev_desc, gpt_h, gpt_e);
636
637 err:
638 free(gpt_e);
639 free(gpt_h);
640 return ret;
641 }
642
643 static void gpt_convert_efi_name_to_char(char *s, efi_char16_t *es, int n)
644 {
645 char *ess = (char *)es;
646 int i, j;
647
648 memset(s, '\0', n);
649
650 for (i = 0, j = 0; j < n; i += 2, j++) {
651 s[j] = ess[i];
652 if (!ess[i])
653 return;
654 }
655 }
656
657 int gpt_verify_headers(struct blk_desc *dev_desc, gpt_header *gpt_head,
658 gpt_entry **gpt_pte)
659 {
660 /*
661 * This function validates AND
662 * fills in the GPT header and PTE
663 */
664 if (is_gpt_valid(dev_desc,
665 GPT_PRIMARY_PARTITION_TABLE_LBA,
666 gpt_head, gpt_pte) != 1) {
667 printf("%s: *** ERROR: Invalid GPT ***\n",
668 __func__);
669 return -1;
670 }
671 if (is_gpt_valid(dev_desc, (dev_desc->lba - 1),
672 gpt_head, gpt_pte) != 1) {
673 printf("%s: *** ERROR: Invalid Backup GPT ***\n",
674 __func__);
675 return -1;
676 }
677
678 return 0;
679 }
680
681 int gpt_verify_partitions(struct blk_desc *dev_desc,
682 disk_partition_t *partitions, int parts,
683 gpt_header *gpt_head, gpt_entry **gpt_pte)
684 {
685 char efi_str[PARTNAME_SZ + 1];
686 u64 gpt_part_size;
687 gpt_entry *gpt_e;
688 int ret, i;
689
690 ret = gpt_verify_headers(dev_desc, gpt_head, gpt_pte);
691 if (ret)
692 return ret;
693
694 gpt_e = *gpt_pte;
695
696 for (i = 0; i < parts; i++) {
697 if (i == gpt_head->num_partition_entries) {
698 error("More partitions than allowed!\n");
699 return -1;
700 }
701
702 /* Check if GPT and ENV partition names match */
703 gpt_convert_efi_name_to_char(efi_str, gpt_e[i].partition_name,
704 PARTNAME_SZ + 1);
705
706 debug("%s: part: %2d name - GPT: %16s, ENV: %16s ",
707 __func__, i, efi_str, partitions[i].name);
708
709 if (strncmp(efi_str, (char *)partitions[i].name,
710 sizeof(partitions->name))) {
711 error("Partition name: %s does not match %s!\n",
712 efi_str, (char *)partitions[i].name);
713 return -1;
714 }
715
716 /* Check if GPT and ENV sizes match */
717 gpt_part_size = le64_to_cpu(gpt_e[i].ending_lba) -
718 le64_to_cpu(gpt_e[i].starting_lba) + 1;
719 debug("size(LBA) - GPT: %8llu, ENV: %8llu ",
720 (unsigned long long)gpt_part_size,
721 (unsigned long long)partitions[i].size);
722
723 if (le64_to_cpu(gpt_part_size) != partitions[i].size) {
724 /* We do not check the extend partition size */
725 if ((i == parts - 1) && (partitions[i].size == 0))
726 continue;
727
728 error("Partition %s size: %llu does not match %llu!\n",
729 efi_str, (unsigned long long)gpt_part_size,
730 (unsigned long long)partitions[i].size);
731 return -1;
732 }
733
734 /*
735 * Start address is optional - check only if provided
736 * in '$partition' variable
737 */
738 if (!partitions[i].start) {
739 debug("\n");
740 continue;
741 }
742
743 /* Check if GPT and ENV start LBAs match */
744 debug("start LBA - GPT: %8llu, ENV: %8llu\n",
745 le64_to_cpu(gpt_e[i].starting_lba),
746 (unsigned long long)partitions[i].start);
747
748 if (le64_to_cpu(gpt_e[i].starting_lba) != partitions[i].start) {
749 error("Partition %s start: %llu does not match %llu!\n",
750 efi_str, le64_to_cpu(gpt_e[i].starting_lba),
751 (unsigned long long)partitions[i].start);
752 return -1;
753 }
754 }
755
756 return 0;
757 }
758
759 int is_valid_gpt_buf(struct blk_desc *dev_desc, void *buf)
760 {
761 gpt_header *gpt_h;
762 gpt_entry *gpt_e;
763
764 /* determine start of GPT Header in the buffer */
765 gpt_h = buf + (GPT_PRIMARY_PARTITION_TABLE_LBA *
766 dev_desc->blksz);
767 if (validate_gpt_header(gpt_h, GPT_PRIMARY_PARTITION_TABLE_LBA,
768 dev_desc->lba))
769 return -1;
770
771 /* determine start of GPT Entries in the buffer */
772 gpt_e = buf + (le64_to_cpu(gpt_h->partition_entry_lba) *
773 dev_desc->blksz);
774 if (validate_gpt_entries(gpt_h, gpt_e))
775 return -1;
776
777 return 0;
778 }
779
780 int write_mbr_and_gpt_partitions(struct blk_desc *dev_desc, void *buf)
781 {
782 gpt_header *gpt_h;
783 gpt_entry *gpt_e;
784 int gpt_e_blk_cnt;
785 lbaint_t lba;
786 int cnt;
787
788 if (is_valid_gpt_buf(dev_desc, buf))
789 return -1;
790
791 /* determine start of GPT Header in the buffer */
792 gpt_h = buf + (GPT_PRIMARY_PARTITION_TABLE_LBA *
793 dev_desc->blksz);
794
795 /* determine start of GPT Entries in the buffer */
796 gpt_e = buf + (le64_to_cpu(gpt_h->partition_entry_lba) *
797 dev_desc->blksz);
798 gpt_e_blk_cnt = BLOCK_CNT((le32_to_cpu(gpt_h->num_partition_entries) *
799 le32_to_cpu(gpt_h->sizeof_partition_entry)),
800 dev_desc);
801
802 /* write MBR */
803 lba = 0; /* MBR is always at 0 */
804 cnt = 1; /* MBR (1 block) */
805 if (blk_dwrite(dev_desc, lba, cnt, buf) != cnt) {
806 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
807 __func__, "MBR", cnt, lba);
808 return 1;
809 }
810
811 /* write Primary GPT */
812 lba = GPT_PRIMARY_PARTITION_TABLE_LBA;
813 cnt = 1; /* GPT Header (1 block) */
814 if (blk_dwrite(dev_desc, lba, cnt, gpt_h) != cnt) {
815 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
816 __func__, "Primary GPT Header", cnt, lba);
817 return 1;
818 }
819
820 lba = le64_to_cpu(gpt_h->partition_entry_lba);
821 cnt = gpt_e_blk_cnt;
822 if (blk_dwrite(dev_desc, lba, cnt, gpt_e) != cnt) {
823 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
824 __func__, "Primary GPT Entries", cnt, lba);
825 return 1;
826 }
827
828 prepare_backup_gpt_header(gpt_h);
829
830 /* write Backup GPT */
831 lba = le64_to_cpu(gpt_h->partition_entry_lba);
832 cnt = gpt_e_blk_cnt;
833 if (blk_dwrite(dev_desc, lba, cnt, gpt_e) != cnt) {
834 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
835 __func__, "Backup GPT Entries", cnt, lba);
836 return 1;
837 }
838
839 lba = le64_to_cpu(gpt_h->my_lba);
840 cnt = 1; /* GPT Header (1 block) */
841 if (blk_dwrite(dev_desc, lba, cnt, gpt_h) != cnt) {
842 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
843 __func__, "Backup GPT Header", cnt, lba);
844 return 1;
845 }
846
847 return 0;
848 }
849 #endif
850
851 /*
852 * Private functions
853 */
854 /*
855 * pmbr_part_valid(): Check for EFI partition signature
856 *
857 * Returns: 1 if EFI GPT partition type is found.
858 */
859 static int pmbr_part_valid(struct partition *part)
860 {
861 if (part->sys_ind == EFI_PMBR_OSTYPE_EFI_GPT &&
862 get_unaligned_le32(&part->start_sect) == 1UL) {
863 return 1;
864 }
865
866 return 0;
867 }
868
869 /*
870 * is_pmbr_valid(): test Protective MBR for validity
871 *
872 * Returns: 1 if PMBR is valid, 0 otherwise.
873 * Validity depends on two things:
874 * 1) MSDOS signature is in the last two bytes of the MBR
875 * 2) One partition of type 0xEE is found, checked by pmbr_part_valid()
876 */
877 static int is_pmbr_valid(legacy_mbr * mbr)
878 {
879 int i = 0;
880
881 if (!mbr || le16_to_cpu(mbr->signature) != MSDOS_MBR_SIGNATURE)
882 return 0;
883
884 for (i = 0; i < 4; i++) {
885 if (pmbr_part_valid(&mbr->partition_record[i])) {
886 return 1;
887 }
888 }
889 return 0;
890 }
891
892 /**
893 * is_gpt_valid() - tests one GPT header and PTEs for validity
894 *
895 * lba is the logical block address of the GPT header to test
896 * gpt is a GPT header ptr, filled on return.
897 * ptes is a PTEs ptr, filled on return.
898 *
899 * Description: returns 1 if valid, 0 on error.
900 * If valid, returns pointers to PTEs.
901 */
902 static int is_gpt_valid(struct blk_desc *dev_desc, u64 lba,
903 gpt_header *pgpt_head, gpt_entry **pgpt_pte)
904 {
905 if (!dev_desc || !pgpt_head) {
906 printf("%s: Invalid Argument(s)\n", __func__);
907 return 0;
908 }
909
910 /* Read GPT Header from device */
911 if (blk_dread(dev_desc, (lbaint_t)lba, 1, pgpt_head) != 1) {
912 printf("*** ERROR: Can't read GPT header ***\n");
913 return 0;
914 }
915
916 if (validate_gpt_header(pgpt_head, (lbaint_t)lba, dev_desc->lba))
917 return 0;
918
919 /* Read and allocate Partition Table Entries */
920 *pgpt_pte = alloc_read_gpt_entries(dev_desc, pgpt_head);
921 if (*pgpt_pte == NULL) {
922 printf("GPT: Failed to allocate memory for PTE\n");
923 return 0;
924 }
925
926 if (validate_gpt_entries(pgpt_head, *pgpt_pte)) {
927 free(*pgpt_pte);
928 return 0;
929 }
930
931 /* We're done, all's well */
932 return 1;
933 }
934
935 /**
936 * alloc_read_gpt_entries(): reads partition entries from disk
937 * @dev_desc
938 * @gpt - GPT header
939 *
940 * Description: Returns ptes on success, NULL on error.
941 * Allocates space for PTEs based on information found in @gpt.
942 * Notes: remember to free pte when you're done!
943 */
944 static gpt_entry *alloc_read_gpt_entries(struct blk_desc *dev_desc,
945 gpt_header *pgpt_head)
946 {
947 size_t count = 0, blk_cnt;
948 lbaint_t blk;
949 gpt_entry *pte = NULL;
950
951 if (!dev_desc || !pgpt_head) {
952 printf("%s: Invalid Argument(s)\n", __func__);
953 return NULL;
954 }
955
956 count = le32_to_cpu(pgpt_head->num_partition_entries) *
957 le32_to_cpu(pgpt_head->sizeof_partition_entry);
958
959 debug("%s: count = %u * %u = %lu\n", __func__,
960 (u32) le32_to_cpu(pgpt_head->num_partition_entries),
961 (u32) le32_to_cpu(pgpt_head->sizeof_partition_entry),
962 (ulong)count);
963
964 /* Allocate memory for PTE, remember to FREE */
965 if (count != 0) {
966 pte = memalign(ARCH_DMA_MINALIGN,
967 PAD_TO_BLOCKSIZE(count, dev_desc));
968 }
969
970 if (count == 0 || pte == NULL) {
971 printf("%s: ERROR: Can't allocate %#lX bytes for GPT Entries\n",
972 __func__, (ulong)count);
973 return NULL;
974 }
975
976 /* Read GPT Entries from device */
977 blk = le64_to_cpu(pgpt_head->partition_entry_lba);
978 blk_cnt = BLOCK_CNT(count, dev_desc);
979 if (blk_dread(dev_desc, blk, (lbaint_t)blk_cnt, pte) != blk_cnt) {
980 printf("*** ERROR: Can't read GPT Entries ***\n");
981 free(pte);
982 return NULL;
983 }
984 return pte;
985 }
986
987 /**
988 * is_pte_valid(): validates a single Partition Table Entry
989 * @gpt_entry - Pointer to a single Partition Table Entry
990 *
991 * Description: returns 1 if valid, 0 on error.
992 */
993 static int is_pte_valid(gpt_entry * pte)
994 {
995 efi_guid_t unused_guid;
996
997 if (!pte) {
998 printf("%s: Invalid Argument(s)\n", __func__);
999 return 0;
1000 }
1001
1002 /* Only one validation for now:
1003 * The GUID Partition Type != Unused Entry (ALL-ZERO)
1004 */
1005 memset(unused_guid.b, 0, sizeof(unused_guid.b));
1006
1007 if (memcmp(pte->partition_type_guid.b, unused_guid.b,
1008 sizeof(unused_guid.b)) == 0) {
1009
1010 debug("%s: Found an unused PTE GUID at 0x%08X\n", __func__,
1011 (unsigned int)(uintptr_t)pte);
1012
1013 return 0;
1014 } else {
1015 return 1;
1016 }
1017 }
1018
1019 /*
1020 * Add an 'a_' prefix so it comes before 'dos' in the linker list. We need to
1021 * check EFI first, since a DOS partition is often used as a 'protective MBR'
1022 * with EFI.
1023 */
1024 U_BOOT_PART_TYPE(a_efi) = {
1025 .name = "EFI",
1026 .part_type = PART_TYPE_EFI,
1027 .max_entries = GPT_ENTRY_NUMBERS,
1028 .get_info = part_get_info_ptr(part_get_info_efi),
1029 .print = part_print_ptr(part_print_efi),
1030 .test = part_test_efi,
1031 };
1032 #endif