]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/acpi/scan.c
Merge tag 'dma-mapping-6.8-2024-01-08' of git://git.infradead.org/users/hch/dma-mapping
[thirdparty/linux.git] / drivers / acpi / scan.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * scan.c - support for transforming the ACPI namespace into individual objects
4 */
5
6 #define pr_fmt(fmt) "ACPI: " fmt
7
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/slab.h>
11 #include <linux/kernel.h>
12 #include <linux/acpi.h>
13 #include <linux/acpi_iort.h>
14 #include <linux/acpi_viot.h>
15 #include <linux/iommu.h>
16 #include <linux/signal.h>
17 #include <linux/kthread.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-map-ops.h>
20 #include <linux/platform_data/x86/apple.h>
21 #include <linux/pgtable.h>
22 #include <linux/crc32.h>
23 #include <linux/dma-direct.h>
24
25 #include "internal.h"
26 #include "sleep.h"
27
28 #define ACPI_BUS_CLASS "system_bus"
29 #define ACPI_BUS_HID "LNXSYBUS"
30 #define ACPI_BUS_DEVICE_NAME "System Bus"
31
32 #define INVALID_ACPI_HANDLE ((acpi_handle)ZERO_PAGE(0))
33
34 static const char *dummy_hid = "device";
35
36 static LIST_HEAD(acpi_dep_list);
37 static DEFINE_MUTEX(acpi_dep_list_lock);
38 LIST_HEAD(acpi_bus_id_list);
39 static DEFINE_MUTEX(acpi_scan_lock);
40 static LIST_HEAD(acpi_scan_handlers_list);
41 DEFINE_MUTEX(acpi_device_lock);
42 LIST_HEAD(acpi_wakeup_device_list);
43 static DEFINE_MUTEX(acpi_hp_context_lock);
44
45 /*
46 * The UART device described by the SPCR table is the only object which needs
47 * special-casing. Everything else is covered by ACPI namespace paths in STAO
48 * table.
49 */
50 static u64 spcr_uart_addr;
51
52 void acpi_scan_lock_acquire(void)
53 {
54 mutex_lock(&acpi_scan_lock);
55 }
56 EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire);
57
58 void acpi_scan_lock_release(void)
59 {
60 mutex_unlock(&acpi_scan_lock);
61 }
62 EXPORT_SYMBOL_GPL(acpi_scan_lock_release);
63
64 void acpi_lock_hp_context(void)
65 {
66 mutex_lock(&acpi_hp_context_lock);
67 }
68
69 void acpi_unlock_hp_context(void)
70 {
71 mutex_unlock(&acpi_hp_context_lock);
72 }
73
74 void acpi_initialize_hp_context(struct acpi_device *adev,
75 struct acpi_hotplug_context *hp,
76 int (*notify)(struct acpi_device *, u32),
77 void (*uevent)(struct acpi_device *, u32))
78 {
79 acpi_lock_hp_context();
80 hp->notify = notify;
81 hp->uevent = uevent;
82 acpi_set_hp_context(adev, hp);
83 acpi_unlock_hp_context();
84 }
85 EXPORT_SYMBOL_GPL(acpi_initialize_hp_context);
86
87 int acpi_scan_add_handler(struct acpi_scan_handler *handler)
88 {
89 if (!handler)
90 return -EINVAL;
91
92 list_add_tail(&handler->list_node, &acpi_scan_handlers_list);
93 return 0;
94 }
95
96 int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler,
97 const char *hotplug_profile_name)
98 {
99 int error;
100
101 error = acpi_scan_add_handler(handler);
102 if (error)
103 return error;
104
105 acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name);
106 return 0;
107 }
108
109 bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent)
110 {
111 struct acpi_device_physical_node *pn;
112 bool offline = true;
113 char *envp[] = { "EVENT=offline", NULL };
114
115 /*
116 * acpi_container_offline() calls this for all of the container's
117 * children under the container's physical_node_lock lock.
118 */
119 mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING);
120
121 list_for_each_entry(pn, &adev->physical_node_list, node)
122 if (device_supports_offline(pn->dev) && !pn->dev->offline) {
123 if (uevent)
124 kobject_uevent_env(&pn->dev->kobj, KOBJ_CHANGE, envp);
125
126 offline = false;
127 break;
128 }
129
130 mutex_unlock(&adev->physical_node_lock);
131 return offline;
132 }
133
134 static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data,
135 void **ret_p)
136 {
137 struct acpi_device *device = acpi_fetch_acpi_dev(handle);
138 struct acpi_device_physical_node *pn;
139 bool second_pass = (bool)data;
140 acpi_status status = AE_OK;
141
142 if (!device)
143 return AE_OK;
144
145 if (device->handler && !device->handler->hotplug.enabled) {
146 *ret_p = &device->dev;
147 return AE_SUPPORT;
148 }
149
150 mutex_lock(&device->physical_node_lock);
151
152 list_for_each_entry(pn, &device->physical_node_list, node) {
153 int ret;
154
155 if (second_pass) {
156 /* Skip devices offlined by the first pass. */
157 if (pn->put_online)
158 continue;
159 } else {
160 pn->put_online = false;
161 }
162 ret = device_offline(pn->dev);
163 if (ret >= 0) {
164 pn->put_online = !ret;
165 } else {
166 *ret_p = pn->dev;
167 if (second_pass) {
168 status = AE_ERROR;
169 break;
170 }
171 }
172 }
173
174 mutex_unlock(&device->physical_node_lock);
175
176 return status;
177 }
178
179 static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data,
180 void **ret_p)
181 {
182 struct acpi_device *device = acpi_fetch_acpi_dev(handle);
183 struct acpi_device_physical_node *pn;
184
185 if (!device)
186 return AE_OK;
187
188 mutex_lock(&device->physical_node_lock);
189
190 list_for_each_entry(pn, &device->physical_node_list, node)
191 if (pn->put_online) {
192 device_online(pn->dev);
193 pn->put_online = false;
194 }
195
196 mutex_unlock(&device->physical_node_lock);
197
198 return AE_OK;
199 }
200
201 static int acpi_scan_try_to_offline(struct acpi_device *device)
202 {
203 acpi_handle handle = device->handle;
204 struct device *errdev = NULL;
205 acpi_status status;
206
207 /*
208 * Carry out two passes here and ignore errors in the first pass,
209 * because if the devices in question are memory blocks and
210 * CONFIG_MEMCG is set, one of the blocks may hold data structures
211 * that the other blocks depend on, but it is not known in advance which
212 * block holds them.
213 *
214 * If the first pass is successful, the second one isn't needed, though.
215 */
216 status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
217 NULL, acpi_bus_offline, (void *)false,
218 (void **)&errdev);
219 if (status == AE_SUPPORT) {
220 dev_warn(errdev, "Offline disabled.\n");
221 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
222 acpi_bus_online, NULL, NULL, NULL);
223 return -EPERM;
224 }
225 acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev);
226 if (errdev) {
227 errdev = NULL;
228 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
229 NULL, acpi_bus_offline, (void *)true,
230 (void **)&errdev);
231 if (!errdev)
232 acpi_bus_offline(handle, 0, (void *)true,
233 (void **)&errdev);
234
235 if (errdev) {
236 dev_warn(errdev, "Offline failed.\n");
237 acpi_bus_online(handle, 0, NULL, NULL);
238 acpi_walk_namespace(ACPI_TYPE_ANY, handle,
239 ACPI_UINT32_MAX, acpi_bus_online,
240 NULL, NULL, NULL);
241 return -EBUSY;
242 }
243 }
244 return 0;
245 }
246
247 static int acpi_scan_hot_remove(struct acpi_device *device)
248 {
249 acpi_handle handle = device->handle;
250 unsigned long long sta;
251 acpi_status status;
252
253 if (device->handler && device->handler->hotplug.demand_offline) {
254 if (!acpi_scan_is_offline(device, true))
255 return -EBUSY;
256 } else {
257 int error = acpi_scan_try_to_offline(device);
258 if (error)
259 return error;
260 }
261
262 acpi_handle_debug(handle, "Ejecting\n");
263
264 acpi_bus_trim(device);
265
266 acpi_evaluate_lck(handle, 0);
267 /*
268 * TBD: _EJD support.
269 */
270 status = acpi_evaluate_ej0(handle);
271 if (status == AE_NOT_FOUND)
272 return -ENODEV;
273 else if (ACPI_FAILURE(status))
274 return -EIO;
275
276 /*
277 * Verify if eject was indeed successful. If not, log an error
278 * message. No need to call _OST since _EJ0 call was made OK.
279 */
280 status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
281 if (ACPI_FAILURE(status)) {
282 acpi_handle_warn(handle,
283 "Status check after eject failed (0x%x)\n", status);
284 } else if (sta & ACPI_STA_DEVICE_ENABLED) {
285 acpi_handle_warn(handle,
286 "Eject incomplete - status 0x%llx\n", sta);
287 }
288
289 return 0;
290 }
291
292 static int acpi_scan_device_not_enumerated(struct acpi_device *adev)
293 {
294 if (!acpi_device_enumerated(adev)) {
295 dev_warn(&adev->dev, "Still not enumerated\n");
296 return -EALREADY;
297 }
298 acpi_bus_trim(adev);
299 return 0;
300 }
301
302 static int acpi_scan_device_check(struct acpi_device *adev)
303 {
304 int error;
305
306 acpi_bus_get_status(adev);
307 if (acpi_device_is_present(adev)) {
308 /*
309 * This function is only called for device objects for which
310 * matching scan handlers exist. The only situation in which
311 * the scan handler is not attached to this device object yet
312 * is when the device has just appeared (either it wasn't
313 * present at all before or it was removed and then added
314 * again).
315 */
316 if (adev->handler) {
317 dev_warn(&adev->dev, "Already enumerated\n");
318 return -EALREADY;
319 }
320 error = acpi_bus_scan(adev->handle);
321 if (error) {
322 dev_warn(&adev->dev, "Namespace scan failure\n");
323 return error;
324 }
325 if (!adev->handler) {
326 dev_warn(&adev->dev, "Enumeration failure\n");
327 error = -ENODEV;
328 }
329 } else {
330 error = acpi_scan_device_not_enumerated(adev);
331 }
332 return error;
333 }
334
335 static int acpi_scan_bus_check(struct acpi_device *adev, void *not_used)
336 {
337 struct acpi_scan_handler *handler = adev->handler;
338 int error;
339
340 acpi_bus_get_status(adev);
341 if (!acpi_device_is_present(adev)) {
342 acpi_scan_device_not_enumerated(adev);
343 return 0;
344 }
345 if (handler && handler->hotplug.scan_dependent)
346 return handler->hotplug.scan_dependent(adev);
347
348 error = acpi_bus_scan(adev->handle);
349 if (error) {
350 dev_warn(&adev->dev, "Namespace scan failure\n");
351 return error;
352 }
353 return acpi_dev_for_each_child(adev, acpi_scan_bus_check, NULL);
354 }
355
356 static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type)
357 {
358 switch (type) {
359 case ACPI_NOTIFY_BUS_CHECK:
360 return acpi_scan_bus_check(adev, NULL);
361 case ACPI_NOTIFY_DEVICE_CHECK:
362 return acpi_scan_device_check(adev);
363 case ACPI_NOTIFY_EJECT_REQUEST:
364 case ACPI_OST_EC_OSPM_EJECT:
365 if (adev->handler && !adev->handler->hotplug.enabled) {
366 dev_info(&adev->dev, "Eject disabled\n");
367 return -EPERM;
368 }
369 acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST,
370 ACPI_OST_SC_EJECT_IN_PROGRESS, NULL);
371 return acpi_scan_hot_remove(adev);
372 }
373 return -EINVAL;
374 }
375
376 void acpi_device_hotplug(struct acpi_device *adev, u32 src)
377 {
378 u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
379 int error = -ENODEV;
380
381 lock_device_hotplug();
382 mutex_lock(&acpi_scan_lock);
383
384 /*
385 * The device object's ACPI handle cannot become invalid as long as we
386 * are holding acpi_scan_lock, but it might have become invalid before
387 * that lock was acquired.
388 */
389 if (adev->handle == INVALID_ACPI_HANDLE)
390 goto err_out;
391
392 if (adev->flags.is_dock_station) {
393 error = dock_notify(adev, src);
394 } else if (adev->flags.hotplug_notify) {
395 error = acpi_generic_hotplug_event(adev, src);
396 } else {
397 int (*notify)(struct acpi_device *, u32);
398
399 acpi_lock_hp_context();
400 notify = adev->hp ? adev->hp->notify : NULL;
401 acpi_unlock_hp_context();
402 /*
403 * There may be additional notify handlers for device objects
404 * without the .event() callback, so ignore them here.
405 */
406 if (notify)
407 error = notify(adev, src);
408 else
409 goto out;
410 }
411 switch (error) {
412 case 0:
413 ost_code = ACPI_OST_SC_SUCCESS;
414 break;
415 case -EPERM:
416 ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED;
417 break;
418 case -EBUSY:
419 ost_code = ACPI_OST_SC_DEVICE_BUSY;
420 break;
421 default:
422 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
423 break;
424 }
425
426 err_out:
427 acpi_evaluate_ost(adev->handle, src, ost_code, NULL);
428
429 out:
430 acpi_put_acpi_dev(adev);
431 mutex_unlock(&acpi_scan_lock);
432 unlock_device_hotplug();
433 }
434
435 static void acpi_free_power_resources_lists(struct acpi_device *device)
436 {
437 int i;
438
439 if (device->wakeup.flags.valid)
440 acpi_power_resources_list_free(&device->wakeup.resources);
441
442 if (!device->power.flags.power_resources)
443 return;
444
445 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
446 struct acpi_device_power_state *ps = &device->power.states[i];
447 acpi_power_resources_list_free(&ps->resources);
448 }
449 }
450
451 static void acpi_device_release(struct device *dev)
452 {
453 struct acpi_device *acpi_dev = to_acpi_device(dev);
454
455 acpi_free_properties(acpi_dev);
456 acpi_free_pnp_ids(&acpi_dev->pnp);
457 acpi_free_power_resources_lists(acpi_dev);
458 kfree(acpi_dev);
459 }
460
461 static void acpi_device_del(struct acpi_device *device)
462 {
463 struct acpi_device_bus_id *acpi_device_bus_id;
464
465 mutex_lock(&acpi_device_lock);
466
467 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node)
468 if (!strcmp(acpi_device_bus_id->bus_id,
469 acpi_device_hid(device))) {
470 ida_free(&acpi_device_bus_id->instance_ida,
471 device->pnp.instance_no);
472 if (ida_is_empty(&acpi_device_bus_id->instance_ida)) {
473 list_del(&acpi_device_bus_id->node);
474 kfree_const(acpi_device_bus_id->bus_id);
475 kfree(acpi_device_bus_id);
476 }
477 break;
478 }
479
480 list_del(&device->wakeup_list);
481
482 mutex_unlock(&acpi_device_lock);
483
484 acpi_power_add_remove_device(device, false);
485 acpi_device_remove_files(device);
486 if (device->remove)
487 device->remove(device);
488
489 device_del(&device->dev);
490 }
491
492 static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain);
493
494 static LIST_HEAD(acpi_device_del_list);
495 static DEFINE_MUTEX(acpi_device_del_lock);
496
497 static void acpi_device_del_work_fn(struct work_struct *work_not_used)
498 {
499 for (;;) {
500 struct acpi_device *adev;
501
502 mutex_lock(&acpi_device_del_lock);
503
504 if (list_empty(&acpi_device_del_list)) {
505 mutex_unlock(&acpi_device_del_lock);
506 break;
507 }
508 adev = list_first_entry(&acpi_device_del_list,
509 struct acpi_device, del_list);
510 list_del(&adev->del_list);
511
512 mutex_unlock(&acpi_device_del_lock);
513
514 blocking_notifier_call_chain(&acpi_reconfig_chain,
515 ACPI_RECONFIG_DEVICE_REMOVE, adev);
516
517 acpi_device_del(adev);
518 /*
519 * Drop references to all power resources that might have been
520 * used by the device.
521 */
522 acpi_power_transition(adev, ACPI_STATE_D3_COLD);
523 acpi_dev_put(adev);
524 }
525 }
526
527 /**
528 * acpi_scan_drop_device - Drop an ACPI device object.
529 * @handle: Handle of an ACPI namespace node, not used.
530 * @context: Address of the ACPI device object to drop.
531 *
532 * This is invoked by acpi_ns_delete_node() during the removal of the ACPI
533 * namespace node the device object pointed to by @context is attached to.
534 *
535 * The unregistration is carried out asynchronously to avoid running
536 * acpi_device_del() under the ACPICA's namespace mutex and the list is used to
537 * ensure the correct ordering (the device objects must be unregistered in the
538 * same order in which the corresponding namespace nodes are deleted).
539 */
540 static void acpi_scan_drop_device(acpi_handle handle, void *context)
541 {
542 static DECLARE_WORK(work, acpi_device_del_work_fn);
543 struct acpi_device *adev = context;
544
545 mutex_lock(&acpi_device_del_lock);
546
547 /*
548 * Use the ACPI hotplug workqueue which is ordered, so this work item
549 * won't run after any hotplug work items submitted subsequently. That
550 * prevents attempts to register device objects identical to those being
551 * deleted from happening concurrently (such attempts result from
552 * hotplug events handled via the ACPI hotplug workqueue). It also will
553 * run after all of the work items submitted previously, which helps
554 * those work items to ensure that they are not accessing stale device
555 * objects.
556 */
557 if (list_empty(&acpi_device_del_list))
558 acpi_queue_hotplug_work(&work);
559
560 list_add_tail(&adev->del_list, &acpi_device_del_list);
561 /* Make acpi_ns_validate_handle() return NULL for this handle. */
562 adev->handle = INVALID_ACPI_HANDLE;
563
564 mutex_unlock(&acpi_device_del_lock);
565 }
566
567 static struct acpi_device *handle_to_device(acpi_handle handle,
568 void (*callback)(void *))
569 {
570 struct acpi_device *adev = NULL;
571 acpi_status status;
572
573 status = acpi_get_data_full(handle, acpi_scan_drop_device,
574 (void **)&adev, callback);
575 if (ACPI_FAILURE(status) || !adev) {
576 acpi_handle_debug(handle, "No context!\n");
577 return NULL;
578 }
579 return adev;
580 }
581
582 /**
583 * acpi_fetch_acpi_dev - Retrieve ACPI device object.
584 * @handle: ACPI handle associated with the requested ACPI device object.
585 *
586 * Return a pointer to the ACPI device object associated with @handle, if
587 * present, or NULL otherwise.
588 */
589 struct acpi_device *acpi_fetch_acpi_dev(acpi_handle handle)
590 {
591 return handle_to_device(handle, NULL);
592 }
593 EXPORT_SYMBOL_GPL(acpi_fetch_acpi_dev);
594
595 static void get_acpi_device(void *dev)
596 {
597 acpi_dev_get(dev);
598 }
599
600 /**
601 * acpi_get_acpi_dev - Retrieve ACPI device object and reference count it.
602 * @handle: ACPI handle associated with the requested ACPI device object.
603 *
604 * Return a pointer to the ACPI device object associated with @handle and bump
605 * up that object's reference counter (under the ACPI Namespace lock), if
606 * present, or return NULL otherwise.
607 *
608 * The ACPI device object reference acquired by this function needs to be
609 * dropped via acpi_dev_put().
610 */
611 struct acpi_device *acpi_get_acpi_dev(acpi_handle handle)
612 {
613 return handle_to_device(handle, get_acpi_device);
614 }
615 EXPORT_SYMBOL_GPL(acpi_get_acpi_dev);
616
617 static struct acpi_device_bus_id *acpi_device_bus_id_match(const char *dev_id)
618 {
619 struct acpi_device_bus_id *acpi_device_bus_id;
620
621 /* Find suitable bus_id and instance number in acpi_bus_id_list. */
622 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) {
623 if (!strcmp(acpi_device_bus_id->bus_id, dev_id))
624 return acpi_device_bus_id;
625 }
626 return NULL;
627 }
628
629 static int acpi_device_set_name(struct acpi_device *device,
630 struct acpi_device_bus_id *acpi_device_bus_id)
631 {
632 struct ida *instance_ida = &acpi_device_bus_id->instance_ida;
633 int result;
634
635 result = ida_alloc(instance_ida, GFP_KERNEL);
636 if (result < 0)
637 return result;
638
639 device->pnp.instance_no = result;
640 dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, result);
641 return 0;
642 }
643
644 int acpi_tie_acpi_dev(struct acpi_device *adev)
645 {
646 acpi_handle handle = adev->handle;
647 acpi_status status;
648
649 if (!handle)
650 return 0;
651
652 status = acpi_attach_data(handle, acpi_scan_drop_device, adev);
653 if (ACPI_FAILURE(status)) {
654 acpi_handle_err(handle, "Unable to attach device data\n");
655 return -ENODEV;
656 }
657
658 return 0;
659 }
660
661 static void acpi_store_pld_crc(struct acpi_device *adev)
662 {
663 struct acpi_pld_info *pld;
664 acpi_status status;
665
666 status = acpi_get_physical_device_location(adev->handle, &pld);
667 if (ACPI_FAILURE(status))
668 return;
669
670 adev->pld_crc = crc32(~0, pld, sizeof(*pld));
671 ACPI_FREE(pld);
672 }
673
674 int acpi_device_add(struct acpi_device *device)
675 {
676 struct acpi_device_bus_id *acpi_device_bus_id;
677 int result;
678
679 /*
680 * Linkage
681 * -------
682 * Link this device to its parent and siblings.
683 */
684 INIT_LIST_HEAD(&device->wakeup_list);
685 INIT_LIST_HEAD(&device->physical_node_list);
686 INIT_LIST_HEAD(&device->del_list);
687 mutex_init(&device->physical_node_lock);
688
689 mutex_lock(&acpi_device_lock);
690
691 acpi_device_bus_id = acpi_device_bus_id_match(acpi_device_hid(device));
692 if (acpi_device_bus_id) {
693 result = acpi_device_set_name(device, acpi_device_bus_id);
694 if (result)
695 goto err_unlock;
696 } else {
697 acpi_device_bus_id = kzalloc(sizeof(*acpi_device_bus_id),
698 GFP_KERNEL);
699 if (!acpi_device_bus_id) {
700 result = -ENOMEM;
701 goto err_unlock;
702 }
703 acpi_device_bus_id->bus_id =
704 kstrdup_const(acpi_device_hid(device), GFP_KERNEL);
705 if (!acpi_device_bus_id->bus_id) {
706 kfree(acpi_device_bus_id);
707 result = -ENOMEM;
708 goto err_unlock;
709 }
710
711 ida_init(&acpi_device_bus_id->instance_ida);
712
713 result = acpi_device_set_name(device, acpi_device_bus_id);
714 if (result) {
715 kfree_const(acpi_device_bus_id->bus_id);
716 kfree(acpi_device_bus_id);
717 goto err_unlock;
718 }
719
720 list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list);
721 }
722
723 if (device->wakeup.flags.valid)
724 list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list);
725
726 acpi_store_pld_crc(device);
727
728 mutex_unlock(&acpi_device_lock);
729
730 result = device_add(&device->dev);
731 if (result) {
732 dev_err(&device->dev, "Error registering device\n");
733 goto err;
734 }
735
736 result = acpi_device_setup_files(device);
737 if (result)
738 pr_err("Error creating sysfs interface for device %s\n",
739 dev_name(&device->dev));
740
741 return 0;
742
743 err:
744 mutex_lock(&acpi_device_lock);
745
746 list_del(&device->wakeup_list);
747
748 err_unlock:
749 mutex_unlock(&acpi_device_lock);
750
751 acpi_detach_data(device->handle, acpi_scan_drop_device);
752
753 return result;
754 }
755
756 /* --------------------------------------------------------------------------
757 Device Enumeration
758 -------------------------------------------------------------------------- */
759 static bool acpi_info_matches_ids(struct acpi_device_info *info,
760 const char * const ids[])
761 {
762 struct acpi_pnp_device_id_list *cid_list = NULL;
763 int i, index;
764
765 if (!(info->valid & ACPI_VALID_HID))
766 return false;
767
768 index = match_string(ids, -1, info->hardware_id.string);
769 if (index >= 0)
770 return true;
771
772 if (info->valid & ACPI_VALID_CID)
773 cid_list = &info->compatible_id_list;
774
775 if (!cid_list)
776 return false;
777
778 for (i = 0; i < cid_list->count; i++) {
779 index = match_string(ids, -1, cid_list->ids[i].string);
780 if (index >= 0)
781 return true;
782 }
783
784 return false;
785 }
786
787 /* List of HIDs for which we ignore matching ACPI devices, when checking _DEP lists. */
788 static const char * const acpi_ignore_dep_ids[] = {
789 "PNP0D80", /* Windows-compatible System Power Management Controller */
790 "INT33BD", /* Intel Baytrail Mailbox Device */
791 "LATT2021", /* Lattice FW Update Client Driver */
792 NULL
793 };
794
795 /* List of HIDs for which we honor deps of matching ACPI devs, when checking _DEP lists. */
796 static const char * const acpi_honor_dep_ids[] = {
797 "INT3472", /* Camera sensor PMIC / clk and regulator info */
798 "INTC1059", /* IVSC (TGL) driver must be loaded to allow i2c access to camera sensors */
799 "INTC1095", /* IVSC (ADL) driver must be loaded to allow i2c access to camera sensors */
800 "INTC100A", /* IVSC (RPL) driver must be loaded to allow i2c access to camera sensors */
801 NULL
802 };
803
804 static struct acpi_device *acpi_find_parent_acpi_dev(acpi_handle handle)
805 {
806 struct acpi_device *adev;
807
808 /*
809 * Fixed hardware devices do not appear in the namespace and do not
810 * have handles, but we fabricate acpi_devices for them, so we have
811 * to deal with them specially.
812 */
813 if (!handle)
814 return acpi_root;
815
816 do {
817 acpi_status status;
818
819 status = acpi_get_parent(handle, &handle);
820 if (ACPI_FAILURE(status)) {
821 if (status != AE_NULL_ENTRY)
822 return acpi_root;
823
824 return NULL;
825 }
826 adev = acpi_fetch_acpi_dev(handle);
827 } while (!adev);
828 return adev;
829 }
830
831 acpi_status
832 acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd)
833 {
834 acpi_status status;
835 acpi_handle tmp;
836 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
837 union acpi_object *obj;
838
839 status = acpi_get_handle(handle, "_EJD", &tmp);
840 if (ACPI_FAILURE(status))
841 return status;
842
843 status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer);
844 if (ACPI_SUCCESS(status)) {
845 obj = buffer.pointer;
846 status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer,
847 ejd);
848 kfree(buffer.pointer);
849 }
850 return status;
851 }
852 EXPORT_SYMBOL_GPL(acpi_bus_get_ejd);
853
854 static int acpi_bus_extract_wakeup_device_power_package(struct acpi_device *dev)
855 {
856 acpi_handle handle = dev->handle;
857 struct acpi_device_wakeup *wakeup = &dev->wakeup;
858 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
859 union acpi_object *package = NULL;
860 union acpi_object *element = NULL;
861 acpi_status status;
862 int err = -ENODATA;
863
864 INIT_LIST_HEAD(&wakeup->resources);
865
866 /* _PRW */
867 status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer);
868 if (ACPI_FAILURE(status)) {
869 acpi_handle_info(handle, "_PRW evaluation failed: %s\n",
870 acpi_format_exception(status));
871 return err;
872 }
873
874 package = (union acpi_object *)buffer.pointer;
875
876 if (!package || package->package.count < 2)
877 goto out;
878
879 element = &(package->package.elements[0]);
880 if (!element)
881 goto out;
882
883 if (element->type == ACPI_TYPE_PACKAGE) {
884 if ((element->package.count < 2) ||
885 (element->package.elements[0].type !=
886 ACPI_TYPE_LOCAL_REFERENCE)
887 || (element->package.elements[1].type != ACPI_TYPE_INTEGER))
888 goto out;
889
890 wakeup->gpe_device =
891 element->package.elements[0].reference.handle;
892 wakeup->gpe_number =
893 (u32) element->package.elements[1].integer.value;
894 } else if (element->type == ACPI_TYPE_INTEGER) {
895 wakeup->gpe_device = NULL;
896 wakeup->gpe_number = element->integer.value;
897 } else {
898 goto out;
899 }
900
901 element = &(package->package.elements[1]);
902 if (element->type != ACPI_TYPE_INTEGER)
903 goto out;
904
905 wakeup->sleep_state = element->integer.value;
906
907 err = acpi_extract_power_resources(package, 2, &wakeup->resources);
908 if (err)
909 goto out;
910
911 if (!list_empty(&wakeup->resources)) {
912 int sleep_state;
913
914 err = acpi_power_wakeup_list_init(&wakeup->resources,
915 &sleep_state);
916 if (err) {
917 acpi_handle_warn(handle, "Retrieving current states "
918 "of wakeup power resources failed\n");
919 acpi_power_resources_list_free(&wakeup->resources);
920 goto out;
921 }
922 if (sleep_state < wakeup->sleep_state) {
923 acpi_handle_warn(handle, "Overriding _PRW sleep state "
924 "(S%d) by S%d from power resources\n",
925 (int)wakeup->sleep_state, sleep_state);
926 wakeup->sleep_state = sleep_state;
927 }
928 }
929
930 out:
931 kfree(buffer.pointer);
932 return err;
933 }
934
935 /* Do not use a button for S5 wakeup */
936 #define ACPI_AVOID_WAKE_FROM_S5 BIT(0)
937
938 static bool acpi_wakeup_gpe_init(struct acpi_device *device)
939 {
940 static const struct acpi_device_id button_device_ids[] = {
941 {"PNP0C0C", 0}, /* Power button */
942 {"PNP0C0D", ACPI_AVOID_WAKE_FROM_S5}, /* Lid */
943 {"PNP0C0E", ACPI_AVOID_WAKE_FROM_S5}, /* Sleep button */
944 {"", 0},
945 };
946 struct acpi_device_wakeup *wakeup = &device->wakeup;
947 const struct acpi_device_id *match;
948 acpi_status status;
949
950 wakeup->flags.notifier_present = 0;
951
952 /* Power button, Lid switch always enable wakeup */
953 match = acpi_match_acpi_device(button_device_ids, device);
954 if (match) {
955 if ((match->driver_data & ACPI_AVOID_WAKE_FROM_S5) &&
956 wakeup->sleep_state == ACPI_STATE_S5)
957 wakeup->sleep_state = ACPI_STATE_S4;
958 acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number);
959 device_set_wakeup_capable(&device->dev, true);
960 return true;
961 }
962
963 status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device,
964 wakeup->gpe_number);
965 return ACPI_SUCCESS(status);
966 }
967
968 static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device)
969 {
970 int err;
971
972 /* Presence of _PRW indicates wake capable */
973 if (!acpi_has_method(device->handle, "_PRW"))
974 return;
975
976 err = acpi_bus_extract_wakeup_device_power_package(device);
977 if (err) {
978 dev_err(&device->dev, "Unable to extract wakeup power resources");
979 return;
980 }
981
982 device->wakeup.flags.valid = acpi_wakeup_gpe_init(device);
983 device->wakeup.prepare_count = 0;
984 /*
985 * Call _PSW/_DSW object to disable its ability to wake the sleeping
986 * system for the ACPI device with the _PRW object.
987 * The _PSW object is deprecated in ACPI 3.0 and is replaced by _DSW.
988 * So it is necessary to call _DSW object first. Only when it is not
989 * present will the _PSW object used.
990 */
991 err = acpi_device_sleep_wake(device, 0, 0, 0);
992 if (err)
993 pr_debug("error in _DSW or _PSW evaluation\n");
994 }
995
996 static void acpi_bus_init_power_state(struct acpi_device *device, int state)
997 {
998 struct acpi_device_power_state *ps = &device->power.states[state];
999 char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' };
1000 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1001 acpi_status status;
1002
1003 INIT_LIST_HEAD(&ps->resources);
1004
1005 /* Evaluate "_PRx" to get referenced power resources */
1006 status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer);
1007 if (ACPI_SUCCESS(status)) {
1008 union acpi_object *package = buffer.pointer;
1009
1010 if (buffer.length && package
1011 && package->type == ACPI_TYPE_PACKAGE
1012 && package->package.count)
1013 acpi_extract_power_resources(package, 0, &ps->resources);
1014
1015 ACPI_FREE(buffer.pointer);
1016 }
1017
1018 /* Evaluate "_PSx" to see if we can do explicit sets */
1019 pathname[2] = 'S';
1020 if (acpi_has_method(device->handle, pathname))
1021 ps->flags.explicit_set = 1;
1022
1023 /* State is valid if there are means to put the device into it. */
1024 if (!list_empty(&ps->resources) || ps->flags.explicit_set)
1025 ps->flags.valid = 1;
1026
1027 ps->power = -1; /* Unknown - driver assigned */
1028 ps->latency = -1; /* Unknown - driver assigned */
1029 }
1030
1031 static void acpi_bus_get_power_flags(struct acpi_device *device)
1032 {
1033 unsigned long long dsc = ACPI_STATE_D0;
1034 u32 i;
1035
1036 /* Presence of _PS0|_PR0 indicates 'power manageable' */
1037 if (!acpi_has_method(device->handle, "_PS0") &&
1038 !acpi_has_method(device->handle, "_PR0"))
1039 return;
1040
1041 device->flags.power_manageable = 1;
1042
1043 /*
1044 * Power Management Flags
1045 */
1046 if (acpi_has_method(device->handle, "_PSC"))
1047 device->power.flags.explicit_get = 1;
1048
1049 if (acpi_has_method(device->handle, "_IRC"))
1050 device->power.flags.inrush_current = 1;
1051
1052 if (acpi_has_method(device->handle, "_DSW"))
1053 device->power.flags.dsw_present = 1;
1054
1055 acpi_evaluate_integer(device->handle, "_DSC", NULL, &dsc);
1056 device->power.state_for_enumeration = dsc;
1057
1058 /*
1059 * Enumerate supported power management states
1060 */
1061 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++)
1062 acpi_bus_init_power_state(device, i);
1063
1064 INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources);
1065
1066 /* Set the defaults for D0 and D3hot (always supported). */
1067 device->power.states[ACPI_STATE_D0].flags.valid = 1;
1068 device->power.states[ACPI_STATE_D0].power = 100;
1069 device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1;
1070
1071 /*
1072 * Use power resources only if the D0 list of them is populated, because
1073 * some platforms may provide _PR3 only to indicate D3cold support and
1074 * in those cases the power resources list returned by it may be bogus.
1075 */
1076 if (!list_empty(&device->power.states[ACPI_STATE_D0].resources)) {
1077 device->power.flags.power_resources = 1;
1078 /*
1079 * D3cold is supported if the D3hot list of power resources is
1080 * not empty.
1081 */
1082 if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources))
1083 device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1;
1084 }
1085
1086 if (acpi_bus_init_power(device))
1087 device->flags.power_manageable = 0;
1088 }
1089
1090 static void acpi_bus_get_flags(struct acpi_device *device)
1091 {
1092 /* Presence of _STA indicates 'dynamic_status' */
1093 if (acpi_has_method(device->handle, "_STA"))
1094 device->flags.dynamic_status = 1;
1095
1096 /* Presence of _RMV indicates 'removable' */
1097 if (acpi_has_method(device->handle, "_RMV"))
1098 device->flags.removable = 1;
1099
1100 /* Presence of _EJD|_EJ0 indicates 'ejectable' */
1101 if (acpi_has_method(device->handle, "_EJD") ||
1102 acpi_has_method(device->handle, "_EJ0"))
1103 device->flags.ejectable = 1;
1104 }
1105
1106 static void acpi_device_get_busid(struct acpi_device *device)
1107 {
1108 char bus_id[5] = { '?', 0 };
1109 struct acpi_buffer buffer = { sizeof(bus_id), bus_id };
1110 int i = 0;
1111
1112 /*
1113 * Bus ID
1114 * ------
1115 * The device's Bus ID is simply the object name.
1116 * TBD: Shouldn't this value be unique (within the ACPI namespace)?
1117 */
1118 if (!acpi_dev_parent(device)) {
1119 strcpy(device->pnp.bus_id, "ACPI");
1120 return;
1121 }
1122
1123 switch (device->device_type) {
1124 case ACPI_BUS_TYPE_POWER_BUTTON:
1125 strcpy(device->pnp.bus_id, "PWRF");
1126 break;
1127 case ACPI_BUS_TYPE_SLEEP_BUTTON:
1128 strcpy(device->pnp.bus_id, "SLPF");
1129 break;
1130 case ACPI_BUS_TYPE_ECDT_EC:
1131 strcpy(device->pnp.bus_id, "ECDT");
1132 break;
1133 default:
1134 acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer);
1135 /* Clean up trailing underscores (if any) */
1136 for (i = 3; i > 1; i--) {
1137 if (bus_id[i] == '_')
1138 bus_id[i] = '\0';
1139 else
1140 break;
1141 }
1142 strcpy(device->pnp.bus_id, bus_id);
1143 break;
1144 }
1145 }
1146
1147 /*
1148 * acpi_ata_match - see if an acpi object is an ATA device
1149 *
1150 * If an acpi object has one of the ACPI ATA methods defined,
1151 * then we can safely call it an ATA device.
1152 */
1153 bool acpi_ata_match(acpi_handle handle)
1154 {
1155 return acpi_has_method(handle, "_GTF") ||
1156 acpi_has_method(handle, "_GTM") ||
1157 acpi_has_method(handle, "_STM") ||
1158 acpi_has_method(handle, "_SDD");
1159 }
1160
1161 /*
1162 * acpi_bay_match - see if an acpi object is an ejectable driver bay
1163 *
1164 * If an acpi object is ejectable and has one of the ACPI ATA methods defined,
1165 * then we can safely call it an ejectable drive bay
1166 */
1167 bool acpi_bay_match(acpi_handle handle)
1168 {
1169 acpi_handle phandle;
1170
1171 if (!acpi_has_method(handle, "_EJ0"))
1172 return false;
1173 if (acpi_ata_match(handle))
1174 return true;
1175 if (ACPI_FAILURE(acpi_get_parent(handle, &phandle)))
1176 return false;
1177
1178 return acpi_ata_match(phandle);
1179 }
1180
1181 bool acpi_device_is_battery(struct acpi_device *adev)
1182 {
1183 struct acpi_hardware_id *hwid;
1184
1185 list_for_each_entry(hwid, &adev->pnp.ids, list)
1186 if (!strcmp("PNP0C0A", hwid->id))
1187 return true;
1188
1189 return false;
1190 }
1191
1192 static bool is_ejectable_bay(struct acpi_device *adev)
1193 {
1194 acpi_handle handle = adev->handle;
1195
1196 if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev))
1197 return true;
1198
1199 return acpi_bay_match(handle);
1200 }
1201
1202 /*
1203 * acpi_dock_match - see if an acpi object has a _DCK method
1204 */
1205 bool acpi_dock_match(acpi_handle handle)
1206 {
1207 return acpi_has_method(handle, "_DCK");
1208 }
1209
1210 static acpi_status
1211 acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context,
1212 void **return_value)
1213 {
1214 long *cap = context;
1215
1216 if (acpi_has_method(handle, "_BCM") &&
1217 acpi_has_method(handle, "_BCL")) {
1218 acpi_handle_debug(handle, "Found generic backlight support\n");
1219 *cap |= ACPI_VIDEO_BACKLIGHT;
1220 /* We have backlight support, no need to scan further */
1221 return AE_CTRL_TERMINATE;
1222 }
1223 return 0;
1224 }
1225
1226 /* Returns true if the ACPI object is a video device which can be
1227 * handled by video.ko.
1228 * The device will get a Linux specific CID added in scan.c to
1229 * identify the device as an ACPI graphics device
1230 * Be aware that the graphics device may not be physically present
1231 * Use acpi_video_get_capabilities() to detect general ACPI video
1232 * capabilities of present cards
1233 */
1234 long acpi_is_video_device(acpi_handle handle)
1235 {
1236 long video_caps = 0;
1237
1238 /* Is this device able to support video switching ? */
1239 if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS"))
1240 video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING;
1241
1242 /* Is this device able to retrieve a video ROM ? */
1243 if (acpi_has_method(handle, "_ROM"))
1244 video_caps |= ACPI_VIDEO_ROM_AVAILABLE;
1245
1246 /* Is this device able to configure which video head to be POSTed ? */
1247 if (acpi_has_method(handle, "_VPO") &&
1248 acpi_has_method(handle, "_GPD") &&
1249 acpi_has_method(handle, "_SPD"))
1250 video_caps |= ACPI_VIDEO_DEVICE_POSTING;
1251
1252 /* Only check for backlight functionality if one of the above hit. */
1253 if (video_caps)
1254 acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
1255 ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL,
1256 &video_caps, NULL);
1257
1258 return video_caps;
1259 }
1260 EXPORT_SYMBOL(acpi_is_video_device);
1261
1262 const char *acpi_device_hid(struct acpi_device *device)
1263 {
1264 struct acpi_hardware_id *hid;
1265
1266 if (list_empty(&device->pnp.ids))
1267 return dummy_hid;
1268
1269 hid = list_first_entry(&device->pnp.ids, struct acpi_hardware_id, list);
1270 return hid->id;
1271 }
1272 EXPORT_SYMBOL(acpi_device_hid);
1273
1274 static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id)
1275 {
1276 struct acpi_hardware_id *id;
1277
1278 id = kmalloc(sizeof(*id), GFP_KERNEL);
1279 if (!id)
1280 return;
1281
1282 id->id = kstrdup_const(dev_id, GFP_KERNEL);
1283 if (!id->id) {
1284 kfree(id);
1285 return;
1286 }
1287
1288 list_add_tail(&id->list, &pnp->ids);
1289 pnp->type.hardware_id = 1;
1290 }
1291
1292 /*
1293 * Old IBM workstations have a DSDT bug wherein the SMBus object
1294 * lacks the SMBUS01 HID and the methods do not have the necessary "_"
1295 * prefix. Work around this.
1296 */
1297 static bool acpi_ibm_smbus_match(acpi_handle handle)
1298 {
1299 char node_name[ACPI_PATH_SEGMENT_LENGTH];
1300 struct acpi_buffer path = { sizeof(node_name), node_name };
1301
1302 if (!dmi_name_in_vendors("IBM"))
1303 return false;
1304
1305 /* Look for SMBS object */
1306 if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) ||
1307 strcmp("SMBS", path.pointer))
1308 return false;
1309
1310 /* Does it have the necessary (but misnamed) methods? */
1311 if (acpi_has_method(handle, "SBI") &&
1312 acpi_has_method(handle, "SBR") &&
1313 acpi_has_method(handle, "SBW"))
1314 return true;
1315
1316 return false;
1317 }
1318
1319 static bool acpi_object_is_system_bus(acpi_handle handle)
1320 {
1321 acpi_handle tmp;
1322
1323 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) &&
1324 tmp == handle)
1325 return true;
1326 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) &&
1327 tmp == handle)
1328 return true;
1329
1330 return false;
1331 }
1332
1333 static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp,
1334 int device_type)
1335 {
1336 struct acpi_device_info *info = NULL;
1337 struct acpi_pnp_device_id_list *cid_list;
1338 int i;
1339
1340 switch (device_type) {
1341 case ACPI_BUS_TYPE_DEVICE:
1342 if (handle == ACPI_ROOT_OBJECT) {
1343 acpi_add_id(pnp, ACPI_SYSTEM_HID);
1344 break;
1345 }
1346
1347 acpi_get_object_info(handle, &info);
1348 if (!info) {
1349 pr_err("%s: Error reading device info\n", __func__);
1350 return;
1351 }
1352
1353 if (info->valid & ACPI_VALID_HID) {
1354 acpi_add_id(pnp, info->hardware_id.string);
1355 pnp->type.platform_id = 1;
1356 }
1357 if (info->valid & ACPI_VALID_CID) {
1358 cid_list = &info->compatible_id_list;
1359 for (i = 0; i < cid_list->count; i++)
1360 acpi_add_id(pnp, cid_list->ids[i].string);
1361 }
1362 if (info->valid & ACPI_VALID_ADR) {
1363 pnp->bus_address = info->address;
1364 pnp->type.bus_address = 1;
1365 }
1366 if (info->valid & ACPI_VALID_UID)
1367 pnp->unique_id = kstrdup(info->unique_id.string,
1368 GFP_KERNEL);
1369 if (info->valid & ACPI_VALID_CLS)
1370 acpi_add_id(pnp, info->class_code.string);
1371
1372 kfree(info);
1373
1374 /*
1375 * Some devices don't reliably have _HIDs & _CIDs, so add
1376 * synthetic HIDs to make sure drivers can find them.
1377 */
1378 if (acpi_is_video_device(handle)) {
1379 acpi_add_id(pnp, ACPI_VIDEO_HID);
1380 pnp->type.backlight = 1;
1381 break;
1382 }
1383 if (acpi_bay_match(handle))
1384 acpi_add_id(pnp, ACPI_BAY_HID);
1385 else if (acpi_dock_match(handle))
1386 acpi_add_id(pnp, ACPI_DOCK_HID);
1387 else if (acpi_ibm_smbus_match(handle))
1388 acpi_add_id(pnp, ACPI_SMBUS_IBM_HID);
1389 else if (list_empty(&pnp->ids) &&
1390 acpi_object_is_system_bus(handle)) {
1391 /* \_SB, \_TZ, LNXSYBUS */
1392 acpi_add_id(pnp, ACPI_BUS_HID);
1393 strcpy(pnp->device_name, ACPI_BUS_DEVICE_NAME);
1394 strcpy(pnp->device_class, ACPI_BUS_CLASS);
1395 }
1396
1397 break;
1398 case ACPI_BUS_TYPE_POWER:
1399 acpi_add_id(pnp, ACPI_POWER_HID);
1400 break;
1401 case ACPI_BUS_TYPE_PROCESSOR:
1402 acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID);
1403 break;
1404 case ACPI_BUS_TYPE_THERMAL:
1405 acpi_add_id(pnp, ACPI_THERMAL_HID);
1406 break;
1407 case ACPI_BUS_TYPE_POWER_BUTTON:
1408 acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF);
1409 break;
1410 case ACPI_BUS_TYPE_SLEEP_BUTTON:
1411 acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF);
1412 break;
1413 case ACPI_BUS_TYPE_ECDT_EC:
1414 acpi_add_id(pnp, ACPI_ECDT_HID);
1415 break;
1416 }
1417 }
1418
1419 void acpi_free_pnp_ids(struct acpi_device_pnp *pnp)
1420 {
1421 struct acpi_hardware_id *id, *tmp;
1422
1423 list_for_each_entry_safe(id, tmp, &pnp->ids, list) {
1424 kfree_const(id->id);
1425 kfree(id);
1426 }
1427 kfree(pnp->unique_id);
1428 }
1429
1430 /**
1431 * acpi_dma_supported - Check DMA support for the specified device.
1432 * @adev: The pointer to acpi device
1433 *
1434 * Return false if DMA is not supported. Otherwise, return true
1435 */
1436 bool acpi_dma_supported(const struct acpi_device *adev)
1437 {
1438 if (!adev)
1439 return false;
1440
1441 if (adev->flags.cca_seen)
1442 return true;
1443
1444 /*
1445 * Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent
1446 * DMA on "Intel platforms". Presumably that includes all x86 and
1447 * ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y.
1448 */
1449 if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1450 return true;
1451
1452 return false;
1453 }
1454
1455 /**
1456 * acpi_get_dma_attr - Check the supported DMA attr for the specified device.
1457 * @adev: The pointer to acpi device
1458 *
1459 * Return enum dev_dma_attr.
1460 */
1461 enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev)
1462 {
1463 if (!acpi_dma_supported(adev))
1464 return DEV_DMA_NOT_SUPPORTED;
1465
1466 if (adev->flags.coherent_dma)
1467 return DEV_DMA_COHERENT;
1468 else
1469 return DEV_DMA_NON_COHERENT;
1470 }
1471
1472 /**
1473 * acpi_dma_get_range() - Get device DMA parameters.
1474 *
1475 * @dev: device to configure
1476 * @map: pointer to DMA ranges result
1477 *
1478 * Evaluate DMA regions and return pointer to DMA regions on
1479 * parsing success; it does not update the passed in values on failure.
1480 *
1481 * Return 0 on success, < 0 on failure.
1482 */
1483 int acpi_dma_get_range(struct device *dev, const struct bus_dma_region **map)
1484 {
1485 struct acpi_device *adev;
1486 LIST_HEAD(list);
1487 struct resource_entry *rentry;
1488 int ret;
1489 struct device *dma_dev = dev;
1490 struct bus_dma_region *r;
1491
1492 /*
1493 * Walk the device tree chasing an ACPI companion with a _DMA
1494 * object while we go. Stop if we find a device with an ACPI
1495 * companion containing a _DMA method.
1496 */
1497 do {
1498 adev = ACPI_COMPANION(dma_dev);
1499 if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA))
1500 break;
1501
1502 dma_dev = dma_dev->parent;
1503 } while (dma_dev);
1504
1505 if (!dma_dev)
1506 return -ENODEV;
1507
1508 if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) {
1509 acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n");
1510 return -EINVAL;
1511 }
1512
1513 ret = acpi_dev_get_dma_resources(adev, &list);
1514 if (ret > 0) {
1515 r = kcalloc(ret + 1, sizeof(*r), GFP_KERNEL);
1516 if (!r) {
1517 ret = -ENOMEM;
1518 goto out;
1519 }
1520
1521 *map = r;
1522
1523 list_for_each_entry(rentry, &list, node) {
1524 if (rentry->res->start >= rentry->res->end) {
1525 kfree(*map);
1526 *map = NULL;
1527 ret = -EINVAL;
1528 dev_dbg(dma_dev, "Invalid DMA regions configuration\n");
1529 goto out;
1530 }
1531
1532 r->cpu_start = rentry->res->start;
1533 r->dma_start = rentry->res->start - rentry->offset;
1534 r->size = resource_size(rentry->res);
1535 r++;
1536 }
1537 }
1538 out:
1539 acpi_dev_free_resource_list(&list);
1540
1541 return ret >= 0 ? 0 : ret;
1542 }
1543
1544 #ifdef CONFIG_IOMMU_API
1545 int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1546 struct fwnode_handle *fwnode,
1547 const struct iommu_ops *ops)
1548 {
1549 int ret = iommu_fwspec_init(dev, fwnode, ops);
1550
1551 if (!ret)
1552 ret = iommu_fwspec_add_ids(dev, &id, 1);
1553
1554 return ret;
1555 }
1556
1557 static inline const struct iommu_ops *acpi_iommu_fwspec_ops(struct device *dev)
1558 {
1559 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1560
1561 return fwspec ? fwspec->ops : NULL;
1562 }
1563
1564 static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev,
1565 const u32 *id_in)
1566 {
1567 int err;
1568 const struct iommu_ops *ops;
1569
1570 /* Serialise to make dev->iommu stable under our potential fwspec */
1571 mutex_lock(&iommu_probe_device_lock);
1572 /*
1573 * If we already translated the fwspec there is nothing left to do,
1574 * return the iommu_ops.
1575 */
1576 ops = acpi_iommu_fwspec_ops(dev);
1577 if (ops) {
1578 mutex_unlock(&iommu_probe_device_lock);
1579 return ops;
1580 }
1581
1582 err = iort_iommu_configure_id(dev, id_in);
1583 if (err && err != -EPROBE_DEFER)
1584 err = viot_iommu_configure(dev);
1585 mutex_unlock(&iommu_probe_device_lock);
1586
1587 /*
1588 * If we have reason to believe the IOMMU driver missed the initial
1589 * iommu_probe_device() call for dev, replay it to get things in order.
1590 */
1591 if (!err && dev->bus)
1592 err = iommu_probe_device(dev);
1593
1594 /* Ignore all other errors apart from EPROBE_DEFER */
1595 if (err == -EPROBE_DEFER) {
1596 return ERR_PTR(err);
1597 } else if (err) {
1598 dev_dbg(dev, "Adding to IOMMU failed: %d\n", err);
1599 return NULL;
1600 }
1601 return acpi_iommu_fwspec_ops(dev);
1602 }
1603
1604 #else /* !CONFIG_IOMMU_API */
1605
1606 int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1607 struct fwnode_handle *fwnode,
1608 const struct iommu_ops *ops)
1609 {
1610 return -ENODEV;
1611 }
1612
1613 static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev,
1614 const u32 *id_in)
1615 {
1616 return NULL;
1617 }
1618
1619 #endif /* !CONFIG_IOMMU_API */
1620
1621 /**
1622 * acpi_dma_configure_id - Set-up DMA configuration for the device.
1623 * @dev: The pointer to the device
1624 * @attr: device dma attributes
1625 * @input_id: input device id const value pointer
1626 */
1627 int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr,
1628 const u32 *input_id)
1629 {
1630 const struct iommu_ops *iommu;
1631
1632 if (attr == DEV_DMA_NOT_SUPPORTED) {
1633 set_dma_ops(dev, &dma_dummy_ops);
1634 return 0;
1635 }
1636
1637 acpi_arch_dma_setup(dev);
1638
1639 iommu = acpi_iommu_configure_id(dev, input_id);
1640 if (PTR_ERR(iommu) == -EPROBE_DEFER)
1641 return -EPROBE_DEFER;
1642
1643 arch_setup_dma_ops(dev, 0, U64_MAX,
1644 iommu, attr == DEV_DMA_COHERENT);
1645
1646 return 0;
1647 }
1648 EXPORT_SYMBOL_GPL(acpi_dma_configure_id);
1649
1650 static void acpi_init_coherency(struct acpi_device *adev)
1651 {
1652 unsigned long long cca = 0;
1653 acpi_status status;
1654 struct acpi_device *parent = acpi_dev_parent(adev);
1655
1656 if (parent && parent->flags.cca_seen) {
1657 /*
1658 * From ACPI spec, OSPM will ignore _CCA if an ancestor
1659 * already saw one.
1660 */
1661 adev->flags.cca_seen = 1;
1662 cca = parent->flags.coherent_dma;
1663 } else {
1664 status = acpi_evaluate_integer(adev->handle, "_CCA",
1665 NULL, &cca);
1666 if (ACPI_SUCCESS(status))
1667 adev->flags.cca_seen = 1;
1668 else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1669 /*
1670 * If architecture does not specify that _CCA is
1671 * required for DMA-able devices (e.g. x86),
1672 * we default to _CCA=1.
1673 */
1674 cca = 1;
1675 else
1676 acpi_handle_debug(adev->handle,
1677 "ACPI device is missing _CCA.\n");
1678 }
1679
1680 adev->flags.coherent_dma = cca;
1681 }
1682
1683 static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data)
1684 {
1685 bool *is_serial_bus_slave_p = data;
1686
1687 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
1688 return 1;
1689
1690 *is_serial_bus_slave_p = true;
1691
1692 /* no need to do more checking */
1693 return -1;
1694 }
1695
1696 static bool acpi_is_indirect_io_slave(struct acpi_device *device)
1697 {
1698 struct acpi_device *parent = acpi_dev_parent(device);
1699 static const struct acpi_device_id indirect_io_hosts[] = {
1700 {"HISI0191", 0},
1701 {}
1702 };
1703
1704 return parent && !acpi_match_device_ids(parent, indirect_io_hosts);
1705 }
1706
1707 static bool acpi_device_enumeration_by_parent(struct acpi_device *device)
1708 {
1709 struct list_head resource_list;
1710 bool is_serial_bus_slave = false;
1711 static const struct acpi_device_id ignore_serial_bus_ids[] = {
1712 /*
1713 * These devices have multiple SerialBus resources and a client
1714 * device must be instantiated for each of them, each with
1715 * its own device id.
1716 * Normally we only instantiate one client device for the first
1717 * resource, using the ACPI HID as id. These special cases are handled
1718 * by the drivers/platform/x86/serial-multi-instantiate.c driver, which
1719 * knows which client device id to use for each resource.
1720 */
1721 {"BSG1160", },
1722 {"BSG2150", },
1723 {"CSC3551", },
1724 {"CSC3556", },
1725 {"INT33FE", },
1726 {"INT3515", },
1727 /* Non-conforming _HID for Cirrus Logic already released */
1728 {"CLSA0100", },
1729 {"CLSA0101", },
1730 /*
1731 * Some ACPI devs contain SerialBus resources even though they are not
1732 * attached to a serial bus at all.
1733 */
1734 {ACPI_VIDEO_HID, },
1735 {"MSHW0028", },
1736 /*
1737 * HIDs of device with an UartSerialBusV2 resource for which userspace
1738 * expects a regular tty cdev to be created (instead of the in kernel
1739 * serdev) and which have a kernel driver which expects a platform_dev
1740 * such as the rfkill-gpio driver.
1741 */
1742 {"BCM4752", },
1743 {"LNV4752", },
1744 {}
1745 };
1746
1747 if (acpi_is_indirect_io_slave(device))
1748 return true;
1749
1750 /* Macs use device properties in lieu of _CRS resources */
1751 if (x86_apple_machine &&
1752 (fwnode_property_present(&device->fwnode, "spiSclkPeriod") ||
1753 fwnode_property_present(&device->fwnode, "i2cAddress") ||
1754 fwnode_property_present(&device->fwnode, "baud")))
1755 return true;
1756
1757 if (!acpi_match_device_ids(device, ignore_serial_bus_ids))
1758 return false;
1759
1760 INIT_LIST_HEAD(&resource_list);
1761 acpi_dev_get_resources(device, &resource_list,
1762 acpi_check_serial_bus_slave,
1763 &is_serial_bus_slave);
1764 acpi_dev_free_resource_list(&resource_list);
1765
1766 return is_serial_bus_slave;
1767 }
1768
1769 void acpi_init_device_object(struct acpi_device *device, acpi_handle handle,
1770 int type, void (*release)(struct device *))
1771 {
1772 struct acpi_device *parent = acpi_find_parent_acpi_dev(handle);
1773
1774 INIT_LIST_HEAD(&device->pnp.ids);
1775 device->device_type = type;
1776 device->handle = handle;
1777 device->dev.parent = parent ? &parent->dev : NULL;
1778 device->dev.release = release;
1779 device->dev.bus = &acpi_bus_type;
1780 fwnode_init(&device->fwnode, &acpi_device_fwnode_ops);
1781 acpi_set_device_status(device, ACPI_STA_DEFAULT);
1782 acpi_device_get_busid(device);
1783 acpi_set_pnp_ids(handle, &device->pnp, type);
1784 acpi_init_properties(device);
1785 acpi_bus_get_flags(device);
1786 device->flags.match_driver = false;
1787 device->flags.initialized = true;
1788 device->flags.enumeration_by_parent =
1789 acpi_device_enumeration_by_parent(device);
1790 acpi_device_clear_enumerated(device);
1791 device_initialize(&device->dev);
1792 dev_set_uevent_suppress(&device->dev, true);
1793 acpi_init_coherency(device);
1794 }
1795
1796 static void acpi_scan_dep_init(struct acpi_device *adev)
1797 {
1798 struct acpi_dep_data *dep;
1799
1800 list_for_each_entry(dep, &acpi_dep_list, node) {
1801 if (dep->consumer == adev->handle) {
1802 if (dep->honor_dep)
1803 adev->flags.honor_deps = 1;
1804
1805 adev->dep_unmet++;
1806 }
1807 }
1808 }
1809
1810 void acpi_device_add_finalize(struct acpi_device *device)
1811 {
1812 dev_set_uevent_suppress(&device->dev, false);
1813 kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1814 }
1815
1816 static void acpi_scan_init_status(struct acpi_device *adev)
1817 {
1818 if (acpi_bus_get_status(adev))
1819 acpi_set_device_status(adev, 0);
1820 }
1821
1822 static int acpi_add_single_object(struct acpi_device **child,
1823 acpi_handle handle, int type, bool dep_init)
1824 {
1825 struct acpi_device *device;
1826 bool release_dep_lock = false;
1827 int result;
1828
1829 device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL);
1830 if (!device)
1831 return -ENOMEM;
1832
1833 acpi_init_device_object(device, handle, type, acpi_device_release);
1834 /*
1835 * Getting the status is delayed till here so that we can call
1836 * acpi_bus_get_status() and use its quirk handling. Note that
1837 * this must be done before the get power-/wakeup_dev-flags calls.
1838 */
1839 if (type == ACPI_BUS_TYPE_DEVICE || type == ACPI_BUS_TYPE_PROCESSOR) {
1840 if (dep_init) {
1841 mutex_lock(&acpi_dep_list_lock);
1842 /*
1843 * Hold the lock until the acpi_tie_acpi_dev() call
1844 * below to prevent concurrent acpi_scan_clear_dep()
1845 * from deleting a dependency list entry without
1846 * updating dep_unmet for the device.
1847 */
1848 release_dep_lock = true;
1849 acpi_scan_dep_init(device);
1850 }
1851 acpi_scan_init_status(device);
1852 }
1853
1854 acpi_bus_get_power_flags(device);
1855 acpi_bus_get_wakeup_device_flags(device);
1856
1857 result = acpi_tie_acpi_dev(device);
1858
1859 if (release_dep_lock)
1860 mutex_unlock(&acpi_dep_list_lock);
1861
1862 if (!result)
1863 result = acpi_device_add(device);
1864
1865 if (result) {
1866 acpi_device_release(&device->dev);
1867 return result;
1868 }
1869
1870 acpi_power_add_remove_device(device, true);
1871 acpi_device_add_finalize(device);
1872
1873 acpi_handle_debug(handle, "Added as %s, parent %s\n",
1874 dev_name(&device->dev), device->dev.parent ?
1875 dev_name(device->dev.parent) : "(null)");
1876
1877 *child = device;
1878 return 0;
1879 }
1880
1881 static acpi_status acpi_get_resource_memory(struct acpi_resource *ares,
1882 void *context)
1883 {
1884 struct resource *res = context;
1885
1886 if (acpi_dev_resource_memory(ares, res))
1887 return AE_CTRL_TERMINATE;
1888
1889 return AE_OK;
1890 }
1891
1892 static bool acpi_device_should_be_hidden(acpi_handle handle)
1893 {
1894 acpi_status status;
1895 struct resource res;
1896
1897 /* Check if it should ignore the UART device */
1898 if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS)))
1899 return false;
1900
1901 /*
1902 * The UART device described in SPCR table is assumed to have only one
1903 * memory resource present. So we only look for the first one here.
1904 */
1905 status = acpi_walk_resources(handle, METHOD_NAME__CRS,
1906 acpi_get_resource_memory, &res);
1907 if (ACPI_FAILURE(status) || res.start != spcr_uart_addr)
1908 return false;
1909
1910 acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n",
1911 &res.start);
1912
1913 return true;
1914 }
1915
1916 bool acpi_device_is_present(const struct acpi_device *adev)
1917 {
1918 return adev->status.present || adev->status.functional;
1919 }
1920
1921 static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler,
1922 const char *idstr,
1923 const struct acpi_device_id **matchid)
1924 {
1925 const struct acpi_device_id *devid;
1926
1927 if (handler->match)
1928 return handler->match(idstr, matchid);
1929
1930 for (devid = handler->ids; devid->id[0]; devid++)
1931 if (!strcmp((char *)devid->id, idstr)) {
1932 if (matchid)
1933 *matchid = devid;
1934
1935 return true;
1936 }
1937
1938 return false;
1939 }
1940
1941 static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr,
1942 const struct acpi_device_id **matchid)
1943 {
1944 struct acpi_scan_handler *handler;
1945
1946 list_for_each_entry(handler, &acpi_scan_handlers_list, list_node)
1947 if (acpi_scan_handler_matching(handler, idstr, matchid))
1948 return handler;
1949
1950 return NULL;
1951 }
1952
1953 void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val)
1954 {
1955 if (!!hotplug->enabled == !!val)
1956 return;
1957
1958 mutex_lock(&acpi_scan_lock);
1959
1960 hotplug->enabled = val;
1961
1962 mutex_unlock(&acpi_scan_lock);
1963 }
1964
1965 static void acpi_scan_init_hotplug(struct acpi_device *adev)
1966 {
1967 struct acpi_hardware_id *hwid;
1968
1969 if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) {
1970 acpi_dock_add(adev);
1971 return;
1972 }
1973 list_for_each_entry(hwid, &adev->pnp.ids, list) {
1974 struct acpi_scan_handler *handler;
1975
1976 handler = acpi_scan_match_handler(hwid->id, NULL);
1977 if (handler) {
1978 adev->flags.hotplug_notify = true;
1979 break;
1980 }
1981 }
1982 }
1983
1984 static u32 acpi_scan_check_dep(acpi_handle handle)
1985 {
1986 struct acpi_handle_list dep_devices;
1987 u32 count;
1988 int i;
1989
1990 /*
1991 * Check for _HID here to avoid deferring the enumeration of:
1992 * 1. PCI devices.
1993 * 2. ACPI nodes describing USB ports.
1994 * Still, checking for _HID catches more then just these cases ...
1995 */
1996 if (!acpi_has_method(handle, "_DEP") || !acpi_has_method(handle, "_HID"))
1997 return 0;
1998
1999 if (!acpi_evaluate_reference(handle, "_DEP", NULL, &dep_devices)) {
2000 acpi_handle_debug(handle, "Failed to evaluate _DEP.\n");
2001 return 0;
2002 }
2003
2004 for (count = 0, i = 0; i < dep_devices.count; i++) {
2005 struct acpi_device_info *info;
2006 struct acpi_dep_data *dep;
2007 bool skip, honor_dep;
2008 acpi_status status;
2009
2010 status = acpi_get_object_info(dep_devices.handles[i], &info);
2011 if (ACPI_FAILURE(status)) {
2012 acpi_handle_debug(handle, "Error reading _DEP device info\n");
2013 continue;
2014 }
2015
2016 skip = acpi_info_matches_ids(info, acpi_ignore_dep_ids);
2017 honor_dep = acpi_info_matches_ids(info, acpi_honor_dep_ids);
2018 kfree(info);
2019
2020 if (skip)
2021 continue;
2022
2023 dep = kzalloc(sizeof(*dep), GFP_KERNEL);
2024 if (!dep)
2025 continue;
2026
2027 count++;
2028
2029 dep->supplier = dep_devices.handles[i];
2030 dep->consumer = handle;
2031 dep->honor_dep = honor_dep;
2032
2033 mutex_lock(&acpi_dep_list_lock);
2034 list_add_tail(&dep->node , &acpi_dep_list);
2035 mutex_unlock(&acpi_dep_list_lock);
2036 }
2037
2038 acpi_handle_list_free(&dep_devices);
2039 return count;
2040 }
2041
2042 static acpi_status acpi_scan_check_crs_csi2_cb(acpi_handle handle, u32 a, void *b, void **c)
2043 {
2044 acpi_mipi_check_crs_csi2(handle);
2045 return AE_OK;
2046 }
2047
2048 static acpi_status acpi_bus_check_add(acpi_handle handle, bool first_pass,
2049 struct acpi_device **adev_p)
2050 {
2051 struct acpi_device *device = acpi_fetch_acpi_dev(handle);
2052 acpi_object_type acpi_type;
2053 int type;
2054
2055 if (device)
2056 goto out;
2057
2058 if (ACPI_FAILURE(acpi_get_type(handle, &acpi_type)))
2059 return AE_OK;
2060
2061 switch (acpi_type) {
2062 case ACPI_TYPE_DEVICE:
2063 if (acpi_device_should_be_hidden(handle))
2064 return AE_OK;
2065
2066 if (first_pass) {
2067 acpi_mipi_check_crs_csi2(handle);
2068
2069 /* Bail out if there are dependencies. */
2070 if (acpi_scan_check_dep(handle) > 0) {
2071 /*
2072 * The entire CSI-2 connection graph needs to be
2073 * extracted before any drivers or scan handlers
2074 * are bound to struct device objects, so scan
2075 * _CRS CSI-2 resource descriptors for all
2076 * devices below the current handle.
2077 */
2078 acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
2079 ACPI_UINT32_MAX,
2080 acpi_scan_check_crs_csi2_cb,
2081 NULL, NULL, NULL);
2082 return AE_CTRL_DEPTH;
2083 }
2084 }
2085
2086 fallthrough;
2087 case ACPI_TYPE_ANY: /* for ACPI_ROOT_OBJECT */
2088 type = ACPI_BUS_TYPE_DEVICE;
2089 break;
2090
2091 case ACPI_TYPE_PROCESSOR:
2092 type = ACPI_BUS_TYPE_PROCESSOR;
2093 break;
2094
2095 case ACPI_TYPE_THERMAL:
2096 type = ACPI_BUS_TYPE_THERMAL;
2097 break;
2098
2099 case ACPI_TYPE_POWER:
2100 acpi_add_power_resource(handle);
2101 fallthrough;
2102 default:
2103 return AE_OK;
2104 }
2105
2106 /*
2107 * If first_pass is true at this point, the device has no dependencies,
2108 * or the creation of the device object would have been postponed above.
2109 */
2110 acpi_add_single_object(&device, handle, type, !first_pass);
2111 if (!device)
2112 return AE_CTRL_DEPTH;
2113
2114 acpi_scan_init_hotplug(device);
2115
2116 out:
2117 if (!*adev_p)
2118 *adev_p = device;
2119
2120 return AE_OK;
2121 }
2122
2123 static acpi_status acpi_bus_check_add_1(acpi_handle handle, u32 lvl_not_used,
2124 void *not_used, void **ret_p)
2125 {
2126 return acpi_bus_check_add(handle, true, (struct acpi_device **)ret_p);
2127 }
2128
2129 static acpi_status acpi_bus_check_add_2(acpi_handle handle, u32 lvl_not_used,
2130 void *not_used, void **ret_p)
2131 {
2132 return acpi_bus_check_add(handle, false, (struct acpi_device **)ret_p);
2133 }
2134
2135 static void acpi_default_enumeration(struct acpi_device *device)
2136 {
2137 /*
2138 * Do not enumerate devices with enumeration_by_parent flag set as
2139 * they will be enumerated by their respective parents.
2140 */
2141 if (!device->flags.enumeration_by_parent) {
2142 acpi_create_platform_device(device, NULL);
2143 acpi_device_set_enumerated(device);
2144 } else {
2145 blocking_notifier_call_chain(&acpi_reconfig_chain,
2146 ACPI_RECONFIG_DEVICE_ADD, device);
2147 }
2148 }
2149
2150 static const struct acpi_device_id generic_device_ids[] = {
2151 {ACPI_DT_NAMESPACE_HID, },
2152 {"", },
2153 };
2154
2155 static int acpi_generic_device_attach(struct acpi_device *adev,
2156 const struct acpi_device_id *not_used)
2157 {
2158 /*
2159 * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test
2160 * below can be unconditional.
2161 */
2162 if (adev->data.of_compatible)
2163 acpi_default_enumeration(adev);
2164
2165 return 1;
2166 }
2167
2168 static struct acpi_scan_handler generic_device_handler = {
2169 .ids = generic_device_ids,
2170 .attach = acpi_generic_device_attach,
2171 };
2172
2173 static int acpi_scan_attach_handler(struct acpi_device *device)
2174 {
2175 struct acpi_hardware_id *hwid;
2176 int ret = 0;
2177
2178 list_for_each_entry(hwid, &device->pnp.ids, list) {
2179 const struct acpi_device_id *devid;
2180 struct acpi_scan_handler *handler;
2181
2182 handler = acpi_scan_match_handler(hwid->id, &devid);
2183 if (handler) {
2184 if (!handler->attach) {
2185 device->pnp.type.platform_id = 0;
2186 continue;
2187 }
2188 device->handler = handler;
2189 ret = handler->attach(device, devid);
2190 if (ret > 0)
2191 break;
2192
2193 device->handler = NULL;
2194 if (ret < 0)
2195 break;
2196 }
2197 }
2198
2199 return ret;
2200 }
2201
2202 static int acpi_bus_attach(struct acpi_device *device, void *first_pass)
2203 {
2204 bool skip = !first_pass && device->flags.visited;
2205 acpi_handle ejd;
2206 int ret;
2207
2208 if (skip)
2209 goto ok;
2210
2211 if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd)))
2212 register_dock_dependent_device(device, ejd);
2213
2214 acpi_bus_get_status(device);
2215 /* Skip devices that are not ready for enumeration (e.g. not present) */
2216 if (!acpi_dev_ready_for_enumeration(device)) {
2217 device->flags.initialized = false;
2218 acpi_device_clear_enumerated(device);
2219 device->flags.power_manageable = 0;
2220 return 0;
2221 }
2222 if (device->handler)
2223 goto ok;
2224
2225 if (!device->flags.initialized) {
2226 device->flags.power_manageable =
2227 device->power.states[ACPI_STATE_D0].flags.valid;
2228 if (acpi_bus_init_power(device))
2229 device->flags.power_manageable = 0;
2230
2231 device->flags.initialized = true;
2232 } else if (device->flags.visited) {
2233 goto ok;
2234 }
2235
2236 ret = acpi_scan_attach_handler(device);
2237 if (ret < 0)
2238 return 0;
2239
2240 device->flags.match_driver = true;
2241 if (ret > 0 && !device->flags.enumeration_by_parent) {
2242 acpi_device_set_enumerated(device);
2243 goto ok;
2244 }
2245
2246 ret = device_attach(&device->dev);
2247 if (ret < 0)
2248 return 0;
2249
2250 if (device->pnp.type.platform_id || device->flags.enumeration_by_parent)
2251 acpi_default_enumeration(device);
2252 else
2253 acpi_device_set_enumerated(device);
2254
2255 ok:
2256 acpi_dev_for_each_child(device, acpi_bus_attach, first_pass);
2257
2258 if (!skip && device->handler && device->handler->hotplug.notify_online)
2259 device->handler->hotplug.notify_online(device);
2260
2261 return 0;
2262 }
2263
2264 static int acpi_dev_get_next_consumer_dev_cb(struct acpi_dep_data *dep, void *data)
2265 {
2266 struct acpi_device **adev_p = data;
2267 struct acpi_device *adev = *adev_p;
2268
2269 /*
2270 * If we're passed a 'previous' consumer device then we need to skip
2271 * any consumers until we meet the previous one, and then NULL @data
2272 * so the next one can be returned.
2273 */
2274 if (adev) {
2275 if (dep->consumer == adev->handle)
2276 *adev_p = NULL;
2277
2278 return 0;
2279 }
2280
2281 adev = acpi_get_acpi_dev(dep->consumer);
2282 if (adev) {
2283 *(struct acpi_device **)data = adev;
2284 return 1;
2285 }
2286 /* Continue parsing if the device object is not present. */
2287 return 0;
2288 }
2289
2290 struct acpi_scan_clear_dep_work {
2291 struct work_struct work;
2292 struct acpi_device *adev;
2293 };
2294
2295 static void acpi_scan_clear_dep_fn(struct work_struct *work)
2296 {
2297 struct acpi_scan_clear_dep_work *cdw;
2298
2299 cdw = container_of(work, struct acpi_scan_clear_dep_work, work);
2300
2301 acpi_scan_lock_acquire();
2302 acpi_bus_attach(cdw->adev, (void *)true);
2303 acpi_scan_lock_release();
2304
2305 acpi_dev_put(cdw->adev);
2306 kfree(cdw);
2307 }
2308
2309 static bool acpi_scan_clear_dep_queue(struct acpi_device *adev)
2310 {
2311 struct acpi_scan_clear_dep_work *cdw;
2312
2313 if (adev->dep_unmet)
2314 return false;
2315
2316 cdw = kmalloc(sizeof(*cdw), GFP_KERNEL);
2317 if (!cdw)
2318 return false;
2319
2320 cdw->adev = adev;
2321 INIT_WORK(&cdw->work, acpi_scan_clear_dep_fn);
2322 /*
2323 * Since the work function may block on the lock until the entire
2324 * initial enumeration of devices is complete, put it into the unbound
2325 * workqueue.
2326 */
2327 queue_work(system_unbound_wq, &cdw->work);
2328
2329 return true;
2330 }
2331
2332 static void acpi_scan_delete_dep_data(struct acpi_dep_data *dep)
2333 {
2334 list_del(&dep->node);
2335 kfree(dep);
2336 }
2337
2338 static int acpi_scan_clear_dep(struct acpi_dep_data *dep, void *data)
2339 {
2340 struct acpi_device *adev = acpi_get_acpi_dev(dep->consumer);
2341
2342 if (adev) {
2343 adev->dep_unmet--;
2344 if (!acpi_scan_clear_dep_queue(adev))
2345 acpi_dev_put(adev);
2346 }
2347
2348 if (dep->free_when_met)
2349 acpi_scan_delete_dep_data(dep);
2350 else
2351 dep->met = true;
2352
2353 return 0;
2354 }
2355
2356 /**
2357 * acpi_walk_dep_device_list - Apply a callback to every entry in acpi_dep_list
2358 * @handle: The ACPI handle of the supplier device
2359 * @callback: Pointer to the callback function to apply
2360 * @data: Pointer to some data to pass to the callback
2361 *
2362 * The return value of the callback determines this function's behaviour. If 0
2363 * is returned we continue to iterate over acpi_dep_list. If a positive value
2364 * is returned then the loop is broken but this function returns 0. If a
2365 * negative value is returned by the callback then the loop is broken and that
2366 * value is returned as the final error.
2367 */
2368 static int acpi_walk_dep_device_list(acpi_handle handle,
2369 int (*callback)(struct acpi_dep_data *, void *),
2370 void *data)
2371 {
2372 struct acpi_dep_data *dep, *tmp;
2373 int ret = 0;
2374
2375 mutex_lock(&acpi_dep_list_lock);
2376 list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
2377 if (dep->supplier == handle) {
2378 ret = callback(dep, data);
2379 if (ret)
2380 break;
2381 }
2382 }
2383 mutex_unlock(&acpi_dep_list_lock);
2384
2385 return ret > 0 ? 0 : ret;
2386 }
2387
2388 /**
2389 * acpi_dev_clear_dependencies - Inform consumers that the device is now active
2390 * @supplier: Pointer to the supplier &struct acpi_device
2391 *
2392 * Clear dependencies on the given device.
2393 */
2394 void acpi_dev_clear_dependencies(struct acpi_device *supplier)
2395 {
2396 acpi_walk_dep_device_list(supplier->handle, acpi_scan_clear_dep, NULL);
2397 }
2398 EXPORT_SYMBOL_GPL(acpi_dev_clear_dependencies);
2399
2400 /**
2401 * acpi_dev_ready_for_enumeration - Check if the ACPI device is ready for enumeration
2402 * @device: Pointer to the &struct acpi_device to check
2403 *
2404 * Check if the device is present and has no unmet dependencies.
2405 *
2406 * Return true if the device is ready for enumeratino. Otherwise, return false.
2407 */
2408 bool acpi_dev_ready_for_enumeration(const struct acpi_device *device)
2409 {
2410 if (device->flags.honor_deps && device->dep_unmet)
2411 return false;
2412
2413 return acpi_device_is_present(device);
2414 }
2415 EXPORT_SYMBOL_GPL(acpi_dev_ready_for_enumeration);
2416
2417 /**
2418 * acpi_dev_get_next_consumer_dev - Return the next adev dependent on @supplier
2419 * @supplier: Pointer to the dependee device
2420 * @start: Pointer to the current dependent device
2421 *
2422 * Returns the next &struct acpi_device which declares itself dependent on
2423 * @supplier via the _DEP buffer, parsed from the acpi_dep_list.
2424 *
2425 * If the returned adev is not passed as @start to this function, the caller is
2426 * responsible for putting the reference to adev when it is no longer needed.
2427 */
2428 struct acpi_device *acpi_dev_get_next_consumer_dev(struct acpi_device *supplier,
2429 struct acpi_device *start)
2430 {
2431 struct acpi_device *adev = start;
2432
2433 acpi_walk_dep_device_list(supplier->handle,
2434 acpi_dev_get_next_consumer_dev_cb, &adev);
2435
2436 acpi_dev_put(start);
2437
2438 if (adev == start)
2439 return NULL;
2440
2441 return adev;
2442 }
2443 EXPORT_SYMBOL_GPL(acpi_dev_get_next_consumer_dev);
2444
2445 static void acpi_scan_postponed_branch(acpi_handle handle)
2446 {
2447 struct acpi_device *adev = NULL;
2448
2449 if (ACPI_FAILURE(acpi_bus_check_add(handle, false, &adev)))
2450 return;
2451
2452 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2453 acpi_bus_check_add_2, NULL, NULL, (void **)&adev);
2454
2455 /*
2456 * Populate the ACPI _CRS CSI-2 software nodes for the ACPI devices that
2457 * have been added above.
2458 */
2459 acpi_mipi_init_crs_csi2_swnodes();
2460
2461 acpi_bus_attach(adev, NULL);
2462 }
2463
2464 static void acpi_scan_postponed(void)
2465 {
2466 struct acpi_dep_data *dep, *tmp;
2467
2468 mutex_lock(&acpi_dep_list_lock);
2469
2470 list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
2471 acpi_handle handle = dep->consumer;
2472
2473 /*
2474 * In case there are multiple acpi_dep_list entries with the
2475 * same consumer, skip the current entry if the consumer device
2476 * object corresponding to it is present already.
2477 */
2478 if (!acpi_fetch_acpi_dev(handle)) {
2479 /*
2480 * Even though the lock is released here, tmp is
2481 * guaranteed to be valid, because none of the list
2482 * entries following dep is marked as "free when met"
2483 * and so they cannot be deleted.
2484 */
2485 mutex_unlock(&acpi_dep_list_lock);
2486
2487 acpi_scan_postponed_branch(handle);
2488
2489 mutex_lock(&acpi_dep_list_lock);
2490 }
2491
2492 if (dep->met)
2493 acpi_scan_delete_dep_data(dep);
2494 else
2495 dep->free_when_met = true;
2496 }
2497
2498 mutex_unlock(&acpi_dep_list_lock);
2499 }
2500
2501 /**
2502 * acpi_bus_scan - Add ACPI device node objects in a given namespace scope.
2503 * @handle: Root of the namespace scope to scan.
2504 *
2505 * Scan a given ACPI tree (probably recently hot-plugged) and create and add
2506 * found devices.
2507 *
2508 * If no devices were found, -ENODEV is returned, but it does not mean that
2509 * there has been a real error. There just have been no suitable ACPI objects
2510 * in the table trunk from which the kernel could create a device and add an
2511 * appropriate driver.
2512 *
2513 * Must be called under acpi_scan_lock.
2514 */
2515 int acpi_bus_scan(acpi_handle handle)
2516 {
2517 struct acpi_device *device = NULL;
2518
2519 /* Pass 1: Avoid enumerating devices with missing dependencies. */
2520
2521 if (ACPI_SUCCESS(acpi_bus_check_add(handle, true, &device)))
2522 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2523 acpi_bus_check_add_1, NULL, NULL,
2524 (void **)&device);
2525
2526 if (!device)
2527 return -ENODEV;
2528
2529 /*
2530 * Set up ACPI _CRS CSI-2 software nodes using information extracted
2531 * from the _CRS CSI-2 resource descriptors during the ACPI namespace
2532 * walk above and MIPI DisCo for Imaging device properties.
2533 */
2534 acpi_mipi_scan_crs_csi2();
2535 acpi_mipi_init_crs_csi2_swnodes();
2536
2537 acpi_bus_attach(device, (void *)true);
2538
2539 /* Pass 2: Enumerate all of the remaining devices. */
2540
2541 acpi_scan_postponed();
2542
2543 acpi_mipi_crs_csi2_cleanup();
2544
2545 return 0;
2546 }
2547 EXPORT_SYMBOL(acpi_bus_scan);
2548
2549 static int acpi_bus_trim_one(struct acpi_device *adev, void *not_used)
2550 {
2551 struct acpi_scan_handler *handler = adev->handler;
2552
2553 acpi_dev_for_each_child_reverse(adev, acpi_bus_trim_one, NULL);
2554
2555 adev->flags.match_driver = false;
2556 if (handler) {
2557 if (handler->detach)
2558 handler->detach(adev);
2559
2560 adev->handler = NULL;
2561 } else {
2562 device_release_driver(&adev->dev);
2563 }
2564 /*
2565 * Most likely, the device is going away, so put it into D3cold before
2566 * that.
2567 */
2568 acpi_device_set_power(adev, ACPI_STATE_D3_COLD);
2569 adev->flags.initialized = false;
2570 acpi_device_clear_enumerated(adev);
2571
2572 return 0;
2573 }
2574
2575 /**
2576 * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects.
2577 * @adev: Root of the ACPI namespace scope to walk.
2578 *
2579 * Must be called under acpi_scan_lock.
2580 */
2581 void acpi_bus_trim(struct acpi_device *adev)
2582 {
2583 acpi_bus_trim_one(adev, NULL);
2584 }
2585 EXPORT_SYMBOL_GPL(acpi_bus_trim);
2586
2587 int acpi_bus_register_early_device(int type)
2588 {
2589 struct acpi_device *device = NULL;
2590 int result;
2591
2592 result = acpi_add_single_object(&device, NULL, type, false);
2593 if (result)
2594 return result;
2595
2596 device->flags.match_driver = true;
2597 return device_attach(&device->dev);
2598 }
2599 EXPORT_SYMBOL_GPL(acpi_bus_register_early_device);
2600
2601 static void acpi_bus_scan_fixed(void)
2602 {
2603 if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) {
2604 struct acpi_device *adev = NULL;
2605
2606 acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_POWER_BUTTON,
2607 false);
2608 if (adev) {
2609 adev->flags.match_driver = true;
2610 if (device_attach(&adev->dev) >= 0)
2611 device_init_wakeup(&adev->dev, true);
2612 else
2613 dev_dbg(&adev->dev, "No driver\n");
2614 }
2615 }
2616
2617 if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) {
2618 struct acpi_device *adev = NULL;
2619
2620 acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_SLEEP_BUTTON,
2621 false);
2622 if (adev) {
2623 adev->flags.match_driver = true;
2624 if (device_attach(&adev->dev) < 0)
2625 dev_dbg(&adev->dev, "No driver\n");
2626 }
2627 }
2628 }
2629
2630 static void __init acpi_get_spcr_uart_addr(void)
2631 {
2632 acpi_status status;
2633 struct acpi_table_spcr *spcr_ptr;
2634
2635 status = acpi_get_table(ACPI_SIG_SPCR, 0,
2636 (struct acpi_table_header **)&spcr_ptr);
2637 if (ACPI_FAILURE(status)) {
2638 pr_warn("STAO table present, but SPCR is missing\n");
2639 return;
2640 }
2641
2642 spcr_uart_addr = spcr_ptr->serial_port.address;
2643 acpi_put_table((struct acpi_table_header *)spcr_ptr);
2644 }
2645
2646 static bool acpi_scan_initialized;
2647
2648 void __init acpi_scan_init(void)
2649 {
2650 acpi_status status;
2651 struct acpi_table_stao *stao_ptr;
2652
2653 acpi_pci_root_init();
2654 acpi_pci_link_init();
2655 acpi_processor_init();
2656 acpi_platform_init();
2657 acpi_lpss_init();
2658 acpi_apd_init();
2659 acpi_cmos_rtc_init();
2660 acpi_container_init();
2661 acpi_memory_hotplug_init();
2662 acpi_watchdog_init();
2663 acpi_pnp_init();
2664 acpi_int340x_thermal_init();
2665 acpi_init_lpit();
2666
2667 acpi_scan_add_handler(&generic_device_handler);
2668
2669 /*
2670 * If there is STAO table, check whether it needs to ignore the UART
2671 * device in SPCR table.
2672 */
2673 status = acpi_get_table(ACPI_SIG_STAO, 0,
2674 (struct acpi_table_header **)&stao_ptr);
2675 if (ACPI_SUCCESS(status)) {
2676 if (stao_ptr->header.length > sizeof(struct acpi_table_stao))
2677 pr_info("STAO Name List not yet supported.\n");
2678
2679 if (stao_ptr->ignore_uart)
2680 acpi_get_spcr_uart_addr();
2681
2682 acpi_put_table((struct acpi_table_header *)stao_ptr);
2683 }
2684
2685 acpi_gpe_apply_masked_gpes();
2686 acpi_update_all_gpes();
2687
2688 /*
2689 * Although we call __add_memory() that is documented to require the
2690 * device_hotplug_lock, it is not necessary here because this is an
2691 * early code when userspace or any other code path cannot trigger
2692 * hotplug/hotunplug operations.
2693 */
2694 mutex_lock(&acpi_scan_lock);
2695 /*
2696 * Enumerate devices in the ACPI namespace.
2697 */
2698 if (acpi_bus_scan(ACPI_ROOT_OBJECT))
2699 goto unlock;
2700
2701 acpi_root = acpi_fetch_acpi_dev(ACPI_ROOT_OBJECT);
2702 if (!acpi_root)
2703 goto unlock;
2704
2705 /* Fixed feature devices do not exist on HW-reduced platform */
2706 if (!acpi_gbl_reduced_hardware)
2707 acpi_bus_scan_fixed();
2708
2709 acpi_turn_off_unused_power_resources();
2710
2711 acpi_scan_initialized = true;
2712
2713 unlock:
2714 mutex_unlock(&acpi_scan_lock);
2715 }
2716
2717 static struct acpi_probe_entry *ape;
2718 static int acpi_probe_count;
2719 static DEFINE_MUTEX(acpi_probe_mutex);
2720
2721 static int __init acpi_match_madt(union acpi_subtable_headers *header,
2722 const unsigned long end)
2723 {
2724 if (!ape->subtable_valid || ape->subtable_valid(&header->common, ape))
2725 if (!ape->probe_subtbl(header, end))
2726 acpi_probe_count++;
2727
2728 return 0;
2729 }
2730
2731 int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr)
2732 {
2733 int count = 0;
2734
2735 if (acpi_disabled)
2736 return 0;
2737
2738 mutex_lock(&acpi_probe_mutex);
2739 for (ape = ap_head; nr; ape++, nr--) {
2740 if (ACPI_COMPARE_NAMESEG(ACPI_SIG_MADT, ape->id)) {
2741 acpi_probe_count = 0;
2742 acpi_table_parse_madt(ape->type, acpi_match_madt, 0);
2743 count += acpi_probe_count;
2744 } else {
2745 int res;
2746 res = acpi_table_parse(ape->id, ape->probe_table);
2747 if (!res)
2748 count++;
2749 }
2750 }
2751 mutex_unlock(&acpi_probe_mutex);
2752
2753 return count;
2754 }
2755
2756 static void acpi_table_events_fn(struct work_struct *work)
2757 {
2758 acpi_scan_lock_acquire();
2759 acpi_bus_scan(ACPI_ROOT_OBJECT);
2760 acpi_scan_lock_release();
2761
2762 kfree(work);
2763 }
2764
2765 void acpi_scan_table_notify(void)
2766 {
2767 struct work_struct *work;
2768
2769 if (!acpi_scan_initialized)
2770 return;
2771
2772 work = kmalloc(sizeof(*work), GFP_KERNEL);
2773 if (!work)
2774 return;
2775
2776 INIT_WORK(work, acpi_table_events_fn);
2777 schedule_work(work);
2778 }
2779
2780 int acpi_reconfig_notifier_register(struct notifier_block *nb)
2781 {
2782 return blocking_notifier_chain_register(&acpi_reconfig_chain, nb);
2783 }
2784 EXPORT_SYMBOL(acpi_reconfig_notifier_register);
2785
2786 int acpi_reconfig_notifier_unregister(struct notifier_block *nb)
2787 {
2788 return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb);
2789 }
2790 EXPORT_SYMBOL(acpi_reconfig_notifier_unregister);