]> git.ipfire.org Git - people/ms/linux.git/blob - drivers/ata/libata-core.c
Merge tag 'devicetree-fixes-for-4.4-rc4' of git://git.kernel.org/pub/scm/linux/kernel...
[people/ms/linux.git] / drivers / ata / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Tejun Heo <tj@kernel.org>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
41 */
42
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
58 #include <linux/io.h>
59 #include <linux/async.h>
60 #include <linux/log2.h>
61 #include <linux/slab.h>
62 #include <linux/glob.h>
63 #include <scsi/scsi.h>
64 #include <scsi/scsi_cmnd.h>
65 #include <scsi/scsi_host.h>
66 #include <linux/libata.h>
67 #include <asm/byteorder.h>
68 #include <linux/cdrom.h>
69 #include <linux/ratelimit.h>
70 #include <linux/pm_runtime.h>
71 #include <linux/platform_device.h>
72
73 #define CREATE_TRACE_POINTS
74 #include <trace/events/libata.h>
75
76 #include "libata.h"
77 #include "libata-transport.h"
78
79 /* debounce timing parameters in msecs { interval, duration, timeout } */
80 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
81 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
82 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
83
84 const struct ata_port_operations ata_base_port_ops = {
85 .prereset = ata_std_prereset,
86 .postreset = ata_std_postreset,
87 .error_handler = ata_std_error_handler,
88 .sched_eh = ata_std_sched_eh,
89 .end_eh = ata_std_end_eh,
90 };
91
92 const struct ata_port_operations sata_port_ops = {
93 .inherits = &ata_base_port_ops,
94
95 .qc_defer = ata_std_qc_defer,
96 .hardreset = sata_std_hardreset,
97 };
98
99 static unsigned int ata_dev_init_params(struct ata_device *dev,
100 u16 heads, u16 sectors);
101 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
102 static void ata_dev_xfermask(struct ata_device *dev);
103 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
104
105 atomic_t ata_print_id = ATOMIC_INIT(0);
106
107 struct ata_force_param {
108 const char *name;
109 unsigned int cbl;
110 int spd_limit;
111 unsigned long xfer_mask;
112 unsigned int horkage_on;
113 unsigned int horkage_off;
114 unsigned int lflags;
115 };
116
117 struct ata_force_ent {
118 int port;
119 int device;
120 struct ata_force_param param;
121 };
122
123 static struct ata_force_ent *ata_force_tbl;
124 static int ata_force_tbl_size;
125
126 static char ata_force_param_buf[PAGE_SIZE] __initdata;
127 /* param_buf is thrown away after initialization, disallow read */
128 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
129 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
130
131 static int atapi_enabled = 1;
132 module_param(atapi_enabled, int, 0444);
133 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
134
135 static int atapi_dmadir = 0;
136 module_param(atapi_dmadir, int, 0444);
137 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
138
139 int atapi_passthru16 = 1;
140 module_param(atapi_passthru16, int, 0444);
141 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
142
143 int libata_fua = 0;
144 module_param_named(fua, libata_fua, int, 0444);
145 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
146
147 static int ata_ignore_hpa;
148 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
149 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
150
151 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
152 module_param_named(dma, libata_dma_mask, int, 0444);
153 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
154
155 static int ata_probe_timeout;
156 module_param(ata_probe_timeout, int, 0444);
157 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
158
159 int libata_noacpi = 0;
160 module_param_named(noacpi, libata_noacpi, int, 0444);
161 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
162
163 int libata_allow_tpm = 0;
164 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
165 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
166
167 static int atapi_an;
168 module_param(atapi_an, int, 0444);
169 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
170
171 MODULE_AUTHOR("Jeff Garzik");
172 MODULE_DESCRIPTION("Library module for ATA devices");
173 MODULE_LICENSE("GPL");
174 MODULE_VERSION(DRV_VERSION);
175
176
177 static bool ata_sstatus_online(u32 sstatus)
178 {
179 return (sstatus & 0xf) == 0x3;
180 }
181
182 /**
183 * ata_link_next - link iteration helper
184 * @link: the previous link, NULL to start
185 * @ap: ATA port containing links to iterate
186 * @mode: iteration mode, one of ATA_LITER_*
187 *
188 * LOCKING:
189 * Host lock or EH context.
190 *
191 * RETURNS:
192 * Pointer to the next link.
193 */
194 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
195 enum ata_link_iter_mode mode)
196 {
197 BUG_ON(mode != ATA_LITER_EDGE &&
198 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
199
200 /* NULL link indicates start of iteration */
201 if (!link)
202 switch (mode) {
203 case ATA_LITER_EDGE:
204 case ATA_LITER_PMP_FIRST:
205 if (sata_pmp_attached(ap))
206 return ap->pmp_link;
207 /* fall through */
208 case ATA_LITER_HOST_FIRST:
209 return &ap->link;
210 }
211
212 /* we just iterated over the host link, what's next? */
213 if (link == &ap->link)
214 switch (mode) {
215 case ATA_LITER_HOST_FIRST:
216 if (sata_pmp_attached(ap))
217 return ap->pmp_link;
218 /* fall through */
219 case ATA_LITER_PMP_FIRST:
220 if (unlikely(ap->slave_link))
221 return ap->slave_link;
222 /* fall through */
223 case ATA_LITER_EDGE:
224 return NULL;
225 }
226
227 /* slave_link excludes PMP */
228 if (unlikely(link == ap->slave_link))
229 return NULL;
230
231 /* we were over a PMP link */
232 if (++link < ap->pmp_link + ap->nr_pmp_links)
233 return link;
234
235 if (mode == ATA_LITER_PMP_FIRST)
236 return &ap->link;
237
238 return NULL;
239 }
240
241 /**
242 * ata_dev_next - device iteration helper
243 * @dev: the previous device, NULL to start
244 * @link: ATA link containing devices to iterate
245 * @mode: iteration mode, one of ATA_DITER_*
246 *
247 * LOCKING:
248 * Host lock or EH context.
249 *
250 * RETURNS:
251 * Pointer to the next device.
252 */
253 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
254 enum ata_dev_iter_mode mode)
255 {
256 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
257 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
258
259 /* NULL dev indicates start of iteration */
260 if (!dev)
261 switch (mode) {
262 case ATA_DITER_ENABLED:
263 case ATA_DITER_ALL:
264 dev = link->device;
265 goto check;
266 case ATA_DITER_ENABLED_REVERSE:
267 case ATA_DITER_ALL_REVERSE:
268 dev = link->device + ata_link_max_devices(link) - 1;
269 goto check;
270 }
271
272 next:
273 /* move to the next one */
274 switch (mode) {
275 case ATA_DITER_ENABLED:
276 case ATA_DITER_ALL:
277 if (++dev < link->device + ata_link_max_devices(link))
278 goto check;
279 return NULL;
280 case ATA_DITER_ENABLED_REVERSE:
281 case ATA_DITER_ALL_REVERSE:
282 if (--dev >= link->device)
283 goto check;
284 return NULL;
285 }
286
287 check:
288 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
289 !ata_dev_enabled(dev))
290 goto next;
291 return dev;
292 }
293
294 /**
295 * ata_dev_phys_link - find physical link for a device
296 * @dev: ATA device to look up physical link for
297 *
298 * Look up physical link which @dev is attached to. Note that
299 * this is different from @dev->link only when @dev is on slave
300 * link. For all other cases, it's the same as @dev->link.
301 *
302 * LOCKING:
303 * Don't care.
304 *
305 * RETURNS:
306 * Pointer to the found physical link.
307 */
308 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
309 {
310 struct ata_port *ap = dev->link->ap;
311
312 if (!ap->slave_link)
313 return dev->link;
314 if (!dev->devno)
315 return &ap->link;
316 return ap->slave_link;
317 }
318
319 /**
320 * ata_force_cbl - force cable type according to libata.force
321 * @ap: ATA port of interest
322 *
323 * Force cable type according to libata.force and whine about it.
324 * The last entry which has matching port number is used, so it
325 * can be specified as part of device force parameters. For
326 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
327 * same effect.
328 *
329 * LOCKING:
330 * EH context.
331 */
332 void ata_force_cbl(struct ata_port *ap)
333 {
334 int i;
335
336 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
337 const struct ata_force_ent *fe = &ata_force_tbl[i];
338
339 if (fe->port != -1 && fe->port != ap->print_id)
340 continue;
341
342 if (fe->param.cbl == ATA_CBL_NONE)
343 continue;
344
345 ap->cbl = fe->param.cbl;
346 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
347 return;
348 }
349 }
350
351 /**
352 * ata_force_link_limits - force link limits according to libata.force
353 * @link: ATA link of interest
354 *
355 * Force link flags and SATA spd limit according to libata.force
356 * and whine about it. When only the port part is specified
357 * (e.g. 1:), the limit applies to all links connected to both
358 * the host link and all fan-out ports connected via PMP. If the
359 * device part is specified as 0 (e.g. 1.00:), it specifies the
360 * first fan-out link not the host link. Device number 15 always
361 * points to the host link whether PMP is attached or not. If the
362 * controller has slave link, device number 16 points to it.
363 *
364 * LOCKING:
365 * EH context.
366 */
367 static void ata_force_link_limits(struct ata_link *link)
368 {
369 bool did_spd = false;
370 int linkno = link->pmp;
371 int i;
372
373 if (ata_is_host_link(link))
374 linkno += 15;
375
376 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
377 const struct ata_force_ent *fe = &ata_force_tbl[i];
378
379 if (fe->port != -1 && fe->port != link->ap->print_id)
380 continue;
381
382 if (fe->device != -1 && fe->device != linkno)
383 continue;
384
385 /* only honor the first spd limit */
386 if (!did_spd && fe->param.spd_limit) {
387 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
388 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
389 fe->param.name);
390 did_spd = true;
391 }
392
393 /* let lflags stack */
394 if (fe->param.lflags) {
395 link->flags |= fe->param.lflags;
396 ata_link_notice(link,
397 "FORCE: link flag 0x%x forced -> 0x%x\n",
398 fe->param.lflags, link->flags);
399 }
400 }
401 }
402
403 /**
404 * ata_force_xfermask - force xfermask according to libata.force
405 * @dev: ATA device of interest
406 *
407 * Force xfer_mask according to libata.force and whine about it.
408 * For consistency with link selection, device number 15 selects
409 * the first device connected to the host link.
410 *
411 * LOCKING:
412 * EH context.
413 */
414 static void ata_force_xfermask(struct ata_device *dev)
415 {
416 int devno = dev->link->pmp + dev->devno;
417 int alt_devno = devno;
418 int i;
419
420 /* allow n.15/16 for devices attached to host port */
421 if (ata_is_host_link(dev->link))
422 alt_devno += 15;
423
424 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
425 const struct ata_force_ent *fe = &ata_force_tbl[i];
426 unsigned long pio_mask, mwdma_mask, udma_mask;
427
428 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
429 continue;
430
431 if (fe->device != -1 && fe->device != devno &&
432 fe->device != alt_devno)
433 continue;
434
435 if (!fe->param.xfer_mask)
436 continue;
437
438 ata_unpack_xfermask(fe->param.xfer_mask,
439 &pio_mask, &mwdma_mask, &udma_mask);
440 if (udma_mask)
441 dev->udma_mask = udma_mask;
442 else if (mwdma_mask) {
443 dev->udma_mask = 0;
444 dev->mwdma_mask = mwdma_mask;
445 } else {
446 dev->udma_mask = 0;
447 dev->mwdma_mask = 0;
448 dev->pio_mask = pio_mask;
449 }
450
451 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
452 fe->param.name);
453 return;
454 }
455 }
456
457 /**
458 * ata_force_horkage - force horkage according to libata.force
459 * @dev: ATA device of interest
460 *
461 * Force horkage according to libata.force and whine about it.
462 * For consistency with link selection, device number 15 selects
463 * the first device connected to the host link.
464 *
465 * LOCKING:
466 * EH context.
467 */
468 static void ata_force_horkage(struct ata_device *dev)
469 {
470 int devno = dev->link->pmp + dev->devno;
471 int alt_devno = devno;
472 int i;
473
474 /* allow n.15/16 for devices attached to host port */
475 if (ata_is_host_link(dev->link))
476 alt_devno += 15;
477
478 for (i = 0; i < ata_force_tbl_size; i++) {
479 const struct ata_force_ent *fe = &ata_force_tbl[i];
480
481 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
482 continue;
483
484 if (fe->device != -1 && fe->device != devno &&
485 fe->device != alt_devno)
486 continue;
487
488 if (!(~dev->horkage & fe->param.horkage_on) &&
489 !(dev->horkage & fe->param.horkage_off))
490 continue;
491
492 dev->horkage |= fe->param.horkage_on;
493 dev->horkage &= ~fe->param.horkage_off;
494
495 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
496 fe->param.name);
497 }
498 }
499
500 /**
501 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
502 * @opcode: SCSI opcode
503 *
504 * Determine ATAPI command type from @opcode.
505 *
506 * LOCKING:
507 * None.
508 *
509 * RETURNS:
510 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
511 */
512 int atapi_cmd_type(u8 opcode)
513 {
514 switch (opcode) {
515 case GPCMD_READ_10:
516 case GPCMD_READ_12:
517 return ATAPI_READ;
518
519 case GPCMD_WRITE_10:
520 case GPCMD_WRITE_12:
521 case GPCMD_WRITE_AND_VERIFY_10:
522 return ATAPI_WRITE;
523
524 case GPCMD_READ_CD:
525 case GPCMD_READ_CD_MSF:
526 return ATAPI_READ_CD;
527
528 case ATA_16:
529 case ATA_12:
530 if (atapi_passthru16)
531 return ATAPI_PASS_THRU;
532 /* fall thru */
533 default:
534 return ATAPI_MISC;
535 }
536 }
537
538 /**
539 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
540 * @tf: Taskfile to convert
541 * @pmp: Port multiplier port
542 * @is_cmd: This FIS is for command
543 * @fis: Buffer into which data will output
544 *
545 * Converts a standard ATA taskfile to a Serial ATA
546 * FIS structure (Register - Host to Device).
547 *
548 * LOCKING:
549 * Inherited from caller.
550 */
551 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
552 {
553 fis[0] = 0x27; /* Register - Host to Device FIS */
554 fis[1] = pmp & 0xf; /* Port multiplier number*/
555 if (is_cmd)
556 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
557
558 fis[2] = tf->command;
559 fis[3] = tf->feature;
560
561 fis[4] = tf->lbal;
562 fis[5] = tf->lbam;
563 fis[6] = tf->lbah;
564 fis[7] = tf->device;
565
566 fis[8] = tf->hob_lbal;
567 fis[9] = tf->hob_lbam;
568 fis[10] = tf->hob_lbah;
569 fis[11] = tf->hob_feature;
570
571 fis[12] = tf->nsect;
572 fis[13] = tf->hob_nsect;
573 fis[14] = 0;
574 fis[15] = tf->ctl;
575
576 fis[16] = tf->auxiliary & 0xff;
577 fis[17] = (tf->auxiliary >> 8) & 0xff;
578 fis[18] = (tf->auxiliary >> 16) & 0xff;
579 fis[19] = (tf->auxiliary >> 24) & 0xff;
580 }
581
582 /**
583 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
584 * @fis: Buffer from which data will be input
585 * @tf: Taskfile to output
586 *
587 * Converts a serial ATA FIS structure to a standard ATA taskfile.
588 *
589 * LOCKING:
590 * Inherited from caller.
591 */
592
593 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
594 {
595 tf->command = fis[2]; /* status */
596 tf->feature = fis[3]; /* error */
597
598 tf->lbal = fis[4];
599 tf->lbam = fis[5];
600 tf->lbah = fis[6];
601 tf->device = fis[7];
602
603 tf->hob_lbal = fis[8];
604 tf->hob_lbam = fis[9];
605 tf->hob_lbah = fis[10];
606
607 tf->nsect = fis[12];
608 tf->hob_nsect = fis[13];
609 }
610
611 static const u8 ata_rw_cmds[] = {
612 /* pio multi */
613 ATA_CMD_READ_MULTI,
614 ATA_CMD_WRITE_MULTI,
615 ATA_CMD_READ_MULTI_EXT,
616 ATA_CMD_WRITE_MULTI_EXT,
617 0,
618 0,
619 0,
620 ATA_CMD_WRITE_MULTI_FUA_EXT,
621 /* pio */
622 ATA_CMD_PIO_READ,
623 ATA_CMD_PIO_WRITE,
624 ATA_CMD_PIO_READ_EXT,
625 ATA_CMD_PIO_WRITE_EXT,
626 0,
627 0,
628 0,
629 0,
630 /* dma */
631 ATA_CMD_READ,
632 ATA_CMD_WRITE,
633 ATA_CMD_READ_EXT,
634 ATA_CMD_WRITE_EXT,
635 0,
636 0,
637 0,
638 ATA_CMD_WRITE_FUA_EXT
639 };
640
641 /**
642 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
643 * @tf: command to examine and configure
644 * @dev: device tf belongs to
645 *
646 * Examine the device configuration and tf->flags to calculate
647 * the proper read/write commands and protocol to use.
648 *
649 * LOCKING:
650 * caller.
651 */
652 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
653 {
654 u8 cmd;
655
656 int index, fua, lba48, write;
657
658 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
659 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
660 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
661
662 if (dev->flags & ATA_DFLAG_PIO) {
663 tf->protocol = ATA_PROT_PIO;
664 index = dev->multi_count ? 0 : 8;
665 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
666 /* Unable to use DMA due to host limitation */
667 tf->protocol = ATA_PROT_PIO;
668 index = dev->multi_count ? 0 : 8;
669 } else {
670 tf->protocol = ATA_PROT_DMA;
671 index = 16;
672 }
673
674 cmd = ata_rw_cmds[index + fua + lba48 + write];
675 if (cmd) {
676 tf->command = cmd;
677 return 0;
678 }
679 return -1;
680 }
681
682 /**
683 * ata_tf_read_block - Read block address from ATA taskfile
684 * @tf: ATA taskfile of interest
685 * @dev: ATA device @tf belongs to
686 *
687 * LOCKING:
688 * None.
689 *
690 * Read block address from @tf. This function can handle all
691 * three address formats - LBA, LBA48 and CHS. tf->protocol and
692 * flags select the address format to use.
693 *
694 * RETURNS:
695 * Block address read from @tf.
696 */
697 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
698 {
699 u64 block = 0;
700
701 if (tf->flags & ATA_TFLAG_LBA) {
702 if (tf->flags & ATA_TFLAG_LBA48) {
703 block |= (u64)tf->hob_lbah << 40;
704 block |= (u64)tf->hob_lbam << 32;
705 block |= (u64)tf->hob_lbal << 24;
706 } else
707 block |= (tf->device & 0xf) << 24;
708
709 block |= tf->lbah << 16;
710 block |= tf->lbam << 8;
711 block |= tf->lbal;
712 } else {
713 u32 cyl, head, sect;
714
715 cyl = tf->lbam | (tf->lbah << 8);
716 head = tf->device & 0xf;
717 sect = tf->lbal;
718
719 if (!sect) {
720 ata_dev_warn(dev,
721 "device reported invalid CHS sector 0\n");
722 sect = 1; /* oh well */
723 }
724
725 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
726 }
727
728 return block;
729 }
730
731 /**
732 * ata_build_rw_tf - Build ATA taskfile for given read/write request
733 * @tf: Target ATA taskfile
734 * @dev: ATA device @tf belongs to
735 * @block: Block address
736 * @n_block: Number of blocks
737 * @tf_flags: RW/FUA etc...
738 * @tag: tag
739 *
740 * LOCKING:
741 * None.
742 *
743 * Build ATA taskfile @tf for read/write request described by
744 * @block, @n_block, @tf_flags and @tag on @dev.
745 *
746 * RETURNS:
747 *
748 * 0 on success, -ERANGE if the request is too large for @dev,
749 * -EINVAL if the request is invalid.
750 */
751 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
752 u64 block, u32 n_block, unsigned int tf_flags,
753 unsigned int tag)
754 {
755 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
756 tf->flags |= tf_flags;
757
758 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
759 /* yay, NCQ */
760 if (!lba_48_ok(block, n_block))
761 return -ERANGE;
762
763 tf->protocol = ATA_PROT_NCQ;
764 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
765
766 if (tf->flags & ATA_TFLAG_WRITE)
767 tf->command = ATA_CMD_FPDMA_WRITE;
768 else
769 tf->command = ATA_CMD_FPDMA_READ;
770
771 tf->nsect = tag << 3;
772 tf->hob_feature = (n_block >> 8) & 0xff;
773 tf->feature = n_block & 0xff;
774
775 tf->hob_lbah = (block >> 40) & 0xff;
776 tf->hob_lbam = (block >> 32) & 0xff;
777 tf->hob_lbal = (block >> 24) & 0xff;
778 tf->lbah = (block >> 16) & 0xff;
779 tf->lbam = (block >> 8) & 0xff;
780 tf->lbal = block & 0xff;
781
782 tf->device = ATA_LBA;
783 if (tf->flags & ATA_TFLAG_FUA)
784 tf->device |= 1 << 7;
785 } else if (dev->flags & ATA_DFLAG_LBA) {
786 tf->flags |= ATA_TFLAG_LBA;
787
788 if (lba_28_ok(block, n_block)) {
789 /* use LBA28 */
790 tf->device |= (block >> 24) & 0xf;
791 } else if (lba_48_ok(block, n_block)) {
792 if (!(dev->flags & ATA_DFLAG_LBA48))
793 return -ERANGE;
794
795 /* use LBA48 */
796 tf->flags |= ATA_TFLAG_LBA48;
797
798 tf->hob_nsect = (n_block >> 8) & 0xff;
799
800 tf->hob_lbah = (block >> 40) & 0xff;
801 tf->hob_lbam = (block >> 32) & 0xff;
802 tf->hob_lbal = (block >> 24) & 0xff;
803 } else
804 /* request too large even for LBA48 */
805 return -ERANGE;
806
807 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
808 return -EINVAL;
809
810 tf->nsect = n_block & 0xff;
811
812 tf->lbah = (block >> 16) & 0xff;
813 tf->lbam = (block >> 8) & 0xff;
814 tf->lbal = block & 0xff;
815
816 tf->device |= ATA_LBA;
817 } else {
818 /* CHS */
819 u32 sect, head, cyl, track;
820
821 /* The request -may- be too large for CHS addressing. */
822 if (!lba_28_ok(block, n_block))
823 return -ERANGE;
824
825 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
826 return -EINVAL;
827
828 /* Convert LBA to CHS */
829 track = (u32)block / dev->sectors;
830 cyl = track / dev->heads;
831 head = track % dev->heads;
832 sect = (u32)block % dev->sectors + 1;
833
834 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
835 (u32)block, track, cyl, head, sect);
836
837 /* Check whether the converted CHS can fit.
838 Cylinder: 0-65535
839 Head: 0-15
840 Sector: 1-255*/
841 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
842 return -ERANGE;
843
844 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
845 tf->lbal = sect;
846 tf->lbam = cyl;
847 tf->lbah = cyl >> 8;
848 tf->device |= head;
849 }
850
851 return 0;
852 }
853
854 /**
855 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
856 * @pio_mask: pio_mask
857 * @mwdma_mask: mwdma_mask
858 * @udma_mask: udma_mask
859 *
860 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
861 * unsigned int xfer_mask.
862 *
863 * LOCKING:
864 * None.
865 *
866 * RETURNS:
867 * Packed xfer_mask.
868 */
869 unsigned long ata_pack_xfermask(unsigned long pio_mask,
870 unsigned long mwdma_mask,
871 unsigned long udma_mask)
872 {
873 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
874 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
875 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
876 }
877
878 /**
879 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
880 * @xfer_mask: xfer_mask to unpack
881 * @pio_mask: resulting pio_mask
882 * @mwdma_mask: resulting mwdma_mask
883 * @udma_mask: resulting udma_mask
884 *
885 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
886 * Any NULL distination masks will be ignored.
887 */
888 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
889 unsigned long *mwdma_mask, unsigned long *udma_mask)
890 {
891 if (pio_mask)
892 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
893 if (mwdma_mask)
894 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
895 if (udma_mask)
896 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
897 }
898
899 static const struct ata_xfer_ent {
900 int shift, bits;
901 u8 base;
902 } ata_xfer_tbl[] = {
903 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
904 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
905 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
906 { -1, },
907 };
908
909 /**
910 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
911 * @xfer_mask: xfer_mask of interest
912 *
913 * Return matching XFER_* value for @xfer_mask. Only the highest
914 * bit of @xfer_mask is considered.
915 *
916 * LOCKING:
917 * None.
918 *
919 * RETURNS:
920 * Matching XFER_* value, 0xff if no match found.
921 */
922 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
923 {
924 int highbit = fls(xfer_mask) - 1;
925 const struct ata_xfer_ent *ent;
926
927 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
928 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
929 return ent->base + highbit - ent->shift;
930 return 0xff;
931 }
932
933 /**
934 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
935 * @xfer_mode: XFER_* of interest
936 *
937 * Return matching xfer_mask for @xfer_mode.
938 *
939 * LOCKING:
940 * None.
941 *
942 * RETURNS:
943 * Matching xfer_mask, 0 if no match found.
944 */
945 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
946 {
947 const struct ata_xfer_ent *ent;
948
949 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
950 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
951 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
952 & ~((1 << ent->shift) - 1);
953 return 0;
954 }
955
956 /**
957 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
958 * @xfer_mode: XFER_* of interest
959 *
960 * Return matching xfer_shift for @xfer_mode.
961 *
962 * LOCKING:
963 * None.
964 *
965 * RETURNS:
966 * Matching xfer_shift, -1 if no match found.
967 */
968 int ata_xfer_mode2shift(unsigned long xfer_mode)
969 {
970 const struct ata_xfer_ent *ent;
971
972 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
973 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
974 return ent->shift;
975 return -1;
976 }
977
978 /**
979 * ata_mode_string - convert xfer_mask to string
980 * @xfer_mask: mask of bits supported; only highest bit counts.
981 *
982 * Determine string which represents the highest speed
983 * (highest bit in @modemask).
984 *
985 * LOCKING:
986 * None.
987 *
988 * RETURNS:
989 * Constant C string representing highest speed listed in
990 * @mode_mask, or the constant C string "<n/a>".
991 */
992 const char *ata_mode_string(unsigned long xfer_mask)
993 {
994 static const char * const xfer_mode_str[] = {
995 "PIO0",
996 "PIO1",
997 "PIO2",
998 "PIO3",
999 "PIO4",
1000 "PIO5",
1001 "PIO6",
1002 "MWDMA0",
1003 "MWDMA1",
1004 "MWDMA2",
1005 "MWDMA3",
1006 "MWDMA4",
1007 "UDMA/16",
1008 "UDMA/25",
1009 "UDMA/33",
1010 "UDMA/44",
1011 "UDMA/66",
1012 "UDMA/100",
1013 "UDMA/133",
1014 "UDMA7",
1015 };
1016 int highbit;
1017
1018 highbit = fls(xfer_mask) - 1;
1019 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1020 return xfer_mode_str[highbit];
1021 return "<n/a>";
1022 }
1023
1024 const char *sata_spd_string(unsigned int spd)
1025 {
1026 static const char * const spd_str[] = {
1027 "1.5 Gbps",
1028 "3.0 Gbps",
1029 "6.0 Gbps",
1030 };
1031
1032 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1033 return "<unknown>";
1034 return spd_str[spd - 1];
1035 }
1036
1037 /**
1038 * ata_dev_classify - determine device type based on ATA-spec signature
1039 * @tf: ATA taskfile register set for device to be identified
1040 *
1041 * Determine from taskfile register contents whether a device is
1042 * ATA or ATAPI, as per "Signature and persistence" section
1043 * of ATA/PI spec (volume 1, sect 5.14).
1044 *
1045 * LOCKING:
1046 * None.
1047 *
1048 * RETURNS:
1049 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1050 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1051 */
1052 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1053 {
1054 /* Apple's open source Darwin code hints that some devices only
1055 * put a proper signature into the LBA mid/high registers,
1056 * So, we only check those. It's sufficient for uniqueness.
1057 *
1058 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1059 * signatures for ATA and ATAPI devices attached on SerialATA,
1060 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1061 * spec has never mentioned about using different signatures
1062 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1063 * Multiplier specification began to use 0x69/0x96 to identify
1064 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1065 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1066 * 0x69/0x96 shortly and described them as reserved for
1067 * SerialATA.
1068 *
1069 * We follow the current spec and consider that 0x69/0x96
1070 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1071 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1072 * SEMB signature. This is worked around in
1073 * ata_dev_read_id().
1074 */
1075 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1076 DPRINTK("found ATA device by sig\n");
1077 return ATA_DEV_ATA;
1078 }
1079
1080 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1081 DPRINTK("found ATAPI device by sig\n");
1082 return ATA_DEV_ATAPI;
1083 }
1084
1085 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1086 DPRINTK("found PMP device by sig\n");
1087 return ATA_DEV_PMP;
1088 }
1089
1090 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1091 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1092 return ATA_DEV_SEMB;
1093 }
1094
1095 if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) {
1096 DPRINTK("found ZAC device by sig\n");
1097 return ATA_DEV_ZAC;
1098 }
1099
1100 DPRINTK("unknown device\n");
1101 return ATA_DEV_UNKNOWN;
1102 }
1103
1104 /**
1105 * ata_id_string - Convert IDENTIFY DEVICE page into string
1106 * @id: IDENTIFY DEVICE results we will examine
1107 * @s: string into which data is output
1108 * @ofs: offset into identify device page
1109 * @len: length of string to return. must be an even number.
1110 *
1111 * The strings in the IDENTIFY DEVICE page are broken up into
1112 * 16-bit chunks. Run through the string, and output each
1113 * 8-bit chunk linearly, regardless of platform.
1114 *
1115 * LOCKING:
1116 * caller.
1117 */
1118
1119 void ata_id_string(const u16 *id, unsigned char *s,
1120 unsigned int ofs, unsigned int len)
1121 {
1122 unsigned int c;
1123
1124 BUG_ON(len & 1);
1125
1126 while (len > 0) {
1127 c = id[ofs] >> 8;
1128 *s = c;
1129 s++;
1130
1131 c = id[ofs] & 0xff;
1132 *s = c;
1133 s++;
1134
1135 ofs++;
1136 len -= 2;
1137 }
1138 }
1139
1140 /**
1141 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1142 * @id: IDENTIFY DEVICE results we will examine
1143 * @s: string into which data is output
1144 * @ofs: offset into identify device page
1145 * @len: length of string to return. must be an odd number.
1146 *
1147 * This function is identical to ata_id_string except that it
1148 * trims trailing spaces and terminates the resulting string with
1149 * null. @len must be actual maximum length (even number) + 1.
1150 *
1151 * LOCKING:
1152 * caller.
1153 */
1154 void ata_id_c_string(const u16 *id, unsigned char *s,
1155 unsigned int ofs, unsigned int len)
1156 {
1157 unsigned char *p;
1158
1159 ata_id_string(id, s, ofs, len - 1);
1160
1161 p = s + strnlen(s, len - 1);
1162 while (p > s && p[-1] == ' ')
1163 p--;
1164 *p = '\0';
1165 }
1166
1167 static u64 ata_id_n_sectors(const u16 *id)
1168 {
1169 if (ata_id_has_lba(id)) {
1170 if (ata_id_has_lba48(id))
1171 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1172 else
1173 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1174 } else {
1175 if (ata_id_current_chs_valid(id))
1176 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1177 id[ATA_ID_CUR_SECTORS];
1178 else
1179 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1180 id[ATA_ID_SECTORS];
1181 }
1182 }
1183
1184 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1185 {
1186 u64 sectors = 0;
1187
1188 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1189 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1190 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1191 sectors |= (tf->lbah & 0xff) << 16;
1192 sectors |= (tf->lbam & 0xff) << 8;
1193 sectors |= (tf->lbal & 0xff);
1194
1195 return sectors;
1196 }
1197
1198 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1199 {
1200 u64 sectors = 0;
1201
1202 sectors |= (tf->device & 0x0f) << 24;
1203 sectors |= (tf->lbah & 0xff) << 16;
1204 sectors |= (tf->lbam & 0xff) << 8;
1205 sectors |= (tf->lbal & 0xff);
1206
1207 return sectors;
1208 }
1209
1210 /**
1211 * ata_read_native_max_address - Read native max address
1212 * @dev: target device
1213 * @max_sectors: out parameter for the result native max address
1214 *
1215 * Perform an LBA48 or LBA28 native size query upon the device in
1216 * question.
1217 *
1218 * RETURNS:
1219 * 0 on success, -EACCES if command is aborted by the drive.
1220 * -EIO on other errors.
1221 */
1222 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1223 {
1224 unsigned int err_mask;
1225 struct ata_taskfile tf;
1226 int lba48 = ata_id_has_lba48(dev->id);
1227
1228 ata_tf_init(dev, &tf);
1229
1230 /* always clear all address registers */
1231 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1232
1233 if (lba48) {
1234 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1235 tf.flags |= ATA_TFLAG_LBA48;
1236 } else
1237 tf.command = ATA_CMD_READ_NATIVE_MAX;
1238
1239 tf.protocol |= ATA_PROT_NODATA;
1240 tf.device |= ATA_LBA;
1241
1242 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1243 if (err_mask) {
1244 ata_dev_warn(dev,
1245 "failed to read native max address (err_mask=0x%x)\n",
1246 err_mask);
1247 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1248 return -EACCES;
1249 return -EIO;
1250 }
1251
1252 if (lba48)
1253 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1254 else
1255 *max_sectors = ata_tf_to_lba(&tf) + 1;
1256 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1257 (*max_sectors)--;
1258 return 0;
1259 }
1260
1261 /**
1262 * ata_set_max_sectors - Set max sectors
1263 * @dev: target device
1264 * @new_sectors: new max sectors value to set for the device
1265 *
1266 * Set max sectors of @dev to @new_sectors.
1267 *
1268 * RETURNS:
1269 * 0 on success, -EACCES if command is aborted or denied (due to
1270 * previous non-volatile SET_MAX) by the drive. -EIO on other
1271 * errors.
1272 */
1273 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1274 {
1275 unsigned int err_mask;
1276 struct ata_taskfile tf;
1277 int lba48 = ata_id_has_lba48(dev->id);
1278
1279 new_sectors--;
1280
1281 ata_tf_init(dev, &tf);
1282
1283 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1284
1285 if (lba48) {
1286 tf.command = ATA_CMD_SET_MAX_EXT;
1287 tf.flags |= ATA_TFLAG_LBA48;
1288
1289 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1290 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1291 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1292 } else {
1293 tf.command = ATA_CMD_SET_MAX;
1294
1295 tf.device |= (new_sectors >> 24) & 0xf;
1296 }
1297
1298 tf.protocol |= ATA_PROT_NODATA;
1299 tf.device |= ATA_LBA;
1300
1301 tf.lbal = (new_sectors >> 0) & 0xff;
1302 tf.lbam = (new_sectors >> 8) & 0xff;
1303 tf.lbah = (new_sectors >> 16) & 0xff;
1304
1305 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1306 if (err_mask) {
1307 ata_dev_warn(dev,
1308 "failed to set max address (err_mask=0x%x)\n",
1309 err_mask);
1310 if (err_mask == AC_ERR_DEV &&
1311 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1312 return -EACCES;
1313 return -EIO;
1314 }
1315
1316 return 0;
1317 }
1318
1319 /**
1320 * ata_hpa_resize - Resize a device with an HPA set
1321 * @dev: Device to resize
1322 *
1323 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1324 * it if required to the full size of the media. The caller must check
1325 * the drive has the HPA feature set enabled.
1326 *
1327 * RETURNS:
1328 * 0 on success, -errno on failure.
1329 */
1330 static int ata_hpa_resize(struct ata_device *dev)
1331 {
1332 struct ata_eh_context *ehc = &dev->link->eh_context;
1333 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1334 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1335 u64 sectors = ata_id_n_sectors(dev->id);
1336 u64 native_sectors;
1337 int rc;
1338
1339 /* do we need to do it? */
1340 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1341 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1342 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1343 return 0;
1344
1345 /* read native max address */
1346 rc = ata_read_native_max_address(dev, &native_sectors);
1347 if (rc) {
1348 /* If device aborted the command or HPA isn't going to
1349 * be unlocked, skip HPA resizing.
1350 */
1351 if (rc == -EACCES || !unlock_hpa) {
1352 ata_dev_warn(dev,
1353 "HPA support seems broken, skipping HPA handling\n");
1354 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1355
1356 /* we can continue if device aborted the command */
1357 if (rc == -EACCES)
1358 rc = 0;
1359 }
1360
1361 return rc;
1362 }
1363 dev->n_native_sectors = native_sectors;
1364
1365 /* nothing to do? */
1366 if (native_sectors <= sectors || !unlock_hpa) {
1367 if (!print_info || native_sectors == sectors)
1368 return 0;
1369
1370 if (native_sectors > sectors)
1371 ata_dev_info(dev,
1372 "HPA detected: current %llu, native %llu\n",
1373 (unsigned long long)sectors,
1374 (unsigned long long)native_sectors);
1375 else if (native_sectors < sectors)
1376 ata_dev_warn(dev,
1377 "native sectors (%llu) is smaller than sectors (%llu)\n",
1378 (unsigned long long)native_sectors,
1379 (unsigned long long)sectors);
1380 return 0;
1381 }
1382
1383 /* let's unlock HPA */
1384 rc = ata_set_max_sectors(dev, native_sectors);
1385 if (rc == -EACCES) {
1386 /* if device aborted the command, skip HPA resizing */
1387 ata_dev_warn(dev,
1388 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1389 (unsigned long long)sectors,
1390 (unsigned long long)native_sectors);
1391 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1392 return 0;
1393 } else if (rc)
1394 return rc;
1395
1396 /* re-read IDENTIFY data */
1397 rc = ata_dev_reread_id(dev, 0);
1398 if (rc) {
1399 ata_dev_err(dev,
1400 "failed to re-read IDENTIFY data after HPA resizing\n");
1401 return rc;
1402 }
1403
1404 if (print_info) {
1405 u64 new_sectors = ata_id_n_sectors(dev->id);
1406 ata_dev_info(dev,
1407 "HPA unlocked: %llu -> %llu, native %llu\n",
1408 (unsigned long long)sectors,
1409 (unsigned long long)new_sectors,
1410 (unsigned long long)native_sectors);
1411 }
1412
1413 return 0;
1414 }
1415
1416 /**
1417 * ata_dump_id - IDENTIFY DEVICE info debugging output
1418 * @id: IDENTIFY DEVICE page to dump
1419 *
1420 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1421 * page.
1422 *
1423 * LOCKING:
1424 * caller.
1425 */
1426
1427 static inline void ata_dump_id(const u16 *id)
1428 {
1429 DPRINTK("49==0x%04x "
1430 "53==0x%04x "
1431 "63==0x%04x "
1432 "64==0x%04x "
1433 "75==0x%04x \n",
1434 id[49],
1435 id[53],
1436 id[63],
1437 id[64],
1438 id[75]);
1439 DPRINTK("80==0x%04x "
1440 "81==0x%04x "
1441 "82==0x%04x "
1442 "83==0x%04x "
1443 "84==0x%04x \n",
1444 id[80],
1445 id[81],
1446 id[82],
1447 id[83],
1448 id[84]);
1449 DPRINTK("88==0x%04x "
1450 "93==0x%04x\n",
1451 id[88],
1452 id[93]);
1453 }
1454
1455 /**
1456 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1457 * @id: IDENTIFY data to compute xfer mask from
1458 *
1459 * Compute the xfermask for this device. This is not as trivial
1460 * as it seems if we must consider early devices correctly.
1461 *
1462 * FIXME: pre IDE drive timing (do we care ?).
1463 *
1464 * LOCKING:
1465 * None.
1466 *
1467 * RETURNS:
1468 * Computed xfermask
1469 */
1470 unsigned long ata_id_xfermask(const u16 *id)
1471 {
1472 unsigned long pio_mask, mwdma_mask, udma_mask;
1473
1474 /* Usual case. Word 53 indicates word 64 is valid */
1475 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1476 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1477 pio_mask <<= 3;
1478 pio_mask |= 0x7;
1479 } else {
1480 /* If word 64 isn't valid then Word 51 high byte holds
1481 * the PIO timing number for the maximum. Turn it into
1482 * a mask.
1483 */
1484 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1485 if (mode < 5) /* Valid PIO range */
1486 pio_mask = (2 << mode) - 1;
1487 else
1488 pio_mask = 1;
1489
1490 /* But wait.. there's more. Design your standards by
1491 * committee and you too can get a free iordy field to
1492 * process. However its the speeds not the modes that
1493 * are supported... Note drivers using the timing API
1494 * will get this right anyway
1495 */
1496 }
1497
1498 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1499
1500 if (ata_id_is_cfa(id)) {
1501 /*
1502 * Process compact flash extended modes
1503 */
1504 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1505 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1506
1507 if (pio)
1508 pio_mask |= (1 << 5);
1509 if (pio > 1)
1510 pio_mask |= (1 << 6);
1511 if (dma)
1512 mwdma_mask |= (1 << 3);
1513 if (dma > 1)
1514 mwdma_mask |= (1 << 4);
1515 }
1516
1517 udma_mask = 0;
1518 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1519 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1520
1521 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1522 }
1523
1524 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1525 {
1526 struct completion *waiting = qc->private_data;
1527
1528 complete(waiting);
1529 }
1530
1531 /**
1532 * ata_exec_internal_sg - execute libata internal command
1533 * @dev: Device to which the command is sent
1534 * @tf: Taskfile registers for the command and the result
1535 * @cdb: CDB for packet command
1536 * @dma_dir: Data transfer direction of the command
1537 * @sgl: sg list for the data buffer of the command
1538 * @n_elem: Number of sg entries
1539 * @timeout: Timeout in msecs (0 for default)
1540 *
1541 * Executes libata internal command with timeout. @tf contains
1542 * command on entry and result on return. Timeout and error
1543 * conditions are reported via return value. No recovery action
1544 * is taken after a command times out. It's caller's duty to
1545 * clean up after timeout.
1546 *
1547 * LOCKING:
1548 * None. Should be called with kernel context, might sleep.
1549 *
1550 * RETURNS:
1551 * Zero on success, AC_ERR_* mask on failure
1552 */
1553 unsigned ata_exec_internal_sg(struct ata_device *dev,
1554 struct ata_taskfile *tf, const u8 *cdb,
1555 int dma_dir, struct scatterlist *sgl,
1556 unsigned int n_elem, unsigned long timeout)
1557 {
1558 struct ata_link *link = dev->link;
1559 struct ata_port *ap = link->ap;
1560 u8 command = tf->command;
1561 int auto_timeout = 0;
1562 struct ata_queued_cmd *qc;
1563 unsigned int tag, preempted_tag;
1564 u32 preempted_sactive, preempted_qc_active;
1565 int preempted_nr_active_links;
1566 DECLARE_COMPLETION_ONSTACK(wait);
1567 unsigned long flags;
1568 unsigned int err_mask;
1569 int rc;
1570
1571 spin_lock_irqsave(ap->lock, flags);
1572
1573 /* no internal command while frozen */
1574 if (ap->pflags & ATA_PFLAG_FROZEN) {
1575 spin_unlock_irqrestore(ap->lock, flags);
1576 return AC_ERR_SYSTEM;
1577 }
1578
1579 /* initialize internal qc */
1580
1581 /* XXX: Tag 0 is used for drivers with legacy EH as some
1582 * drivers choke if any other tag is given. This breaks
1583 * ata_tag_internal() test for those drivers. Don't use new
1584 * EH stuff without converting to it.
1585 */
1586 if (ap->ops->error_handler)
1587 tag = ATA_TAG_INTERNAL;
1588 else
1589 tag = 0;
1590
1591 qc = __ata_qc_from_tag(ap, tag);
1592
1593 qc->tag = tag;
1594 qc->scsicmd = NULL;
1595 qc->ap = ap;
1596 qc->dev = dev;
1597 ata_qc_reinit(qc);
1598
1599 preempted_tag = link->active_tag;
1600 preempted_sactive = link->sactive;
1601 preempted_qc_active = ap->qc_active;
1602 preempted_nr_active_links = ap->nr_active_links;
1603 link->active_tag = ATA_TAG_POISON;
1604 link->sactive = 0;
1605 ap->qc_active = 0;
1606 ap->nr_active_links = 0;
1607
1608 /* prepare & issue qc */
1609 qc->tf = *tf;
1610 if (cdb)
1611 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1612
1613 /* some SATA bridges need us to indicate data xfer direction */
1614 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1615 dma_dir == DMA_FROM_DEVICE)
1616 qc->tf.feature |= ATAPI_DMADIR;
1617
1618 qc->flags |= ATA_QCFLAG_RESULT_TF;
1619 qc->dma_dir = dma_dir;
1620 if (dma_dir != DMA_NONE) {
1621 unsigned int i, buflen = 0;
1622 struct scatterlist *sg;
1623
1624 for_each_sg(sgl, sg, n_elem, i)
1625 buflen += sg->length;
1626
1627 ata_sg_init(qc, sgl, n_elem);
1628 qc->nbytes = buflen;
1629 }
1630
1631 qc->private_data = &wait;
1632 qc->complete_fn = ata_qc_complete_internal;
1633
1634 ata_qc_issue(qc);
1635
1636 spin_unlock_irqrestore(ap->lock, flags);
1637
1638 if (!timeout) {
1639 if (ata_probe_timeout)
1640 timeout = ata_probe_timeout * 1000;
1641 else {
1642 timeout = ata_internal_cmd_timeout(dev, command);
1643 auto_timeout = 1;
1644 }
1645 }
1646
1647 if (ap->ops->error_handler)
1648 ata_eh_release(ap);
1649
1650 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1651
1652 if (ap->ops->error_handler)
1653 ata_eh_acquire(ap);
1654
1655 ata_sff_flush_pio_task(ap);
1656
1657 if (!rc) {
1658 spin_lock_irqsave(ap->lock, flags);
1659
1660 /* We're racing with irq here. If we lose, the
1661 * following test prevents us from completing the qc
1662 * twice. If we win, the port is frozen and will be
1663 * cleaned up by ->post_internal_cmd().
1664 */
1665 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1666 qc->err_mask |= AC_ERR_TIMEOUT;
1667
1668 if (ap->ops->error_handler)
1669 ata_port_freeze(ap);
1670 else
1671 ata_qc_complete(qc);
1672
1673 if (ata_msg_warn(ap))
1674 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1675 command);
1676 }
1677
1678 spin_unlock_irqrestore(ap->lock, flags);
1679 }
1680
1681 /* do post_internal_cmd */
1682 if (ap->ops->post_internal_cmd)
1683 ap->ops->post_internal_cmd(qc);
1684
1685 /* perform minimal error analysis */
1686 if (qc->flags & ATA_QCFLAG_FAILED) {
1687 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1688 qc->err_mask |= AC_ERR_DEV;
1689
1690 if (!qc->err_mask)
1691 qc->err_mask |= AC_ERR_OTHER;
1692
1693 if (qc->err_mask & ~AC_ERR_OTHER)
1694 qc->err_mask &= ~AC_ERR_OTHER;
1695 }
1696
1697 /* finish up */
1698 spin_lock_irqsave(ap->lock, flags);
1699
1700 *tf = qc->result_tf;
1701 err_mask = qc->err_mask;
1702
1703 ata_qc_free(qc);
1704 link->active_tag = preempted_tag;
1705 link->sactive = preempted_sactive;
1706 ap->qc_active = preempted_qc_active;
1707 ap->nr_active_links = preempted_nr_active_links;
1708
1709 spin_unlock_irqrestore(ap->lock, flags);
1710
1711 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1712 ata_internal_cmd_timed_out(dev, command);
1713
1714 return err_mask;
1715 }
1716
1717 /**
1718 * ata_exec_internal - execute libata internal command
1719 * @dev: Device to which the command is sent
1720 * @tf: Taskfile registers for the command and the result
1721 * @cdb: CDB for packet command
1722 * @dma_dir: Data transfer direction of the command
1723 * @buf: Data buffer of the command
1724 * @buflen: Length of data buffer
1725 * @timeout: Timeout in msecs (0 for default)
1726 *
1727 * Wrapper around ata_exec_internal_sg() which takes simple
1728 * buffer instead of sg list.
1729 *
1730 * LOCKING:
1731 * None. Should be called with kernel context, might sleep.
1732 *
1733 * RETURNS:
1734 * Zero on success, AC_ERR_* mask on failure
1735 */
1736 unsigned ata_exec_internal(struct ata_device *dev,
1737 struct ata_taskfile *tf, const u8 *cdb,
1738 int dma_dir, void *buf, unsigned int buflen,
1739 unsigned long timeout)
1740 {
1741 struct scatterlist *psg = NULL, sg;
1742 unsigned int n_elem = 0;
1743
1744 if (dma_dir != DMA_NONE) {
1745 WARN_ON(!buf);
1746 sg_init_one(&sg, buf, buflen);
1747 psg = &sg;
1748 n_elem++;
1749 }
1750
1751 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1752 timeout);
1753 }
1754
1755 /**
1756 * ata_pio_need_iordy - check if iordy needed
1757 * @adev: ATA device
1758 *
1759 * Check if the current speed of the device requires IORDY. Used
1760 * by various controllers for chip configuration.
1761 */
1762 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1763 {
1764 /* Don't set IORDY if we're preparing for reset. IORDY may
1765 * lead to controller lock up on certain controllers if the
1766 * port is not occupied. See bko#11703 for details.
1767 */
1768 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1769 return 0;
1770 /* Controller doesn't support IORDY. Probably a pointless
1771 * check as the caller should know this.
1772 */
1773 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1774 return 0;
1775 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1776 if (ata_id_is_cfa(adev->id)
1777 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1778 return 0;
1779 /* PIO3 and higher it is mandatory */
1780 if (adev->pio_mode > XFER_PIO_2)
1781 return 1;
1782 /* We turn it on when possible */
1783 if (ata_id_has_iordy(adev->id))
1784 return 1;
1785 return 0;
1786 }
1787
1788 /**
1789 * ata_pio_mask_no_iordy - Return the non IORDY mask
1790 * @adev: ATA device
1791 *
1792 * Compute the highest mode possible if we are not using iordy. Return
1793 * -1 if no iordy mode is available.
1794 */
1795 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1796 {
1797 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1798 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1799 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1800 /* Is the speed faster than the drive allows non IORDY ? */
1801 if (pio) {
1802 /* This is cycle times not frequency - watch the logic! */
1803 if (pio > 240) /* PIO2 is 240nS per cycle */
1804 return 3 << ATA_SHIFT_PIO;
1805 return 7 << ATA_SHIFT_PIO;
1806 }
1807 }
1808 return 3 << ATA_SHIFT_PIO;
1809 }
1810
1811 /**
1812 * ata_do_dev_read_id - default ID read method
1813 * @dev: device
1814 * @tf: proposed taskfile
1815 * @id: data buffer
1816 *
1817 * Issue the identify taskfile and hand back the buffer containing
1818 * identify data. For some RAID controllers and for pre ATA devices
1819 * this function is wrapped or replaced by the driver
1820 */
1821 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1822 struct ata_taskfile *tf, u16 *id)
1823 {
1824 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1825 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1826 }
1827
1828 /**
1829 * ata_dev_read_id - Read ID data from the specified device
1830 * @dev: target device
1831 * @p_class: pointer to class of the target device (may be changed)
1832 * @flags: ATA_READID_* flags
1833 * @id: buffer to read IDENTIFY data into
1834 *
1835 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1836 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1837 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1838 * for pre-ATA4 drives.
1839 *
1840 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1841 * now we abort if we hit that case.
1842 *
1843 * LOCKING:
1844 * Kernel thread context (may sleep)
1845 *
1846 * RETURNS:
1847 * 0 on success, -errno otherwise.
1848 */
1849 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1850 unsigned int flags, u16 *id)
1851 {
1852 struct ata_port *ap = dev->link->ap;
1853 unsigned int class = *p_class;
1854 struct ata_taskfile tf;
1855 unsigned int err_mask = 0;
1856 const char *reason;
1857 bool is_semb = class == ATA_DEV_SEMB;
1858 int may_fallback = 1, tried_spinup = 0;
1859 int rc;
1860
1861 if (ata_msg_ctl(ap))
1862 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1863
1864 retry:
1865 ata_tf_init(dev, &tf);
1866
1867 switch (class) {
1868 case ATA_DEV_SEMB:
1869 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
1870 case ATA_DEV_ATA:
1871 case ATA_DEV_ZAC:
1872 tf.command = ATA_CMD_ID_ATA;
1873 break;
1874 case ATA_DEV_ATAPI:
1875 tf.command = ATA_CMD_ID_ATAPI;
1876 break;
1877 default:
1878 rc = -ENODEV;
1879 reason = "unsupported class";
1880 goto err_out;
1881 }
1882
1883 tf.protocol = ATA_PROT_PIO;
1884
1885 /* Some devices choke if TF registers contain garbage. Make
1886 * sure those are properly initialized.
1887 */
1888 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1889
1890 /* Device presence detection is unreliable on some
1891 * controllers. Always poll IDENTIFY if available.
1892 */
1893 tf.flags |= ATA_TFLAG_POLLING;
1894
1895 if (ap->ops->read_id)
1896 err_mask = ap->ops->read_id(dev, &tf, id);
1897 else
1898 err_mask = ata_do_dev_read_id(dev, &tf, id);
1899
1900 if (err_mask) {
1901 if (err_mask & AC_ERR_NODEV_HINT) {
1902 ata_dev_dbg(dev, "NODEV after polling detection\n");
1903 return -ENOENT;
1904 }
1905
1906 if (is_semb) {
1907 ata_dev_info(dev,
1908 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1909 /* SEMB is not supported yet */
1910 *p_class = ATA_DEV_SEMB_UNSUP;
1911 return 0;
1912 }
1913
1914 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1915 /* Device or controller might have reported
1916 * the wrong device class. Give a shot at the
1917 * other IDENTIFY if the current one is
1918 * aborted by the device.
1919 */
1920 if (may_fallback) {
1921 may_fallback = 0;
1922
1923 if (class == ATA_DEV_ATA)
1924 class = ATA_DEV_ATAPI;
1925 else
1926 class = ATA_DEV_ATA;
1927 goto retry;
1928 }
1929
1930 /* Control reaches here iff the device aborted
1931 * both flavors of IDENTIFYs which happens
1932 * sometimes with phantom devices.
1933 */
1934 ata_dev_dbg(dev,
1935 "both IDENTIFYs aborted, assuming NODEV\n");
1936 return -ENOENT;
1937 }
1938
1939 rc = -EIO;
1940 reason = "I/O error";
1941 goto err_out;
1942 }
1943
1944 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1945 ata_dev_dbg(dev, "dumping IDENTIFY data, "
1946 "class=%d may_fallback=%d tried_spinup=%d\n",
1947 class, may_fallback, tried_spinup);
1948 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1949 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1950 }
1951
1952 /* Falling back doesn't make sense if ID data was read
1953 * successfully at least once.
1954 */
1955 may_fallback = 0;
1956
1957 swap_buf_le16(id, ATA_ID_WORDS);
1958
1959 /* sanity check */
1960 rc = -EINVAL;
1961 reason = "device reports invalid type";
1962
1963 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1964 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1965 goto err_out;
1966 if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1967 ata_id_is_ata(id)) {
1968 ata_dev_dbg(dev,
1969 "host indicates ignore ATA devices, ignored\n");
1970 return -ENOENT;
1971 }
1972 } else {
1973 if (ata_id_is_ata(id))
1974 goto err_out;
1975 }
1976
1977 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1978 tried_spinup = 1;
1979 /*
1980 * Drive powered-up in standby mode, and requires a specific
1981 * SET_FEATURES spin-up subcommand before it will accept
1982 * anything other than the original IDENTIFY command.
1983 */
1984 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1985 if (err_mask && id[2] != 0x738c) {
1986 rc = -EIO;
1987 reason = "SPINUP failed";
1988 goto err_out;
1989 }
1990 /*
1991 * If the drive initially returned incomplete IDENTIFY info,
1992 * we now must reissue the IDENTIFY command.
1993 */
1994 if (id[2] == 0x37c8)
1995 goto retry;
1996 }
1997
1998 if ((flags & ATA_READID_POSTRESET) &&
1999 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
2000 /*
2001 * The exact sequence expected by certain pre-ATA4 drives is:
2002 * SRST RESET
2003 * IDENTIFY (optional in early ATA)
2004 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2005 * anything else..
2006 * Some drives were very specific about that exact sequence.
2007 *
2008 * Note that ATA4 says lba is mandatory so the second check
2009 * should never trigger.
2010 */
2011 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2012 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2013 if (err_mask) {
2014 rc = -EIO;
2015 reason = "INIT_DEV_PARAMS failed";
2016 goto err_out;
2017 }
2018
2019 /* current CHS translation info (id[53-58]) might be
2020 * changed. reread the identify device info.
2021 */
2022 flags &= ~ATA_READID_POSTRESET;
2023 goto retry;
2024 }
2025 }
2026
2027 *p_class = class;
2028
2029 return 0;
2030
2031 err_out:
2032 if (ata_msg_warn(ap))
2033 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2034 reason, err_mask);
2035 return rc;
2036 }
2037
2038 static int ata_do_link_spd_horkage(struct ata_device *dev)
2039 {
2040 struct ata_link *plink = ata_dev_phys_link(dev);
2041 u32 target, target_limit;
2042
2043 if (!sata_scr_valid(plink))
2044 return 0;
2045
2046 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2047 target = 1;
2048 else
2049 return 0;
2050
2051 target_limit = (1 << target) - 1;
2052
2053 /* if already on stricter limit, no need to push further */
2054 if (plink->sata_spd_limit <= target_limit)
2055 return 0;
2056
2057 plink->sata_spd_limit = target_limit;
2058
2059 /* Request another EH round by returning -EAGAIN if link is
2060 * going faster than the target speed. Forward progress is
2061 * guaranteed by setting sata_spd_limit to target_limit above.
2062 */
2063 if (plink->sata_spd > target) {
2064 ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2065 sata_spd_string(target));
2066 return -EAGAIN;
2067 }
2068 return 0;
2069 }
2070
2071 static inline u8 ata_dev_knobble(struct ata_device *dev)
2072 {
2073 struct ata_port *ap = dev->link->ap;
2074
2075 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2076 return 0;
2077
2078 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2079 }
2080
2081 static int ata_dev_config_ncq(struct ata_device *dev,
2082 char *desc, size_t desc_sz)
2083 {
2084 struct ata_port *ap = dev->link->ap;
2085 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2086 unsigned int err_mask;
2087 char *aa_desc = "";
2088
2089 if (!ata_id_has_ncq(dev->id)) {
2090 desc[0] = '\0';
2091 return 0;
2092 }
2093 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2094 snprintf(desc, desc_sz, "NCQ (not used)");
2095 return 0;
2096 }
2097 if (ap->flags & ATA_FLAG_NCQ) {
2098 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2099 dev->flags |= ATA_DFLAG_NCQ;
2100 }
2101
2102 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2103 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2104 ata_id_has_fpdma_aa(dev->id)) {
2105 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2106 SATA_FPDMA_AA);
2107 if (err_mask) {
2108 ata_dev_err(dev,
2109 "failed to enable AA (error_mask=0x%x)\n",
2110 err_mask);
2111 if (err_mask != AC_ERR_DEV) {
2112 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2113 return -EIO;
2114 }
2115 } else
2116 aa_desc = ", AA";
2117 }
2118
2119 if (hdepth >= ddepth)
2120 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2121 else
2122 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2123 ddepth, aa_desc);
2124
2125 if ((ap->flags & ATA_FLAG_FPDMA_AUX) &&
2126 ata_id_has_ncq_send_and_recv(dev->id)) {
2127 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2128 0, ap->sector_buf, 1);
2129 if (err_mask) {
2130 ata_dev_dbg(dev,
2131 "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2132 err_mask);
2133 } else {
2134 u8 *cmds = dev->ncq_send_recv_cmds;
2135
2136 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2137 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2138
2139 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2140 ata_dev_dbg(dev, "disabling queued TRIM support\n");
2141 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2142 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2143 }
2144 }
2145 }
2146
2147 return 0;
2148 }
2149
2150 /**
2151 * ata_dev_configure - Configure the specified ATA/ATAPI device
2152 * @dev: Target device to configure
2153 *
2154 * Configure @dev according to @dev->id. Generic and low-level
2155 * driver specific fixups are also applied.
2156 *
2157 * LOCKING:
2158 * Kernel thread context (may sleep)
2159 *
2160 * RETURNS:
2161 * 0 on success, -errno otherwise
2162 */
2163 int ata_dev_configure(struct ata_device *dev)
2164 {
2165 struct ata_port *ap = dev->link->ap;
2166 struct ata_eh_context *ehc = &dev->link->eh_context;
2167 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2168 const u16 *id = dev->id;
2169 unsigned long xfer_mask;
2170 unsigned int err_mask;
2171 char revbuf[7]; /* XYZ-99\0 */
2172 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2173 char modelbuf[ATA_ID_PROD_LEN+1];
2174 int rc;
2175
2176 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2177 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2178 return 0;
2179 }
2180
2181 if (ata_msg_probe(ap))
2182 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2183
2184 /* set horkage */
2185 dev->horkage |= ata_dev_blacklisted(dev);
2186 ata_force_horkage(dev);
2187
2188 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2189 ata_dev_info(dev, "unsupported device, disabling\n");
2190 ata_dev_disable(dev);
2191 return 0;
2192 }
2193
2194 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2195 dev->class == ATA_DEV_ATAPI) {
2196 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2197 atapi_enabled ? "not supported with this driver"
2198 : "disabled");
2199 ata_dev_disable(dev);
2200 return 0;
2201 }
2202
2203 rc = ata_do_link_spd_horkage(dev);
2204 if (rc)
2205 return rc;
2206
2207 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2208 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2209 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2210 dev->horkage |= ATA_HORKAGE_NOLPM;
2211
2212 if (dev->horkage & ATA_HORKAGE_NOLPM) {
2213 ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2214 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2215 }
2216
2217 /* let ACPI work its magic */
2218 rc = ata_acpi_on_devcfg(dev);
2219 if (rc)
2220 return rc;
2221
2222 /* massage HPA, do it early as it might change IDENTIFY data */
2223 rc = ata_hpa_resize(dev);
2224 if (rc)
2225 return rc;
2226
2227 /* print device capabilities */
2228 if (ata_msg_probe(ap))
2229 ata_dev_dbg(dev,
2230 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2231 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2232 __func__,
2233 id[49], id[82], id[83], id[84],
2234 id[85], id[86], id[87], id[88]);
2235
2236 /* initialize to-be-configured parameters */
2237 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2238 dev->max_sectors = 0;
2239 dev->cdb_len = 0;
2240 dev->n_sectors = 0;
2241 dev->cylinders = 0;
2242 dev->heads = 0;
2243 dev->sectors = 0;
2244 dev->multi_count = 0;
2245
2246 /*
2247 * common ATA, ATAPI feature tests
2248 */
2249
2250 /* find max transfer mode; for printk only */
2251 xfer_mask = ata_id_xfermask(id);
2252
2253 if (ata_msg_probe(ap))
2254 ata_dump_id(id);
2255
2256 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2257 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2258 sizeof(fwrevbuf));
2259
2260 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2261 sizeof(modelbuf));
2262
2263 /* ATA-specific feature tests */
2264 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2265 if (ata_id_is_cfa(id)) {
2266 /* CPRM may make this media unusable */
2267 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2268 ata_dev_warn(dev,
2269 "supports DRM functions and may not be fully accessible\n");
2270 snprintf(revbuf, 7, "CFA");
2271 } else {
2272 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2273 /* Warn the user if the device has TPM extensions */
2274 if (ata_id_has_tpm(id))
2275 ata_dev_warn(dev,
2276 "supports DRM functions and may not be fully accessible\n");
2277 }
2278
2279 dev->n_sectors = ata_id_n_sectors(id);
2280
2281 /* get current R/W Multiple count setting */
2282 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2283 unsigned int max = dev->id[47] & 0xff;
2284 unsigned int cnt = dev->id[59] & 0xff;
2285 /* only recognize/allow powers of two here */
2286 if (is_power_of_2(max) && is_power_of_2(cnt))
2287 if (cnt <= max)
2288 dev->multi_count = cnt;
2289 }
2290
2291 if (ata_id_has_lba(id)) {
2292 const char *lba_desc;
2293 char ncq_desc[24];
2294
2295 lba_desc = "LBA";
2296 dev->flags |= ATA_DFLAG_LBA;
2297 if (ata_id_has_lba48(id)) {
2298 dev->flags |= ATA_DFLAG_LBA48;
2299 lba_desc = "LBA48";
2300
2301 if (dev->n_sectors >= (1UL << 28) &&
2302 ata_id_has_flush_ext(id))
2303 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2304 }
2305
2306 /* config NCQ */
2307 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2308 if (rc)
2309 return rc;
2310
2311 /* print device info to dmesg */
2312 if (ata_msg_drv(ap) && print_info) {
2313 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2314 revbuf, modelbuf, fwrevbuf,
2315 ata_mode_string(xfer_mask));
2316 ata_dev_info(dev,
2317 "%llu sectors, multi %u: %s %s\n",
2318 (unsigned long long)dev->n_sectors,
2319 dev->multi_count, lba_desc, ncq_desc);
2320 }
2321 } else {
2322 /* CHS */
2323
2324 /* Default translation */
2325 dev->cylinders = id[1];
2326 dev->heads = id[3];
2327 dev->sectors = id[6];
2328
2329 if (ata_id_current_chs_valid(id)) {
2330 /* Current CHS translation is valid. */
2331 dev->cylinders = id[54];
2332 dev->heads = id[55];
2333 dev->sectors = id[56];
2334 }
2335
2336 /* print device info to dmesg */
2337 if (ata_msg_drv(ap) && print_info) {
2338 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2339 revbuf, modelbuf, fwrevbuf,
2340 ata_mode_string(xfer_mask));
2341 ata_dev_info(dev,
2342 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2343 (unsigned long long)dev->n_sectors,
2344 dev->multi_count, dev->cylinders,
2345 dev->heads, dev->sectors);
2346 }
2347 }
2348
2349 /* Check and mark DevSlp capability. Get DevSlp timing variables
2350 * from SATA Settings page of Identify Device Data Log.
2351 */
2352 if (ata_id_has_devslp(dev->id)) {
2353 u8 *sata_setting = ap->sector_buf;
2354 int i, j;
2355
2356 dev->flags |= ATA_DFLAG_DEVSLP;
2357 err_mask = ata_read_log_page(dev,
2358 ATA_LOG_SATA_ID_DEV_DATA,
2359 ATA_LOG_SATA_SETTINGS,
2360 sata_setting,
2361 1);
2362 if (err_mask)
2363 ata_dev_dbg(dev,
2364 "failed to get Identify Device Data, Emask 0x%x\n",
2365 err_mask);
2366 else
2367 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2368 j = ATA_LOG_DEVSLP_OFFSET + i;
2369 dev->devslp_timing[i] = sata_setting[j];
2370 }
2371 }
2372
2373 dev->cdb_len = 16;
2374 }
2375
2376 /* ATAPI-specific feature tests */
2377 else if (dev->class == ATA_DEV_ATAPI) {
2378 const char *cdb_intr_string = "";
2379 const char *atapi_an_string = "";
2380 const char *dma_dir_string = "";
2381 u32 sntf;
2382
2383 rc = atapi_cdb_len(id);
2384 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2385 if (ata_msg_warn(ap))
2386 ata_dev_warn(dev, "unsupported CDB len\n");
2387 rc = -EINVAL;
2388 goto err_out_nosup;
2389 }
2390 dev->cdb_len = (unsigned int) rc;
2391
2392 /* Enable ATAPI AN if both the host and device have
2393 * the support. If PMP is attached, SNTF is required
2394 * to enable ATAPI AN to discern between PHY status
2395 * changed notifications and ATAPI ANs.
2396 */
2397 if (atapi_an &&
2398 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2399 (!sata_pmp_attached(ap) ||
2400 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2401 /* issue SET feature command to turn this on */
2402 err_mask = ata_dev_set_feature(dev,
2403 SETFEATURES_SATA_ENABLE, SATA_AN);
2404 if (err_mask)
2405 ata_dev_err(dev,
2406 "failed to enable ATAPI AN (err_mask=0x%x)\n",
2407 err_mask);
2408 else {
2409 dev->flags |= ATA_DFLAG_AN;
2410 atapi_an_string = ", ATAPI AN";
2411 }
2412 }
2413
2414 if (ata_id_cdb_intr(dev->id)) {
2415 dev->flags |= ATA_DFLAG_CDB_INTR;
2416 cdb_intr_string = ", CDB intr";
2417 }
2418
2419 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2420 dev->flags |= ATA_DFLAG_DMADIR;
2421 dma_dir_string = ", DMADIR";
2422 }
2423
2424 if (ata_id_has_da(dev->id)) {
2425 dev->flags |= ATA_DFLAG_DA;
2426 zpodd_init(dev);
2427 }
2428
2429 /* print device info to dmesg */
2430 if (ata_msg_drv(ap) && print_info)
2431 ata_dev_info(dev,
2432 "ATAPI: %s, %s, max %s%s%s%s\n",
2433 modelbuf, fwrevbuf,
2434 ata_mode_string(xfer_mask),
2435 cdb_intr_string, atapi_an_string,
2436 dma_dir_string);
2437 }
2438
2439 /* determine max_sectors */
2440 dev->max_sectors = ATA_MAX_SECTORS;
2441 if (dev->flags & ATA_DFLAG_LBA48)
2442 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2443
2444 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2445 200 sectors */
2446 if (ata_dev_knobble(dev)) {
2447 if (ata_msg_drv(ap) && print_info)
2448 ata_dev_info(dev, "applying bridge limits\n");
2449 dev->udma_mask &= ATA_UDMA5;
2450 dev->max_sectors = ATA_MAX_SECTORS;
2451 }
2452
2453 if ((dev->class == ATA_DEV_ATAPI) &&
2454 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2455 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2456 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2457 }
2458
2459 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2460 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2461 dev->max_sectors);
2462
2463 if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2464 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2465 dev->max_sectors);
2466
2467 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2468 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2469
2470 if (ap->ops->dev_config)
2471 ap->ops->dev_config(dev);
2472
2473 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2474 /* Let the user know. We don't want to disallow opens for
2475 rescue purposes, or in case the vendor is just a blithering
2476 idiot. Do this after the dev_config call as some controllers
2477 with buggy firmware may want to avoid reporting false device
2478 bugs */
2479
2480 if (print_info) {
2481 ata_dev_warn(dev,
2482 "Drive reports diagnostics failure. This may indicate a drive\n");
2483 ata_dev_warn(dev,
2484 "fault or invalid emulation. Contact drive vendor for information.\n");
2485 }
2486 }
2487
2488 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2489 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2490 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
2491 }
2492
2493 return 0;
2494
2495 err_out_nosup:
2496 if (ata_msg_probe(ap))
2497 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2498 return rc;
2499 }
2500
2501 /**
2502 * ata_cable_40wire - return 40 wire cable type
2503 * @ap: port
2504 *
2505 * Helper method for drivers which want to hardwire 40 wire cable
2506 * detection.
2507 */
2508
2509 int ata_cable_40wire(struct ata_port *ap)
2510 {
2511 return ATA_CBL_PATA40;
2512 }
2513
2514 /**
2515 * ata_cable_80wire - return 80 wire cable type
2516 * @ap: port
2517 *
2518 * Helper method for drivers which want to hardwire 80 wire cable
2519 * detection.
2520 */
2521
2522 int ata_cable_80wire(struct ata_port *ap)
2523 {
2524 return ATA_CBL_PATA80;
2525 }
2526
2527 /**
2528 * ata_cable_unknown - return unknown PATA cable.
2529 * @ap: port
2530 *
2531 * Helper method for drivers which have no PATA cable detection.
2532 */
2533
2534 int ata_cable_unknown(struct ata_port *ap)
2535 {
2536 return ATA_CBL_PATA_UNK;
2537 }
2538
2539 /**
2540 * ata_cable_ignore - return ignored PATA cable.
2541 * @ap: port
2542 *
2543 * Helper method for drivers which don't use cable type to limit
2544 * transfer mode.
2545 */
2546 int ata_cable_ignore(struct ata_port *ap)
2547 {
2548 return ATA_CBL_PATA_IGN;
2549 }
2550
2551 /**
2552 * ata_cable_sata - return SATA cable type
2553 * @ap: port
2554 *
2555 * Helper method for drivers which have SATA cables
2556 */
2557
2558 int ata_cable_sata(struct ata_port *ap)
2559 {
2560 return ATA_CBL_SATA;
2561 }
2562
2563 /**
2564 * ata_bus_probe - Reset and probe ATA bus
2565 * @ap: Bus to probe
2566 *
2567 * Master ATA bus probing function. Initiates a hardware-dependent
2568 * bus reset, then attempts to identify any devices found on
2569 * the bus.
2570 *
2571 * LOCKING:
2572 * PCI/etc. bus probe sem.
2573 *
2574 * RETURNS:
2575 * Zero on success, negative errno otherwise.
2576 */
2577
2578 int ata_bus_probe(struct ata_port *ap)
2579 {
2580 unsigned int classes[ATA_MAX_DEVICES];
2581 int tries[ATA_MAX_DEVICES];
2582 int rc;
2583 struct ata_device *dev;
2584
2585 ata_for_each_dev(dev, &ap->link, ALL)
2586 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2587
2588 retry:
2589 ata_for_each_dev(dev, &ap->link, ALL) {
2590 /* If we issue an SRST then an ATA drive (not ATAPI)
2591 * may change configuration and be in PIO0 timing. If
2592 * we do a hard reset (or are coming from power on)
2593 * this is true for ATA or ATAPI. Until we've set a
2594 * suitable controller mode we should not touch the
2595 * bus as we may be talking too fast.
2596 */
2597 dev->pio_mode = XFER_PIO_0;
2598 dev->dma_mode = 0xff;
2599
2600 /* If the controller has a pio mode setup function
2601 * then use it to set the chipset to rights. Don't
2602 * touch the DMA setup as that will be dealt with when
2603 * configuring devices.
2604 */
2605 if (ap->ops->set_piomode)
2606 ap->ops->set_piomode(ap, dev);
2607 }
2608
2609 /* reset and determine device classes */
2610 ap->ops->phy_reset(ap);
2611
2612 ata_for_each_dev(dev, &ap->link, ALL) {
2613 if (dev->class != ATA_DEV_UNKNOWN)
2614 classes[dev->devno] = dev->class;
2615 else
2616 classes[dev->devno] = ATA_DEV_NONE;
2617
2618 dev->class = ATA_DEV_UNKNOWN;
2619 }
2620
2621 /* read IDENTIFY page and configure devices. We have to do the identify
2622 specific sequence bass-ackwards so that PDIAG- is released by
2623 the slave device */
2624
2625 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2626 if (tries[dev->devno])
2627 dev->class = classes[dev->devno];
2628
2629 if (!ata_dev_enabled(dev))
2630 continue;
2631
2632 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2633 dev->id);
2634 if (rc)
2635 goto fail;
2636 }
2637
2638 /* Now ask for the cable type as PDIAG- should have been released */
2639 if (ap->ops->cable_detect)
2640 ap->cbl = ap->ops->cable_detect(ap);
2641
2642 /* We may have SATA bridge glue hiding here irrespective of
2643 * the reported cable types and sensed types. When SATA
2644 * drives indicate we have a bridge, we don't know which end
2645 * of the link the bridge is which is a problem.
2646 */
2647 ata_for_each_dev(dev, &ap->link, ENABLED)
2648 if (ata_id_is_sata(dev->id))
2649 ap->cbl = ATA_CBL_SATA;
2650
2651 /* After the identify sequence we can now set up the devices. We do
2652 this in the normal order so that the user doesn't get confused */
2653
2654 ata_for_each_dev(dev, &ap->link, ENABLED) {
2655 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2656 rc = ata_dev_configure(dev);
2657 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2658 if (rc)
2659 goto fail;
2660 }
2661
2662 /* configure transfer mode */
2663 rc = ata_set_mode(&ap->link, &dev);
2664 if (rc)
2665 goto fail;
2666
2667 ata_for_each_dev(dev, &ap->link, ENABLED)
2668 return 0;
2669
2670 return -ENODEV;
2671
2672 fail:
2673 tries[dev->devno]--;
2674
2675 switch (rc) {
2676 case -EINVAL:
2677 /* eeek, something went very wrong, give up */
2678 tries[dev->devno] = 0;
2679 break;
2680
2681 case -ENODEV:
2682 /* give it just one more chance */
2683 tries[dev->devno] = min(tries[dev->devno], 1);
2684 case -EIO:
2685 if (tries[dev->devno] == 1) {
2686 /* This is the last chance, better to slow
2687 * down than lose it.
2688 */
2689 sata_down_spd_limit(&ap->link, 0);
2690 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2691 }
2692 }
2693
2694 if (!tries[dev->devno])
2695 ata_dev_disable(dev);
2696
2697 goto retry;
2698 }
2699
2700 /**
2701 * sata_print_link_status - Print SATA link status
2702 * @link: SATA link to printk link status about
2703 *
2704 * This function prints link speed and status of a SATA link.
2705 *
2706 * LOCKING:
2707 * None.
2708 */
2709 static void sata_print_link_status(struct ata_link *link)
2710 {
2711 u32 sstatus, scontrol, tmp;
2712
2713 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2714 return;
2715 sata_scr_read(link, SCR_CONTROL, &scontrol);
2716
2717 if (ata_phys_link_online(link)) {
2718 tmp = (sstatus >> 4) & 0xf;
2719 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2720 sata_spd_string(tmp), sstatus, scontrol);
2721 } else {
2722 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2723 sstatus, scontrol);
2724 }
2725 }
2726
2727 /**
2728 * ata_dev_pair - return other device on cable
2729 * @adev: device
2730 *
2731 * Obtain the other device on the same cable, or if none is
2732 * present NULL is returned
2733 */
2734
2735 struct ata_device *ata_dev_pair(struct ata_device *adev)
2736 {
2737 struct ata_link *link = adev->link;
2738 struct ata_device *pair = &link->device[1 - adev->devno];
2739 if (!ata_dev_enabled(pair))
2740 return NULL;
2741 return pair;
2742 }
2743
2744 /**
2745 * sata_down_spd_limit - adjust SATA spd limit downward
2746 * @link: Link to adjust SATA spd limit for
2747 * @spd_limit: Additional limit
2748 *
2749 * Adjust SATA spd limit of @link downward. Note that this
2750 * function only adjusts the limit. The change must be applied
2751 * using sata_set_spd().
2752 *
2753 * If @spd_limit is non-zero, the speed is limited to equal to or
2754 * lower than @spd_limit if such speed is supported. If
2755 * @spd_limit is slower than any supported speed, only the lowest
2756 * supported speed is allowed.
2757 *
2758 * LOCKING:
2759 * Inherited from caller.
2760 *
2761 * RETURNS:
2762 * 0 on success, negative errno on failure
2763 */
2764 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2765 {
2766 u32 sstatus, spd, mask;
2767 int rc, bit;
2768
2769 if (!sata_scr_valid(link))
2770 return -EOPNOTSUPP;
2771
2772 /* If SCR can be read, use it to determine the current SPD.
2773 * If not, use cached value in link->sata_spd.
2774 */
2775 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2776 if (rc == 0 && ata_sstatus_online(sstatus))
2777 spd = (sstatus >> 4) & 0xf;
2778 else
2779 spd = link->sata_spd;
2780
2781 mask = link->sata_spd_limit;
2782 if (mask <= 1)
2783 return -EINVAL;
2784
2785 /* unconditionally mask off the highest bit */
2786 bit = fls(mask) - 1;
2787 mask &= ~(1 << bit);
2788
2789 /* Mask off all speeds higher than or equal to the current
2790 * one. Force 1.5Gbps if current SPD is not available.
2791 */
2792 if (spd > 1)
2793 mask &= (1 << (spd - 1)) - 1;
2794 else
2795 mask &= 1;
2796
2797 /* were we already at the bottom? */
2798 if (!mask)
2799 return -EINVAL;
2800
2801 if (spd_limit) {
2802 if (mask & ((1 << spd_limit) - 1))
2803 mask &= (1 << spd_limit) - 1;
2804 else {
2805 bit = ffs(mask) - 1;
2806 mask = 1 << bit;
2807 }
2808 }
2809
2810 link->sata_spd_limit = mask;
2811
2812 ata_link_warn(link, "limiting SATA link speed to %s\n",
2813 sata_spd_string(fls(mask)));
2814
2815 return 0;
2816 }
2817
2818 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2819 {
2820 struct ata_link *host_link = &link->ap->link;
2821 u32 limit, target, spd;
2822
2823 limit = link->sata_spd_limit;
2824
2825 /* Don't configure downstream link faster than upstream link.
2826 * It doesn't speed up anything and some PMPs choke on such
2827 * configuration.
2828 */
2829 if (!ata_is_host_link(link) && host_link->sata_spd)
2830 limit &= (1 << host_link->sata_spd) - 1;
2831
2832 if (limit == UINT_MAX)
2833 target = 0;
2834 else
2835 target = fls(limit);
2836
2837 spd = (*scontrol >> 4) & 0xf;
2838 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2839
2840 return spd != target;
2841 }
2842
2843 /**
2844 * sata_set_spd_needed - is SATA spd configuration needed
2845 * @link: Link in question
2846 *
2847 * Test whether the spd limit in SControl matches
2848 * @link->sata_spd_limit. This function is used to determine
2849 * whether hardreset is necessary to apply SATA spd
2850 * configuration.
2851 *
2852 * LOCKING:
2853 * Inherited from caller.
2854 *
2855 * RETURNS:
2856 * 1 if SATA spd configuration is needed, 0 otherwise.
2857 */
2858 static int sata_set_spd_needed(struct ata_link *link)
2859 {
2860 u32 scontrol;
2861
2862 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2863 return 1;
2864
2865 return __sata_set_spd_needed(link, &scontrol);
2866 }
2867
2868 /**
2869 * sata_set_spd - set SATA spd according to spd limit
2870 * @link: Link to set SATA spd for
2871 *
2872 * Set SATA spd of @link according to sata_spd_limit.
2873 *
2874 * LOCKING:
2875 * Inherited from caller.
2876 *
2877 * RETURNS:
2878 * 0 if spd doesn't need to be changed, 1 if spd has been
2879 * changed. Negative errno if SCR registers are inaccessible.
2880 */
2881 int sata_set_spd(struct ata_link *link)
2882 {
2883 u32 scontrol;
2884 int rc;
2885
2886 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2887 return rc;
2888
2889 if (!__sata_set_spd_needed(link, &scontrol))
2890 return 0;
2891
2892 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2893 return rc;
2894
2895 return 1;
2896 }
2897
2898 /*
2899 * This mode timing computation functionality is ported over from
2900 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2901 */
2902 /*
2903 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2904 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2905 * for UDMA6, which is currently supported only by Maxtor drives.
2906 *
2907 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2908 */
2909
2910 static const struct ata_timing ata_timing[] = {
2911 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
2912 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
2913 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
2914 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
2915 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
2916 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
2917 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
2918 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
2919
2920 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
2921 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
2922 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
2923
2924 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
2925 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
2926 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
2927 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
2928 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
2929
2930 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2931 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
2932 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
2933 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
2934 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
2935 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
2936 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
2937 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
2938
2939 { 0xFF }
2940 };
2941
2942 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2943 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
2944
2945 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2946 {
2947 q->setup = EZ(t->setup * 1000, T);
2948 q->act8b = EZ(t->act8b * 1000, T);
2949 q->rec8b = EZ(t->rec8b * 1000, T);
2950 q->cyc8b = EZ(t->cyc8b * 1000, T);
2951 q->active = EZ(t->active * 1000, T);
2952 q->recover = EZ(t->recover * 1000, T);
2953 q->dmack_hold = EZ(t->dmack_hold * 1000, T);
2954 q->cycle = EZ(t->cycle * 1000, T);
2955 q->udma = EZ(t->udma * 1000, UT);
2956 }
2957
2958 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2959 struct ata_timing *m, unsigned int what)
2960 {
2961 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2962 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2963 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2964 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2965 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2966 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2967 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
2968 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2969 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2970 }
2971
2972 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
2973 {
2974 const struct ata_timing *t = ata_timing;
2975
2976 while (xfer_mode > t->mode)
2977 t++;
2978
2979 if (xfer_mode == t->mode)
2980 return t;
2981
2982 WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
2983 __func__, xfer_mode);
2984
2985 return NULL;
2986 }
2987
2988 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2989 struct ata_timing *t, int T, int UT)
2990 {
2991 const u16 *id = adev->id;
2992 const struct ata_timing *s;
2993 struct ata_timing p;
2994
2995 /*
2996 * Find the mode.
2997 */
2998
2999 if (!(s = ata_timing_find_mode(speed)))
3000 return -EINVAL;
3001
3002 memcpy(t, s, sizeof(*s));
3003
3004 /*
3005 * If the drive is an EIDE drive, it can tell us it needs extended
3006 * PIO/MW_DMA cycle timing.
3007 */
3008
3009 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
3010 memset(&p, 0, sizeof(p));
3011
3012 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
3013 if (speed <= XFER_PIO_2)
3014 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3015 else if ((speed <= XFER_PIO_4) ||
3016 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3017 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3018 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3019 p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3020
3021 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3022 }
3023
3024 /*
3025 * Convert the timing to bus clock counts.
3026 */
3027
3028 ata_timing_quantize(t, t, T, UT);
3029
3030 /*
3031 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3032 * S.M.A.R.T * and some other commands. We have to ensure that the
3033 * DMA cycle timing is slower/equal than the fastest PIO timing.
3034 */
3035
3036 if (speed > XFER_PIO_6) {
3037 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3038 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3039 }
3040
3041 /*
3042 * Lengthen active & recovery time so that cycle time is correct.
3043 */
3044
3045 if (t->act8b + t->rec8b < t->cyc8b) {
3046 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3047 t->rec8b = t->cyc8b - t->act8b;
3048 }
3049
3050 if (t->active + t->recover < t->cycle) {
3051 t->active += (t->cycle - (t->active + t->recover)) / 2;
3052 t->recover = t->cycle - t->active;
3053 }
3054
3055 /* In a few cases quantisation may produce enough errors to
3056 leave t->cycle too low for the sum of active and recovery
3057 if so we must correct this */
3058 if (t->active + t->recover > t->cycle)
3059 t->cycle = t->active + t->recover;
3060
3061 return 0;
3062 }
3063
3064 /**
3065 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3066 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3067 * @cycle: cycle duration in ns
3068 *
3069 * Return matching xfer mode for @cycle. The returned mode is of
3070 * the transfer type specified by @xfer_shift. If @cycle is too
3071 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3072 * than the fastest known mode, the fasted mode is returned.
3073 *
3074 * LOCKING:
3075 * None.
3076 *
3077 * RETURNS:
3078 * Matching xfer_mode, 0xff if no match found.
3079 */
3080 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3081 {
3082 u8 base_mode = 0xff, last_mode = 0xff;
3083 const struct ata_xfer_ent *ent;
3084 const struct ata_timing *t;
3085
3086 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3087 if (ent->shift == xfer_shift)
3088 base_mode = ent->base;
3089
3090 for (t = ata_timing_find_mode(base_mode);
3091 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3092 unsigned short this_cycle;
3093
3094 switch (xfer_shift) {
3095 case ATA_SHIFT_PIO:
3096 case ATA_SHIFT_MWDMA:
3097 this_cycle = t->cycle;
3098 break;
3099 case ATA_SHIFT_UDMA:
3100 this_cycle = t->udma;
3101 break;
3102 default:
3103 return 0xff;
3104 }
3105
3106 if (cycle > this_cycle)
3107 break;
3108
3109 last_mode = t->mode;
3110 }
3111
3112 return last_mode;
3113 }
3114
3115 /**
3116 * ata_down_xfermask_limit - adjust dev xfer masks downward
3117 * @dev: Device to adjust xfer masks
3118 * @sel: ATA_DNXFER_* selector
3119 *
3120 * Adjust xfer masks of @dev downward. Note that this function
3121 * does not apply the change. Invoking ata_set_mode() afterwards
3122 * will apply the limit.
3123 *
3124 * LOCKING:
3125 * Inherited from caller.
3126 *
3127 * RETURNS:
3128 * 0 on success, negative errno on failure
3129 */
3130 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3131 {
3132 char buf[32];
3133 unsigned long orig_mask, xfer_mask;
3134 unsigned long pio_mask, mwdma_mask, udma_mask;
3135 int quiet, highbit;
3136
3137 quiet = !!(sel & ATA_DNXFER_QUIET);
3138 sel &= ~ATA_DNXFER_QUIET;
3139
3140 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3141 dev->mwdma_mask,
3142 dev->udma_mask);
3143 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3144
3145 switch (sel) {
3146 case ATA_DNXFER_PIO:
3147 highbit = fls(pio_mask) - 1;
3148 pio_mask &= ~(1 << highbit);
3149 break;
3150
3151 case ATA_DNXFER_DMA:
3152 if (udma_mask) {
3153 highbit = fls(udma_mask) - 1;
3154 udma_mask &= ~(1 << highbit);
3155 if (!udma_mask)
3156 return -ENOENT;
3157 } else if (mwdma_mask) {
3158 highbit = fls(mwdma_mask) - 1;
3159 mwdma_mask &= ~(1 << highbit);
3160 if (!mwdma_mask)
3161 return -ENOENT;
3162 }
3163 break;
3164
3165 case ATA_DNXFER_40C:
3166 udma_mask &= ATA_UDMA_MASK_40C;
3167 break;
3168
3169 case ATA_DNXFER_FORCE_PIO0:
3170 pio_mask &= 1;
3171 case ATA_DNXFER_FORCE_PIO:
3172 mwdma_mask = 0;
3173 udma_mask = 0;
3174 break;
3175
3176 default:
3177 BUG();
3178 }
3179
3180 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3181
3182 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3183 return -ENOENT;
3184
3185 if (!quiet) {
3186 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3187 snprintf(buf, sizeof(buf), "%s:%s",
3188 ata_mode_string(xfer_mask),
3189 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3190 else
3191 snprintf(buf, sizeof(buf), "%s",
3192 ata_mode_string(xfer_mask));
3193
3194 ata_dev_warn(dev, "limiting speed to %s\n", buf);
3195 }
3196
3197 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3198 &dev->udma_mask);
3199
3200 return 0;
3201 }
3202
3203 static int ata_dev_set_mode(struct ata_device *dev)
3204 {
3205 struct ata_port *ap = dev->link->ap;
3206 struct ata_eh_context *ehc = &dev->link->eh_context;
3207 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3208 const char *dev_err_whine = "";
3209 int ign_dev_err = 0;
3210 unsigned int err_mask = 0;
3211 int rc;
3212
3213 dev->flags &= ~ATA_DFLAG_PIO;
3214 if (dev->xfer_shift == ATA_SHIFT_PIO)
3215 dev->flags |= ATA_DFLAG_PIO;
3216
3217 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3218 dev_err_whine = " (SET_XFERMODE skipped)";
3219 else {
3220 if (nosetxfer)
3221 ata_dev_warn(dev,
3222 "NOSETXFER but PATA detected - can't "
3223 "skip SETXFER, might malfunction\n");
3224 err_mask = ata_dev_set_xfermode(dev);
3225 }
3226
3227 if (err_mask & ~AC_ERR_DEV)
3228 goto fail;
3229
3230 /* revalidate */
3231 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3232 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3233 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3234 if (rc)
3235 return rc;
3236
3237 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3238 /* Old CFA may refuse this command, which is just fine */
3239 if (ata_id_is_cfa(dev->id))
3240 ign_dev_err = 1;
3241 /* Catch several broken garbage emulations plus some pre
3242 ATA devices */
3243 if (ata_id_major_version(dev->id) == 0 &&
3244 dev->pio_mode <= XFER_PIO_2)
3245 ign_dev_err = 1;
3246 /* Some very old devices and some bad newer ones fail
3247 any kind of SET_XFERMODE request but support PIO0-2
3248 timings and no IORDY */
3249 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3250 ign_dev_err = 1;
3251 }
3252 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3253 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3254 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3255 dev->dma_mode == XFER_MW_DMA_0 &&
3256 (dev->id[63] >> 8) & 1)
3257 ign_dev_err = 1;
3258
3259 /* if the device is actually configured correctly, ignore dev err */
3260 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3261 ign_dev_err = 1;
3262
3263 if (err_mask & AC_ERR_DEV) {
3264 if (!ign_dev_err)
3265 goto fail;
3266 else
3267 dev_err_whine = " (device error ignored)";
3268 }
3269
3270 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3271 dev->xfer_shift, (int)dev->xfer_mode);
3272
3273 ata_dev_info(dev, "configured for %s%s\n",
3274 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3275 dev_err_whine);
3276
3277 return 0;
3278
3279 fail:
3280 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3281 return -EIO;
3282 }
3283
3284 /**
3285 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3286 * @link: link on which timings will be programmed
3287 * @r_failed_dev: out parameter for failed device
3288 *
3289 * Standard implementation of the function used to tune and set
3290 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3291 * ata_dev_set_mode() fails, pointer to the failing device is
3292 * returned in @r_failed_dev.
3293 *
3294 * LOCKING:
3295 * PCI/etc. bus probe sem.
3296 *
3297 * RETURNS:
3298 * 0 on success, negative errno otherwise
3299 */
3300
3301 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3302 {
3303 struct ata_port *ap = link->ap;
3304 struct ata_device *dev;
3305 int rc = 0, used_dma = 0, found = 0;
3306
3307 /* step 1: calculate xfer_mask */
3308 ata_for_each_dev(dev, link, ENABLED) {
3309 unsigned long pio_mask, dma_mask;
3310 unsigned int mode_mask;
3311
3312 mode_mask = ATA_DMA_MASK_ATA;
3313 if (dev->class == ATA_DEV_ATAPI)
3314 mode_mask = ATA_DMA_MASK_ATAPI;
3315 else if (ata_id_is_cfa(dev->id))
3316 mode_mask = ATA_DMA_MASK_CFA;
3317
3318 ata_dev_xfermask(dev);
3319 ata_force_xfermask(dev);
3320
3321 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3322
3323 if (libata_dma_mask & mode_mask)
3324 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3325 dev->udma_mask);
3326 else
3327 dma_mask = 0;
3328
3329 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3330 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3331
3332 found = 1;
3333 if (ata_dma_enabled(dev))
3334 used_dma = 1;
3335 }
3336 if (!found)
3337 goto out;
3338
3339 /* step 2: always set host PIO timings */
3340 ata_for_each_dev(dev, link, ENABLED) {
3341 if (dev->pio_mode == 0xff) {
3342 ata_dev_warn(dev, "no PIO support\n");
3343 rc = -EINVAL;
3344 goto out;
3345 }
3346
3347 dev->xfer_mode = dev->pio_mode;
3348 dev->xfer_shift = ATA_SHIFT_PIO;
3349 if (ap->ops->set_piomode)
3350 ap->ops->set_piomode(ap, dev);
3351 }
3352
3353 /* step 3: set host DMA timings */
3354 ata_for_each_dev(dev, link, ENABLED) {
3355 if (!ata_dma_enabled(dev))
3356 continue;
3357
3358 dev->xfer_mode = dev->dma_mode;
3359 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3360 if (ap->ops->set_dmamode)
3361 ap->ops->set_dmamode(ap, dev);
3362 }
3363
3364 /* step 4: update devices' xfer mode */
3365 ata_for_each_dev(dev, link, ENABLED) {
3366 rc = ata_dev_set_mode(dev);
3367 if (rc)
3368 goto out;
3369 }
3370
3371 /* Record simplex status. If we selected DMA then the other
3372 * host channels are not permitted to do so.
3373 */
3374 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3375 ap->host->simplex_claimed = ap;
3376
3377 out:
3378 if (rc)
3379 *r_failed_dev = dev;
3380 return rc;
3381 }
3382
3383 /**
3384 * ata_wait_ready - wait for link to become ready
3385 * @link: link to be waited on
3386 * @deadline: deadline jiffies for the operation
3387 * @check_ready: callback to check link readiness
3388 *
3389 * Wait for @link to become ready. @check_ready should return
3390 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3391 * link doesn't seem to be occupied, other errno for other error
3392 * conditions.
3393 *
3394 * Transient -ENODEV conditions are allowed for
3395 * ATA_TMOUT_FF_WAIT.
3396 *
3397 * LOCKING:
3398 * EH context.
3399 *
3400 * RETURNS:
3401 * 0 if @linke is ready before @deadline; otherwise, -errno.
3402 */
3403 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3404 int (*check_ready)(struct ata_link *link))
3405 {
3406 unsigned long start = jiffies;
3407 unsigned long nodev_deadline;
3408 int warned = 0;
3409
3410 /* choose which 0xff timeout to use, read comment in libata.h */
3411 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3412 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3413 else
3414 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3415
3416 /* Slave readiness can't be tested separately from master. On
3417 * M/S emulation configuration, this function should be called
3418 * only on the master and it will handle both master and slave.
3419 */
3420 WARN_ON(link == link->ap->slave_link);
3421
3422 if (time_after(nodev_deadline, deadline))
3423 nodev_deadline = deadline;
3424
3425 while (1) {
3426 unsigned long now = jiffies;
3427 int ready, tmp;
3428
3429 ready = tmp = check_ready(link);
3430 if (ready > 0)
3431 return 0;
3432
3433 /*
3434 * -ENODEV could be transient. Ignore -ENODEV if link
3435 * is online. Also, some SATA devices take a long
3436 * time to clear 0xff after reset. Wait for
3437 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3438 * offline.
3439 *
3440 * Note that some PATA controllers (pata_ali) explode
3441 * if status register is read more than once when
3442 * there's no device attached.
3443 */
3444 if (ready == -ENODEV) {
3445 if (ata_link_online(link))
3446 ready = 0;
3447 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3448 !ata_link_offline(link) &&
3449 time_before(now, nodev_deadline))
3450 ready = 0;
3451 }
3452
3453 if (ready)
3454 return ready;
3455 if (time_after(now, deadline))
3456 return -EBUSY;
3457
3458 if (!warned && time_after(now, start + 5 * HZ) &&
3459 (deadline - now > 3 * HZ)) {
3460 ata_link_warn(link,
3461 "link is slow to respond, please be patient "
3462 "(ready=%d)\n", tmp);
3463 warned = 1;
3464 }
3465
3466 ata_msleep(link->ap, 50);
3467 }
3468 }
3469
3470 /**
3471 * ata_wait_after_reset - wait for link to become ready after reset
3472 * @link: link to be waited on
3473 * @deadline: deadline jiffies for the operation
3474 * @check_ready: callback to check link readiness
3475 *
3476 * Wait for @link to become ready after reset.
3477 *
3478 * LOCKING:
3479 * EH context.
3480 *
3481 * RETURNS:
3482 * 0 if @linke is ready before @deadline; otherwise, -errno.
3483 */
3484 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3485 int (*check_ready)(struct ata_link *link))
3486 {
3487 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3488
3489 return ata_wait_ready(link, deadline, check_ready);
3490 }
3491
3492 /**
3493 * sata_link_debounce - debounce SATA phy status
3494 * @link: ATA link to debounce SATA phy status for
3495 * @params: timing parameters { interval, duratinon, timeout } in msec
3496 * @deadline: deadline jiffies for the operation
3497 *
3498 * Make sure SStatus of @link reaches stable state, determined by
3499 * holding the same value where DET is not 1 for @duration polled
3500 * every @interval, before @timeout. Timeout constraints the
3501 * beginning of the stable state. Because DET gets stuck at 1 on
3502 * some controllers after hot unplugging, this functions waits
3503 * until timeout then returns 0 if DET is stable at 1.
3504 *
3505 * @timeout is further limited by @deadline. The sooner of the
3506 * two is used.
3507 *
3508 * LOCKING:
3509 * Kernel thread context (may sleep)
3510 *
3511 * RETURNS:
3512 * 0 on success, -errno on failure.
3513 */
3514 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3515 unsigned long deadline)
3516 {
3517 unsigned long interval = params[0];
3518 unsigned long duration = params[1];
3519 unsigned long last_jiffies, t;
3520 u32 last, cur;
3521 int rc;
3522
3523 t = ata_deadline(jiffies, params[2]);
3524 if (time_before(t, deadline))
3525 deadline = t;
3526
3527 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3528 return rc;
3529 cur &= 0xf;
3530
3531 last = cur;
3532 last_jiffies = jiffies;
3533
3534 while (1) {
3535 ata_msleep(link->ap, interval);
3536 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3537 return rc;
3538 cur &= 0xf;
3539
3540 /* DET stable? */
3541 if (cur == last) {
3542 if (cur == 1 && time_before(jiffies, deadline))
3543 continue;
3544 if (time_after(jiffies,
3545 ata_deadline(last_jiffies, duration)))
3546 return 0;
3547 continue;
3548 }
3549
3550 /* unstable, start over */
3551 last = cur;
3552 last_jiffies = jiffies;
3553
3554 /* Check deadline. If debouncing failed, return
3555 * -EPIPE to tell upper layer to lower link speed.
3556 */
3557 if (time_after(jiffies, deadline))
3558 return -EPIPE;
3559 }
3560 }
3561
3562 /**
3563 * sata_link_resume - resume SATA link
3564 * @link: ATA link to resume SATA
3565 * @params: timing parameters { interval, duratinon, timeout } in msec
3566 * @deadline: deadline jiffies for the operation
3567 *
3568 * Resume SATA phy @link and debounce it.
3569 *
3570 * LOCKING:
3571 * Kernel thread context (may sleep)
3572 *
3573 * RETURNS:
3574 * 0 on success, -errno on failure.
3575 */
3576 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3577 unsigned long deadline)
3578 {
3579 int tries = ATA_LINK_RESUME_TRIES;
3580 u32 scontrol, serror;
3581 int rc;
3582
3583 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3584 return rc;
3585
3586 /*
3587 * Writes to SControl sometimes get ignored under certain
3588 * controllers (ata_piix SIDPR). Make sure DET actually is
3589 * cleared.
3590 */
3591 do {
3592 scontrol = (scontrol & 0x0f0) | 0x300;
3593 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3594 return rc;
3595 /*
3596 * Some PHYs react badly if SStatus is pounded
3597 * immediately after resuming. Delay 200ms before
3598 * debouncing.
3599 */
3600 ata_msleep(link->ap, 200);
3601
3602 /* is SControl restored correctly? */
3603 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3604 return rc;
3605 } while ((scontrol & 0xf0f) != 0x300 && --tries);
3606
3607 if ((scontrol & 0xf0f) != 0x300) {
3608 ata_link_warn(link, "failed to resume link (SControl %X)\n",
3609 scontrol);
3610 return 0;
3611 }
3612
3613 if (tries < ATA_LINK_RESUME_TRIES)
3614 ata_link_warn(link, "link resume succeeded after %d retries\n",
3615 ATA_LINK_RESUME_TRIES - tries);
3616
3617 if ((rc = sata_link_debounce(link, params, deadline)))
3618 return rc;
3619
3620 /* clear SError, some PHYs require this even for SRST to work */
3621 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3622 rc = sata_scr_write(link, SCR_ERROR, serror);
3623
3624 return rc != -EINVAL ? rc : 0;
3625 }
3626
3627 /**
3628 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3629 * @link: ATA link to manipulate SControl for
3630 * @policy: LPM policy to configure
3631 * @spm_wakeup: initiate LPM transition to active state
3632 *
3633 * Manipulate the IPM field of the SControl register of @link
3634 * according to @policy. If @policy is ATA_LPM_MAX_POWER and
3635 * @spm_wakeup is %true, the SPM field is manipulated to wake up
3636 * the link. This function also clears PHYRDY_CHG before
3637 * returning.
3638 *
3639 * LOCKING:
3640 * EH context.
3641 *
3642 * RETURNS:
3643 * 0 on success, -errno otherwise.
3644 */
3645 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3646 bool spm_wakeup)
3647 {
3648 struct ata_eh_context *ehc = &link->eh_context;
3649 bool woken_up = false;
3650 u32 scontrol;
3651 int rc;
3652
3653 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3654 if (rc)
3655 return rc;
3656
3657 switch (policy) {
3658 case ATA_LPM_MAX_POWER:
3659 /* disable all LPM transitions */
3660 scontrol |= (0x7 << 8);
3661 /* initiate transition to active state */
3662 if (spm_wakeup) {
3663 scontrol |= (0x4 << 12);
3664 woken_up = true;
3665 }
3666 break;
3667 case ATA_LPM_MED_POWER:
3668 /* allow LPM to PARTIAL */
3669 scontrol &= ~(0x1 << 8);
3670 scontrol |= (0x6 << 8);
3671 break;
3672 case ATA_LPM_MIN_POWER:
3673 if (ata_link_nr_enabled(link) > 0)
3674 /* no restrictions on LPM transitions */
3675 scontrol &= ~(0x7 << 8);
3676 else {
3677 /* empty port, power off */
3678 scontrol &= ~0xf;
3679 scontrol |= (0x1 << 2);
3680 }
3681 break;
3682 default:
3683 WARN_ON(1);
3684 }
3685
3686 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3687 if (rc)
3688 return rc;
3689
3690 /* give the link time to transit out of LPM state */
3691 if (woken_up)
3692 msleep(10);
3693
3694 /* clear PHYRDY_CHG from SError */
3695 ehc->i.serror &= ~SERR_PHYRDY_CHG;
3696 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3697 }
3698
3699 /**
3700 * ata_std_prereset - prepare for reset
3701 * @link: ATA link to be reset
3702 * @deadline: deadline jiffies for the operation
3703 *
3704 * @link is about to be reset. Initialize it. Failure from
3705 * prereset makes libata abort whole reset sequence and give up
3706 * that port, so prereset should be best-effort. It does its
3707 * best to prepare for reset sequence but if things go wrong, it
3708 * should just whine, not fail.
3709 *
3710 * LOCKING:
3711 * Kernel thread context (may sleep)
3712 *
3713 * RETURNS:
3714 * 0 on success, -errno otherwise.
3715 */
3716 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3717 {
3718 struct ata_port *ap = link->ap;
3719 struct ata_eh_context *ehc = &link->eh_context;
3720 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3721 int rc;
3722
3723 /* if we're about to do hardreset, nothing more to do */
3724 if (ehc->i.action & ATA_EH_HARDRESET)
3725 return 0;
3726
3727 /* if SATA, resume link */
3728 if (ap->flags & ATA_FLAG_SATA) {
3729 rc = sata_link_resume(link, timing, deadline);
3730 /* whine about phy resume failure but proceed */
3731 if (rc && rc != -EOPNOTSUPP)
3732 ata_link_warn(link,
3733 "failed to resume link for reset (errno=%d)\n",
3734 rc);
3735 }
3736
3737 /* no point in trying softreset on offline link */
3738 if (ata_phys_link_offline(link))
3739 ehc->i.action &= ~ATA_EH_SOFTRESET;
3740
3741 return 0;
3742 }
3743
3744 /**
3745 * sata_link_hardreset - reset link via SATA phy reset
3746 * @link: link to reset
3747 * @timing: timing parameters { interval, duratinon, timeout } in msec
3748 * @deadline: deadline jiffies for the operation
3749 * @online: optional out parameter indicating link onlineness
3750 * @check_ready: optional callback to check link readiness
3751 *
3752 * SATA phy-reset @link using DET bits of SControl register.
3753 * After hardreset, link readiness is waited upon using
3754 * ata_wait_ready() if @check_ready is specified. LLDs are
3755 * allowed to not specify @check_ready and wait itself after this
3756 * function returns. Device classification is LLD's
3757 * responsibility.
3758 *
3759 * *@online is set to one iff reset succeeded and @link is online
3760 * after reset.
3761 *
3762 * LOCKING:
3763 * Kernel thread context (may sleep)
3764 *
3765 * RETURNS:
3766 * 0 on success, -errno otherwise.
3767 */
3768 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3769 unsigned long deadline,
3770 bool *online, int (*check_ready)(struct ata_link *))
3771 {
3772 u32 scontrol;
3773 int rc;
3774
3775 DPRINTK("ENTER\n");
3776
3777 if (online)
3778 *online = false;
3779
3780 if (sata_set_spd_needed(link)) {
3781 /* SATA spec says nothing about how to reconfigure
3782 * spd. To be on the safe side, turn off phy during
3783 * reconfiguration. This works for at least ICH7 AHCI
3784 * and Sil3124.
3785 */
3786 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3787 goto out;
3788
3789 scontrol = (scontrol & 0x0f0) | 0x304;
3790
3791 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3792 goto out;
3793
3794 sata_set_spd(link);
3795 }
3796
3797 /* issue phy wake/reset */
3798 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3799 goto out;
3800
3801 scontrol = (scontrol & 0x0f0) | 0x301;
3802
3803 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3804 goto out;
3805
3806 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3807 * 10.4.2 says at least 1 ms.
3808 */
3809 ata_msleep(link->ap, 1);
3810
3811 /* bring link back */
3812 rc = sata_link_resume(link, timing, deadline);
3813 if (rc)
3814 goto out;
3815 /* if link is offline nothing more to do */
3816 if (ata_phys_link_offline(link))
3817 goto out;
3818
3819 /* Link is online. From this point, -ENODEV too is an error. */
3820 if (online)
3821 *online = true;
3822
3823 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3824 /* If PMP is supported, we have to do follow-up SRST.
3825 * Some PMPs don't send D2H Reg FIS after hardreset if
3826 * the first port is empty. Wait only for
3827 * ATA_TMOUT_PMP_SRST_WAIT.
3828 */
3829 if (check_ready) {
3830 unsigned long pmp_deadline;
3831
3832 pmp_deadline = ata_deadline(jiffies,
3833 ATA_TMOUT_PMP_SRST_WAIT);
3834 if (time_after(pmp_deadline, deadline))
3835 pmp_deadline = deadline;
3836 ata_wait_ready(link, pmp_deadline, check_ready);
3837 }
3838 rc = -EAGAIN;
3839 goto out;
3840 }
3841
3842 rc = 0;
3843 if (check_ready)
3844 rc = ata_wait_ready(link, deadline, check_ready);
3845 out:
3846 if (rc && rc != -EAGAIN) {
3847 /* online is set iff link is online && reset succeeded */
3848 if (online)
3849 *online = false;
3850 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
3851 }
3852 DPRINTK("EXIT, rc=%d\n", rc);
3853 return rc;
3854 }
3855
3856 /**
3857 * sata_std_hardreset - COMRESET w/o waiting or classification
3858 * @link: link to reset
3859 * @class: resulting class of attached device
3860 * @deadline: deadline jiffies for the operation
3861 *
3862 * Standard SATA COMRESET w/o waiting or classification.
3863 *
3864 * LOCKING:
3865 * Kernel thread context (may sleep)
3866 *
3867 * RETURNS:
3868 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3869 */
3870 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3871 unsigned long deadline)
3872 {
3873 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3874 bool online;
3875 int rc;
3876
3877 /* do hardreset */
3878 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3879 return online ? -EAGAIN : rc;
3880 }
3881
3882 /**
3883 * ata_std_postreset - standard postreset callback
3884 * @link: the target ata_link
3885 * @classes: classes of attached devices
3886 *
3887 * This function is invoked after a successful reset. Note that
3888 * the device might have been reset more than once using
3889 * different reset methods before postreset is invoked.
3890 *
3891 * LOCKING:
3892 * Kernel thread context (may sleep)
3893 */
3894 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3895 {
3896 u32 serror;
3897
3898 DPRINTK("ENTER\n");
3899
3900 /* reset complete, clear SError */
3901 if (!sata_scr_read(link, SCR_ERROR, &serror))
3902 sata_scr_write(link, SCR_ERROR, serror);
3903
3904 /* print link status */
3905 sata_print_link_status(link);
3906
3907 DPRINTK("EXIT\n");
3908 }
3909
3910 /**
3911 * ata_dev_same_device - Determine whether new ID matches configured device
3912 * @dev: device to compare against
3913 * @new_class: class of the new device
3914 * @new_id: IDENTIFY page of the new device
3915 *
3916 * Compare @new_class and @new_id against @dev and determine
3917 * whether @dev is the device indicated by @new_class and
3918 * @new_id.
3919 *
3920 * LOCKING:
3921 * None.
3922 *
3923 * RETURNS:
3924 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3925 */
3926 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3927 const u16 *new_id)
3928 {
3929 const u16 *old_id = dev->id;
3930 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3931 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3932
3933 if (dev->class != new_class) {
3934 ata_dev_info(dev, "class mismatch %d != %d\n",
3935 dev->class, new_class);
3936 return 0;
3937 }
3938
3939 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3940 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3941 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3942 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3943
3944 if (strcmp(model[0], model[1])) {
3945 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3946 model[0], model[1]);
3947 return 0;
3948 }
3949
3950 if (strcmp(serial[0], serial[1])) {
3951 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3952 serial[0], serial[1]);
3953 return 0;
3954 }
3955
3956 return 1;
3957 }
3958
3959 /**
3960 * ata_dev_reread_id - Re-read IDENTIFY data
3961 * @dev: target ATA device
3962 * @readid_flags: read ID flags
3963 *
3964 * Re-read IDENTIFY page and make sure @dev is still attached to
3965 * the port.
3966 *
3967 * LOCKING:
3968 * Kernel thread context (may sleep)
3969 *
3970 * RETURNS:
3971 * 0 on success, negative errno otherwise
3972 */
3973 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3974 {
3975 unsigned int class = dev->class;
3976 u16 *id = (void *)dev->link->ap->sector_buf;
3977 int rc;
3978
3979 /* read ID data */
3980 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3981 if (rc)
3982 return rc;
3983
3984 /* is the device still there? */
3985 if (!ata_dev_same_device(dev, class, id))
3986 return -ENODEV;
3987
3988 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3989 return 0;
3990 }
3991
3992 /**
3993 * ata_dev_revalidate - Revalidate ATA device
3994 * @dev: device to revalidate
3995 * @new_class: new class code
3996 * @readid_flags: read ID flags
3997 *
3998 * Re-read IDENTIFY page, make sure @dev is still attached to the
3999 * port and reconfigure it according to the new IDENTIFY page.
4000 *
4001 * LOCKING:
4002 * Kernel thread context (may sleep)
4003 *
4004 * RETURNS:
4005 * 0 on success, negative errno otherwise
4006 */
4007 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4008 unsigned int readid_flags)
4009 {
4010 u64 n_sectors = dev->n_sectors;
4011 u64 n_native_sectors = dev->n_native_sectors;
4012 int rc;
4013
4014 if (!ata_dev_enabled(dev))
4015 return -ENODEV;
4016
4017 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4018 if (ata_class_enabled(new_class) &&
4019 new_class != ATA_DEV_ATA &&
4020 new_class != ATA_DEV_ATAPI &&
4021 new_class != ATA_DEV_ZAC &&
4022 new_class != ATA_DEV_SEMB) {
4023 ata_dev_info(dev, "class mismatch %u != %u\n",
4024 dev->class, new_class);
4025 rc = -ENODEV;
4026 goto fail;
4027 }
4028
4029 /* re-read ID */
4030 rc = ata_dev_reread_id(dev, readid_flags);
4031 if (rc)
4032 goto fail;
4033
4034 /* configure device according to the new ID */
4035 rc = ata_dev_configure(dev);
4036 if (rc)
4037 goto fail;
4038
4039 /* verify n_sectors hasn't changed */
4040 if (dev->class != ATA_DEV_ATA || !n_sectors ||
4041 dev->n_sectors == n_sectors)
4042 return 0;
4043
4044 /* n_sectors has changed */
4045 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4046 (unsigned long long)n_sectors,
4047 (unsigned long long)dev->n_sectors);
4048
4049 /*
4050 * Something could have caused HPA to be unlocked
4051 * involuntarily. If n_native_sectors hasn't changed and the
4052 * new size matches it, keep the device.
4053 */
4054 if (dev->n_native_sectors == n_native_sectors &&
4055 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4056 ata_dev_warn(dev,
4057 "new n_sectors matches native, probably "
4058 "late HPA unlock, n_sectors updated\n");
4059 /* use the larger n_sectors */
4060 return 0;
4061 }
4062
4063 /*
4064 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
4065 * unlocking HPA in those cases.
4066 *
4067 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4068 */
4069 if (dev->n_native_sectors == n_native_sectors &&
4070 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4071 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4072 ata_dev_warn(dev,
4073 "old n_sectors matches native, probably "
4074 "late HPA lock, will try to unlock HPA\n");
4075 /* try unlocking HPA */
4076 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4077 rc = -EIO;
4078 } else
4079 rc = -ENODEV;
4080
4081 /* restore original n_[native_]sectors and fail */
4082 dev->n_native_sectors = n_native_sectors;
4083 dev->n_sectors = n_sectors;
4084 fail:
4085 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4086 return rc;
4087 }
4088
4089 struct ata_blacklist_entry {
4090 const char *model_num;
4091 const char *model_rev;
4092 unsigned long horkage;
4093 };
4094
4095 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4096 /* Devices with DMA related problems under Linux */
4097 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4098 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4099 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4100 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4101 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4102 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4103 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4104 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4105 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4106 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
4107 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4108 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4109 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4110 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4111 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4112 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
4113 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4114 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4115 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4116 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4117 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4118 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4119 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4120 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4121 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4122 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4123 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4124 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4125 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA },
4126 /* Odd clown on sil3726/4726 PMPs */
4127 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
4128
4129 /* Weird ATAPI devices */
4130 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4131 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
4132 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
4133 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
4134
4135 /*
4136 * Causes silent data corruption with higher max sects.
4137 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
4138 */
4139 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024 },
4140
4141 /* Devices we expect to fail diagnostics */
4142
4143 /* Devices where NCQ should be avoided */
4144 /* NCQ is slow */
4145 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4146 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4147 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4148 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4149 /* NCQ is broken */
4150 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4151 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4152 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4153 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4154 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
4155
4156 /* Seagate NCQ + FLUSH CACHE firmware bug */
4157 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4158 ATA_HORKAGE_FIRMWARE_WARN },
4159
4160 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4161 ATA_HORKAGE_FIRMWARE_WARN },
4162
4163 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4164 ATA_HORKAGE_FIRMWARE_WARN },
4165
4166 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4167 ATA_HORKAGE_FIRMWARE_WARN },
4168
4169 /* drives which fail FPDMA_AA activation (some may freeze afterwards) */
4170 { "ST1000LM024 HN-M101MBB", "2AR10001", ATA_HORKAGE_BROKEN_FPDMA_AA },
4171 { "ST1000LM024 HN-M101MBB", "2BA30001", ATA_HORKAGE_BROKEN_FPDMA_AA },
4172 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA },
4173
4174 /* Blacklist entries taken from Silicon Image 3124/3132
4175 Windows driver .inf file - also several Linux problem reports */
4176 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4177 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4178 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4179
4180 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4181 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
4182
4183 /* devices which puke on READ_NATIVE_MAX */
4184 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4185 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4186 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4187 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4188
4189 /* this one allows HPA unlocking but fails IOs on the area */
4190 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4191
4192 /* Devices which report 1 sector over size HPA */
4193 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4194 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4195 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
4196
4197 /* Devices which get the IVB wrong */
4198 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4199 /* Maybe we should just blacklist TSSTcorp... */
4200 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, },
4201
4202 /* Devices that do not need bridging limits applied */
4203 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
4204 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, },
4205
4206 /* Devices which aren't very happy with higher link speeds */
4207 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
4208 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, },
4209
4210 /*
4211 * Devices which choke on SETXFER. Applies only if both the
4212 * device and controller are SATA.
4213 */
4214 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER },
4215 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER },
4216 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER },
4217 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER },
4218 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER },
4219
4220 /* devices that don't properly handle queued TRIM commands */
4221 { "Micron_M500_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4222 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4223 { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4224 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4225 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4226 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4227 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4228 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4229 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4230 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4231 { "Samsung SSD 8*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4232 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4233 { "FCCT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4234 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4235
4236 /* devices that don't properly handle TRIM commands */
4237 { "SuperSSpeed S238*", NULL, ATA_HORKAGE_NOTRIM, },
4238
4239 /*
4240 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4241 * (Return Zero After Trim) flags in the ATA Command Set are
4242 * unreliable in the sense that they only define what happens if
4243 * the device successfully executed the DSM TRIM command. TRIM
4244 * is only advisory, however, and the device is free to silently
4245 * ignore all or parts of the request.
4246 *
4247 * Whitelist drives that are known to reliably return zeroes
4248 * after TRIM.
4249 */
4250
4251 /*
4252 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4253 * that model before whitelisting all other intel SSDs.
4254 */
4255 { "INTEL*SSDSC2MH*", NULL, 0, },
4256
4257 { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4258 { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4259 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4260 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4261 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4262 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4263 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4264
4265 /*
4266 * Some WD SATA-I drives spin up and down erratically when the link
4267 * is put into the slumber mode. We don't have full list of the
4268 * affected devices. Disable LPM if the device matches one of the
4269 * known prefixes and is SATA-1. As a side effect LPM partial is
4270 * lost too.
4271 *
4272 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4273 */
4274 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4275 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4276 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4277 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4278 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4279 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4280 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4281
4282 /* End Marker */
4283 { }
4284 };
4285
4286 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4287 {
4288 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4289 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4290 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4291
4292 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4293 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4294
4295 while (ad->model_num) {
4296 if (glob_match(ad->model_num, model_num)) {
4297 if (ad->model_rev == NULL)
4298 return ad->horkage;
4299 if (glob_match(ad->model_rev, model_rev))
4300 return ad->horkage;
4301 }
4302 ad++;
4303 }
4304 return 0;
4305 }
4306
4307 static int ata_dma_blacklisted(const struct ata_device *dev)
4308 {
4309 /* We don't support polling DMA.
4310 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4311 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4312 */
4313 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4314 (dev->flags & ATA_DFLAG_CDB_INTR))
4315 return 1;
4316 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4317 }
4318
4319 /**
4320 * ata_is_40wire - check drive side detection
4321 * @dev: device
4322 *
4323 * Perform drive side detection decoding, allowing for device vendors
4324 * who can't follow the documentation.
4325 */
4326
4327 static int ata_is_40wire(struct ata_device *dev)
4328 {
4329 if (dev->horkage & ATA_HORKAGE_IVB)
4330 return ata_drive_40wire_relaxed(dev->id);
4331 return ata_drive_40wire(dev->id);
4332 }
4333
4334 /**
4335 * cable_is_40wire - 40/80/SATA decider
4336 * @ap: port to consider
4337 *
4338 * This function encapsulates the policy for speed management
4339 * in one place. At the moment we don't cache the result but
4340 * there is a good case for setting ap->cbl to the result when
4341 * we are called with unknown cables (and figuring out if it
4342 * impacts hotplug at all).
4343 *
4344 * Return 1 if the cable appears to be 40 wire.
4345 */
4346
4347 static int cable_is_40wire(struct ata_port *ap)
4348 {
4349 struct ata_link *link;
4350 struct ata_device *dev;
4351
4352 /* If the controller thinks we are 40 wire, we are. */
4353 if (ap->cbl == ATA_CBL_PATA40)
4354 return 1;
4355
4356 /* If the controller thinks we are 80 wire, we are. */
4357 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4358 return 0;
4359
4360 /* If the system is known to be 40 wire short cable (eg
4361 * laptop), then we allow 80 wire modes even if the drive
4362 * isn't sure.
4363 */
4364 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4365 return 0;
4366
4367 /* If the controller doesn't know, we scan.
4368 *
4369 * Note: We look for all 40 wire detects at this point. Any
4370 * 80 wire detect is taken to be 80 wire cable because
4371 * - in many setups only the one drive (slave if present) will
4372 * give a valid detect
4373 * - if you have a non detect capable drive you don't want it
4374 * to colour the choice
4375 */
4376 ata_for_each_link(link, ap, EDGE) {
4377 ata_for_each_dev(dev, link, ENABLED) {
4378 if (!ata_is_40wire(dev))
4379 return 0;
4380 }
4381 }
4382 return 1;
4383 }
4384
4385 /**
4386 * ata_dev_xfermask - Compute supported xfermask of the given device
4387 * @dev: Device to compute xfermask for
4388 *
4389 * Compute supported xfermask of @dev and store it in
4390 * dev->*_mask. This function is responsible for applying all
4391 * known limits including host controller limits, device
4392 * blacklist, etc...
4393 *
4394 * LOCKING:
4395 * None.
4396 */
4397 static void ata_dev_xfermask(struct ata_device *dev)
4398 {
4399 struct ata_link *link = dev->link;
4400 struct ata_port *ap = link->ap;
4401 struct ata_host *host = ap->host;
4402 unsigned long xfer_mask;
4403
4404 /* controller modes available */
4405 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4406 ap->mwdma_mask, ap->udma_mask);
4407
4408 /* drive modes available */
4409 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4410 dev->mwdma_mask, dev->udma_mask);
4411 xfer_mask &= ata_id_xfermask(dev->id);
4412
4413 /*
4414 * CFA Advanced TrueIDE timings are not allowed on a shared
4415 * cable
4416 */
4417 if (ata_dev_pair(dev)) {
4418 /* No PIO5 or PIO6 */
4419 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4420 /* No MWDMA3 or MWDMA 4 */
4421 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4422 }
4423
4424 if (ata_dma_blacklisted(dev)) {
4425 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4426 ata_dev_warn(dev,
4427 "device is on DMA blacklist, disabling DMA\n");
4428 }
4429
4430 if ((host->flags & ATA_HOST_SIMPLEX) &&
4431 host->simplex_claimed && host->simplex_claimed != ap) {
4432 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4433 ata_dev_warn(dev,
4434 "simplex DMA is claimed by other device, disabling DMA\n");
4435 }
4436
4437 if (ap->flags & ATA_FLAG_NO_IORDY)
4438 xfer_mask &= ata_pio_mask_no_iordy(dev);
4439
4440 if (ap->ops->mode_filter)
4441 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4442
4443 /* Apply cable rule here. Don't apply it early because when
4444 * we handle hot plug the cable type can itself change.
4445 * Check this last so that we know if the transfer rate was
4446 * solely limited by the cable.
4447 * Unknown or 80 wire cables reported host side are checked
4448 * drive side as well. Cases where we know a 40wire cable
4449 * is used safely for 80 are not checked here.
4450 */
4451 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4452 /* UDMA/44 or higher would be available */
4453 if (cable_is_40wire(ap)) {
4454 ata_dev_warn(dev,
4455 "limited to UDMA/33 due to 40-wire cable\n");
4456 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4457 }
4458
4459 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4460 &dev->mwdma_mask, &dev->udma_mask);
4461 }
4462
4463 /**
4464 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4465 * @dev: Device to which command will be sent
4466 *
4467 * Issue SET FEATURES - XFER MODE command to device @dev
4468 * on port @ap.
4469 *
4470 * LOCKING:
4471 * PCI/etc. bus probe sem.
4472 *
4473 * RETURNS:
4474 * 0 on success, AC_ERR_* mask otherwise.
4475 */
4476
4477 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4478 {
4479 struct ata_taskfile tf;
4480 unsigned int err_mask;
4481
4482 /* set up set-features taskfile */
4483 DPRINTK("set features - xfer mode\n");
4484
4485 /* Some controllers and ATAPI devices show flaky interrupt
4486 * behavior after setting xfer mode. Use polling instead.
4487 */
4488 ata_tf_init(dev, &tf);
4489 tf.command = ATA_CMD_SET_FEATURES;
4490 tf.feature = SETFEATURES_XFER;
4491 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4492 tf.protocol = ATA_PROT_NODATA;
4493 /* If we are using IORDY we must send the mode setting command */
4494 if (ata_pio_need_iordy(dev))
4495 tf.nsect = dev->xfer_mode;
4496 /* If the device has IORDY and the controller does not - turn it off */
4497 else if (ata_id_has_iordy(dev->id))
4498 tf.nsect = 0x01;
4499 else /* In the ancient relic department - skip all of this */
4500 return 0;
4501
4502 /* On some disks, this command causes spin-up, so we need longer timeout */
4503 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4504
4505 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4506 return err_mask;
4507 }
4508
4509 /**
4510 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4511 * @dev: Device to which command will be sent
4512 * @enable: Whether to enable or disable the feature
4513 * @feature: The sector count represents the feature to set
4514 *
4515 * Issue SET FEATURES - SATA FEATURES command to device @dev
4516 * on port @ap with sector count
4517 *
4518 * LOCKING:
4519 * PCI/etc. bus probe sem.
4520 *
4521 * RETURNS:
4522 * 0 on success, AC_ERR_* mask otherwise.
4523 */
4524 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4525 {
4526 struct ata_taskfile tf;
4527 unsigned int err_mask;
4528
4529 /* set up set-features taskfile */
4530 DPRINTK("set features - SATA features\n");
4531
4532 ata_tf_init(dev, &tf);
4533 tf.command = ATA_CMD_SET_FEATURES;
4534 tf.feature = enable;
4535 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4536 tf.protocol = ATA_PROT_NODATA;
4537 tf.nsect = feature;
4538
4539 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4540
4541 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4542 return err_mask;
4543 }
4544 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4545
4546 /**
4547 * ata_dev_init_params - Issue INIT DEV PARAMS command
4548 * @dev: Device to which command will be sent
4549 * @heads: Number of heads (taskfile parameter)
4550 * @sectors: Number of sectors (taskfile parameter)
4551 *
4552 * LOCKING:
4553 * Kernel thread context (may sleep)
4554 *
4555 * RETURNS:
4556 * 0 on success, AC_ERR_* mask otherwise.
4557 */
4558 static unsigned int ata_dev_init_params(struct ata_device *dev,
4559 u16 heads, u16 sectors)
4560 {
4561 struct ata_taskfile tf;
4562 unsigned int err_mask;
4563
4564 /* Number of sectors per track 1-255. Number of heads 1-16 */
4565 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4566 return AC_ERR_INVALID;
4567
4568 /* set up init dev params taskfile */
4569 DPRINTK("init dev params \n");
4570
4571 ata_tf_init(dev, &tf);
4572 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4573 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4574 tf.protocol = ATA_PROT_NODATA;
4575 tf.nsect = sectors;
4576 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4577
4578 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4579 /* A clean abort indicates an original or just out of spec drive
4580 and we should continue as we issue the setup based on the
4581 drive reported working geometry */
4582 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4583 err_mask = 0;
4584
4585 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4586 return err_mask;
4587 }
4588
4589 /**
4590 * ata_sg_clean - Unmap DMA memory associated with command
4591 * @qc: Command containing DMA memory to be released
4592 *
4593 * Unmap all mapped DMA memory associated with this command.
4594 *
4595 * LOCKING:
4596 * spin_lock_irqsave(host lock)
4597 */
4598 void ata_sg_clean(struct ata_queued_cmd *qc)
4599 {
4600 struct ata_port *ap = qc->ap;
4601 struct scatterlist *sg = qc->sg;
4602 int dir = qc->dma_dir;
4603
4604 WARN_ON_ONCE(sg == NULL);
4605
4606 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4607
4608 if (qc->n_elem)
4609 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4610
4611 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4612 qc->sg = NULL;
4613 }
4614
4615 /**
4616 * atapi_check_dma - Check whether ATAPI DMA can be supported
4617 * @qc: Metadata associated with taskfile to check
4618 *
4619 * Allow low-level driver to filter ATA PACKET commands, returning
4620 * a status indicating whether or not it is OK to use DMA for the
4621 * supplied PACKET command.
4622 *
4623 * LOCKING:
4624 * spin_lock_irqsave(host lock)
4625 *
4626 * RETURNS: 0 when ATAPI DMA can be used
4627 * nonzero otherwise
4628 */
4629 int atapi_check_dma(struct ata_queued_cmd *qc)
4630 {
4631 struct ata_port *ap = qc->ap;
4632
4633 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4634 * few ATAPI devices choke on such DMA requests.
4635 */
4636 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4637 unlikely(qc->nbytes & 15))
4638 return 1;
4639
4640 if (ap->ops->check_atapi_dma)
4641 return ap->ops->check_atapi_dma(qc);
4642
4643 return 0;
4644 }
4645
4646 /**
4647 * ata_std_qc_defer - Check whether a qc needs to be deferred
4648 * @qc: ATA command in question
4649 *
4650 * Non-NCQ commands cannot run with any other command, NCQ or
4651 * not. As upper layer only knows the queue depth, we are
4652 * responsible for maintaining exclusion. This function checks
4653 * whether a new command @qc can be issued.
4654 *
4655 * LOCKING:
4656 * spin_lock_irqsave(host lock)
4657 *
4658 * RETURNS:
4659 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4660 */
4661 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4662 {
4663 struct ata_link *link = qc->dev->link;
4664
4665 if (qc->tf.protocol == ATA_PROT_NCQ) {
4666 if (!ata_tag_valid(link->active_tag))
4667 return 0;
4668 } else {
4669 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4670 return 0;
4671 }
4672
4673 return ATA_DEFER_LINK;
4674 }
4675
4676 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4677
4678 /**
4679 * ata_sg_init - Associate command with scatter-gather table.
4680 * @qc: Command to be associated
4681 * @sg: Scatter-gather table.
4682 * @n_elem: Number of elements in s/g table.
4683 *
4684 * Initialize the data-related elements of queued_cmd @qc
4685 * to point to a scatter-gather table @sg, containing @n_elem
4686 * elements.
4687 *
4688 * LOCKING:
4689 * spin_lock_irqsave(host lock)
4690 */
4691 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4692 unsigned int n_elem)
4693 {
4694 qc->sg = sg;
4695 qc->n_elem = n_elem;
4696 qc->cursg = qc->sg;
4697 }
4698
4699 /**
4700 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4701 * @qc: Command with scatter-gather table to be mapped.
4702 *
4703 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4704 *
4705 * LOCKING:
4706 * spin_lock_irqsave(host lock)
4707 *
4708 * RETURNS:
4709 * Zero on success, negative on error.
4710 *
4711 */
4712 static int ata_sg_setup(struct ata_queued_cmd *qc)
4713 {
4714 struct ata_port *ap = qc->ap;
4715 unsigned int n_elem;
4716
4717 VPRINTK("ENTER, ata%u\n", ap->print_id);
4718
4719 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4720 if (n_elem < 1)
4721 return -1;
4722
4723 DPRINTK("%d sg elements mapped\n", n_elem);
4724 qc->orig_n_elem = qc->n_elem;
4725 qc->n_elem = n_elem;
4726 qc->flags |= ATA_QCFLAG_DMAMAP;
4727
4728 return 0;
4729 }
4730
4731 /**
4732 * swap_buf_le16 - swap halves of 16-bit words in place
4733 * @buf: Buffer to swap
4734 * @buf_words: Number of 16-bit words in buffer.
4735 *
4736 * Swap halves of 16-bit words if needed to convert from
4737 * little-endian byte order to native cpu byte order, or
4738 * vice-versa.
4739 *
4740 * LOCKING:
4741 * Inherited from caller.
4742 */
4743 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4744 {
4745 #ifdef __BIG_ENDIAN
4746 unsigned int i;
4747
4748 for (i = 0; i < buf_words; i++)
4749 buf[i] = le16_to_cpu(buf[i]);
4750 #endif /* __BIG_ENDIAN */
4751 }
4752
4753 /**
4754 * ata_qc_new_init - Request an available ATA command, and initialize it
4755 * @dev: Device from whom we request an available command structure
4756 * @tag: tag
4757 *
4758 * LOCKING:
4759 * None.
4760 */
4761
4762 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag)
4763 {
4764 struct ata_port *ap = dev->link->ap;
4765 struct ata_queued_cmd *qc;
4766
4767 /* no command while frozen */
4768 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4769 return NULL;
4770
4771 /* libsas case */
4772 if (ap->flags & ATA_FLAG_SAS_HOST) {
4773 tag = ata_sas_allocate_tag(ap);
4774 if (tag < 0)
4775 return NULL;
4776 }
4777
4778 qc = __ata_qc_from_tag(ap, tag);
4779 qc->tag = tag;
4780 qc->scsicmd = NULL;
4781 qc->ap = ap;
4782 qc->dev = dev;
4783
4784 ata_qc_reinit(qc);
4785
4786 return qc;
4787 }
4788
4789 /**
4790 * ata_qc_free - free unused ata_queued_cmd
4791 * @qc: Command to complete
4792 *
4793 * Designed to free unused ata_queued_cmd object
4794 * in case something prevents using it.
4795 *
4796 * LOCKING:
4797 * spin_lock_irqsave(host lock)
4798 */
4799 void ata_qc_free(struct ata_queued_cmd *qc)
4800 {
4801 struct ata_port *ap;
4802 unsigned int tag;
4803
4804 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4805 ap = qc->ap;
4806
4807 qc->flags = 0;
4808 tag = qc->tag;
4809 if (likely(ata_tag_valid(tag))) {
4810 qc->tag = ATA_TAG_POISON;
4811 if (ap->flags & ATA_FLAG_SAS_HOST)
4812 ata_sas_free_tag(tag, ap);
4813 }
4814 }
4815
4816 void __ata_qc_complete(struct ata_queued_cmd *qc)
4817 {
4818 struct ata_port *ap;
4819 struct ata_link *link;
4820
4821 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4822 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4823 ap = qc->ap;
4824 link = qc->dev->link;
4825
4826 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4827 ata_sg_clean(qc);
4828
4829 /* command should be marked inactive atomically with qc completion */
4830 if (qc->tf.protocol == ATA_PROT_NCQ) {
4831 link->sactive &= ~(1 << qc->tag);
4832 if (!link->sactive)
4833 ap->nr_active_links--;
4834 } else {
4835 link->active_tag = ATA_TAG_POISON;
4836 ap->nr_active_links--;
4837 }
4838
4839 /* clear exclusive status */
4840 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4841 ap->excl_link == link))
4842 ap->excl_link = NULL;
4843
4844 /* atapi: mark qc as inactive to prevent the interrupt handler
4845 * from completing the command twice later, before the error handler
4846 * is called. (when rc != 0 and atapi request sense is needed)
4847 */
4848 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4849 ap->qc_active &= ~(1 << qc->tag);
4850
4851 /* call completion callback */
4852 qc->complete_fn(qc);
4853 }
4854
4855 static void fill_result_tf(struct ata_queued_cmd *qc)
4856 {
4857 struct ata_port *ap = qc->ap;
4858
4859 qc->result_tf.flags = qc->tf.flags;
4860 ap->ops->qc_fill_rtf(qc);
4861 }
4862
4863 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4864 {
4865 struct ata_device *dev = qc->dev;
4866
4867 if (ata_is_nodata(qc->tf.protocol))
4868 return;
4869
4870 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4871 return;
4872
4873 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4874 }
4875
4876 /**
4877 * ata_qc_complete - Complete an active ATA command
4878 * @qc: Command to complete
4879 *
4880 * Indicate to the mid and upper layers that an ATA command has
4881 * completed, with either an ok or not-ok status.
4882 *
4883 * Refrain from calling this function multiple times when
4884 * successfully completing multiple NCQ commands.
4885 * ata_qc_complete_multiple() should be used instead, which will
4886 * properly update IRQ expect state.
4887 *
4888 * LOCKING:
4889 * spin_lock_irqsave(host lock)
4890 */
4891 void ata_qc_complete(struct ata_queued_cmd *qc)
4892 {
4893 struct ata_port *ap = qc->ap;
4894
4895 /* XXX: New EH and old EH use different mechanisms to
4896 * synchronize EH with regular execution path.
4897 *
4898 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4899 * Normal execution path is responsible for not accessing a
4900 * failed qc. libata core enforces the rule by returning NULL
4901 * from ata_qc_from_tag() for failed qcs.
4902 *
4903 * Old EH depends on ata_qc_complete() nullifying completion
4904 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4905 * not synchronize with interrupt handler. Only PIO task is
4906 * taken care of.
4907 */
4908 if (ap->ops->error_handler) {
4909 struct ata_device *dev = qc->dev;
4910 struct ata_eh_info *ehi = &dev->link->eh_info;
4911
4912 if (unlikely(qc->err_mask))
4913 qc->flags |= ATA_QCFLAG_FAILED;
4914
4915 /*
4916 * Finish internal commands without any further processing
4917 * and always with the result TF filled.
4918 */
4919 if (unlikely(ata_tag_internal(qc->tag))) {
4920 fill_result_tf(qc);
4921 trace_ata_qc_complete_internal(qc);
4922 __ata_qc_complete(qc);
4923 return;
4924 }
4925
4926 /*
4927 * Non-internal qc has failed. Fill the result TF and
4928 * summon EH.
4929 */
4930 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4931 fill_result_tf(qc);
4932 trace_ata_qc_complete_failed(qc);
4933 ata_qc_schedule_eh(qc);
4934 return;
4935 }
4936
4937 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4938
4939 /* read result TF if requested */
4940 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4941 fill_result_tf(qc);
4942
4943 trace_ata_qc_complete_done(qc);
4944 /* Some commands need post-processing after successful
4945 * completion.
4946 */
4947 switch (qc->tf.command) {
4948 case ATA_CMD_SET_FEATURES:
4949 if (qc->tf.feature != SETFEATURES_WC_ON &&
4950 qc->tf.feature != SETFEATURES_WC_OFF)
4951 break;
4952 /* fall through */
4953 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4954 case ATA_CMD_SET_MULTI: /* multi_count changed */
4955 /* revalidate device */
4956 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4957 ata_port_schedule_eh(ap);
4958 break;
4959
4960 case ATA_CMD_SLEEP:
4961 dev->flags |= ATA_DFLAG_SLEEPING;
4962 break;
4963 }
4964
4965 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4966 ata_verify_xfer(qc);
4967
4968 __ata_qc_complete(qc);
4969 } else {
4970 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4971 return;
4972
4973 /* read result TF if failed or requested */
4974 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4975 fill_result_tf(qc);
4976
4977 __ata_qc_complete(qc);
4978 }
4979 }
4980
4981 /**
4982 * ata_qc_complete_multiple - Complete multiple qcs successfully
4983 * @ap: port in question
4984 * @qc_active: new qc_active mask
4985 *
4986 * Complete in-flight commands. This functions is meant to be
4987 * called from low-level driver's interrupt routine to complete
4988 * requests normally. ap->qc_active and @qc_active is compared
4989 * and commands are completed accordingly.
4990 *
4991 * Always use this function when completing multiple NCQ commands
4992 * from IRQ handlers instead of calling ata_qc_complete()
4993 * multiple times to keep IRQ expect status properly in sync.
4994 *
4995 * LOCKING:
4996 * spin_lock_irqsave(host lock)
4997 *
4998 * RETURNS:
4999 * Number of completed commands on success, -errno otherwise.
5000 */
5001 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
5002 {
5003 int nr_done = 0;
5004 u32 done_mask;
5005
5006 done_mask = ap->qc_active ^ qc_active;
5007
5008 if (unlikely(done_mask & qc_active)) {
5009 ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
5010 ap->qc_active, qc_active);
5011 return -EINVAL;
5012 }
5013
5014 while (done_mask) {
5015 struct ata_queued_cmd *qc;
5016 unsigned int tag = __ffs(done_mask);
5017
5018 qc = ata_qc_from_tag(ap, tag);
5019 if (qc) {
5020 ata_qc_complete(qc);
5021 nr_done++;
5022 }
5023 done_mask &= ~(1 << tag);
5024 }
5025
5026 return nr_done;
5027 }
5028
5029 /**
5030 * ata_qc_issue - issue taskfile to device
5031 * @qc: command to issue to device
5032 *
5033 * Prepare an ATA command to submission to device.
5034 * This includes mapping the data into a DMA-able
5035 * area, filling in the S/G table, and finally
5036 * writing the taskfile to hardware, starting the command.
5037 *
5038 * LOCKING:
5039 * spin_lock_irqsave(host lock)
5040 */
5041 void ata_qc_issue(struct ata_queued_cmd *qc)
5042 {
5043 struct ata_port *ap = qc->ap;
5044 struct ata_link *link = qc->dev->link;
5045 u8 prot = qc->tf.protocol;
5046
5047 /* Make sure only one non-NCQ command is outstanding. The
5048 * check is skipped for old EH because it reuses active qc to
5049 * request ATAPI sense.
5050 */
5051 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5052
5053 if (ata_is_ncq(prot)) {
5054 WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5055
5056 if (!link->sactive)
5057 ap->nr_active_links++;
5058 link->sactive |= 1 << qc->tag;
5059 } else {
5060 WARN_ON_ONCE(link->sactive);
5061
5062 ap->nr_active_links++;
5063 link->active_tag = qc->tag;
5064 }
5065
5066 qc->flags |= ATA_QCFLAG_ACTIVE;
5067 ap->qc_active |= 1 << qc->tag;
5068
5069 /*
5070 * We guarantee to LLDs that they will have at least one
5071 * non-zero sg if the command is a data command.
5072 */
5073 if (WARN_ON_ONCE(ata_is_data(prot) &&
5074 (!qc->sg || !qc->n_elem || !qc->nbytes)))
5075 goto sys_err;
5076
5077 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5078 (ap->flags & ATA_FLAG_PIO_DMA)))
5079 if (ata_sg_setup(qc))
5080 goto sys_err;
5081
5082 /* if device is sleeping, schedule reset and abort the link */
5083 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5084 link->eh_info.action |= ATA_EH_RESET;
5085 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5086 ata_link_abort(link);
5087 return;
5088 }
5089
5090 ap->ops->qc_prep(qc);
5091 trace_ata_qc_issue(qc);
5092 qc->err_mask |= ap->ops->qc_issue(qc);
5093 if (unlikely(qc->err_mask))
5094 goto err;
5095 return;
5096
5097 sys_err:
5098 qc->err_mask |= AC_ERR_SYSTEM;
5099 err:
5100 ata_qc_complete(qc);
5101 }
5102
5103 /**
5104 * sata_scr_valid - test whether SCRs are accessible
5105 * @link: ATA link to test SCR accessibility for
5106 *
5107 * Test whether SCRs are accessible for @link.
5108 *
5109 * LOCKING:
5110 * None.
5111 *
5112 * RETURNS:
5113 * 1 if SCRs are accessible, 0 otherwise.
5114 */
5115 int sata_scr_valid(struct ata_link *link)
5116 {
5117 struct ata_port *ap = link->ap;
5118
5119 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5120 }
5121
5122 /**
5123 * sata_scr_read - read SCR register of the specified port
5124 * @link: ATA link to read SCR for
5125 * @reg: SCR to read
5126 * @val: Place to store read value
5127 *
5128 * Read SCR register @reg of @link into *@val. This function is
5129 * guaranteed to succeed if @link is ap->link, the cable type of
5130 * the port is SATA and the port implements ->scr_read.
5131 *
5132 * LOCKING:
5133 * None if @link is ap->link. Kernel thread context otherwise.
5134 *
5135 * RETURNS:
5136 * 0 on success, negative errno on failure.
5137 */
5138 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5139 {
5140 if (ata_is_host_link(link)) {
5141 if (sata_scr_valid(link))
5142 return link->ap->ops->scr_read(link, reg, val);
5143 return -EOPNOTSUPP;
5144 }
5145
5146 return sata_pmp_scr_read(link, reg, val);
5147 }
5148
5149 /**
5150 * sata_scr_write - write SCR register of the specified port
5151 * @link: ATA link to write SCR for
5152 * @reg: SCR to write
5153 * @val: value to write
5154 *
5155 * Write @val to SCR register @reg of @link. This function is
5156 * guaranteed to succeed if @link is ap->link, the cable type of
5157 * the port is SATA and the port implements ->scr_read.
5158 *
5159 * LOCKING:
5160 * None if @link is ap->link. Kernel thread context otherwise.
5161 *
5162 * RETURNS:
5163 * 0 on success, negative errno on failure.
5164 */
5165 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5166 {
5167 if (ata_is_host_link(link)) {
5168 if (sata_scr_valid(link))
5169 return link->ap->ops->scr_write(link, reg, val);
5170 return -EOPNOTSUPP;
5171 }
5172
5173 return sata_pmp_scr_write(link, reg, val);
5174 }
5175
5176 /**
5177 * sata_scr_write_flush - write SCR register of the specified port and flush
5178 * @link: ATA link to write SCR for
5179 * @reg: SCR to write
5180 * @val: value to write
5181 *
5182 * This function is identical to sata_scr_write() except that this
5183 * function performs flush after writing to the register.
5184 *
5185 * LOCKING:
5186 * None if @link is ap->link. Kernel thread context otherwise.
5187 *
5188 * RETURNS:
5189 * 0 on success, negative errno on failure.
5190 */
5191 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5192 {
5193 if (ata_is_host_link(link)) {
5194 int rc;
5195
5196 if (sata_scr_valid(link)) {
5197 rc = link->ap->ops->scr_write(link, reg, val);
5198 if (rc == 0)
5199 rc = link->ap->ops->scr_read(link, reg, &val);
5200 return rc;
5201 }
5202 return -EOPNOTSUPP;
5203 }
5204
5205 return sata_pmp_scr_write(link, reg, val);
5206 }
5207
5208 /**
5209 * ata_phys_link_online - test whether the given link is online
5210 * @link: ATA link to test
5211 *
5212 * Test whether @link is online. Note that this function returns
5213 * 0 if online status of @link cannot be obtained, so
5214 * ata_link_online(link) != !ata_link_offline(link).
5215 *
5216 * LOCKING:
5217 * None.
5218 *
5219 * RETURNS:
5220 * True if the port online status is available and online.
5221 */
5222 bool ata_phys_link_online(struct ata_link *link)
5223 {
5224 u32 sstatus;
5225
5226 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5227 ata_sstatus_online(sstatus))
5228 return true;
5229 return false;
5230 }
5231
5232 /**
5233 * ata_phys_link_offline - test whether the given link is offline
5234 * @link: ATA link to test
5235 *
5236 * Test whether @link is offline. Note that this function
5237 * returns 0 if offline status of @link cannot be obtained, so
5238 * ata_link_online(link) != !ata_link_offline(link).
5239 *
5240 * LOCKING:
5241 * None.
5242 *
5243 * RETURNS:
5244 * True if the port offline status is available and offline.
5245 */
5246 bool ata_phys_link_offline(struct ata_link *link)
5247 {
5248 u32 sstatus;
5249
5250 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5251 !ata_sstatus_online(sstatus))
5252 return true;
5253 return false;
5254 }
5255
5256 /**
5257 * ata_link_online - test whether the given link is online
5258 * @link: ATA link to test
5259 *
5260 * Test whether @link is online. This is identical to
5261 * ata_phys_link_online() when there's no slave link. When
5262 * there's a slave link, this function should only be called on
5263 * the master link and will return true if any of M/S links is
5264 * online.
5265 *
5266 * LOCKING:
5267 * None.
5268 *
5269 * RETURNS:
5270 * True if the port online status is available and online.
5271 */
5272 bool ata_link_online(struct ata_link *link)
5273 {
5274 struct ata_link *slave = link->ap->slave_link;
5275
5276 WARN_ON(link == slave); /* shouldn't be called on slave link */
5277
5278 return ata_phys_link_online(link) ||
5279 (slave && ata_phys_link_online(slave));
5280 }
5281
5282 /**
5283 * ata_link_offline - test whether the given link is offline
5284 * @link: ATA link to test
5285 *
5286 * Test whether @link is offline. This is identical to
5287 * ata_phys_link_offline() when there's no slave link. When
5288 * there's a slave link, this function should only be called on
5289 * the master link and will return true if both M/S links are
5290 * offline.
5291 *
5292 * LOCKING:
5293 * None.
5294 *
5295 * RETURNS:
5296 * True if the port offline status is available and offline.
5297 */
5298 bool ata_link_offline(struct ata_link *link)
5299 {
5300 struct ata_link *slave = link->ap->slave_link;
5301
5302 WARN_ON(link == slave); /* shouldn't be called on slave link */
5303
5304 return ata_phys_link_offline(link) &&
5305 (!slave || ata_phys_link_offline(slave));
5306 }
5307
5308 #ifdef CONFIG_PM
5309 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5310 unsigned int action, unsigned int ehi_flags,
5311 bool async)
5312 {
5313 struct ata_link *link;
5314 unsigned long flags;
5315
5316 /* Previous resume operation might still be in
5317 * progress. Wait for PM_PENDING to clear.
5318 */
5319 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5320 ata_port_wait_eh(ap);
5321 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5322 }
5323
5324 /* request PM ops to EH */
5325 spin_lock_irqsave(ap->lock, flags);
5326
5327 ap->pm_mesg = mesg;
5328 ap->pflags |= ATA_PFLAG_PM_PENDING;
5329 ata_for_each_link(link, ap, HOST_FIRST) {
5330 link->eh_info.action |= action;
5331 link->eh_info.flags |= ehi_flags;
5332 }
5333
5334 ata_port_schedule_eh(ap);
5335
5336 spin_unlock_irqrestore(ap->lock, flags);
5337
5338 if (!async) {
5339 ata_port_wait_eh(ap);
5340 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5341 }
5342 }
5343
5344 /*
5345 * On some hardware, device fails to respond after spun down for suspend. As
5346 * the device won't be used before being resumed, we don't need to touch the
5347 * device. Ask EH to skip the usual stuff and proceed directly to suspend.
5348 *
5349 * http://thread.gmane.org/gmane.linux.ide/46764
5350 */
5351 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5352 | ATA_EHI_NO_AUTOPSY
5353 | ATA_EHI_NO_RECOVERY;
5354
5355 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5356 {
5357 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5358 }
5359
5360 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5361 {
5362 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5363 }
5364
5365 static int ata_port_pm_suspend(struct device *dev)
5366 {
5367 struct ata_port *ap = to_ata_port(dev);
5368
5369 if (pm_runtime_suspended(dev))
5370 return 0;
5371
5372 ata_port_suspend(ap, PMSG_SUSPEND);
5373 return 0;
5374 }
5375
5376 static int ata_port_pm_freeze(struct device *dev)
5377 {
5378 struct ata_port *ap = to_ata_port(dev);
5379
5380 if (pm_runtime_suspended(dev))
5381 return 0;
5382
5383 ata_port_suspend(ap, PMSG_FREEZE);
5384 return 0;
5385 }
5386
5387 static int ata_port_pm_poweroff(struct device *dev)
5388 {
5389 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5390 return 0;
5391 }
5392
5393 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5394 | ATA_EHI_QUIET;
5395
5396 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5397 {
5398 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5399 }
5400
5401 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5402 {
5403 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5404 }
5405
5406 static int ata_port_pm_resume(struct device *dev)
5407 {
5408 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5409 pm_runtime_disable(dev);
5410 pm_runtime_set_active(dev);
5411 pm_runtime_enable(dev);
5412 return 0;
5413 }
5414
5415 /*
5416 * For ODDs, the upper layer will poll for media change every few seconds,
5417 * which will make it enter and leave suspend state every few seconds. And
5418 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5419 * is very little and the ODD may malfunction after constantly being reset.
5420 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5421 * ODD is attached to the port.
5422 */
5423 static int ata_port_runtime_idle(struct device *dev)
5424 {
5425 struct ata_port *ap = to_ata_port(dev);
5426 struct ata_link *link;
5427 struct ata_device *adev;
5428
5429 ata_for_each_link(link, ap, HOST_FIRST) {
5430 ata_for_each_dev(adev, link, ENABLED)
5431 if (adev->class == ATA_DEV_ATAPI &&
5432 !zpodd_dev_enabled(adev))
5433 return -EBUSY;
5434 }
5435
5436 return 0;
5437 }
5438
5439 static int ata_port_runtime_suspend(struct device *dev)
5440 {
5441 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5442 return 0;
5443 }
5444
5445 static int ata_port_runtime_resume(struct device *dev)
5446 {
5447 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5448 return 0;
5449 }
5450
5451 static const struct dev_pm_ops ata_port_pm_ops = {
5452 .suspend = ata_port_pm_suspend,
5453 .resume = ata_port_pm_resume,
5454 .freeze = ata_port_pm_freeze,
5455 .thaw = ata_port_pm_resume,
5456 .poweroff = ata_port_pm_poweroff,
5457 .restore = ata_port_pm_resume,
5458
5459 .runtime_suspend = ata_port_runtime_suspend,
5460 .runtime_resume = ata_port_runtime_resume,
5461 .runtime_idle = ata_port_runtime_idle,
5462 };
5463
5464 /* sas ports don't participate in pm runtime management of ata_ports,
5465 * and need to resume ata devices at the domain level, not the per-port
5466 * level. sas suspend/resume is async to allow parallel port recovery
5467 * since sas has multiple ata_port instances per Scsi_Host.
5468 */
5469 void ata_sas_port_suspend(struct ata_port *ap)
5470 {
5471 ata_port_suspend_async(ap, PMSG_SUSPEND);
5472 }
5473 EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5474
5475 void ata_sas_port_resume(struct ata_port *ap)
5476 {
5477 ata_port_resume_async(ap, PMSG_RESUME);
5478 }
5479 EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5480
5481 /**
5482 * ata_host_suspend - suspend host
5483 * @host: host to suspend
5484 * @mesg: PM message
5485 *
5486 * Suspend @host. Actual operation is performed by port suspend.
5487 */
5488 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5489 {
5490 host->dev->power.power_state = mesg;
5491 return 0;
5492 }
5493
5494 /**
5495 * ata_host_resume - resume host
5496 * @host: host to resume
5497 *
5498 * Resume @host. Actual operation is performed by port resume.
5499 */
5500 void ata_host_resume(struct ata_host *host)
5501 {
5502 host->dev->power.power_state = PMSG_ON;
5503 }
5504 #endif
5505
5506 struct device_type ata_port_type = {
5507 .name = "ata_port",
5508 #ifdef CONFIG_PM
5509 .pm = &ata_port_pm_ops,
5510 #endif
5511 };
5512
5513 /**
5514 * ata_dev_init - Initialize an ata_device structure
5515 * @dev: Device structure to initialize
5516 *
5517 * Initialize @dev in preparation for probing.
5518 *
5519 * LOCKING:
5520 * Inherited from caller.
5521 */
5522 void ata_dev_init(struct ata_device *dev)
5523 {
5524 struct ata_link *link = ata_dev_phys_link(dev);
5525 struct ata_port *ap = link->ap;
5526 unsigned long flags;
5527
5528 /* SATA spd limit is bound to the attached device, reset together */
5529 link->sata_spd_limit = link->hw_sata_spd_limit;
5530 link->sata_spd = 0;
5531
5532 /* High bits of dev->flags are used to record warm plug
5533 * requests which occur asynchronously. Synchronize using
5534 * host lock.
5535 */
5536 spin_lock_irqsave(ap->lock, flags);
5537 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5538 dev->horkage = 0;
5539 spin_unlock_irqrestore(ap->lock, flags);
5540
5541 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5542 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5543 dev->pio_mask = UINT_MAX;
5544 dev->mwdma_mask = UINT_MAX;
5545 dev->udma_mask = UINT_MAX;
5546 }
5547
5548 /**
5549 * ata_link_init - Initialize an ata_link structure
5550 * @ap: ATA port link is attached to
5551 * @link: Link structure to initialize
5552 * @pmp: Port multiplier port number
5553 *
5554 * Initialize @link.
5555 *
5556 * LOCKING:
5557 * Kernel thread context (may sleep)
5558 */
5559 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5560 {
5561 int i;
5562
5563 /* clear everything except for devices */
5564 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5565 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5566
5567 link->ap = ap;
5568 link->pmp = pmp;
5569 link->active_tag = ATA_TAG_POISON;
5570 link->hw_sata_spd_limit = UINT_MAX;
5571
5572 /* can't use iterator, ap isn't initialized yet */
5573 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5574 struct ata_device *dev = &link->device[i];
5575
5576 dev->link = link;
5577 dev->devno = dev - link->device;
5578 #ifdef CONFIG_ATA_ACPI
5579 dev->gtf_filter = ata_acpi_gtf_filter;
5580 #endif
5581 ata_dev_init(dev);
5582 }
5583 }
5584
5585 /**
5586 * sata_link_init_spd - Initialize link->sata_spd_limit
5587 * @link: Link to configure sata_spd_limit for
5588 *
5589 * Initialize @link->[hw_]sata_spd_limit to the currently
5590 * configured value.
5591 *
5592 * LOCKING:
5593 * Kernel thread context (may sleep).
5594 *
5595 * RETURNS:
5596 * 0 on success, -errno on failure.
5597 */
5598 int sata_link_init_spd(struct ata_link *link)
5599 {
5600 u8 spd;
5601 int rc;
5602
5603 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5604 if (rc)
5605 return rc;
5606
5607 spd = (link->saved_scontrol >> 4) & 0xf;
5608 if (spd)
5609 link->hw_sata_spd_limit &= (1 << spd) - 1;
5610
5611 ata_force_link_limits(link);
5612
5613 link->sata_spd_limit = link->hw_sata_spd_limit;
5614
5615 return 0;
5616 }
5617
5618 /**
5619 * ata_port_alloc - allocate and initialize basic ATA port resources
5620 * @host: ATA host this allocated port belongs to
5621 *
5622 * Allocate and initialize basic ATA port resources.
5623 *
5624 * RETURNS:
5625 * Allocate ATA port on success, NULL on failure.
5626 *
5627 * LOCKING:
5628 * Inherited from calling layer (may sleep).
5629 */
5630 struct ata_port *ata_port_alloc(struct ata_host *host)
5631 {
5632 struct ata_port *ap;
5633
5634 DPRINTK("ENTER\n");
5635
5636 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5637 if (!ap)
5638 return NULL;
5639
5640 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5641 ap->lock = &host->lock;
5642 ap->print_id = -1;
5643 ap->local_port_no = -1;
5644 ap->host = host;
5645 ap->dev = host->dev;
5646
5647 #if defined(ATA_VERBOSE_DEBUG)
5648 /* turn on all debugging levels */
5649 ap->msg_enable = 0x00FF;
5650 #elif defined(ATA_DEBUG)
5651 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5652 #else
5653 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5654 #endif
5655
5656 mutex_init(&ap->scsi_scan_mutex);
5657 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5658 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5659 INIT_LIST_HEAD(&ap->eh_done_q);
5660 init_waitqueue_head(&ap->eh_wait_q);
5661 init_completion(&ap->park_req_pending);
5662 init_timer_deferrable(&ap->fastdrain_timer);
5663 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5664 ap->fastdrain_timer.data = (unsigned long)ap;
5665
5666 ap->cbl = ATA_CBL_NONE;
5667
5668 ata_link_init(ap, &ap->link, 0);
5669
5670 #ifdef ATA_IRQ_TRAP
5671 ap->stats.unhandled_irq = 1;
5672 ap->stats.idle_irq = 1;
5673 #endif
5674 ata_sff_port_init(ap);
5675
5676 return ap;
5677 }
5678
5679 static void ata_host_release(struct device *gendev, void *res)
5680 {
5681 struct ata_host *host = dev_get_drvdata(gendev);
5682 int i;
5683
5684 for (i = 0; i < host->n_ports; i++) {
5685 struct ata_port *ap = host->ports[i];
5686
5687 if (!ap)
5688 continue;
5689
5690 if (ap->scsi_host)
5691 scsi_host_put(ap->scsi_host);
5692
5693 kfree(ap->pmp_link);
5694 kfree(ap->slave_link);
5695 kfree(ap);
5696 host->ports[i] = NULL;
5697 }
5698
5699 dev_set_drvdata(gendev, NULL);
5700 }
5701
5702 /**
5703 * ata_host_alloc - allocate and init basic ATA host resources
5704 * @dev: generic device this host is associated with
5705 * @max_ports: maximum number of ATA ports associated with this host
5706 *
5707 * Allocate and initialize basic ATA host resources. LLD calls
5708 * this function to allocate a host, initializes it fully and
5709 * attaches it using ata_host_register().
5710 *
5711 * @max_ports ports are allocated and host->n_ports is
5712 * initialized to @max_ports. The caller is allowed to decrease
5713 * host->n_ports before calling ata_host_register(). The unused
5714 * ports will be automatically freed on registration.
5715 *
5716 * RETURNS:
5717 * Allocate ATA host on success, NULL on failure.
5718 *
5719 * LOCKING:
5720 * Inherited from calling layer (may sleep).
5721 */
5722 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5723 {
5724 struct ata_host *host;
5725 size_t sz;
5726 int i;
5727
5728 DPRINTK("ENTER\n");
5729
5730 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5731 return NULL;
5732
5733 /* alloc a container for our list of ATA ports (buses) */
5734 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5735 /* alloc a container for our list of ATA ports (buses) */
5736 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5737 if (!host)
5738 goto err_out;
5739
5740 devres_add(dev, host);
5741 dev_set_drvdata(dev, host);
5742
5743 spin_lock_init(&host->lock);
5744 mutex_init(&host->eh_mutex);
5745 host->dev = dev;
5746 host->n_ports = max_ports;
5747
5748 /* allocate ports bound to this host */
5749 for (i = 0; i < max_ports; i++) {
5750 struct ata_port *ap;
5751
5752 ap = ata_port_alloc(host);
5753 if (!ap)
5754 goto err_out;
5755
5756 ap->port_no = i;
5757 host->ports[i] = ap;
5758 }
5759
5760 devres_remove_group(dev, NULL);
5761 return host;
5762
5763 err_out:
5764 devres_release_group(dev, NULL);
5765 return NULL;
5766 }
5767
5768 /**
5769 * ata_host_alloc_pinfo - alloc host and init with port_info array
5770 * @dev: generic device this host is associated with
5771 * @ppi: array of ATA port_info to initialize host with
5772 * @n_ports: number of ATA ports attached to this host
5773 *
5774 * Allocate ATA host and initialize with info from @ppi. If NULL
5775 * terminated, @ppi may contain fewer entries than @n_ports. The
5776 * last entry will be used for the remaining ports.
5777 *
5778 * RETURNS:
5779 * Allocate ATA host on success, NULL on failure.
5780 *
5781 * LOCKING:
5782 * Inherited from calling layer (may sleep).
5783 */
5784 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5785 const struct ata_port_info * const * ppi,
5786 int n_ports)
5787 {
5788 const struct ata_port_info *pi;
5789 struct ata_host *host;
5790 int i, j;
5791
5792 host = ata_host_alloc(dev, n_ports);
5793 if (!host)
5794 return NULL;
5795
5796 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5797 struct ata_port *ap = host->ports[i];
5798
5799 if (ppi[j])
5800 pi = ppi[j++];
5801
5802 ap->pio_mask = pi->pio_mask;
5803 ap->mwdma_mask = pi->mwdma_mask;
5804 ap->udma_mask = pi->udma_mask;
5805 ap->flags |= pi->flags;
5806 ap->link.flags |= pi->link_flags;
5807 ap->ops = pi->port_ops;
5808
5809 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5810 host->ops = pi->port_ops;
5811 }
5812
5813 return host;
5814 }
5815
5816 /**
5817 * ata_slave_link_init - initialize slave link
5818 * @ap: port to initialize slave link for
5819 *
5820 * Create and initialize slave link for @ap. This enables slave
5821 * link handling on the port.
5822 *
5823 * In libata, a port contains links and a link contains devices.
5824 * There is single host link but if a PMP is attached to it,
5825 * there can be multiple fan-out links. On SATA, there's usually
5826 * a single device connected to a link but PATA and SATA
5827 * controllers emulating TF based interface can have two - master
5828 * and slave.
5829 *
5830 * However, there are a few controllers which don't fit into this
5831 * abstraction too well - SATA controllers which emulate TF
5832 * interface with both master and slave devices but also have
5833 * separate SCR register sets for each device. These controllers
5834 * need separate links for physical link handling
5835 * (e.g. onlineness, link speed) but should be treated like a
5836 * traditional M/S controller for everything else (e.g. command
5837 * issue, softreset).
5838 *
5839 * slave_link is libata's way of handling this class of
5840 * controllers without impacting core layer too much. For
5841 * anything other than physical link handling, the default host
5842 * link is used for both master and slave. For physical link
5843 * handling, separate @ap->slave_link is used. All dirty details
5844 * are implemented inside libata core layer. From LLD's POV, the
5845 * only difference is that prereset, hardreset and postreset are
5846 * called once more for the slave link, so the reset sequence
5847 * looks like the following.
5848 *
5849 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5850 * softreset(M) -> postreset(M) -> postreset(S)
5851 *
5852 * Note that softreset is called only for the master. Softreset
5853 * resets both M/S by definition, so SRST on master should handle
5854 * both (the standard method will work just fine).
5855 *
5856 * LOCKING:
5857 * Should be called before host is registered.
5858 *
5859 * RETURNS:
5860 * 0 on success, -errno on failure.
5861 */
5862 int ata_slave_link_init(struct ata_port *ap)
5863 {
5864 struct ata_link *link;
5865
5866 WARN_ON(ap->slave_link);
5867 WARN_ON(ap->flags & ATA_FLAG_PMP);
5868
5869 link = kzalloc(sizeof(*link), GFP_KERNEL);
5870 if (!link)
5871 return -ENOMEM;
5872
5873 ata_link_init(ap, link, 1);
5874 ap->slave_link = link;
5875 return 0;
5876 }
5877
5878 static void ata_host_stop(struct device *gendev, void *res)
5879 {
5880 struct ata_host *host = dev_get_drvdata(gendev);
5881 int i;
5882
5883 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5884
5885 for (i = 0; i < host->n_ports; i++) {
5886 struct ata_port *ap = host->ports[i];
5887
5888 if (ap->ops->port_stop)
5889 ap->ops->port_stop(ap);
5890 }
5891
5892 if (host->ops->host_stop)
5893 host->ops->host_stop(host);
5894 }
5895
5896 /**
5897 * ata_finalize_port_ops - finalize ata_port_operations
5898 * @ops: ata_port_operations to finalize
5899 *
5900 * An ata_port_operations can inherit from another ops and that
5901 * ops can again inherit from another. This can go on as many
5902 * times as necessary as long as there is no loop in the
5903 * inheritance chain.
5904 *
5905 * Ops tables are finalized when the host is started. NULL or
5906 * unspecified entries are inherited from the closet ancestor
5907 * which has the method and the entry is populated with it.
5908 * After finalization, the ops table directly points to all the
5909 * methods and ->inherits is no longer necessary and cleared.
5910 *
5911 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5912 *
5913 * LOCKING:
5914 * None.
5915 */
5916 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5917 {
5918 static DEFINE_SPINLOCK(lock);
5919 const struct ata_port_operations *cur;
5920 void **begin = (void **)ops;
5921 void **end = (void **)&ops->inherits;
5922 void **pp;
5923
5924 if (!ops || !ops->inherits)
5925 return;
5926
5927 spin_lock(&lock);
5928
5929 for (cur = ops->inherits; cur; cur = cur->inherits) {
5930 void **inherit = (void **)cur;
5931
5932 for (pp = begin; pp < end; pp++, inherit++)
5933 if (!*pp)
5934 *pp = *inherit;
5935 }
5936
5937 for (pp = begin; pp < end; pp++)
5938 if (IS_ERR(*pp))
5939 *pp = NULL;
5940
5941 ops->inherits = NULL;
5942
5943 spin_unlock(&lock);
5944 }
5945
5946 /**
5947 * ata_host_start - start and freeze ports of an ATA host
5948 * @host: ATA host to start ports for
5949 *
5950 * Start and then freeze ports of @host. Started status is
5951 * recorded in host->flags, so this function can be called
5952 * multiple times. Ports are guaranteed to get started only
5953 * once. If host->ops isn't initialized yet, its set to the
5954 * first non-dummy port ops.
5955 *
5956 * LOCKING:
5957 * Inherited from calling layer (may sleep).
5958 *
5959 * RETURNS:
5960 * 0 if all ports are started successfully, -errno otherwise.
5961 */
5962 int ata_host_start(struct ata_host *host)
5963 {
5964 int have_stop = 0;
5965 void *start_dr = NULL;
5966 int i, rc;
5967
5968 if (host->flags & ATA_HOST_STARTED)
5969 return 0;
5970
5971 ata_finalize_port_ops(host->ops);
5972
5973 for (i = 0; i < host->n_ports; i++) {
5974 struct ata_port *ap = host->ports[i];
5975
5976 ata_finalize_port_ops(ap->ops);
5977
5978 if (!host->ops && !ata_port_is_dummy(ap))
5979 host->ops = ap->ops;
5980
5981 if (ap->ops->port_stop)
5982 have_stop = 1;
5983 }
5984
5985 if (host->ops->host_stop)
5986 have_stop = 1;
5987
5988 if (have_stop) {
5989 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5990 if (!start_dr)
5991 return -ENOMEM;
5992 }
5993
5994 for (i = 0; i < host->n_ports; i++) {
5995 struct ata_port *ap = host->ports[i];
5996
5997 if (ap->ops->port_start) {
5998 rc = ap->ops->port_start(ap);
5999 if (rc) {
6000 if (rc != -ENODEV)
6001 dev_err(host->dev,
6002 "failed to start port %d (errno=%d)\n",
6003 i, rc);
6004 goto err_out;
6005 }
6006 }
6007 ata_eh_freeze_port(ap);
6008 }
6009
6010 if (start_dr)
6011 devres_add(host->dev, start_dr);
6012 host->flags |= ATA_HOST_STARTED;
6013 return 0;
6014
6015 err_out:
6016 while (--i >= 0) {
6017 struct ata_port *ap = host->ports[i];
6018
6019 if (ap->ops->port_stop)
6020 ap->ops->port_stop(ap);
6021 }
6022 devres_free(start_dr);
6023 return rc;
6024 }
6025
6026 /**
6027 * ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
6028 * @host: host to initialize
6029 * @dev: device host is attached to
6030 * @ops: port_ops
6031 *
6032 */
6033 void ata_host_init(struct ata_host *host, struct device *dev,
6034 struct ata_port_operations *ops)
6035 {
6036 spin_lock_init(&host->lock);
6037 mutex_init(&host->eh_mutex);
6038 host->n_tags = ATA_MAX_QUEUE - 1;
6039 host->dev = dev;
6040 host->ops = ops;
6041 }
6042
6043 void __ata_port_probe(struct ata_port *ap)
6044 {
6045 struct ata_eh_info *ehi = &ap->link.eh_info;
6046 unsigned long flags;
6047
6048 /* kick EH for boot probing */
6049 spin_lock_irqsave(ap->lock, flags);
6050
6051 ehi->probe_mask |= ATA_ALL_DEVICES;
6052 ehi->action |= ATA_EH_RESET;
6053 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6054
6055 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6056 ap->pflags |= ATA_PFLAG_LOADING;
6057 ata_port_schedule_eh(ap);
6058
6059 spin_unlock_irqrestore(ap->lock, flags);
6060 }
6061
6062 int ata_port_probe(struct ata_port *ap)
6063 {
6064 int rc = 0;
6065
6066 if (ap->ops->error_handler) {
6067 __ata_port_probe(ap);
6068 ata_port_wait_eh(ap);
6069 } else {
6070 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6071 rc = ata_bus_probe(ap);
6072 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6073 }
6074 return rc;
6075 }
6076
6077
6078 static void async_port_probe(void *data, async_cookie_t cookie)
6079 {
6080 struct ata_port *ap = data;
6081
6082 /*
6083 * If we're not allowed to scan this host in parallel,
6084 * we need to wait until all previous scans have completed
6085 * before going further.
6086 * Jeff Garzik says this is only within a controller, so we
6087 * don't need to wait for port 0, only for later ports.
6088 */
6089 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6090 async_synchronize_cookie(cookie);
6091
6092 (void)ata_port_probe(ap);
6093
6094 /* in order to keep device order, we need to synchronize at this point */
6095 async_synchronize_cookie(cookie);
6096
6097 ata_scsi_scan_host(ap, 1);
6098 }
6099
6100 /**
6101 * ata_host_register - register initialized ATA host
6102 * @host: ATA host to register
6103 * @sht: template for SCSI host
6104 *
6105 * Register initialized ATA host. @host is allocated using
6106 * ata_host_alloc() and fully initialized by LLD. This function
6107 * starts ports, registers @host with ATA and SCSI layers and
6108 * probe registered devices.
6109 *
6110 * LOCKING:
6111 * Inherited from calling layer (may sleep).
6112 *
6113 * RETURNS:
6114 * 0 on success, -errno otherwise.
6115 */
6116 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6117 {
6118 int i, rc;
6119
6120 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE - 1);
6121
6122 /* host must have been started */
6123 if (!(host->flags & ATA_HOST_STARTED)) {
6124 dev_err(host->dev, "BUG: trying to register unstarted host\n");
6125 WARN_ON(1);
6126 return -EINVAL;
6127 }
6128
6129 /* Blow away unused ports. This happens when LLD can't
6130 * determine the exact number of ports to allocate at
6131 * allocation time.
6132 */
6133 for (i = host->n_ports; host->ports[i]; i++)
6134 kfree(host->ports[i]);
6135
6136 /* give ports names and add SCSI hosts */
6137 for (i = 0; i < host->n_ports; i++) {
6138 host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
6139 host->ports[i]->local_port_no = i + 1;
6140 }
6141
6142 /* Create associated sysfs transport objects */
6143 for (i = 0; i < host->n_ports; i++) {
6144 rc = ata_tport_add(host->dev,host->ports[i]);
6145 if (rc) {
6146 goto err_tadd;
6147 }
6148 }
6149
6150 rc = ata_scsi_add_hosts(host, sht);
6151 if (rc)
6152 goto err_tadd;
6153
6154 /* set cable, sata_spd_limit and report */
6155 for (i = 0; i < host->n_ports; i++) {
6156 struct ata_port *ap = host->ports[i];
6157 unsigned long xfer_mask;
6158
6159 /* set SATA cable type if still unset */
6160 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6161 ap->cbl = ATA_CBL_SATA;
6162
6163 /* init sata_spd_limit to the current value */
6164 sata_link_init_spd(&ap->link);
6165 if (ap->slave_link)
6166 sata_link_init_spd(ap->slave_link);
6167
6168 /* print per-port info to dmesg */
6169 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6170 ap->udma_mask);
6171
6172 if (!ata_port_is_dummy(ap)) {
6173 ata_port_info(ap, "%cATA max %s %s\n",
6174 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6175 ata_mode_string(xfer_mask),
6176 ap->link.eh_info.desc);
6177 ata_ehi_clear_desc(&ap->link.eh_info);
6178 } else
6179 ata_port_info(ap, "DUMMY\n");
6180 }
6181
6182 /* perform each probe asynchronously */
6183 for (i = 0; i < host->n_ports; i++) {
6184 struct ata_port *ap = host->ports[i];
6185 async_schedule(async_port_probe, ap);
6186 }
6187
6188 return 0;
6189
6190 err_tadd:
6191 while (--i >= 0) {
6192 ata_tport_delete(host->ports[i]);
6193 }
6194 return rc;
6195
6196 }
6197
6198 /**
6199 * ata_host_activate - start host, request IRQ and register it
6200 * @host: target ATA host
6201 * @irq: IRQ to request
6202 * @irq_handler: irq_handler used when requesting IRQ
6203 * @irq_flags: irq_flags used when requesting IRQ
6204 * @sht: scsi_host_template to use when registering the host
6205 *
6206 * After allocating an ATA host and initializing it, most libata
6207 * LLDs perform three steps to activate the host - start host,
6208 * request IRQ and register it. This helper takes necessasry
6209 * arguments and performs the three steps in one go.
6210 *
6211 * An invalid IRQ skips the IRQ registration and expects the host to
6212 * have set polling mode on the port. In this case, @irq_handler
6213 * should be NULL.
6214 *
6215 * LOCKING:
6216 * Inherited from calling layer (may sleep).
6217 *
6218 * RETURNS:
6219 * 0 on success, -errno otherwise.
6220 */
6221 int ata_host_activate(struct ata_host *host, int irq,
6222 irq_handler_t irq_handler, unsigned long irq_flags,
6223 struct scsi_host_template *sht)
6224 {
6225 int i, rc;
6226
6227 rc = ata_host_start(host);
6228 if (rc)
6229 return rc;
6230
6231 /* Special case for polling mode */
6232 if (!irq) {
6233 WARN_ON(irq_handler);
6234 return ata_host_register(host, sht);
6235 }
6236
6237 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6238 dev_name(host->dev), host);
6239 if (rc)
6240 return rc;
6241
6242 for (i = 0; i < host->n_ports; i++)
6243 ata_port_desc(host->ports[i], "irq %d", irq);
6244
6245 rc = ata_host_register(host, sht);
6246 /* if failed, just free the IRQ and leave ports alone */
6247 if (rc)
6248 devm_free_irq(host->dev, irq, host);
6249
6250 return rc;
6251 }
6252
6253 /**
6254 * ata_port_detach - Detach ATA port in prepration of device removal
6255 * @ap: ATA port to be detached
6256 *
6257 * Detach all ATA devices and the associated SCSI devices of @ap;
6258 * then, remove the associated SCSI host. @ap is guaranteed to
6259 * be quiescent on return from this function.
6260 *
6261 * LOCKING:
6262 * Kernel thread context (may sleep).
6263 */
6264 static void ata_port_detach(struct ata_port *ap)
6265 {
6266 unsigned long flags;
6267 struct ata_link *link;
6268 struct ata_device *dev;
6269
6270 if (!ap->ops->error_handler)
6271 goto skip_eh;
6272
6273 /* tell EH we're leaving & flush EH */
6274 spin_lock_irqsave(ap->lock, flags);
6275 ap->pflags |= ATA_PFLAG_UNLOADING;
6276 ata_port_schedule_eh(ap);
6277 spin_unlock_irqrestore(ap->lock, flags);
6278
6279 /* wait till EH commits suicide */
6280 ata_port_wait_eh(ap);
6281
6282 /* it better be dead now */
6283 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6284
6285 cancel_delayed_work_sync(&ap->hotplug_task);
6286
6287 skip_eh:
6288 /* clean up zpodd on port removal */
6289 ata_for_each_link(link, ap, HOST_FIRST) {
6290 ata_for_each_dev(dev, link, ALL) {
6291 if (zpodd_dev_enabled(dev))
6292 zpodd_exit(dev);
6293 }
6294 }
6295 if (ap->pmp_link) {
6296 int i;
6297 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6298 ata_tlink_delete(&ap->pmp_link[i]);
6299 }
6300 /* remove the associated SCSI host */
6301 scsi_remove_host(ap->scsi_host);
6302 ata_tport_delete(ap);
6303 }
6304
6305 /**
6306 * ata_host_detach - Detach all ports of an ATA host
6307 * @host: Host to detach
6308 *
6309 * Detach all ports of @host.
6310 *
6311 * LOCKING:
6312 * Kernel thread context (may sleep).
6313 */
6314 void ata_host_detach(struct ata_host *host)
6315 {
6316 int i;
6317
6318 for (i = 0; i < host->n_ports; i++)
6319 ata_port_detach(host->ports[i]);
6320
6321 /* the host is dead now, dissociate ACPI */
6322 ata_acpi_dissociate(host);
6323 }
6324
6325 #ifdef CONFIG_PCI
6326
6327 /**
6328 * ata_pci_remove_one - PCI layer callback for device removal
6329 * @pdev: PCI device that was removed
6330 *
6331 * PCI layer indicates to libata via this hook that hot-unplug or
6332 * module unload event has occurred. Detach all ports. Resource
6333 * release is handled via devres.
6334 *
6335 * LOCKING:
6336 * Inherited from PCI layer (may sleep).
6337 */
6338 void ata_pci_remove_one(struct pci_dev *pdev)
6339 {
6340 struct ata_host *host = pci_get_drvdata(pdev);
6341
6342 ata_host_detach(host);
6343 }
6344
6345 /* move to PCI subsystem */
6346 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6347 {
6348 unsigned long tmp = 0;
6349
6350 switch (bits->width) {
6351 case 1: {
6352 u8 tmp8 = 0;
6353 pci_read_config_byte(pdev, bits->reg, &tmp8);
6354 tmp = tmp8;
6355 break;
6356 }
6357 case 2: {
6358 u16 tmp16 = 0;
6359 pci_read_config_word(pdev, bits->reg, &tmp16);
6360 tmp = tmp16;
6361 break;
6362 }
6363 case 4: {
6364 u32 tmp32 = 0;
6365 pci_read_config_dword(pdev, bits->reg, &tmp32);
6366 tmp = tmp32;
6367 break;
6368 }
6369
6370 default:
6371 return -EINVAL;
6372 }
6373
6374 tmp &= bits->mask;
6375
6376 return (tmp == bits->val) ? 1 : 0;
6377 }
6378
6379 #ifdef CONFIG_PM
6380 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6381 {
6382 pci_save_state(pdev);
6383 pci_disable_device(pdev);
6384
6385 if (mesg.event & PM_EVENT_SLEEP)
6386 pci_set_power_state(pdev, PCI_D3hot);
6387 }
6388
6389 int ata_pci_device_do_resume(struct pci_dev *pdev)
6390 {
6391 int rc;
6392
6393 pci_set_power_state(pdev, PCI_D0);
6394 pci_restore_state(pdev);
6395
6396 rc = pcim_enable_device(pdev);
6397 if (rc) {
6398 dev_err(&pdev->dev,
6399 "failed to enable device after resume (%d)\n", rc);
6400 return rc;
6401 }
6402
6403 pci_set_master(pdev);
6404 return 0;
6405 }
6406
6407 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6408 {
6409 struct ata_host *host = pci_get_drvdata(pdev);
6410 int rc = 0;
6411
6412 rc = ata_host_suspend(host, mesg);
6413 if (rc)
6414 return rc;
6415
6416 ata_pci_device_do_suspend(pdev, mesg);
6417
6418 return 0;
6419 }
6420
6421 int ata_pci_device_resume(struct pci_dev *pdev)
6422 {
6423 struct ata_host *host = pci_get_drvdata(pdev);
6424 int rc;
6425
6426 rc = ata_pci_device_do_resume(pdev);
6427 if (rc == 0)
6428 ata_host_resume(host);
6429 return rc;
6430 }
6431 #endif /* CONFIG_PM */
6432
6433 #endif /* CONFIG_PCI */
6434
6435 /**
6436 * ata_platform_remove_one - Platform layer callback for device removal
6437 * @pdev: Platform device that was removed
6438 *
6439 * Platform layer indicates to libata via this hook that hot-unplug or
6440 * module unload event has occurred. Detach all ports. Resource
6441 * release is handled via devres.
6442 *
6443 * LOCKING:
6444 * Inherited from platform layer (may sleep).
6445 */
6446 int ata_platform_remove_one(struct platform_device *pdev)
6447 {
6448 struct ata_host *host = platform_get_drvdata(pdev);
6449
6450 ata_host_detach(host);
6451
6452 return 0;
6453 }
6454
6455 static int __init ata_parse_force_one(char **cur,
6456 struct ata_force_ent *force_ent,
6457 const char **reason)
6458 {
6459 static const struct ata_force_param force_tbl[] __initconst = {
6460 { "40c", .cbl = ATA_CBL_PATA40 },
6461 { "80c", .cbl = ATA_CBL_PATA80 },
6462 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6463 { "unk", .cbl = ATA_CBL_PATA_UNK },
6464 { "ign", .cbl = ATA_CBL_PATA_IGN },
6465 { "sata", .cbl = ATA_CBL_SATA },
6466 { "1.5Gbps", .spd_limit = 1 },
6467 { "3.0Gbps", .spd_limit = 2 },
6468 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6469 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6470 { "noncqtrim", .horkage_on = ATA_HORKAGE_NO_NCQ_TRIM },
6471 { "ncqtrim", .horkage_off = ATA_HORKAGE_NO_NCQ_TRIM },
6472 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID },
6473 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6474 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6475 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6476 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6477 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6478 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6479 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6480 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6481 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6482 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6483 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6484 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6485 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6486 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6487 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6488 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6489 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6490 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6491 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6492 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6493 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6494 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6495 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6496 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6497 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6498 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6499 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6500 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6501 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6502 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6503 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6504 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6505 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6506 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
6507 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6508 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6509 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6510 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE },
6511 { "atapi_dmadir", .horkage_on = ATA_HORKAGE_ATAPI_DMADIR },
6512 { "disable", .horkage_on = ATA_HORKAGE_DISABLE },
6513 };
6514 char *start = *cur, *p = *cur;
6515 char *id, *val, *endp;
6516 const struct ata_force_param *match_fp = NULL;
6517 int nr_matches = 0, i;
6518
6519 /* find where this param ends and update *cur */
6520 while (*p != '\0' && *p != ',')
6521 p++;
6522
6523 if (*p == '\0')
6524 *cur = p;
6525 else
6526 *cur = p + 1;
6527
6528 *p = '\0';
6529
6530 /* parse */
6531 p = strchr(start, ':');
6532 if (!p) {
6533 val = strstrip(start);
6534 goto parse_val;
6535 }
6536 *p = '\0';
6537
6538 id = strstrip(start);
6539 val = strstrip(p + 1);
6540
6541 /* parse id */
6542 p = strchr(id, '.');
6543 if (p) {
6544 *p++ = '\0';
6545 force_ent->device = simple_strtoul(p, &endp, 10);
6546 if (p == endp || *endp != '\0') {
6547 *reason = "invalid device";
6548 return -EINVAL;
6549 }
6550 }
6551
6552 force_ent->port = simple_strtoul(id, &endp, 10);
6553 if (p == endp || *endp != '\0') {
6554 *reason = "invalid port/link";
6555 return -EINVAL;
6556 }
6557
6558 parse_val:
6559 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6560 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6561 const struct ata_force_param *fp = &force_tbl[i];
6562
6563 if (strncasecmp(val, fp->name, strlen(val)))
6564 continue;
6565
6566 nr_matches++;
6567 match_fp = fp;
6568
6569 if (strcasecmp(val, fp->name) == 0) {
6570 nr_matches = 1;
6571 break;
6572 }
6573 }
6574
6575 if (!nr_matches) {
6576 *reason = "unknown value";
6577 return -EINVAL;
6578 }
6579 if (nr_matches > 1) {
6580 *reason = "ambigious value";
6581 return -EINVAL;
6582 }
6583
6584 force_ent->param = *match_fp;
6585
6586 return 0;
6587 }
6588
6589 static void __init ata_parse_force_param(void)
6590 {
6591 int idx = 0, size = 1;
6592 int last_port = -1, last_device = -1;
6593 char *p, *cur, *next;
6594
6595 /* calculate maximum number of params and allocate force_tbl */
6596 for (p = ata_force_param_buf; *p; p++)
6597 if (*p == ',')
6598 size++;
6599
6600 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6601 if (!ata_force_tbl) {
6602 printk(KERN_WARNING "ata: failed to extend force table, "
6603 "libata.force ignored\n");
6604 return;
6605 }
6606
6607 /* parse and populate the table */
6608 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6609 const char *reason = "";
6610 struct ata_force_ent te = { .port = -1, .device = -1 };
6611
6612 next = cur;
6613 if (ata_parse_force_one(&next, &te, &reason)) {
6614 printk(KERN_WARNING "ata: failed to parse force "
6615 "parameter \"%s\" (%s)\n",
6616 cur, reason);
6617 continue;
6618 }
6619
6620 if (te.port == -1) {
6621 te.port = last_port;
6622 te.device = last_device;
6623 }
6624
6625 ata_force_tbl[idx++] = te;
6626
6627 last_port = te.port;
6628 last_device = te.device;
6629 }
6630
6631 ata_force_tbl_size = idx;
6632 }
6633
6634 static int __init ata_init(void)
6635 {
6636 int rc;
6637
6638 ata_parse_force_param();
6639
6640 rc = ata_sff_init();
6641 if (rc) {
6642 kfree(ata_force_tbl);
6643 return rc;
6644 }
6645
6646 libata_transport_init();
6647 ata_scsi_transport_template = ata_attach_transport();
6648 if (!ata_scsi_transport_template) {
6649 ata_sff_exit();
6650 rc = -ENOMEM;
6651 goto err_out;
6652 }
6653
6654 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6655 return 0;
6656
6657 err_out:
6658 return rc;
6659 }
6660
6661 static void __exit ata_exit(void)
6662 {
6663 ata_release_transport(ata_scsi_transport_template);
6664 libata_transport_exit();
6665 ata_sff_exit();
6666 kfree(ata_force_tbl);
6667 }
6668
6669 subsys_initcall(ata_init);
6670 module_exit(ata_exit);
6671
6672 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6673
6674 int ata_ratelimit(void)
6675 {
6676 return __ratelimit(&ratelimit);
6677 }
6678
6679 /**
6680 * ata_msleep - ATA EH owner aware msleep
6681 * @ap: ATA port to attribute the sleep to
6682 * @msecs: duration to sleep in milliseconds
6683 *
6684 * Sleeps @msecs. If the current task is owner of @ap's EH, the
6685 * ownership is released before going to sleep and reacquired
6686 * after the sleep is complete. IOW, other ports sharing the
6687 * @ap->host will be allowed to own the EH while this task is
6688 * sleeping.
6689 *
6690 * LOCKING:
6691 * Might sleep.
6692 */
6693 void ata_msleep(struct ata_port *ap, unsigned int msecs)
6694 {
6695 bool owns_eh = ap && ap->host->eh_owner == current;
6696
6697 if (owns_eh)
6698 ata_eh_release(ap);
6699
6700 msleep(msecs);
6701
6702 if (owns_eh)
6703 ata_eh_acquire(ap);
6704 }
6705
6706 /**
6707 * ata_wait_register - wait until register value changes
6708 * @ap: ATA port to wait register for, can be NULL
6709 * @reg: IO-mapped register
6710 * @mask: Mask to apply to read register value
6711 * @val: Wait condition
6712 * @interval: polling interval in milliseconds
6713 * @timeout: timeout in milliseconds
6714 *
6715 * Waiting for some bits of register to change is a common
6716 * operation for ATA controllers. This function reads 32bit LE
6717 * IO-mapped register @reg and tests for the following condition.
6718 *
6719 * (*@reg & mask) != val
6720 *
6721 * If the condition is met, it returns; otherwise, the process is
6722 * repeated after @interval_msec until timeout.
6723 *
6724 * LOCKING:
6725 * Kernel thread context (may sleep)
6726 *
6727 * RETURNS:
6728 * The final register value.
6729 */
6730 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6731 unsigned long interval, unsigned long timeout)
6732 {
6733 unsigned long deadline;
6734 u32 tmp;
6735
6736 tmp = ioread32(reg);
6737
6738 /* Calculate timeout _after_ the first read to make sure
6739 * preceding writes reach the controller before starting to
6740 * eat away the timeout.
6741 */
6742 deadline = ata_deadline(jiffies, timeout);
6743
6744 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6745 ata_msleep(ap, interval);
6746 tmp = ioread32(reg);
6747 }
6748
6749 return tmp;
6750 }
6751
6752 /**
6753 * sata_lpm_ignore_phy_events - test if PHY event should be ignored
6754 * @link: Link receiving the event
6755 *
6756 * Test whether the received PHY event has to be ignored or not.
6757 *
6758 * LOCKING:
6759 * None:
6760 *
6761 * RETURNS:
6762 * True if the event has to be ignored.
6763 */
6764 bool sata_lpm_ignore_phy_events(struct ata_link *link)
6765 {
6766 unsigned long lpm_timeout = link->last_lpm_change +
6767 msecs_to_jiffies(ATA_TMOUT_SPURIOUS_PHY);
6768
6769 /* if LPM is enabled, PHYRDY doesn't mean anything */
6770 if (link->lpm_policy > ATA_LPM_MAX_POWER)
6771 return true;
6772
6773 /* ignore the first PHY event after the LPM policy changed
6774 * as it is might be spurious
6775 */
6776 if ((link->flags & ATA_LFLAG_CHANGED) &&
6777 time_before(jiffies, lpm_timeout))
6778 return true;
6779
6780 return false;
6781 }
6782 EXPORT_SYMBOL_GPL(sata_lpm_ignore_phy_events);
6783
6784 /*
6785 * Dummy port_ops
6786 */
6787 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6788 {
6789 return AC_ERR_SYSTEM;
6790 }
6791
6792 static void ata_dummy_error_handler(struct ata_port *ap)
6793 {
6794 /* truly dummy */
6795 }
6796
6797 struct ata_port_operations ata_dummy_port_ops = {
6798 .qc_prep = ata_noop_qc_prep,
6799 .qc_issue = ata_dummy_qc_issue,
6800 .error_handler = ata_dummy_error_handler,
6801 .sched_eh = ata_std_sched_eh,
6802 .end_eh = ata_std_end_eh,
6803 };
6804
6805 const struct ata_port_info ata_dummy_port_info = {
6806 .port_ops = &ata_dummy_port_ops,
6807 };
6808
6809 /*
6810 * Utility print functions
6811 */
6812 void ata_port_printk(const struct ata_port *ap, const char *level,
6813 const char *fmt, ...)
6814 {
6815 struct va_format vaf;
6816 va_list args;
6817
6818 va_start(args, fmt);
6819
6820 vaf.fmt = fmt;
6821 vaf.va = &args;
6822
6823 printk("%sata%u: %pV", level, ap->print_id, &vaf);
6824
6825 va_end(args);
6826 }
6827 EXPORT_SYMBOL(ata_port_printk);
6828
6829 void ata_link_printk(const struct ata_link *link, const char *level,
6830 const char *fmt, ...)
6831 {
6832 struct va_format vaf;
6833 va_list args;
6834
6835 va_start(args, fmt);
6836
6837 vaf.fmt = fmt;
6838 vaf.va = &args;
6839
6840 if (sata_pmp_attached(link->ap) || link->ap->slave_link)
6841 printk("%sata%u.%02u: %pV",
6842 level, link->ap->print_id, link->pmp, &vaf);
6843 else
6844 printk("%sata%u: %pV",
6845 level, link->ap->print_id, &vaf);
6846
6847 va_end(args);
6848 }
6849 EXPORT_SYMBOL(ata_link_printk);
6850
6851 void ata_dev_printk(const struct ata_device *dev, const char *level,
6852 const char *fmt, ...)
6853 {
6854 struct va_format vaf;
6855 va_list args;
6856
6857 va_start(args, fmt);
6858
6859 vaf.fmt = fmt;
6860 vaf.va = &args;
6861
6862 printk("%sata%u.%02u: %pV",
6863 level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
6864 &vaf);
6865
6866 va_end(args);
6867 }
6868 EXPORT_SYMBOL(ata_dev_printk);
6869
6870 void ata_print_version(const struct device *dev, const char *version)
6871 {
6872 dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6873 }
6874 EXPORT_SYMBOL(ata_print_version);
6875
6876 /*
6877 * libata is essentially a library of internal helper functions for
6878 * low-level ATA host controller drivers. As such, the API/ABI is
6879 * likely to change as new drivers are added and updated.
6880 * Do not depend on ABI/API stability.
6881 */
6882 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6883 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6884 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6885 EXPORT_SYMBOL_GPL(ata_base_port_ops);
6886 EXPORT_SYMBOL_GPL(sata_port_ops);
6887 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6888 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6889 EXPORT_SYMBOL_GPL(ata_link_next);
6890 EXPORT_SYMBOL_GPL(ata_dev_next);
6891 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6892 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
6893 EXPORT_SYMBOL_GPL(ata_host_init);
6894 EXPORT_SYMBOL_GPL(ata_host_alloc);
6895 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6896 EXPORT_SYMBOL_GPL(ata_slave_link_init);
6897 EXPORT_SYMBOL_GPL(ata_host_start);
6898 EXPORT_SYMBOL_GPL(ata_host_register);
6899 EXPORT_SYMBOL_GPL(ata_host_activate);
6900 EXPORT_SYMBOL_GPL(ata_host_detach);
6901 EXPORT_SYMBOL_GPL(ata_sg_init);
6902 EXPORT_SYMBOL_GPL(ata_qc_complete);
6903 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6904 EXPORT_SYMBOL_GPL(atapi_cmd_type);
6905 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6906 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6907 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6908 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6909 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6910 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6911 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6912 EXPORT_SYMBOL_GPL(ata_mode_string);
6913 EXPORT_SYMBOL_GPL(ata_id_xfermask);
6914 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6915 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6916 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6917 EXPORT_SYMBOL_GPL(ata_dev_disable);
6918 EXPORT_SYMBOL_GPL(sata_set_spd);
6919 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6920 EXPORT_SYMBOL_GPL(sata_link_debounce);
6921 EXPORT_SYMBOL_GPL(sata_link_resume);
6922 EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
6923 EXPORT_SYMBOL_GPL(ata_std_prereset);
6924 EXPORT_SYMBOL_GPL(sata_link_hardreset);
6925 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6926 EXPORT_SYMBOL_GPL(ata_std_postreset);
6927 EXPORT_SYMBOL_GPL(ata_dev_classify);
6928 EXPORT_SYMBOL_GPL(ata_dev_pair);
6929 EXPORT_SYMBOL_GPL(ata_ratelimit);
6930 EXPORT_SYMBOL_GPL(ata_msleep);
6931 EXPORT_SYMBOL_GPL(ata_wait_register);
6932 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6933 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6934 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6935 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6936 EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
6937 EXPORT_SYMBOL_GPL(sata_scr_valid);
6938 EXPORT_SYMBOL_GPL(sata_scr_read);
6939 EXPORT_SYMBOL_GPL(sata_scr_write);
6940 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6941 EXPORT_SYMBOL_GPL(ata_link_online);
6942 EXPORT_SYMBOL_GPL(ata_link_offline);
6943 #ifdef CONFIG_PM
6944 EXPORT_SYMBOL_GPL(ata_host_suspend);
6945 EXPORT_SYMBOL_GPL(ata_host_resume);
6946 #endif /* CONFIG_PM */
6947 EXPORT_SYMBOL_GPL(ata_id_string);
6948 EXPORT_SYMBOL_GPL(ata_id_c_string);
6949 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6950 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6951
6952 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6953 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6954 EXPORT_SYMBOL_GPL(ata_timing_compute);
6955 EXPORT_SYMBOL_GPL(ata_timing_merge);
6956 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6957
6958 #ifdef CONFIG_PCI
6959 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6960 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6961 #ifdef CONFIG_PM
6962 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6963 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6964 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6965 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6966 #endif /* CONFIG_PM */
6967 #endif /* CONFIG_PCI */
6968
6969 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6970
6971 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6972 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6973 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6974 EXPORT_SYMBOL_GPL(ata_port_desc);
6975 #ifdef CONFIG_PCI
6976 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6977 #endif /* CONFIG_PCI */
6978 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6979 EXPORT_SYMBOL_GPL(ata_link_abort);
6980 EXPORT_SYMBOL_GPL(ata_port_abort);
6981 EXPORT_SYMBOL_GPL(ata_port_freeze);
6982 EXPORT_SYMBOL_GPL(sata_async_notification);
6983 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6984 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6985 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6986 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6987 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
6988 EXPORT_SYMBOL_GPL(ata_do_eh);
6989 EXPORT_SYMBOL_GPL(ata_std_error_handler);
6990
6991 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6992 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6993 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6994 EXPORT_SYMBOL_GPL(ata_cable_ignore);
6995 EXPORT_SYMBOL_GPL(ata_cable_sata);