]> git.ipfire.org Git - thirdparty/systemd.git/blob - docs/BLOCK_DEVICE_LOCKING.md
Merge pull request #14303 from yuwata/tc-use-typesafe-functions
[thirdparty/systemd.git] / docs / BLOCK_DEVICE_LOCKING.md
1 ---
2 title: Locking Block Device Access
3 category: Interfaces
4 ---
5
6 # Locking Block Device Access
7
8 *TL;DR: Use BSD file locks
9 [(`flock(2)`)](http://man7.org/linux/man-pages/man2/flock.2.html) on block
10 device nodes to synchronize access for partitioning and file system formatting
11 tools.*
12
13 `systemd-udevd` probes all block devices showing up for file system superblock
14 and partition table information (utilizing `libblkid`). If another program
15 concurrently modifies a superblock or partition table this probing might be
16 affected, which is bad in itself, but also might in turn result in undesired
17 effects in programs subscribing to `udev` events.
18
19 Applications manipulating a block device can temporarily stop `systemd-udevd`
20 from processing rules on it — and thus bar it from probing the device — by
21 taking a BSD file lock on the block device node. Specifically, whenever
22 `systemd-udevd` starts processing a block device it takes a `LOCK_SH|LOCK_NB`
23 lock using [`flock(2)`](http://man7.org/linux/man-pages/man2/flock.2.html) on
24 the main block device (i.e. never on any partition block device, but on the
25 device the partition belongs to). If this lock cannot be taken (i.e. `flock()`
26 returns `EBUSY`), it refrains from processing the device. If it manages to take
27 the lock it is kept for the entire time the device is processed.
28
29 Note that `systemd-udevd` also watches all block device nodes it manages for
30 `inotify()` `IN_CLOSE` events: whenever such an event is seen, this is used as
31 trigger to re-run the rule-set for the device.
32
33 These two concepts allow tools such as disk partitioners or file system
34 formatting tools to safely and easily take exclusive ownership of a block
35 device while operating: before starting work on the block device, they should
36 take an `LOCK_EX` lock on it. This has two effects: first of all, in case
37 `systemd-udevd` is still processing the device the tool will wait for it to
38 finish. Second, after the lock is taken, it can be sure that
39 `systemd-udevd` will refrain from processing the block device, and thus all
40 other client applications subscribed to it won't get device notifications from
41 potentially half-written data either. After the operation is complete the
42 partitioner/formatter can simply close the device node. This has two effects:
43 it implicitly releases the lock, so that `systemd-udevd` can process events on
44 the device node again. Secondly, it results an `IN_CLOSE` event, which causes
45 `systemd-udevd` to immediately re-process the device — seeing all changes the
46 tool made — and notify subscribed clients about it.
47
48 Besides synchronizing block device access between `systemd-udevd` and such
49 tools this scheme may also be used to synchronize access between those tools
50 themselves. However, do note that `flock()` locks are advisory only. This means
51 if one tool honours this scheme and another tool does not, they will of course
52 not be synchronized properly, and might interfere with each other's work.
53
54 Note that the file locks follow the usual access semantics of BSD locks: since
55 `systemd-udevd` never writes to such block devices it only takes a `LOCK_SH`
56 *shared* lock. A program intending to make changes to the block device should
57 take a `LOCK_EX` *exclusive* lock instead. For further details, see the
58 `flock(2)` man page.
59
60 And please keep in mind: BSD file locks (`flock()`) and POSIX file locks
61 (`lockf()`, `F_SETLK`, …) are different concepts, and in their effect
62 orthogonal. The scheme discussed above uses the former and not the latter,
63 because these types of locks more closely match the required semantics.
64
65 Summarizing: it is recommended to take `LOCK_EX` BSD file locks when
66 manipulating block devices in all tools that change file system block devices
67 (`mkfs`, `fsck`, …) or partition tables (`fdisk`, `parted`, …), right after
68 opening the node.