]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/acpi/ec.c
Merge tag 'x86-fpu-2020-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
[thirdparty/linux.git] / drivers / acpi / ec.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * ec.c - ACPI Embedded Controller Driver (v3)
4 *
5 * Copyright (C) 2001-2015 Intel Corporation
6 * Author: 2014, 2015 Lv Zheng <lv.zheng@intel.com>
7 * 2006, 2007 Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>
8 * 2006 Denis Sadykov <denis.m.sadykov@intel.com>
9 * 2004 Luming Yu <luming.yu@intel.com>
10 * 2001, 2002 Andy Grover <andrew.grover@intel.com>
11 * 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
12 * Copyright (C) 2008 Alexey Starikovskiy <astarikovskiy@suse.de>
13 */
14
15 /* Uncomment next line to get verbose printout */
16 /* #define DEBUG */
17 #define pr_fmt(fmt) "ACPI: EC: " fmt
18
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/init.h>
22 #include <linux/types.h>
23 #include <linux/delay.h>
24 #include <linux/interrupt.h>
25 #include <linux/list.h>
26 #include <linux/spinlock.h>
27 #include <linux/slab.h>
28 #include <linux/suspend.h>
29 #include <linux/acpi.h>
30 #include <linux/dmi.h>
31 #include <asm/io.h>
32
33 #include "internal.h"
34
35 #define ACPI_EC_CLASS "embedded_controller"
36 #define ACPI_EC_DEVICE_NAME "Embedded Controller"
37 #define ACPI_EC_FILE_INFO "info"
38
39 /* EC status register */
40 #define ACPI_EC_FLAG_OBF 0x01 /* Output buffer full */
41 #define ACPI_EC_FLAG_IBF 0x02 /* Input buffer full */
42 #define ACPI_EC_FLAG_CMD 0x08 /* Input buffer contains a command */
43 #define ACPI_EC_FLAG_BURST 0x10 /* burst mode */
44 #define ACPI_EC_FLAG_SCI 0x20 /* EC-SCI occurred */
45
46 /*
47 * The SCI_EVT clearing timing is not defined by the ACPI specification.
48 * This leads to lots of practical timing issues for the host EC driver.
49 * The following variations are defined (from the target EC firmware's
50 * perspective):
51 * STATUS: After indicating SCI_EVT edge triggered IRQ to the host, the
52 * target can clear SCI_EVT at any time so long as the host can see
53 * the indication by reading the status register (EC_SC). So the
54 * host should re-check SCI_EVT after the first time the SCI_EVT
55 * indication is seen, which is the same time the query request
56 * (QR_EC) is written to the command register (EC_CMD). SCI_EVT set
57 * at any later time could indicate another event. Normally such
58 * kind of EC firmware has implemented an event queue and will
59 * return 0x00 to indicate "no outstanding event".
60 * QUERY: After seeing the query request (QR_EC) written to the command
61 * register (EC_CMD) by the host and having prepared the responding
62 * event value in the data register (EC_DATA), the target can safely
63 * clear SCI_EVT because the target can confirm that the current
64 * event is being handled by the host. The host then should check
65 * SCI_EVT right after reading the event response from the data
66 * register (EC_DATA).
67 * EVENT: After seeing the event response read from the data register
68 * (EC_DATA) by the host, the target can clear SCI_EVT. As the
69 * target requires time to notice the change in the data register
70 * (EC_DATA), the host may be required to wait additional guarding
71 * time before checking the SCI_EVT again. Such guarding may not be
72 * necessary if the host is notified via another IRQ.
73 */
74 #define ACPI_EC_EVT_TIMING_STATUS 0x00
75 #define ACPI_EC_EVT_TIMING_QUERY 0x01
76 #define ACPI_EC_EVT_TIMING_EVENT 0x02
77
78 /* EC commands */
79 enum ec_command {
80 ACPI_EC_COMMAND_READ = 0x80,
81 ACPI_EC_COMMAND_WRITE = 0x81,
82 ACPI_EC_BURST_ENABLE = 0x82,
83 ACPI_EC_BURST_DISABLE = 0x83,
84 ACPI_EC_COMMAND_QUERY = 0x84,
85 };
86
87 #define ACPI_EC_DELAY 500 /* Wait 500ms max. during EC ops */
88 #define ACPI_EC_UDELAY_GLK 1000 /* Wait 1ms max. to get global lock */
89 #define ACPI_EC_UDELAY_POLL 550 /* Wait 1ms for EC transaction polling */
90 #define ACPI_EC_CLEAR_MAX 100 /* Maximum number of events to query
91 * when trying to clear the EC */
92 #define ACPI_EC_MAX_QUERIES 16 /* Maximum number of parallel queries */
93
94 enum {
95 EC_FLAGS_QUERY_ENABLED, /* Query is enabled */
96 EC_FLAGS_QUERY_PENDING, /* Query is pending */
97 EC_FLAGS_QUERY_GUARDING, /* Guard for SCI_EVT check */
98 EC_FLAGS_EVENT_HANDLER_INSTALLED, /* Event handler installed */
99 EC_FLAGS_EC_HANDLER_INSTALLED, /* OpReg handler installed */
100 EC_FLAGS_QUERY_METHODS_INSTALLED, /* _Qxx handlers installed */
101 EC_FLAGS_STARTED, /* Driver is started */
102 EC_FLAGS_STOPPED, /* Driver is stopped */
103 EC_FLAGS_EVENTS_MASKED, /* Events masked */
104 };
105
106 #define ACPI_EC_COMMAND_POLL 0x01 /* Available for command byte */
107 #define ACPI_EC_COMMAND_COMPLETE 0x02 /* Completed last byte */
108
109 /* ec.c is compiled in acpi namespace so this shows up as acpi.ec_delay param */
110 static unsigned int ec_delay __read_mostly = ACPI_EC_DELAY;
111 module_param(ec_delay, uint, 0644);
112 MODULE_PARM_DESC(ec_delay, "Timeout(ms) waited until an EC command completes");
113
114 static unsigned int ec_max_queries __read_mostly = ACPI_EC_MAX_QUERIES;
115 module_param(ec_max_queries, uint, 0644);
116 MODULE_PARM_DESC(ec_max_queries, "Maximum parallel _Qxx evaluations");
117
118 static bool ec_busy_polling __read_mostly;
119 module_param(ec_busy_polling, bool, 0644);
120 MODULE_PARM_DESC(ec_busy_polling, "Use busy polling to advance EC transaction");
121
122 static unsigned int ec_polling_guard __read_mostly = ACPI_EC_UDELAY_POLL;
123 module_param(ec_polling_guard, uint, 0644);
124 MODULE_PARM_DESC(ec_polling_guard, "Guard time(us) between EC accesses in polling modes");
125
126 static unsigned int ec_event_clearing __read_mostly = ACPI_EC_EVT_TIMING_QUERY;
127
128 /*
129 * If the number of false interrupts per one transaction exceeds
130 * this threshold, will think there is a GPE storm happened and
131 * will disable the GPE for normal transaction.
132 */
133 static unsigned int ec_storm_threshold __read_mostly = 8;
134 module_param(ec_storm_threshold, uint, 0644);
135 MODULE_PARM_DESC(ec_storm_threshold, "Maxim false GPE numbers not considered as GPE storm");
136
137 static bool ec_freeze_events __read_mostly = false;
138 module_param(ec_freeze_events, bool, 0644);
139 MODULE_PARM_DESC(ec_freeze_events, "Disabling event handling during suspend/resume");
140
141 static bool ec_no_wakeup __read_mostly;
142 module_param(ec_no_wakeup, bool, 0644);
143 MODULE_PARM_DESC(ec_no_wakeup, "Do not wake up from suspend-to-idle");
144
145 struct acpi_ec_query_handler {
146 struct list_head node;
147 acpi_ec_query_func func;
148 acpi_handle handle;
149 void *data;
150 u8 query_bit;
151 struct kref kref;
152 };
153
154 struct transaction {
155 const u8 *wdata;
156 u8 *rdata;
157 unsigned short irq_count;
158 u8 command;
159 u8 wi;
160 u8 ri;
161 u8 wlen;
162 u8 rlen;
163 u8 flags;
164 };
165
166 struct acpi_ec_query {
167 struct transaction transaction;
168 struct work_struct work;
169 struct acpi_ec_query_handler *handler;
170 };
171
172 static int acpi_ec_query(struct acpi_ec *ec, u8 *data);
173 static void advance_transaction(struct acpi_ec *ec);
174 static void acpi_ec_event_handler(struct work_struct *work);
175 static void acpi_ec_event_processor(struct work_struct *work);
176
177 struct acpi_ec *first_ec;
178 EXPORT_SYMBOL(first_ec);
179
180 static struct acpi_ec *boot_ec;
181 static bool boot_ec_is_ecdt = false;
182 static struct workqueue_struct *ec_wq;
183 static struct workqueue_struct *ec_query_wq;
184
185 static int EC_FLAGS_CORRECT_ECDT; /* Needs ECDT port address correction */
186 static int EC_FLAGS_IGNORE_DSDT_GPE; /* Needs ECDT GPE as correction setting */
187 static int EC_FLAGS_CLEAR_ON_RESUME; /* Needs acpi_ec_clear() on boot/resume */
188
189 /* --------------------------------------------------------------------------
190 * Logging/Debugging
191 * -------------------------------------------------------------------------- */
192
193 /*
194 * Splitters used by the developers to track the boundary of the EC
195 * handling processes.
196 */
197 #ifdef DEBUG
198 #define EC_DBG_SEP " "
199 #define EC_DBG_DRV "+++++"
200 #define EC_DBG_STM "====="
201 #define EC_DBG_REQ "*****"
202 #define EC_DBG_EVT "#####"
203 #else
204 #define EC_DBG_SEP ""
205 #define EC_DBG_DRV
206 #define EC_DBG_STM
207 #define EC_DBG_REQ
208 #define EC_DBG_EVT
209 #endif
210
211 #define ec_log_raw(fmt, ...) \
212 pr_info(fmt "\n", ##__VA_ARGS__)
213 #define ec_dbg_raw(fmt, ...) \
214 pr_debug(fmt "\n", ##__VA_ARGS__)
215 #define ec_log(filter, fmt, ...) \
216 ec_log_raw(filter EC_DBG_SEP fmt EC_DBG_SEP filter, ##__VA_ARGS__)
217 #define ec_dbg(filter, fmt, ...) \
218 ec_dbg_raw(filter EC_DBG_SEP fmt EC_DBG_SEP filter, ##__VA_ARGS__)
219
220 #define ec_log_drv(fmt, ...) \
221 ec_log(EC_DBG_DRV, fmt, ##__VA_ARGS__)
222 #define ec_dbg_drv(fmt, ...) \
223 ec_dbg(EC_DBG_DRV, fmt, ##__VA_ARGS__)
224 #define ec_dbg_stm(fmt, ...) \
225 ec_dbg(EC_DBG_STM, fmt, ##__VA_ARGS__)
226 #define ec_dbg_req(fmt, ...) \
227 ec_dbg(EC_DBG_REQ, fmt, ##__VA_ARGS__)
228 #define ec_dbg_evt(fmt, ...) \
229 ec_dbg(EC_DBG_EVT, fmt, ##__VA_ARGS__)
230 #define ec_dbg_ref(ec, fmt, ...) \
231 ec_dbg_raw("%lu: " fmt, ec->reference_count, ## __VA_ARGS__)
232
233 /* --------------------------------------------------------------------------
234 * Device Flags
235 * -------------------------------------------------------------------------- */
236
237 static bool acpi_ec_started(struct acpi_ec *ec)
238 {
239 return test_bit(EC_FLAGS_STARTED, &ec->flags) &&
240 !test_bit(EC_FLAGS_STOPPED, &ec->flags);
241 }
242
243 static bool acpi_ec_event_enabled(struct acpi_ec *ec)
244 {
245 /*
246 * There is an OSPM early stage logic. During the early stages
247 * (boot/resume), OSPMs shouldn't enable the event handling, only
248 * the EC transactions are allowed to be performed.
249 */
250 if (!test_bit(EC_FLAGS_QUERY_ENABLED, &ec->flags))
251 return false;
252 /*
253 * However, disabling the event handling is experimental for late
254 * stage (suspend), and is controlled by the boot parameter of
255 * "ec_freeze_events":
256 * 1. true: The EC event handling is disabled before entering
257 * the noirq stage.
258 * 2. false: The EC event handling is automatically disabled as
259 * soon as the EC driver is stopped.
260 */
261 if (ec_freeze_events)
262 return acpi_ec_started(ec);
263 else
264 return test_bit(EC_FLAGS_STARTED, &ec->flags);
265 }
266
267 static bool acpi_ec_flushed(struct acpi_ec *ec)
268 {
269 return ec->reference_count == 1;
270 }
271
272 /* --------------------------------------------------------------------------
273 * EC Registers
274 * -------------------------------------------------------------------------- */
275
276 static inline u8 acpi_ec_read_status(struct acpi_ec *ec)
277 {
278 u8 x = inb(ec->command_addr);
279
280 ec_dbg_raw("EC_SC(R) = 0x%2.2x "
281 "SCI_EVT=%d BURST=%d CMD=%d IBF=%d OBF=%d",
282 x,
283 !!(x & ACPI_EC_FLAG_SCI),
284 !!(x & ACPI_EC_FLAG_BURST),
285 !!(x & ACPI_EC_FLAG_CMD),
286 !!(x & ACPI_EC_FLAG_IBF),
287 !!(x & ACPI_EC_FLAG_OBF));
288 return x;
289 }
290
291 static inline u8 acpi_ec_read_data(struct acpi_ec *ec)
292 {
293 u8 x = inb(ec->data_addr);
294
295 ec->timestamp = jiffies;
296 ec_dbg_raw("EC_DATA(R) = 0x%2.2x", x);
297 return x;
298 }
299
300 static inline void acpi_ec_write_cmd(struct acpi_ec *ec, u8 command)
301 {
302 ec_dbg_raw("EC_SC(W) = 0x%2.2x", command);
303 outb(command, ec->command_addr);
304 ec->timestamp = jiffies;
305 }
306
307 static inline void acpi_ec_write_data(struct acpi_ec *ec, u8 data)
308 {
309 ec_dbg_raw("EC_DATA(W) = 0x%2.2x", data);
310 outb(data, ec->data_addr);
311 ec->timestamp = jiffies;
312 }
313
314 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
315 static const char *acpi_ec_cmd_string(u8 cmd)
316 {
317 switch (cmd) {
318 case 0x80:
319 return "RD_EC";
320 case 0x81:
321 return "WR_EC";
322 case 0x82:
323 return "BE_EC";
324 case 0x83:
325 return "BD_EC";
326 case 0x84:
327 return "QR_EC";
328 }
329 return "UNKNOWN";
330 }
331 #else
332 #define acpi_ec_cmd_string(cmd) "UNDEF"
333 #endif
334
335 /* --------------------------------------------------------------------------
336 * GPE Registers
337 * -------------------------------------------------------------------------- */
338
339 static inline bool acpi_ec_is_gpe_raised(struct acpi_ec *ec)
340 {
341 acpi_event_status gpe_status = 0;
342
343 (void)acpi_get_gpe_status(NULL, ec->gpe, &gpe_status);
344 return (gpe_status & ACPI_EVENT_FLAG_STATUS_SET) ? true : false;
345 }
346
347 static inline void acpi_ec_enable_gpe(struct acpi_ec *ec, bool open)
348 {
349 if (open)
350 acpi_enable_gpe(NULL, ec->gpe);
351 else {
352 BUG_ON(ec->reference_count < 1);
353 acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_ENABLE);
354 }
355 if (acpi_ec_is_gpe_raised(ec)) {
356 /*
357 * On some platforms, EN=1 writes cannot trigger GPE. So
358 * software need to manually trigger a pseudo GPE event on
359 * EN=1 writes.
360 */
361 ec_dbg_raw("Polling quirk");
362 advance_transaction(ec);
363 }
364 }
365
366 static inline void acpi_ec_disable_gpe(struct acpi_ec *ec, bool close)
367 {
368 if (close)
369 acpi_disable_gpe(NULL, ec->gpe);
370 else {
371 BUG_ON(ec->reference_count < 1);
372 acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_DISABLE);
373 }
374 }
375
376 static inline void acpi_ec_clear_gpe(struct acpi_ec *ec)
377 {
378 /*
379 * GPE STS is a W1C register, which means:
380 * 1. Software can clear it without worrying about clearing other
381 * GPEs' STS bits when the hardware sets them in parallel.
382 * 2. As long as software can ensure only clearing it when it is
383 * set, hardware won't set it in parallel.
384 * So software can clear GPE in any contexts.
385 * Warning: do not move the check into advance_transaction() as the
386 * EC commands will be sent without GPE raised.
387 */
388 if (!acpi_ec_is_gpe_raised(ec))
389 return;
390 acpi_clear_gpe(NULL, ec->gpe);
391 }
392
393 /* --------------------------------------------------------------------------
394 * Transaction Management
395 * -------------------------------------------------------------------------- */
396
397 static void acpi_ec_submit_request(struct acpi_ec *ec)
398 {
399 ec->reference_count++;
400 if (test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags) &&
401 ec->gpe >= 0 && ec->reference_count == 1)
402 acpi_ec_enable_gpe(ec, true);
403 }
404
405 static void acpi_ec_complete_request(struct acpi_ec *ec)
406 {
407 bool flushed = false;
408
409 ec->reference_count--;
410 if (test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags) &&
411 ec->gpe >= 0 && ec->reference_count == 0)
412 acpi_ec_disable_gpe(ec, true);
413 flushed = acpi_ec_flushed(ec);
414 if (flushed)
415 wake_up(&ec->wait);
416 }
417
418 static void acpi_ec_mask_events(struct acpi_ec *ec)
419 {
420 if (!test_bit(EC_FLAGS_EVENTS_MASKED, &ec->flags)) {
421 if (ec->gpe >= 0)
422 acpi_ec_disable_gpe(ec, false);
423 else
424 disable_irq_nosync(ec->irq);
425
426 ec_dbg_drv("Polling enabled");
427 set_bit(EC_FLAGS_EVENTS_MASKED, &ec->flags);
428 }
429 }
430
431 static void acpi_ec_unmask_events(struct acpi_ec *ec)
432 {
433 if (test_bit(EC_FLAGS_EVENTS_MASKED, &ec->flags)) {
434 clear_bit(EC_FLAGS_EVENTS_MASKED, &ec->flags);
435 if (ec->gpe >= 0)
436 acpi_ec_enable_gpe(ec, false);
437 else
438 enable_irq(ec->irq);
439
440 ec_dbg_drv("Polling disabled");
441 }
442 }
443
444 /*
445 * acpi_ec_submit_flushable_request() - Increase the reference count unless
446 * the flush operation is not in
447 * progress
448 * @ec: the EC device
449 *
450 * This function must be used before taking a new action that should hold
451 * the reference count. If this function returns false, then the action
452 * must be discarded or it will prevent the flush operation from being
453 * completed.
454 */
455 static bool acpi_ec_submit_flushable_request(struct acpi_ec *ec)
456 {
457 if (!acpi_ec_started(ec))
458 return false;
459 acpi_ec_submit_request(ec);
460 return true;
461 }
462
463 static void acpi_ec_submit_query(struct acpi_ec *ec)
464 {
465 acpi_ec_mask_events(ec);
466 if (!acpi_ec_event_enabled(ec))
467 return;
468 if (!test_and_set_bit(EC_FLAGS_QUERY_PENDING, &ec->flags)) {
469 ec_dbg_evt("Command(%s) submitted/blocked",
470 acpi_ec_cmd_string(ACPI_EC_COMMAND_QUERY));
471 ec->nr_pending_queries++;
472 queue_work(ec_wq, &ec->work);
473 }
474 }
475
476 static void acpi_ec_complete_query(struct acpi_ec *ec)
477 {
478 if (test_and_clear_bit(EC_FLAGS_QUERY_PENDING, &ec->flags))
479 ec_dbg_evt("Command(%s) unblocked",
480 acpi_ec_cmd_string(ACPI_EC_COMMAND_QUERY));
481 acpi_ec_unmask_events(ec);
482 }
483
484 static inline void __acpi_ec_enable_event(struct acpi_ec *ec)
485 {
486 if (!test_and_set_bit(EC_FLAGS_QUERY_ENABLED, &ec->flags))
487 ec_log_drv("event unblocked");
488 /*
489 * Unconditionally invoke this once after enabling the event
490 * handling mechanism to detect the pending events.
491 */
492 advance_transaction(ec);
493 }
494
495 static inline void __acpi_ec_disable_event(struct acpi_ec *ec)
496 {
497 if (test_and_clear_bit(EC_FLAGS_QUERY_ENABLED, &ec->flags))
498 ec_log_drv("event blocked");
499 }
500
501 /*
502 * Process _Q events that might have accumulated in the EC.
503 * Run with locked ec mutex.
504 */
505 static void acpi_ec_clear(struct acpi_ec *ec)
506 {
507 int i, status;
508 u8 value = 0;
509
510 for (i = 0; i < ACPI_EC_CLEAR_MAX; i++) {
511 status = acpi_ec_query(ec, &value);
512 if (status || !value)
513 break;
514 }
515 if (unlikely(i == ACPI_EC_CLEAR_MAX))
516 pr_warn("Warning: Maximum of %d stale EC events cleared\n", i);
517 else
518 pr_info("%d stale EC events cleared\n", i);
519 }
520
521 static void acpi_ec_enable_event(struct acpi_ec *ec)
522 {
523 unsigned long flags;
524
525 spin_lock_irqsave(&ec->lock, flags);
526 if (acpi_ec_started(ec))
527 __acpi_ec_enable_event(ec);
528 spin_unlock_irqrestore(&ec->lock, flags);
529
530 /* Drain additional events if hardware requires that */
531 if (EC_FLAGS_CLEAR_ON_RESUME)
532 acpi_ec_clear(ec);
533 }
534
535 #ifdef CONFIG_PM_SLEEP
536 static void __acpi_ec_flush_work(void)
537 {
538 drain_workqueue(ec_wq); /* flush ec->work */
539 flush_workqueue(ec_query_wq); /* flush queries */
540 }
541
542 static void acpi_ec_disable_event(struct acpi_ec *ec)
543 {
544 unsigned long flags;
545
546 spin_lock_irqsave(&ec->lock, flags);
547 __acpi_ec_disable_event(ec);
548 spin_unlock_irqrestore(&ec->lock, flags);
549
550 /*
551 * When ec_freeze_events is true, we need to flush events in
552 * the proper position before entering the noirq stage.
553 */
554 __acpi_ec_flush_work();
555 }
556
557 void acpi_ec_flush_work(void)
558 {
559 /* Without ec_wq there is nothing to flush. */
560 if (!ec_wq)
561 return;
562
563 __acpi_ec_flush_work();
564 }
565 #endif /* CONFIG_PM_SLEEP */
566
567 static bool acpi_ec_guard_event(struct acpi_ec *ec)
568 {
569 bool guarded = true;
570 unsigned long flags;
571
572 spin_lock_irqsave(&ec->lock, flags);
573 /*
574 * If firmware SCI_EVT clearing timing is "event", we actually
575 * don't know when the SCI_EVT will be cleared by firmware after
576 * evaluating _Qxx, so we need to re-check SCI_EVT after waiting an
577 * acceptable period.
578 *
579 * The guarding period begins when EC_FLAGS_QUERY_PENDING is
580 * flagged, which means SCI_EVT check has just been performed.
581 * But if the current transaction is ACPI_EC_COMMAND_QUERY, the
582 * guarding should have already been performed (via
583 * EC_FLAGS_QUERY_GUARDING) and should not be applied so that the
584 * ACPI_EC_COMMAND_QUERY transaction can be transitioned into
585 * ACPI_EC_COMMAND_POLL state immediately.
586 */
587 if (ec_event_clearing == ACPI_EC_EVT_TIMING_STATUS ||
588 ec_event_clearing == ACPI_EC_EVT_TIMING_QUERY ||
589 !test_bit(EC_FLAGS_QUERY_PENDING, &ec->flags) ||
590 (ec->curr && ec->curr->command == ACPI_EC_COMMAND_QUERY))
591 guarded = false;
592 spin_unlock_irqrestore(&ec->lock, flags);
593 return guarded;
594 }
595
596 static int ec_transaction_polled(struct acpi_ec *ec)
597 {
598 unsigned long flags;
599 int ret = 0;
600
601 spin_lock_irqsave(&ec->lock, flags);
602 if (ec->curr && (ec->curr->flags & ACPI_EC_COMMAND_POLL))
603 ret = 1;
604 spin_unlock_irqrestore(&ec->lock, flags);
605 return ret;
606 }
607
608 static int ec_transaction_completed(struct acpi_ec *ec)
609 {
610 unsigned long flags;
611 int ret = 0;
612
613 spin_lock_irqsave(&ec->lock, flags);
614 if (ec->curr && (ec->curr->flags & ACPI_EC_COMMAND_COMPLETE))
615 ret = 1;
616 spin_unlock_irqrestore(&ec->lock, flags);
617 return ret;
618 }
619
620 static inline void ec_transaction_transition(struct acpi_ec *ec, unsigned long flag)
621 {
622 ec->curr->flags |= flag;
623 if (ec->curr->command == ACPI_EC_COMMAND_QUERY) {
624 if (ec_event_clearing == ACPI_EC_EVT_TIMING_STATUS &&
625 flag == ACPI_EC_COMMAND_POLL)
626 acpi_ec_complete_query(ec);
627 if (ec_event_clearing == ACPI_EC_EVT_TIMING_QUERY &&
628 flag == ACPI_EC_COMMAND_COMPLETE)
629 acpi_ec_complete_query(ec);
630 if (ec_event_clearing == ACPI_EC_EVT_TIMING_EVENT &&
631 flag == ACPI_EC_COMMAND_COMPLETE)
632 set_bit(EC_FLAGS_QUERY_GUARDING, &ec->flags);
633 }
634 }
635
636 static void advance_transaction(struct acpi_ec *ec)
637 {
638 struct transaction *t;
639 u8 status;
640 bool wakeup = false;
641
642 ec_dbg_stm("%s (%d)", in_interrupt() ? "IRQ" : "TASK",
643 smp_processor_id());
644 /*
645 * By always clearing STS before handling all indications, we can
646 * ensure a hardware STS 0->1 change after this clearing can always
647 * trigger a GPE interrupt.
648 */
649 if (ec->gpe >= 0)
650 acpi_ec_clear_gpe(ec);
651
652 status = acpi_ec_read_status(ec);
653 t = ec->curr;
654 /*
655 * Another IRQ or a guarded polling mode advancement is detected,
656 * the next QR_EC submission is then allowed.
657 */
658 if (!t || !(t->flags & ACPI_EC_COMMAND_POLL)) {
659 if (ec_event_clearing == ACPI_EC_EVT_TIMING_EVENT &&
660 (!ec->nr_pending_queries ||
661 test_bit(EC_FLAGS_QUERY_GUARDING, &ec->flags))) {
662 clear_bit(EC_FLAGS_QUERY_GUARDING, &ec->flags);
663 acpi_ec_complete_query(ec);
664 }
665 }
666 if (!t)
667 goto err;
668 if (t->flags & ACPI_EC_COMMAND_POLL) {
669 if (t->wlen > t->wi) {
670 if ((status & ACPI_EC_FLAG_IBF) == 0)
671 acpi_ec_write_data(ec, t->wdata[t->wi++]);
672 else
673 goto err;
674 } else if (t->rlen > t->ri) {
675 if ((status & ACPI_EC_FLAG_OBF) == 1) {
676 t->rdata[t->ri++] = acpi_ec_read_data(ec);
677 if (t->rlen == t->ri) {
678 ec_transaction_transition(ec, ACPI_EC_COMMAND_COMPLETE);
679 if (t->command == ACPI_EC_COMMAND_QUERY)
680 ec_dbg_evt("Command(%s) completed by hardware",
681 acpi_ec_cmd_string(ACPI_EC_COMMAND_QUERY));
682 wakeup = true;
683 }
684 } else
685 goto err;
686 } else if (t->wlen == t->wi &&
687 (status & ACPI_EC_FLAG_IBF) == 0) {
688 ec_transaction_transition(ec, ACPI_EC_COMMAND_COMPLETE);
689 wakeup = true;
690 }
691 goto out;
692 } else if (!(status & ACPI_EC_FLAG_IBF)) {
693 acpi_ec_write_cmd(ec, t->command);
694 ec_transaction_transition(ec, ACPI_EC_COMMAND_POLL);
695 goto out;
696 }
697 err:
698 /*
699 * If SCI bit is set, then don't think it's a false IRQ
700 * otherwise will take a not handled IRQ as a false one.
701 */
702 if (!(status & ACPI_EC_FLAG_SCI)) {
703 if (in_interrupt() && t) {
704 if (t->irq_count < ec_storm_threshold)
705 ++t->irq_count;
706 /* Allow triggering on 0 threshold */
707 if (t->irq_count == ec_storm_threshold)
708 acpi_ec_mask_events(ec);
709 }
710 }
711 out:
712 if (status & ACPI_EC_FLAG_SCI)
713 acpi_ec_submit_query(ec);
714 if (wakeup && in_interrupt())
715 wake_up(&ec->wait);
716 }
717
718 static void start_transaction(struct acpi_ec *ec)
719 {
720 ec->curr->irq_count = ec->curr->wi = ec->curr->ri = 0;
721 ec->curr->flags = 0;
722 }
723
724 static int ec_guard(struct acpi_ec *ec)
725 {
726 unsigned long guard = usecs_to_jiffies(ec->polling_guard);
727 unsigned long timeout = ec->timestamp + guard;
728
729 /* Ensure guarding period before polling EC status */
730 do {
731 if (ec->busy_polling) {
732 /* Perform busy polling */
733 if (ec_transaction_completed(ec))
734 return 0;
735 udelay(jiffies_to_usecs(guard));
736 } else {
737 /*
738 * Perform wait polling
739 * 1. Wait the transaction to be completed by the
740 * GPE handler after the transaction enters
741 * ACPI_EC_COMMAND_POLL state.
742 * 2. A special guarding logic is also required
743 * for event clearing mode "event" before the
744 * transaction enters ACPI_EC_COMMAND_POLL
745 * state.
746 */
747 if (!ec_transaction_polled(ec) &&
748 !acpi_ec_guard_event(ec))
749 break;
750 if (wait_event_timeout(ec->wait,
751 ec_transaction_completed(ec),
752 guard))
753 return 0;
754 }
755 } while (time_before(jiffies, timeout));
756 return -ETIME;
757 }
758
759 static int ec_poll(struct acpi_ec *ec)
760 {
761 unsigned long flags;
762 int repeat = 5; /* number of command restarts */
763
764 while (repeat--) {
765 unsigned long delay = jiffies +
766 msecs_to_jiffies(ec_delay);
767 do {
768 if (!ec_guard(ec))
769 return 0;
770 spin_lock_irqsave(&ec->lock, flags);
771 advance_transaction(ec);
772 spin_unlock_irqrestore(&ec->lock, flags);
773 } while (time_before(jiffies, delay));
774 pr_debug("controller reset, restart transaction\n");
775 spin_lock_irqsave(&ec->lock, flags);
776 start_transaction(ec);
777 spin_unlock_irqrestore(&ec->lock, flags);
778 }
779 return -ETIME;
780 }
781
782 static int acpi_ec_transaction_unlocked(struct acpi_ec *ec,
783 struct transaction *t)
784 {
785 unsigned long tmp;
786 int ret = 0;
787
788 /* start transaction */
789 spin_lock_irqsave(&ec->lock, tmp);
790 /* Enable GPE for command processing (IBF=0/OBF=1) */
791 if (!acpi_ec_submit_flushable_request(ec)) {
792 ret = -EINVAL;
793 goto unlock;
794 }
795 ec_dbg_ref(ec, "Increase command");
796 /* following two actions should be kept atomic */
797 ec->curr = t;
798 ec_dbg_req("Command(%s) started", acpi_ec_cmd_string(t->command));
799 start_transaction(ec);
800 spin_unlock_irqrestore(&ec->lock, tmp);
801
802 ret = ec_poll(ec);
803
804 spin_lock_irqsave(&ec->lock, tmp);
805 if (t->irq_count == ec_storm_threshold)
806 acpi_ec_unmask_events(ec);
807 ec_dbg_req("Command(%s) stopped", acpi_ec_cmd_string(t->command));
808 ec->curr = NULL;
809 /* Disable GPE for command processing (IBF=0/OBF=1) */
810 acpi_ec_complete_request(ec);
811 ec_dbg_ref(ec, "Decrease command");
812 unlock:
813 spin_unlock_irqrestore(&ec->lock, tmp);
814 return ret;
815 }
816
817 static int acpi_ec_transaction(struct acpi_ec *ec, struct transaction *t)
818 {
819 int status;
820 u32 glk;
821
822 if (!ec || (!t) || (t->wlen && !t->wdata) || (t->rlen && !t->rdata))
823 return -EINVAL;
824 if (t->rdata)
825 memset(t->rdata, 0, t->rlen);
826
827 mutex_lock(&ec->mutex);
828 if (ec->global_lock) {
829 status = acpi_acquire_global_lock(ACPI_EC_UDELAY_GLK, &glk);
830 if (ACPI_FAILURE(status)) {
831 status = -ENODEV;
832 goto unlock;
833 }
834 }
835
836 status = acpi_ec_transaction_unlocked(ec, t);
837
838 if (ec->global_lock)
839 acpi_release_global_lock(glk);
840 unlock:
841 mutex_unlock(&ec->mutex);
842 return status;
843 }
844
845 static int acpi_ec_burst_enable(struct acpi_ec *ec)
846 {
847 u8 d;
848 struct transaction t = {.command = ACPI_EC_BURST_ENABLE,
849 .wdata = NULL, .rdata = &d,
850 .wlen = 0, .rlen = 1};
851
852 return acpi_ec_transaction(ec, &t);
853 }
854
855 static int acpi_ec_burst_disable(struct acpi_ec *ec)
856 {
857 struct transaction t = {.command = ACPI_EC_BURST_DISABLE,
858 .wdata = NULL, .rdata = NULL,
859 .wlen = 0, .rlen = 0};
860
861 return (acpi_ec_read_status(ec) & ACPI_EC_FLAG_BURST) ?
862 acpi_ec_transaction(ec, &t) : 0;
863 }
864
865 static int acpi_ec_read(struct acpi_ec *ec, u8 address, u8 *data)
866 {
867 int result;
868 u8 d;
869 struct transaction t = {.command = ACPI_EC_COMMAND_READ,
870 .wdata = &address, .rdata = &d,
871 .wlen = 1, .rlen = 1};
872
873 result = acpi_ec_transaction(ec, &t);
874 *data = d;
875 return result;
876 }
877
878 static int acpi_ec_write(struct acpi_ec *ec, u8 address, u8 data)
879 {
880 u8 wdata[2] = { address, data };
881 struct transaction t = {.command = ACPI_EC_COMMAND_WRITE,
882 .wdata = wdata, .rdata = NULL,
883 .wlen = 2, .rlen = 0};
884
885 return acpi_ec_transaction(ec, &t);
886 }
887
888 int ec_read(u8 addr, u8 *val)
889 {
890 int err;
891 u8 temp_data;
892
893 if (!first_ec)
894 return -ENODEV;
895
896 err = acpi_ec_read(first_ec, addr, &temp_data);
897
898 if (!err) {
899 *val = temp_data;
900 return 0;
901 }
902 return err;
903 }
904 EXPORT_SYMBOL(ec_read);
905
906 int ec_write(u8 addr, u8 val)
907 {
908 int err;
909
910 if (!first_ec)
911 return -ENODEV;
912
913 err = acpi_ec_write(first_ec, addr, val);
914
915 return err;
916 }
917 EXPORT_SYMBOL(ec_write);
918
919 int ec_transaction(u8 command,
920 const u8 *wdata, unsigned wdata_len,
921 u8 *rdata, unsigned rdata_len)
922 {
923 struct transaction t = {.command = command,
924 .wdata = wdata, .rdata = rdata,
925 .wlen = wdata_len, .rlen = rdata_len};
926
927 if (!first_ec)
928 return -ENODEV;
929
930 return acpi_ec_transaction(first_ec, &t);
931 }
932 EXPORT_SYMBOL(ec_transaction);
933
934 /* Get the handle to the EC device */
935 acpi_handle ec_get_handle(void)
936 {
937 if (!first_ec)
938 return NULL;
939 return first_ec->handle;
940 }
941 EXPORT_SYMBOL(ec_get_handle);
942
943 static void acpi_ec_start(struct acpi_ec *ec, bool resuming)
944 {
945 unsigned long flags;
946
947 spin_lock_irqsave(&ec->lock, flags);
948 if (!test_and_set_bit(EC_FLAGS_STARTED, &ec->flags)) {
949 ec_dbg_drv("Starting EC");
950 /* Enable GPE for event processing (SCI_EVT=1) */
951 if (!resuming) {
952 acpi_ec_submit_request(ec);
953 ec_dbg_ref(ec, "Increase driver");
954 }
955 ec_log_drv("EC started");
956 }
957 spin_unlock_irqrestore(&ec->lock, flags);
958 }
959
960 static bool acpi_ec_stopped(struct acpi_ec *ec)
961 {
962 unsigned long flags;
963 bool flushed;
964
965 spin_lock_irqsave(&ec->lock, flags);
966 flushed = acpi_ec_flushed(ec);
967 spin_unlock_irqrestore(&ec->lock, flags);
968 return flushed;
969 }
970
971 static void acpi_ec_stop(struct acpi_ec *ec, bool suspending)
972 {
973 unsigned long flags;
974
975 spin_lock_irqsave(&ec->lock, flags);
976 if (acpi_ec_started(ec)) {
977 ec_dbg_drv("Stopping EC");
978 set_bit(EC_FLAGS_STOPPED, &ec->flags);
979 spin_unlock_irqrestore(&ec->lock, flags);
980 wait_event(ec->wait, acpi_ec_stopped(ec));
981 spin_lock_irqsave(&ec->lock, flags);
982 /* Disable GPE for event processing (SCI_EVT=1) */
983 if (!suspending) {
984 acpi_ec_complete_request(ec);
985 ec_dbg_ref(ec, "Decrease driver");
986 } else if (!ec_freeze_events)
987 __acpi_ec_disable_event(ec);
988 clear_bit(EC_FLAGS_STARTED, &ec->flags);
989 clear_bit(EC_FLAGS_STOPPED, &ec->flags);
990 ec_log_drv("EC stopped");
991 }
992 spin_unlock_irqrestore(&ec->lock, flags);
993 }
994
995 static void acpi_ec_enter_noirq(struct acpi_ec *ec)
996 {
997 unsigned long flags;
998
999 spin_lock_irqsave(&ec->lock, flags);
1000 ec->busy_polling = true;
1001 ec->polling_guard = 0;
1002 ec_log_drv("interrupt blocked");
1003 spin_unlock_irqrestore(&ec->lock, flags);
1004 }
1005
1006 static void acpi_ec_leave_noirq(struct acpi_ec *ec)
1007 {
1008 unsigned long flags;
1009
1010 spin_lock_irqsave(&ec->lock, flags);
1011 ec->busy_polling = ec_busy_polling;
1012 ec->polling_guard = ec_polling_guard;
1013 ec_log_drv("interrupt unblocked");
1014 spin_unlock_irqrestore(&ec->lock, flags);
1015 }
1016
1017 void acpi_ec_block_transactions(void)
1018 {
1019 struct acpi_ec *ec = first_ec;
1020
1021 if (!ec)
1022 return;
1023
1024 mutex_lock(&ec->mutex);
1025 /* Prevent transactions from being carried out */
1026 acpi_ec_stop(ec, true);
1027 mutex_unlock(&ec->mutex);
1028 }
1029
1030 void acpi_ec_unblock_transactions(void)
1031 {
1032 /*
1033 * Allow transactions to happen again (this function is called from
1034 * atomic context during wakeup, so we don't need to acquire the mutex).
1035 */
1036 if (first_ec)
1037 acpi_ec_start(first_ec, true);
1038 }
1039
1040 /* --------------------------------------------------------------------------
1041 Event Management
1042 -------------------------------------------------------------------------- */
1043 static struct acpi_ec_query_handler *
1044 acpi_ec_get_query_handler_by_value(struct acpi_ec *ec, u8 value)
1045 {
1046 struct acpi_ec_query_handler *handler;
1047
1048 mutex_lock(&ec->mutex);
1049 list_for_each_entry(handler, &ec->list, node) {
1050 if (value == handler->query_bit) {
1051 kref_get(&handler->kref);
1052 mutex_unlock(&ec->mutex);
1053 return handler;
1054 }
1055 }
1056 mutex_unlock(&ec->mutex);
1057 return NULL;
1058 }
1059
1060 static void acpi_ec_query_handler_release(struct kref *kref)
1061 {
1062 struct acpi_ec_query_handler *handler =
1063 container_of(kref, struct acpi_ec_query_handler, kref);
1064
1065 kfree(handler);
1066 }
1067
1068 static void acpi_ec_put_query_handler(struct acpi_ec_query_handler *handler)
1069 {
1070 kref_put(&handler->kref, acpi_ec_query_handler_release);
1071 }
1072
1073 int acpi_ec_add_query_handler(struct acpi_ec *ec, u8 query_bit,
1074 acpi_handle handle, acpi_ec_query_func func,
1075 void *data)
1076 {
1077 struct acpi_ec_query_handler *handler =
1078 kzalloc(sizeof(struct acpi_ec_query_handler), GFP_KERNEL);
1079
1080 if (!handler)
1081 return -ENOMEM;
1082
1083 handler->query_bit = query_bit;
1084 handler->handle = handle;
1085 handler->func = func;
1086 handler->data = data;
1087 mutex_lock(&ec->mutex);
1088 kref_init(&handler->kref);
1089 list_add(&handler->node, &ec->list);
1090 mutex_unlock(&ec->mutex);
1091 return 0;
1092 }
1093 EXPORT_SYMBOL_GPL(acpi_ec_add_query_handler);
1094
1095 static void acpi_ec_remove_query_handlers(struct acpi_ec *ec,
1096 bool remove_all, u8 query_bit)
1097 {
1098 struct acpi_ec_query_handler *handler, *tmp;
1099 LIST_HEAD(free_list);
1100
1101 mutex_lock(&ec->mutex);
1102 list_for_each_entry_safe(handler, tmp, &ec->list, node) {
1103 if (remove_all || query_bit == handler->query_bit) {
1104 list_del_init(&handler->node);
1105 list_add(&handler->node, &free_list);
1106 }
1107 }
1108 mutex_unlock(&ec->mutex);
1109 list_for_each_entry_safe(handler, tmp, &free_list, node)
1110 acpi_ec_put_query_handler(handler);
1111 }
1112
1113 void acpi_ec_remove_query_handler(struct acpi_ec *ec, u8 query_bit)
1114 {
1115 acpi_ec_remove_query_handlers(ec, false, query_bit);
1116 }
1117 EXPORT_SYMBOL_GPL(acpi_ec_remove_query_handler);
1118
1119 static struct acpi_ec_query *acpi_ec_create_query(u8 *pval)
1120 {
1121 struct acpi_ec_query *q;
1122 struct transaction *t;
1123
1124 q = kzalloc(sizeof (struct acpi_ec_query), GFP_KERNEL);
1125 if (!q)
1126 return NULL;
1127 INIT_WORK(&q->work, acpi_ec_event_processor);
1128 t = &q->transaction;
1129 t->command = ACPI_EC_COMMAND_QUERY;
1130 t->rdata = pval;
1131 t->rlen = 1;
1132 return q;
1133 }
1134
1135 static void acpi_ec_delete_query(struct acpi_ec_query *q)
1136 {
1137 if (q) {
1138 if (q->handler)
1139 acpi_ec_put_query_handler(q->handler);
1140 kfree(q);
1141 }
1142 }
1143
1144 static void acpi_ec_event_processor(struct work_struct *work)
1145 {
1146 struct acpi_ec_query *q = container_of(work, struct acpi_ec_query, work);
1147 struct acpi_ec_query_handler *handler = q->handler;
1148
1149 ec_dbg_evt("Query(0x%02x) started", handler->query_bit);
1150 if (handler->func)
1151 handler->func(handler->data);
1152 else if (handler->handle)
1153 acpi_evaluate_object(handler->handle, NULL, NULL, NULL);
1154 ec_dbg_evt("Query(0x%02x) stopped", handler->query_bit);
1155 acpi_ec_delete_query(q);
1156 }
1157
1158 static int acpi_ec_query(struct acpi_ec *ec, u8 *data)
1159 {
1160 u8 value = 0;
1161 int result;
1162 struct acpi_ec_query *q;
1163
1164 q = acpi_ec_create_query(&value);
1165 if (!q)
1166 return -ENOMEM;
1167
1168 /*
1169 * Query the EC to find out which _Qxx method we need to evaluate.
1170 * Note that successful completion of the query causes the ACPI_EC_SCI
1171 * bit to be cleared (and thus clearing the interrupt source).
1172 */
1173 result = acpi_ec_transaction(ec, &q->transaction);
1174 if (!value)
1175 result = -ENODATA;
1176 if (result)
1177 goto err_exit;
1178
1179 q->handler = acpi_ec_get_query_handler_by_value(ec, value);
1180 if (!q->handler) {
1181 result = -ENODATA;
1182 goto err_exit;
1183 }
1184
1185 /*
1186 * It is reported that _Qxx are evaluated in a parallel way on
1187 * Windows:
1188 * https://bugzilla.kernel.org/show_bug.cgi?id=94411
1189 *
1190 * Put this log entry before schedule_work() in order to make
1191 * it appearing before any other log entries occurred during the
1192 * work queue execution.
1193 */
1194 ec_dbg_evt("Query(0x%02x) scheduled", value);
1195 if (!queue_work(ec_query_wq, &q->work)) {
1196 ec_dbg_evt("Query(0x%02x) overlapped", value);
1197 result = -EBUSY;
1198 }
1199
1200 err_exit:
1201 if (result)
1202 acpi_ec_delete_query(q);
1203 if (data)
1204 *data = value;
1205 return result;
1206 }
1207
1208 static void acpi_ec_check_event(struct acpi_ec *ec)
1209 {
1210 unsigned long flags;
1211
1212 if (ec_event_clearing == ACPI_EC_EVT_TIMING_EVENT) {
1213 if (ec_guard(ec)) {
1214 spin_lock_irqsave(&ec->lock, flags);
1215 /*
1216 * Take care of the SCI_EVT unless no one else is
1217 * taking care of it.
1218 */
1219 if (!ec->curr)
1220 advance_transaction(ec);
1221 spin_unlock_irqrestore(&ec->lock, flags);
1222 }
1223 }
1224 }
1225
1226 static void acpi_ec_event_handler(struct work_struct *work)
1227 {
1228 unsigned long flags;
1229 struct acpi_ec *ec = container_of(work, struct acpi_ec, work);
1230
1231 ec_dbg_evt("Event started");
1232
1233 spin_lock_irqsave(&ec->lock, flags);
1234 while (ec->nr_pending_queries) {
1235 spin_unlock_irqrestore(&ec->lock, flags);
1236 (void)acpi_ec_query(ec, NULL);
1237 spin_lock_irqsave(&ec->lock, flags);
1238 ec->nr_pending_queries--;
1239 /*
1240 * Before exit, make sure that this work item can be
1241 * scheduled again. There might be QR_EC failures, leaving
1242 * EC_FLAGS_QUERY_PENDING uncleared and preventing this work
1243 * item from being scheduled again.
1244 */
1245 if (!ec->nr_pending_queries) {
1246 if (ec_event_clearing == ACPI_EC_EVT_TIMING_STATUS ||
1247 ec_event_clearing == ACPI_EC_EVT_TIMING_QUERY)
1248 acpi_ec_complete_query(ec);
1249 }
1250 }
1251 spin_unlock_irqrestore(&ec->lock, flags);
1252
1253 ec_dbg_evt("Event stopped");
1254
1255 acpi_ec_check_event(ec);
1256 }
1257
1258 static void acpi_ec_handle_interrupt(struct acpi_ec *ec)
1259 {
1260 unsigned long flags;
1261
1262 spin_lock_irqsave(&ec->lock, flags);
1263 advance_transaction(ec);
1264 spin_unlock_irqrestore(&ec->lock, flags);
1265 }
1266
1267 static u32 acpi_ec_gpe_handler(acpi_handle gpe_device,
1268 u32 gpe_number, void *data)
1269 {
1270 acpi_ec_handle_interrupt(data);
1271 return ACPI_INTERRUPT_HANDLED;
1272 }
1273
1274 static irqreturn_t acpi_ec_irq_handler(int irq, void *data)
1275 {
1276 acpi_ec_handle_interrupt(data);
1277 return IRQ_HANDLED;
1278 }
1279
1280 /* --------------------------------------------------------------------------
1281 * Address Space Management
1282 * -------------------------------------------------------------------------- */
1283
1284 static acpi_status
1285 acpi_ec_space_handler(u32 function, acpi_physical_address address,
1286 u32 bits, u64 *value64,
1287 void *handler_context, void *region_context)
1288 {
1289 struct acpi_ec *ec = handler_context;
1290 int result = 0, i, bytes = bits / 8;
1291 u8 *value = (u8 *)value64;
1292
1293 if ((address > 0xFF) || !value || !handler_context)
1294 return AE_BAD_PARAMETER;
1295
1296 if (function != ACPI_READ && function != ACPI_WRITE)
1297 return AE_BAD_PARAMETER;
1298
1299 if (ec->busy_polling || bits > 8)
1300 acpi_ec_burst_enable(ec);
1301
1302 for (i = 0; i < bytes; ++i, ++address, ++value)
1303 result = (function == ACPI_READ) ?
1304 acpi_ec_read(ec, address, value) :
1305 acpi_ec_write(ec, address, *value);
1306
1307 if (ec->busy_polling || bits > 8)
1308 acpi_ec_burst_disable(ec);
1309
1310 switch (result) {
1311 case -EINVAL:
1312 return AE_BAD_PARAMETER;
1313 case -ENODEV:
1314 return AE_NOT_FOUND;
1315 case -ETIME:
1316 return AE_TIME;
1317 default:
1318 return AE_OK;
1319 }
1320 }
1321
1322 /* --------------------------------------------------------------------------
1323 * Driver Interface
1324 * -------------------------------------------------------------------------- */
1325
1326 static acpi_status
1327 ec_parse_io_ports(struct acpi_resource *resource, void *context);
1328
1329 static void acpi_ec_free(struct acpi_ec *ec)
1330 {
1331 if (first_ec == ec)
1332 first_ec = NULL;
1333 if (boot_ec == ec)
1334 boot_ec = NULL;
1335 kfree(ec);
1336 }
1337
1338 static struct acpi_ec *acpi_ec_alloc(void)
1339 {
1340 struct acpi_ec *ec = kzalloc(sizeof(struct acpi_ec), GFP_KERNEL);
1341
1342 if (!ec)
1343 return NULL;
1344 mutex_init(&ec->mutex);
1345 init_waitqueue_head(&ec->wait);
1346 INIT_LIST_HEAD(&ec->list);
1347 spin_lock_init(&ec->lock);
1348 INIT_WORK(&ec->work, acpi_ec_event_handler);
1349 ec->timestamp = jiffies;
1350 ec->busy_polling = true;
1351 ec->polling_guard = 0;
1352 ec->gpe = -1;
1353 ec->irq = -1;
1354 return ec;
1355 }
1356
1357 static acpi_status
1358 acpi_ec_register_query_methods(acpi_handle handle, u32 level,
1359 void *context, void **return_value)
1360 {
1361 char node_name[5];
1362 struct acpi_buffer buffer = { sizeof(node_name), node_name };
1363 struct acpi_ec *ec = context;
1364 int value = 0;
1365 acpi_status status;
1366
1367 status = acpi_get_name(handle, ACPI_SINGLE_NAME, &buffer);
1368
1369 if (ACPI_SUCCESS(status) && sscanf(node_name, "_Q%x", &value) == 1)
1370 acpi_ec_add_query_handler(ec, value, handle, NULL, NULL);
1371 return AE_OK;
1372 }
1373
1374 static acpi_status
1375 ec_parse_device(acpi_handle handle, u32 Level, void *context, void **retval)
1376 {
1377 acpi_status status;
1378 unsigned long long tmp = 0;
1379 struct acpi_ec *ec = context;
1380
1381 /* clear addr values, ec_parse_io_ports depend on it */
1382 ec->command_addr = ec->data_addr = 0;
1383
1384 status = acpi_walk_resources(handle, METHOD_NAME__CRS,
1385 ec_parse_io_ports, ec);
1386 if (ACPI_FAILURE(status))
1387 return status;
1388 if (ec->data_addr == 0 || ec->command_addr == 0)
1389 return AE_OK;
1390
1391 if (boot_ec && boot_ec_is_ecdt && EC_FLAGS_IGNORE_DSDT_GPE) {
1392 /*
1393 * Always inherit the GPE number setting from the ECDT
1394 * EC.
1395 */
1396 ec->gpe = boot_ec->gpe;
1397 } else {
1398 /* Get GPE bit assignment (EC events). */
1399 /* TODO: Add support for _GPE returning a package */
1400 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
1401 if (ACPI_SUCCESS(status))
1402 ec->gpe = tmp;
1403
1404 /*
1405 * Errors are non-fatal, allowing for ACPI Reduced Hardware
1406 * platforms which use GpioInt instead of GPE.
1407 */
1408 }
1409 /* Use the global lock for all EC transactions? */
1410 tmp = 0;
1411 acpi_evaluate_integer(handle, "_GLK", NULL, &tmp);
1412 ec->global_lock = tmp;
1413 ec->handle = handle;
1414 return AE_CTRL_TERMINATE;
1415 }
1416
1417 static bool install_gpe_event_handler(struct acpi_ec *ec)
1418 {
1419 acpi_status status;
1420
1421 status = acpi_install_gpe_raw_handler(NULL, ec->gpe,
1422 ACPI_GPE_EDGE_TRIGGERED,
1423 &acpi_ec_gpe_handler, ec);
1424 if (ACPI_FAILURE(status))
1425 return false;
1426
1427 if (test_bit(EC_FLAGS_STARTED, &ec->flags) && ec->reference_count >= 1)
1428 acpi_ec_enable_gpe(ec, true);
1429
1430 return true;
1431 }
1432
1433 static bool install_gpio_irq_event_handler(struct acpi_ec *ec)
1434 {
1435 return request_irq(ec->irq, acpi_ec_irq_handler, IRQF_SHARED,
1436 "ACPI EC", ec) >= 0;
1437 }
1438
1439 /**
1440 * ec_install_handlers - Install service callbacks and register query methods.
1441 * @ec: Target EC.
1442 * @device: ACPI device object corresponding to @ec.
1443 *
1444 * Install a handler for the EC address space type unless it has been installed
1445 * already. If @device is not NULL, also look for EC query methods in the
1446 * namespace and register them, and install an event (either GPE or GPIO IRQ)
1447 * handler for the EC, if possible.
1448 *
1449 * Return:
1450 * -ENODEV if the address space handler cannot be installed, which means
1451 * "unable to handle transactions",
1452 * -EPROBE_DEFER if GPIO IRQ acquisition needs to be deferred,
1453 * or 0 (success) otherwise.
1454 */
1455 static int ec_install_handlers(struct acpi_ec *ec, struct acpi_device *device)
1456 {
1457 acpi_status status;
1458
1459 acpi_ec_start(ec, false);
1460
1461 if (!test_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags)) {
1462 acpi_ec_enter_noirq(ec);
1463 status = acpi_install_address_space_handler(ec->handle,
1464 ACPI_ADR_SPACE_EC,
1465 &acpi_ec_space_handler,
1466 NULL, ec);
1467 if (ACPI_FAILURE(status)) {
1468 acpi_ec_stop(ec, false);
1469 return -ENODEV;
1470 }
1471 set_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags);
1472 }
1473
1474 if (!device)
1475 return 0;
1476
1477 if (ec->gpe < 0) {
1478 /* ACPI reduced hardware platforms use a GpioInt from _CRS. */
1479 int irq = acpi_dev_gpio_irq_get(device, 0);
1480 /*
1481 * Bail out right away for deferred probing or complete the
1482 * initialization regardless of any other errors.
1483 */
1484 if (irq == -EPROBE_DEFER)
1485 return -EPROBE_DEFER;
1486 else if (irq >= 0)
1487 ec->irq = irq;
1488 }
1489
1490 if (!test_bit(EC_FLAGS_QUERY_METHODS_INSTALLED, &ec->flags)) {
1491 /* Find and register all query methods */
1492 acpi_walk_namespace(ACPI_TYPE_METHOD, ec->handle, 1,
1493 acpi_ec_register_query_methods,
1494 NULL, ec, NULL);
1495 set_bit(EC_FLAGS_QUERY_METHODS_INSTALLED, &ec->flags);
1496 }
1497 if (!test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags)) {
1498 bool ready = false;
1499
1500 if (ec->gpe >= 0)
1501 ready = install_gpe_event_handler(ec);
1502 else if (ec->irq >= 0)
1503 ready = install_gpio_irq_event_handler(ec);
1504
1505 if (ready) {
1506 set_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags);
1507 acpi_ec_leave_noirq(ec);
1508 }
1509 /*
1510 * Failures to install an event handler are not fatal, because
1511 * the EC can be polled for events.
1512 */
1513 }
1514 /* EC is fully operational, allow queries */
1515 acpi_ec_enable_event(ec);
1516
1517 return 0;
1518 }
1519
1520 static void ec_remove_handlers(struct acpi_ec *ec)
1521 {
1522 if (test_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags)) {
1523 if (ACPI_FAILURE(acpi_remove_address_space_handler(ec->handle,
1524 ACPI_ADR_SPACE_EC, &acpi_ec_space_handler)))
1525 pr_err("failed to remove space handler\n");
1526 clear_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags);
1527 }
1528
1529 /*
1530 * Stops handling the EC transactions after removing the operation
1531 * region handler. This is required because _REG(DISCONNECT)
1532 * invoked during the removal can result in new EC transactions.
1533 *
1534 * Flushes the EC requests and thus disables the GPE before
1535 * removing the GPE handler. This is required by the current ACPICA
1536 * GPE core. ACPICA GPE core will automatically disable a GPE when
1537 * it is indicated but there is no way to handle it. So the drivers
1538 * must disable the GPEs prior to removing the GPE handlers.
1539 */
1540 acpi_ec_stop(ec, false);
1541
1542 if (test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags)) {
1543 if (ec->gpe >= 0 &&
1544 ACPI_FAILURE(acpi_remove_gpe_handler(NULL, ec->gpe,
1545 &acpi_ec_gpe_handler)))
1546 pr_err("failed to remove gpe handler\n");
1547
1548 if (ec->irq >= 0)
1549 free_irq(ec->irq, ec);
1550
1551 clear_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags);
1552 }
1553 if (test_bit(EC_FLAGS_QUERY_METHODS_INSTALLED, &ec->flags)) {
1554 acpi_ec_remove_query_handlers(ec, true, 0);
1555 clear_bit(EC_FLAGS_QUERY_METHODS_INSTALLED, &ec->flags);
1556 }
1557 }
1558
1559 static int acpi_ec_setup(struct acpi_ec *ec, struct acpi_device *device)
1560 {
1561 int ret;
1562
1563 ret = ec_install_handlers(ec, device);
1564 if (ret)
1565 return ret;
1566
1567 /* First EC capable of handling transactions */
1568 if (!first_ec)
1569 first_ec = ec;
1570
1571 pr_info("EC_CMD/EC_SC=0x%lx, EC_DATA=0x%lx\n", ec->command_addr,
1572 ec->data_addr);
1573
1574 if (test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags)) {
1575 if (ec->gpe >= 0)
1576 pr_info("GPE=0x%x\n", ec->gpe);
1577 else
1578 pr_info("IRQ=%d\n", ec->irq);
1579 }
1580
1581 return ret;
1582 }
1583
1584 static int acpi_ec_add(struct acpi_device *device)
1585 {
1586 struct acpi_ec *ec;
1587 int ret;
1588
1589 strcpy(acpi_device_name(device), ACPI_EC_DEVICE_NAME);
1590 strcpy(acpi_device_class(device), ACPI_EC_CLASS);
1591
1592 if (boot_ec && (boot_ec->handle == device->handle ||
1593 !strcmp(acpi_device_hid(device), ACPI_ECDT_HID))) {
1594 /* Fast path: this device corresponds to the boot EC. */
1595 ec = boot_ec;
1596 } else {
1597 acpi_status status;
1598
1599 ec = acpi_ec_alloc();
1600 if (!ec)
1601 return -ENOMEM;
1602
1603 status = ec_parse_device(device->handle, 0, ec, NULL);
1604 if (status != AE_CTRL_TERMINATE) {
1605 ret = -EINVAL;
1606 goto err;
1607 }
1608
1609 if (boot_ec && ec->command_addr == boot_ec->command_addr &&
1610 ec->data_addr == boot_ec->data_addr) {
1611 /*
1612 * Trust PNP0C09 namespace location rather than
1613 * ECDT ID. But trust ECDT GPE rather than _GPE
1614 * because of ASUS quirks, so do not change
1615 * boot_ec->gpe to ec->gpe.
1616 */
1617 boot_ec->handle = ec->handle;
1618 acpi_handle_debug(ec->handle, "duplicated.\n");
1619 acpi_ec_free(ec);
1620 ec = boot_ec;
1621 }
1622 }
1623
1624 ret = acpi_ec_setup(ec, device);
1625 if (ret)
1626 goto err;
1627
1628 if (ec == boot_ec)
1629 acpi_handle_info(boot_ec->handle,
1630 "Boot %s EC initialization complete\n",
1631 boot_ec_is_ecdt ? "ECDT" : "DSDT");
1632
1633 acpi_handle_info(ec->handle,
1634 "EC: Used to handle transactions and events\n");
1635
1636 device->driver_data = ec;
1637
1638 ret = !!request_region(ec->data_addr, 1, "EC data");
1639 WARN(!ret, "Could not request EC data io port 0x%lx", ec->data_addr);
1640 ret = !!request_region(ec->command_addr, 1, "EC cmd");
1641 WARN(!ret, "Could not request EC cmd io port 0x%lx", ec->command_addr);
1642
1643 /* Reprobe devices depending on the EC */
1644 acpi_walk_dep_device_list(ec->handle);
1645
1646 acpi_handle_debug(ec->handle, "enumerated.\n");
1647 return 0;
1648
1649 err:
1650 if (ec != boot_ec)
1651 acpi_ec_free(ec);
1652
1653 return ret;
1654 }
1655
1656 static int acpi_ec_remove(struct acpi_device *device)
1657 {
1658 struct acpi_ec *ec;
1659
1660 if (!device)
1661 return -EINVAL;
1662
1663 ec = acpi_driver_data(device);
1664 release_region(ec->data_addr, 1);
1665 release_region(ec->command_addr, 1);
1666 device->driver_data = NULL;
1667 if (ec != boot_ec) {
1668 ec_remove_handlers(ec);
1669 acpi_ec_free(ec);
1670 }
1671 return 0;
1672 }
1673
1674 static acpi_status
1675 ec_parse_io_ports(struct acpi_resource *resource, void *context)
1676 {
1677 struct acpi_ec *ec = context;
1678
1679 if (resource->type != ACPI_RESOURCE_TYPE_IO)
1680 return AE_OK;
1681
1682 /*
1683 * The first address region returned is the data port, and
1684 * the second address region returned is the status/command
1685 * port.
1686 */
1687 if (ec->data_addr == 0)
1688 ec->data_addr = resource->data.io.minimum;
1689 else if (ec->command_addr == 0)
1690 ec->command_addr = resource->data.io.minimum;
1691 else
1692 return AE_CTRL_TERMINATE;
1693
1694 return AE_OK;
1695 }
1696
1697 static const struct acpi_device_id ec_device_ids[] = {
1698 {"PNP0C09", 0},
1699 {ACPI_ECDT_HID, 0},
1700 {"", 0},
1701 };
1702
1703 /*
1704 * This function is not Windows-compatible as Windows never enumerates the
1705 * namespace EC before the main ACPI device enumeration process. It is
1706 * retained for historical reason and will be deprecated in the future.
1707 */
1708 void __init acpi_ec_dsdt_probe(void)
1709 {
1710 struct acpi_ec *ec;
1711 acpi_status status;
1712 int ret;
1713
1714 /*
1715 * If a platform has ECDT, there is no need to proceed as the
1716 * following probe is not a part of the ACPI device enumeration,
1717 * executing _STA is not safe, and thus this probe may risk of
1718 * picking up an invalid EC device.
1719 */
1720 if (boot_ec)
1721 return;
1722
1723 ec = acpi_ec_alloc();
1724 if (!ec)
1725 return;
1726
1727 /*
1728 * At this point, the namespace is initialized, so start to find
1729 * the namespace objects.
1730 */
1731 status = acpi_get_devices(ec_device_ids[0].id, ec_parse_device, ec, NULL);
1732 if (ACPI_FAILURE(status) || !ec->handle) {
1733 acpi_ec_free(ec);
1734 return;
1735 }
1736
1737 /*
1738 * When the DSDT EC is available, always re-configure boot EC to
1739 * have _REG evaluated. _REG can only be evaluated after the
1740 * namespace initialization.
1741 * At this point, the GPE is not fully initialized, so do not to
1742 * handle the events.
1743 */
1744 ret = acpi_ec_setup(ec, NULL);
1745 if (ret) {
1746 acpi_ec_free(ec);
1747 return;
1748 }
1749
1750 boot_ec = ec;
1751
1752 acpi_handle_info(ec->handle,
1753 "Boot DSDT EC used to handle transactions\n");
1754 }
1755
1756 /*
1757 * acpi_ec_ecdt_start - Finalize the boot ECDT EC initialization.
1758 *
1759 * First, look for an ACPI handle for the boot ECDT EC if acpi_ec_add() has not
1760 * found a matching object in the namespace.
1761 *
1762 * Next, in case the DSDT EC is not functioning, it is still necessary to
1763 * provide a functional ECDT EC to handle events, so add an extra device object
1764 * to represent it (see https://bugzilla.kernel.org/show_bug.cgi?id=115021).
1765 *
1766 * This is useful on platforms with valid ECDT and invalid DSDT EC settings,
1767 * like ASUS X550ZE (see https://bugzilla.kernel.org/show_bug.cgi?id=196847).
1768 */
1769 static void __init acpi_ec_ecdt_start(void)
1770 {
1771 struct acpi_table_ecdt *ecdt_ptr;
1772 acpi_handle handle;
1773 acpi_status status;
1774
1775 /* Bail out if a matching EC has been found in the namespace. */
1776 if (!boot_ec || boot_ec->handle != ACPI_ROOT_OBJECT)
1777 return;
1778
1779 /* Look up the object pointed to from the ECDT in the namespace. */
1780 status = acpi_get_table(ACPI_SIG_ECDT, 1,
1781 (struct acpi_table_header **)&ecdt_ptr);
1782 if (ACPI_FAILURE(status))
1783 return;
1784
1785 status = acpi_get_handle(NULL, ecdt_ptr->id, &handle);
1786 if (ACPI_FAILURE(status))
1787 return;
1788
1789 boot_ec->handle = handle;
1790
1791 /* Add a special ACPI device object to represent the boot EC. */
1792 acpi_bus_register_early_device(ACPI_BUS_TYPE_ECDT_EC);
1793 }
1794
1795 /*
1796 * On some hardware it is necessary to clear events accumulated by the EC during
1797 * sleep. These ECs stop reporting GPEs until they are manually polled, if too
1798 * many events are accumulated. (e.g. Samsung Series 5/9 notebooks)
1799 *
1800 * https://bugzilla.kernel.org/show_bug.cgi?id=44161
1801 *
1802 * Ideally, the EC should also be instructed NOT to accumulate events during
1803 * sleep (which Windows seems to do somehow), but the interface to control this
1804 * behaviour is not known at this time.
1805 *
1806 * Models known to be affected are Samsung 530Uxx/535Uxx/540Uxx/550Pxx/900Xxx,
1807 * however it is very likely that other Samsung models are affected.
1808 *
1809 * On systems which don't accumulate _Q events during sleep, this extra check
1810 * should be harmless.
1811 */
1812 static int ec_clear_on_resume(const struct dmi_system_id *id)
1813 {
1814 pr_debug("Detected system needing EC poll on resume.\n");
1815 EC_FLAGS_CLEAR_ON_RESUME = 1;
1816 ec_event_clearing = ACPI_EC_EVT_TIMING_STATUS;
1817 return 0;
1818 }
1819
1820 /*
1821 * Some ECDTs contain wrong register addresses.
1822 * MSI MS-171F
1823 * https://bugzilla.kernel.org/show_bug.cgi?id=12461
1824 */
1825 static int ec_correct_ecdt(const struct dmi_system_id *id)
1826 {
1827 pr_debug("Detected system needing ECDT address correction.\n");
1828 EC_FLAGS_CORRECT_ECDT = 1;
1829 return 0;
1830 }
1831
1832 /*
1833 * Some DSDTs contain wrong GPE setting.
1834 * Asus FX502VD/VE, GL702VMK, X550VXK, X580VD
1835 * https://bugzilla.kernel.org/show_bug.cgi?id=195651
1836 */
1837 static int ec_honor_ecdt_gpe(const struct dmi_system_id *id)
1838 {
1839 pr_debug("Detected system needing ignore DSDT GPE setting.\n");
1840 EC_FLAGS_IGNORE_DSDT_GPE = 1;
1841 return 0;
1842 }
1843
1844 static const struct dmi_system_id ec_dmi_table[] __initconst = {
1845 {
1846 ec_correct_ecdt, "MSI MS-171F", {
1847 DMI_MATCH(DMI_SYS_VENDOR, "Micro-Star"),
1848 DMI_MATCH(DMI_PRODUCT_NAME, "MS-171F"),}, NULL},
1849 {
1850 ec_honor_ecdt_gpe, "ASUS FX502VD", {
1851 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
1852 DMI_MATCH(DMI_PRODUCT_NAME, "FX502VD"),}, NULL},
1853 {
1854 ec_honor_ecdt_gpe, "ASUS FX502VE", {
1855 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
1856 DMI_MATCH(DMI_PRODUCT_NAME, "FX502VE"),}, NULL},
1857 {
1858 ec_honor_ecdt_gpe, "ASUS GL702VMK", {
1859 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
1860 DMI_MATCH(DMI_PRODUCT_NAME, "GL702VMK"),}, NULL},
1861 {
1862 ec_honor_ecdt_gpe, "ASUS X550VXK", {
1863 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
1864 DMI_MATCH(DMI_PRODUCT_NAME, "X550VXK"),}, NULL},
1865 {
1866 ec_honor_ecdt_gpe, "ASUS X580VD", {
1867 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
1868 DMI_MATCH(DMI_PRODUCT_NAME, "X580VD"),}, NULL},
1869 {
1870 ec_clear_on_resume, "Samsung hardware", {
1871 DMI_MATCH(DMI_SYS_VENDOR, "SAMSUNG ELECTRONICS CO., LTD.")}, NULL},
1872 {},
1873 };
1874
1875 void __init acpi_ec_ecdt_probe(void)
1876 {
1877 struct acpi_table_ecdt *ecdt_ptr;
1878 struct acpi_ec *ec;
1879 acpi_status status;
1880 int ret;
1881
1882 /* Generate a boot ec context. */
1883 dmi_check_system(ec_dmi_table);
1884 status = acpi_get_table(ACPI_SIG_ECDT, 1,
1885 (struct acpi_table_header **)&ecdt_ptr);
1886 if (ACPI_FAILURE(status))
1887 return;
1888
1889 if (!ecdt_ptr->control.address || !ecdt_ptr->data.address) {
1890 /*
1891 * Asus X50GL:
1892 * https://bugzilla.kernel.org/show_bug.cgi?id=11880
1893 */
1894 return;
1895 }
1896
1897 ec = acpi_ec_alloc();
1898 if (!ec)
1899 return;
1900
1901 if (EC_FLAGS_CORRECT_ECDT) {
1902 ec->command_addr = ecdt_ptr->data.address;
1903 ec->data_addr = ecdt_ptr->control.address;
1904 } else {
1905 ec->command_addr = ecdt_ptr->control.address;
1906 ec->data_addr = ecdt_ptr->data.address;
1907 }
1908
1909 /*
1910 * Ignore the GPE value on Reduced Hardware platforms.
1911 * Some products have this set to an erroneous value.
1912 */
1913 if (!acpi_gbl_reduced_hardware)
1914 ec->gpe = ecdt_ptr->gpe;
1915
1916 ec->handle = ACPI_ROOT_OBJECT;
1917
1918 /*
1919 * At this point, the namespace is not initialized, so do not find
1920 * the namespace objects, or handle the events.
1921 */
1922 ret = acpi_ec_setup(ec, NULL);
1923 if (ret) {
1924 acpi_ec_free(ec);
1925 return;
1926 }
1927
1928 boot_ec = ec;
1929 boot_ec_is_ecdt = true;
1930
1931 pr_info("Boot ECDT EC used to handle transactions\n");
1932 }
1933
1934 #ifdef CONFIG_PM_SLEEP
1935 static int acpi_ec_suspend(struct device *dev)
1936 {
1937 struct acpi_ec *ec =
1938 acpi_driver_data(to_acpi_device(dev));
1939
1940 if (!pm_suspend_no_platform() && ec_freeze_events)
1941 acpi_ec_disable_event(ec);
1942 return 0;
1943 }
1944
1945 static int acpi_ec_suspend_noirq(struct device *dev)
1946 {
1947 struct acpi_ec *ec = acpi_driver_data(to_acpi_device(dev));
1948
1949 /*
1950 * The SCI handler doesn't run at this point, so the GPE can be
1951 * masked at the low level without side effects.
1952 */
1953 if (ec_no_wakeup && test_bit(EC_FLAGS_STARTED, &ec->flags) &&
1954 ec->gpe >= 0 && ec->reference_count >= 1)
1955 acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_DISABLE);
1956
1957 acpi_ec_enter_noirq(ec);
1958
1959 return 0;
1960 }
1961
1962 static int acpi_ec_resume_noirq(struct device *dev)
1963 {
1964 struct acpi_ec *ec = acpi_driver_data(to_acpi_device(dev));
1965
1966 acpi_ec_leave_noirq(ec);
1967
1968 if (ec_no_wakeup && test_bit(EC_FLAGS_STARTED, &ec->flags) &&
1969 ec->gpe >= 0 && ec->reference_count >= 1)
1970 acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_ENABLE);
1971
1972 return 0;
1973 }
1974
1975 static int acpi_ec_resume(struct device *dev)
1976 {
1977 struct acpi_ec *ec =
1978 acpi_driver_data(to_acpi_device(dev));
1979
1980 acpi_ec_enable_event(ec);
1981 return 0;
1982 }
1983
1984 void acpi_ec_mark_gpe_for_wake(void)
1985 {
1986 if (first_ec && !ec_no_wakeup)
1987 acpi_mark_gpe_for_wake(NULL, first_ec->gpe);
1988 }
1989 EXPORT_SYMBOL_GPL(acpi_ec_mark_gpe_for_wake);
1990
1991 void acpi_ec_set_gpe_wake_mask(u8 action)
1992 {
1993 if (pm_suspend_no_platform() && first_ec && !ec_no_wakeup)
1994 acpi_set_gpe_wake_mask(NULL, first_ec->gpe, action);
1995 }
1996
1997 bool acpi_ec_dispatch_gpe(void)
1998 {
1999 u32 ret;
2000
2001 if (!first_ec)
2002 return acpi_any_gpe_status_set(U32_MAX);
2003
2004 /*
2005 * Report wakeup if the status bit is set for any enabled GPE other
2006 * than the EC one.
2007 */
2008 if (acpi_any_gpe_status_set(first_ec->gpe))
2009 return true;
2010
2011 if (ec_no_wakeup)
2012 return false;
2013
2014 /*
2015 * Dispatch the EC GPE in-band, but do not report wakeup in any case
2016 * to allow the caller to process events properly after that.
2017 */
2018 ret = acpi_dispatch_gpe(NULL, first_ec->gpe);
2019 if (ret == ACPI_INTERRUPT_HANDLED) {
2020 pm_pr_dbg("EC GPE dispatched\n");
2021
2022 /* Flush the event and query workqueues. */
2023 acpi_ec_flush_work();
2024 }
2025
2026 return false;
2027 }
2028 #endif /* CONFIG_PM_SLEEP */
2029
2030 static const struct dev_pm_ops acpi_ec_pm = {
2031 SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(acpi_ec_suspend_noirq, acpi_ec_resume_noirq)
2032 SET_SYSTEM_SLEEP_PM_OPS(acpi_ec_suspend, acpi_ec_resume)
2033 };
2034
2035 static int param_set_event_clearing(const char *val,
2036 const struct kernel_param *kp)
2037 {
2038 int result = 0;
2039
2040 if (!strncmp(val, "status", sizeof("status") - 1)) {
2041 ec_event_clearing = ACPI_EC_EVT_TIMING_STATUS;
2042 pr_info("Assuming SCI_EVT clearing on EC_SC accesses\n");
2043 } else if (!strncmp(val, "query", sizeof("query") - 1)) {
2044 ec_event_clearing = ACPI_EC_EVT_TIMING_QUERY;
2045 pr_info("Assuming SCI_EVT clearing on QR_EC writes\n");
2046 } else if (!strncmp(val, "event", sizeof("event") - 1)) {
2047 ec_event_clearing = ACPI_EC_EVT_TIMING_EVENT;
2048 pr_info("Assuming SCI_EVT clearing on event reads\n");
2049 } else
2050 result = -EINVAL;
2051 return result;
2052 }
2053
2054 static int param_get_event_clearing(char *buffer,
2055 const struct kernel_param *kp)
2056 {
2057 switch (ec_event_clearing) {
2058 case ACPI_EC_EVT_TIMING_STATUS:
2059 return sprintf(buffer, "status");
2060 case ACPI_EC_EVT_TIMING_QUERY:
2061 return sprintf(buffer, "query");
2062 case ACPI_EC_EVT_TIMING_EVENT:
2063 return sprintf(buffer, "event");
2064 default:
2065 return sprintf(buffer, "invalid");
2066 }
2067 return 0;
2068 }
2069
2070 module_param_call(ec_event_clearing, param_set_event_clearing, param_get_event_clearing,
2071 NULL, 0644);
2072 MODULE_PARM_DESC(ec_event_clearing, "Assumed SCI_EVT clearing timing");
2073
2074 static struct acpi_driver acpi_ec_driver = {
2075 .name = "ec",
2076 .class = ACPI_EC_CLASS,
2077 .ids = ec_device_ids,
2078 .ops = {
2079 .add = acpi_ec_add,
2080 .remove = acpi_ec_remove,
2081 },
2082 .drv.pm = &acpi_ec_pm,
2083 };
2084
2085 static void acpi_ec_destroy_workqueues(void)
2086 {
2087 if (ec_wq) {
2088 destroy_workqueue(ec_wq);
2089 ec_wq = NULL;
2090 }
2091 if (ec_query_wq) {
2092 destroy_workqueue(ec_query_wq);
2093 ec_query_wq = NULL;
2094 }
2095 }
2096
2097 static int acpi_ec_init_workqueues(void)
2098 {
2099 if (!ec_wq)
2100 ec_wq = alloc_ordered_workqueue("kec", 0);
2101
2102 if (!ec_query_wq)
2103 ec_query_wq = alloc_workqueue("kec_query", 0, ec_max_queries);
2104
2105 if (!ec_wq || !ec_query_wq) {
2106 acpi_ec_destroy_workqueues();
2107 return -ENODEV;
2108 }
2109 return 0;
2110 }
2111
2112 static const struct dmi_system_id acpi_ec_no_wakeup[] = {
2113 {
2114 .ident = "Thinkpad X1 Carbon 6th",
2115 .matches = {
2116 DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"),
2117 DMI_MATCH(DMI_PRODUCT_FAMILY, "Thinkpad X1 Carbon 6th"),
2118 },
2119 },
2120 {
2121 .ident = "ThinkPad X1 Carbon 6th",
2122 .matches = {
2123 DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"),
2124 DMI_MATCH(DMI_PRODUCT_FAMILY, "ThinkPad X1 Carbon 6th"),
2125 },
2126 },
2127 {
2128 .ident = "ThinkPad X1 Yoga 3rd",
2129 .matches = {
2130 DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"),
2131 DMI_MATCH(DMI_PRODUCT_FAMILY, "ThinkPad X1 Yoga 3rd"),
2132 },
2133 },
2134 { },
2135 };
2136
2137 void __init acpi_ec_init(void)
2138 {
2139 int result;
2140
2141 result = acpi_ec_init_workqueues();
2142 if (result)
2143 return;
2144
2145 /*
2146 * Disable EC wakeup on following systems to prevent periodic
2147 * wakeup from EC GPE.
2148 */
2149 if (dmi_check_system(acpi_ec_no_wakeup)) {
2150 ec_no_wakeup = true;
2151 pr_debug("Disabling EC wakeup on suspend-to-idle\n");
2152 }
2153
2154 /* Driver must be registered after acpi_ec_init_workqueues(). */
2155 acpi_bus_register_driver(&acpi_ec_driver);
2156
2157 acpi_ec_ecdt_start();
2158 }
2159
2160 /* EC driver currently not unloadable */
2161 #if 0
2162 static void __exit acpi_ec_exit(void)
2163 {
2164
2165 acpi_bus_unregister_driver(&acpi_ec_driver);
2166 acpi_ec_destroy_workqueues();
2167 }
2168 #endif /* 0 */