]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/ata/libata-sff.c
Merge tag 'hwlock-v5.3' of git://github.com/andersson/remoteproc
[thirdparty/linux.git] / drivers / ata / libata-sff.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * libata-sff.c - helper library for PCI IDE BMDMA
4 *
5 * Maintained by: Tejun Heo <tj@kernel.org>
6 * Please ALWAYS copy linux-ide@vger.kernel.org
7 * on emails.
8 *
9 * Copyright 2003-2006 Red Hat, Inc. All rights reserved.
10 * Copyright 2003-2006 Jeff Garzik
11 *
12 * libata documentation is available via 'make {ps|pdf}docs',
13 * as Documentation/driver-api/libata.rst
14 *
15 * Hardware documentation available from http://www.t13.org/ and
16 * http://www.sata-io.org/
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/gfp.h>
21 #include <linux/pci.h>
22 #include <linux/module.h>
23 #include <linux/libata.h>
24 #include <linux/highmem.h>
25
26 #include "libata.h"
27
28 static struct workqueue_struct *ata_sff_wq;
29
30 const struct ata_port_operations ata_sff_port_ops = {
31 .inherits = &ata_base_port_ops,
32
33 .qc_prep = ata_noop_qc_prep,
34 .qc_issue = ata_sff_qc_issue,
35 .qc_fill_rtf = ata_sff_qc_fill_rtf,
36
37 .freeze = ata_sff_freeze,
38 .thaw = ata_sff_thaw,
39 .prereset = ata_sff_prereset,
40 .softreset = ata_sff_softreset,
41 .hardreset = sata_sff_hardreset,
42 .postreset = ata_sff_postreset,
43 .error_handler = ata_sff_error_handler,
44
45 .sff_dev_select = ata_sff_dev_select,
46 .sff_check_status = ata_sff_check_status,
47 .sff_tf_load = ata_sff_tf_load,
48 .sff_tf_read = ata_sff_tf_read,
49 .sff_exec_command = ata_sff_exec_command,
50 .sff_data_xfer = ata_sff_data_xfer,
51 .sff_drain_fifo = ata_sff_drain_fifo,
52
53 .lost_interrupt = ata_sff_lost_interrupt,
54 };
55 EXPORT_SYMBOL_GPL(ata_sff_port_ops);
56
57 /**
58 * ata_sff_check_status - Read device status reg & clear interrupt
59 * @ap: port where the device is
60 *
61 * Reads ATA taskfile status register for currently-selected device
62 * and return its value. This also clears pending interrupts
63 * from this device
64 *
65 * LOCKING:
66 * Inherited from caller.
67 */
68 u8 ata_sff_check_status(struct ata_port *ap)
69 {
70 return ioread8(ap->ioaddr.status_addr);
71 }
72 EXPORT_SYMBOL_GPL(ata_sff_check_status);
73
74 /**
75 * ata_sff_altstatus - Read device alternate status reg
76 * @ap: port where the device is
77 *
78 * Reads ATA taskfile alternate status register for
79 * currently-selected device and return its value.
80 *
81 * Note: may NOT be used as the check_altstatus() entry in
82 * ata_port_operations.
83 *
84 * LOCKING:
85 * Inherited from caller.
86 */
87 static u8 ata_sff_altstatus(struct ata_port *ap)
88 {
89 if (ap->ops->sff_check_altstatus)
90 return ap->ops->sff_check_altstatus(ap);
91
92 return ioread8(ap->ioaddr.altstatus_addr);
93 }
94
95 /**
96 * ata_sff_irq_status - Check if the device is busy
97 * @ap: port where the device is
98 *
99 * Determine if the port is currently busy. Uses altstatus
100 * if available in order to avoid clearing shared IRQ status
101 * when finding an IRQ source. Non ctl capable devices don't
102 * share interrupt lines fortunately for us.
103 *
104 * LOCKING:
105 * Inherited from caller.
106 */
107 static u8 ata_sff_irq_status(struct ata_port *ap)
108 {
109 u8 status;
110
111 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
112 status = ata_sff_altstatus(ap);
113 /* Not us: We are busy */
114 if (status & ATA_BUSY)
115 return status;
116 }
117 /* Clear INTRQ latch */
118 status = ap->ops->sff_check_status(ap);
119 return status;
120 }
121
122 /**
123 * ata_sff_sync - Flush writes
124 * @ap: Port to wait for.
125 *
126 * CAUTION:
127 * If we have an mmio device with no ctl and no altstatus
128 * method this will fail. No such devices are known to exist.
129 *
130 * LOCKING:
131 * Inherited from caller.
132 */
133
134 static void ata_sff_sync(struct ata_port *ap)
135 {
136 if (ap->ops->sff_check_altstatus)
137 ap->ops->sff_check_altstatus(ap);
138 else if (ap->ioaddr.altstatus_addr)
139 ioread8(ap->ioaddr.altstatus_addr);
140 }
141
142 /**
143 * ata_sff_pause - Flush writes and wait 400nS
144 * @ap: Port to pause for.
145 *
146 * CAUTION:
147 * If we have an mmio device with no ctl and no altstatus
148 * method this will fail. No such devices are known to exist.
149 *
150 * LOCKING:
151 * Inherited from caller.
152 */
153
154 void ata_sff_pause(struct ata_port *ap)
155 {
156 ata_sff_sync(ap);
157 ndelay(400);
158 }
159 EXPORT_SYMBOL_GPL(ata_sff_pause);
160
161 /**
162 * ata_sff_dma_pause - Pause before commencing DMA
163 * @ap: Port to pause for.
164 *
165 * Perform I/O fencing and ensure sufficient cycle delays occur
166 * for the HDMA1:0 transition
167 */
168
169 void ata_sff_dma_pause(struct ata_port *ap)
170 {
171 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
172 /* An altstatus read will cause the needed delay without
173 messing up the IRQ status */
174 ata_sff_altstatus(ap);
175 return;
176 }
177 /* There are no DMA controllers without ctl. BUG here to ensure
178 we never violate the HDMA1:0 transition timing and risk
179 corruption. */
180 BUG();
181 }
182 EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
183
184 /**
185 * ata_sff_busy_sleep - sleep until BSY clears, or timeout
186 * @ap: port containing status register to be polled
187 * @tmout_pat: impatience timeout in msecs
188 * @tmout: overall timeout in msecs
189 *
190 * Sleep until ATA Status register bit BSY clears,
191 * or a timeout occurs.
192 *
193 * LOCKING:
194 * Kernel thread context (may sleep).
195 *
196 * RETURNS:
197 * 0 on success, -errno otherwise.
198 */
199 int ata_sff_busy_sleep(struct ata_port *ap,
200 unsigned long tmout_pat, unsigned long tmout)
201 {
202 unsigned long timer_start, timeout;
203 u8 status;
204
205 status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
206 timer_start = jiffies;
207 timeout = ata_deadline(timer_start, tmout_pat);
208 while (status != 0xff && (status & ATA_BUSY) &&
209 time_before(jiffies, timeout)) {
210 ata_msleep(ap, 50);
211 status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
212 }
213
214 if (status != 0xff && (status & ATA_BUSY))
215 ata_port_warn(ap,
216 "port is slow to respond, please be patient (Status 0x%x)\n",
217 status);
218
219 timeout = ata_deadline(timer_start, tmout);
220 while (status != 0xff && (status & ATA_BUSY) &&
221 time_before(jiffies, timeout)) {
222 ata_msleep(ap, 50);
223 status = ap->ops->sff_check_status(ap);
224 }
225
226 if (status == 0xff)
227 return -ENODEV;
228
229 if (status & ATA_BUSY) {
230 ata_port_err(ap,
231 "port failed to respond (%lu secs, Status 0x%x)\n",
232 DIV_ROUND_UP(tmout, 1000), status);
233 return -EBUSY;
234 }
235
236 return 0;
237 }
238 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
239
240 static int ata_sff_check_ready(struct ata_link *link)
241 {
242 u8 status = link->ap->ops->sff_check_status(link->ap);
243
244 return ata_check_ready(status);
245 }
246
247 /**
248 * ata_sff_wait_ready - sleep until BSY clears, or timeout
249 * @link: SFF link to wait ready status for
250 * @deadline: deadline jiffies for the operation
251 *
252 * Sleep until ATA Status register bit BSY clears, or timeout
253 * occurs.
254 *
255 * LOCKING:
256 * Kernel thread context (may sleep).
257 *
258 * RETURNS:
259 * 0 on success, -errno otherwise.
260 */
261 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
262 {
263 return ata_wait_ready(link, deadline, ata_sff_check_ready);
264 }
265 EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
266
267 /**
268 * ata_sff_set_devctl - Write device control reg
269 * @ap: port where the device is
270 * @ctl: value to write
271 *
272 * Writes ATA taskfile device control register.
273 *
274 * Note: may NOT be used as the sff_set_devctl() entry in
275 * ata_port_operations.
276 *
277 * LOCKING:
278 * Inherited from caller.
279 */
280 static void ata_sff_set_devctl(struct ata_port *ap, u8 ctl)
281 {
282 if (ap->ops->sff_set_devctl)
283 ap->ops->sff_set_devctl(ap, ctl);
284 else
285 iowrite8(ctl, ap->ioaddr.ctl_addr);
286 }
287
288 /**
289 * ata_sff_dev_select - Select device 0/1 on ATA bus
290 * @ap: ATA channel to manipulate
291 * @device: ATA device (numbered from zero) to select
292 *
293 * Use the method defined in the ATA specification to
294 * make either device 0, or device 1, active on the
295 * ATA channel. Works with both PIO and MMIO.
296 *
297 * May be used as the dev_select() entry in ata_port_operations.
298 *
299 * LOCKING:
300 * caller.
301 */
302 void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
303 {
304 u8 tmp;
305
306 if (device == 0)
307 tmp = ATA_DEVICE_OBS;
308 else
309 tmp = ATA_DEVICE_OBS | ATA_DEV1;
310
311 iowrite8(tmp, ap->ioaddr.device_addr);
312 ata_sff_pause(ap); /* needed; also flushes, for mmio */
313 }
314 EXPORT_SYMBOL_GPL(ata_sff_dev_select);
315
316 /**
317 * ata_dev_select - Select device 0/1 on ATA bus
318 * @ap: ATA channel to manipulate
319 * @device: ATA device (numbered from zero) to select
320 * @wait: non-zero to wait for Status register BSY bit to clear
321 * @can_sleep: non-zero if context allows sleeping
322 *
323 * Use the method defined in the ATA specification to
324 * make either device 0, or device 1, active on the
325 * ATA channel.
326 *
327 * This is a high-level version of ata_sff_dev_select(), which
328 * additionally provides the services of inserting the proper
329 * pauses and status polling, where needed.
330 *
331 * LOCKING:
332 * caller.
333 */
334 static void ata_dev_select(struct ata_port *ap, unsigned int device,
335 unsigned int wait, unsigned int can_sleep)
336 {
337 if (ata_msg_probe(ap))
338 ata_port_info(ap, "ata_dev_select: ENTER, device %u, wait %u\n",
339 device, wait);
340
341 if (wait)
342 ata_wait_idle(ap);
343
344 ap->ops->sff_dev_select(ap, device);
345
346 if (wait) {
347 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
348 ata_msleep(ap, 150);
349 ata_wait_idle(ap);
350 }
351 }
352
353 /**
354 * ata_sff_irq_on - Enable interrupts on a port.
355 * @ap: Port on which interrupts are enabled.
356 *
357 * Enable interrupts on a legacy IDE device using MMIO or PIO,
358 * wait for idle, clear any pending interrupts.
359 *
360 * Note: may NOT be used as the sff_irq_on() entry in
361 * ata_port_operations.
362 *
363 * LOCKING:
364 * Inherited from caller.
365 */
366 void ata_sff_irq_on(struct ata_port *ap)
367 {
368 struct ata_ioports *ioaddr = &ap->ioaddr;
369
370 if (ap->ops->sff_irq_on) {
371 ap->ops->sff_irq_on(ap);
372 return;
373 }
374
375 ap->ctl &= ~ATA_NIEN;
376 ap->last_ctl = ap->ctl;
377
378 if (ap->ops->sff_set_devctl || ioaddr->ctl_addr)
379 ata_sff_set_devctl(ap, ap->ctl);
380 ata_wait_idle(ap);
381
382 if (ap->ops->sff_irq_clear)
383 ap->ops->sff_irq_clear(ap);
384 }
385 EXPORT_SYMBOL_GPL(ata_sff_irq_on);
386
387 /**
388 * ata_sff_tf_load - send taskfile registers to host controller
389 * @ap: Port to which output is sent
390 * @tf: ATA taskfile register set
391 *
392 * Outputs ATA taskfile to standard ATA host controller.
393 *
394 * LOCKING:
395 * Inherited from caller.
396 */
397 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
398 {
399 struct ata_ioports *ioaddr = &ap->ioaddr;
400 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
401
402 if (tf->ctl != ap->last_ctl) {
403 if (ioaddr->ctl_addr)
404 iowrite8(tf->ctl, ioaddr->ctl_addr);
405 ap->last_ctl = tf->ctl;
406 ata_wait_idle(ap);
407 }
408
409 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
410 WARN_ON_ONCE(!ioaddr->ctl_addr);
411 iowrite8(tf->hob_feature, ioaddr->feature_addr);
412 iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
413 iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
414 iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
415 iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
416 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
417 tf->hob_feature,
418 tf->hob_nsect,
419 tf->hob_lbal,
420 tf->hob_lbam,
421 tf->hob_lbah);
422 }
423
424 if (is_addr) {
425 iowrite8(tf->feature, ioaddr->feature_addr);
426 iowrite8(tf->nsect, ioaddr->nsect_addr);
427 iowrite8(tf->lbal, ioaddr->lbal_addr);
428 iowrite8(tf->lbam, ioaddr->lbam_addr);
429 iowrite8(tf->lbah, ioaddr->lbah_addr);
430 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
431 tf->feature,
432 tf->nsect,
433 tf->lbal,
434 tf->lbam,
435 tf->lbah);
436 }
437
438 if (tf->flags & ATA_TFLAG_DEVICE) {
439 iowrite8(tf->device, ioaddr->device_addr);
440 VPRINTK("device 0x%X\n", tf->device);
441 }
442
443 ata_wait_idle(ap);
444 }
445 EXPORT_SYMBOL_GPL(ata_sff_tf_load);
446
447 /**
448 * ata_sff_tf_read - input device's ATA taskfile shadow registers
449 * @ap: Port from which input is read
450 * @tf: ATA taskfile register set for storing input
451 *
452 * Reads ATA taskfile registers for currently-selected device
453 * into @tf. Assumes the device has a fully SFF compliant task file
454 * layout and behaviour. If you device does not (eg has a different
455 * status method) then you will need to provide a replacement tf_read
456 *
457 * LOCKING:
458 * Inherited from caller.
459 */
460 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
461 {
462 struct ata_ioports *ioaddr = &ap->ioaddr;
463
464 tf->command = ata_sff_check_status(ap);
465 tf->feature = ioread8(ioaddr->error_addr);
466 tf->nsect = ioread8(ioaddr->nsect_addr);
467 tf->lbal = ioread8(ioaddr->lbal_addr);
468 tf->lbam = ioread8(ioaddr->lbam_addr);
469 tf->lbah = ioread8(ioaddr->lbah_addr);
470 tf->device = ioread8(ioaddr->device_addr);
471
472 if (tf->flags & ATA_TFLAG_LBA48) {
473 if (likely(ioaddr->ctl_addr)) {
474 iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
475 tf->hob_feature = ioread8(ioaddr->error_addr);
476 tf->hob_nsect = ioread8(ioaddr->nsect_addr);
477 tf->hob_lbal = ioread8(ioaddr->lbal_addr);
478 tf->hob_lbam = ioread8(ioaddr->lbam_addr);
479 tf->hob_lbah = ioread8(ioaddr->lbah_addr);
480 iowrite8(tf->ctl, ioaddr->ctl_addr);
481 ap->last_ctl = tf->ctl;
482 } else
483 WARN_ON_ONCE(1);
484 }
485 }
486 EXPORT_SYMBOL_GPL(ata_sff_tf_read);
487
488 /**
489 * ata_sff_exec_command - issue ATA command to host controller
490 * @ap: port to which command is being issued
491 * @tf: ATA taskfile register set
492 *
493 * Issues ATA command, with proper synchronization with interrupt
494 * handler / other threads.
495 *
496 * LOCKING:
497 * spin_lock_irqsave(host lock)
498 */
499 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
500 {
501 DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
502
503 iowrite8(tf->command, ap->ioaddr.command_addr);
504 ata_sff_pause(ap);
505 }
506 EXPORT_SYMBOL_GPL(ata_sff_exec_command);
507
508 /**
509 * ata_tf_to_host - issue ATA taskfile to host controller
510 * @ap: port to which command is being issued
511 * @tf: ATA taskfile register set
512 *
513 * Issues ATA taskfile register set to ATA host controller,
514 * with proper synchronization with interrupt handler and
515 * other threads.
516 *
517 * LOCKING:
518 * spin_lock_irqsave(host lock)
519 */
520 static inline void ata_tf_to_host(struct ata_port *ap,
521 const struct ata_taskfile *tf)
522 {
523 ap->ops->sff_tf_load(ap, tf);
524 ap->ops->sff_exec_command(ap, tf);
525 }
526
527 /**
528 * ata_sff_data_xfer - Transfer data by PIO
529 * @qc: queued command
530 * @buf: data buffer
531 * @buflen: buffer length
532 * @rw: read/write
533 *
534 * Transfer data from/to the device data register by PIO.
535 *
536 * LOCKING:
537 * Inherited from caller.
538 *
539 * RETURNS:
540 * Bytes consumed.
541 */
542 unsigned int ata_sff_data_xfer(struct ata_queued_cmd *qc, unsigned char *buf,
543 unsigned int buflen, int rw)
544 {
545 struct ata_port *ap = qc->dev->link->ap;
546 void __iomem *data_addr = ap->ioaddr.data_addr;
547 unsigned int words = buflen >> 1;
548
549 /* Transfer multiple of 2 bytes */
550 if (rw == READ)
551 ioread16_rep(data_addr, buf, words);
552 else
553 iowrite16_rep(data_addr, buf, words);
554
555 /* Transfer trailing byte, if any. */
556 if (unlikely(buflen & 0x01)) {
557 unsigned char pad[2] = { };
558
559 /* Point buf to the tail of buffer */
560 buf += buflen - 1;
561
562 /*
563 * Use io*16_rep() accessors here as well to avoid pointlessly
564 * swapping bytes to and from on the big endian machines...
565 */
566 if (rw == READ) {
567 ioread16_rep(data_addr, pad, 1);
568 *buf = pad[0];
569 } else {
570 pad[0] = *buf;
571 iowrite16_rep(data_addr, pad, 1);
572 }
573 words++;
574 }
575
576 return words << 1;
577 }
578 EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
579
580 /**
581 * ata_sff_data_xfer32 - Transfer data by PIO
582 * @qc: queued command
583 * @buf: data buffer
584 * @buflen: buffer length
585 * @rw: read/write
586 *
587 * Transfer data from/to the device data register by PIO using 32bit
588 * I/O operations.
589 *
590 * LOCKING:
591 * Inherited from caller.
592 *
593 * RETURNS:
594 * Bytes consumed.
595 */
596
597 unsigned int ata_sff_data_xfer32(struct ata_queued_cmd *qc, unsigned char *buf,
598 unsigned int buflen, int rw)
599 {
600 struct ata_device *dev = qc->dev;
601 struct ata_port *ap = dev->link->ap;
602 void __iomem *data_addr = ap->ioaddr.data_addr;
603 unsigned int words = buflen >> 2;
604 int slop = buflen & 3;
605
606 if (!(ap->pflags & ATA_PFLAG_PIO32))
607 return ata_sff_data_xfer(qc, buf, buflen, rw);
608
609 /* Transfer multiple of 4 bytes */
610 if (rw == READ)
611 ioread32_rep(data_addr, buf, words);
612 else
613 iowrite32_rep(data_addr, buf, words);
614
615 /* Transfer trailing bytes, if any */
616 if (unlikely(slop)) {
617 unsigned char pad[4] = { };
618
619 /* Point buf to the tail of buffer */
620 buf += buflen - slop;
621
622 /*
623 * Use io*_rep() accessors here as well to avoid pointlessly
624 * swapping bytes to and from on the big endian machines...
625 */
626 if (rw == READ) {
627 if (slop < 3)
628 ioread16_rep(data_addr, pad, 1);
629 else
630 ioread32_rep(data_addr, pad, 1);
631 memcpy(buf, pad, slop);
632 } else {
633 memcpy(pad, buf, slop);
634 if (slop < 3)
635 iowrite16_rep(data_addr, pad, 1);
636 else
637 iowrite32_rep(data_addr, pad, 1);
638 }
639 }
640 return (buflen + 1) & ~1;
641 }
642 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
643
644 /**
645 * ata_pio_sector - Transfer a sector of data.
646 * @qc: Command on going
647 *
648 * Transfer qc->sect_size bytes of data from/to the ATA device.
649 *
650 * LOCKING:
651 * Inherited from caller.
652 */
653 static void ata_pio_sector(struct ata_queued_cmd *qc)
654 {
655 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
656 struct ata_port *ap = qc->ap;
657 struct page *page;
658 unsigned int offset;
659 unsigned char *buf;
660
661 if (qc->curbytes == qc->nbytes - qc->sect_size)
662 ap->hsm_task_state = HSM_ST_LAST;
663
664 page = sg_page(qc->cursg);
665 offset = qc->cursg->offset + qc->cursg_ofs;
666
667 /* get the current page and offset */
668 page = nth_page(page, (offset >> PAGE_SHIFT));
669 offset %= PAGE_SIZE;
670
671 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
672
673 /* do the actual data transfer */
674 buf = kmap_atomic(page);
675 ap->ops->sff_data_xfer(qc, buf + offset, qc->sect_size, do_write);
676 kunmap_atomic(buf);
677
678 if (!do_write && !PageSlab(page))
679 flush_dcache_page(page);
680
681 qc->curbytes += qc->sect_size;
682 qc->cursg_ofs += qc->sect_size;
683
684 if (qc->cursg_ofs == qc->cursg->length) {
685 qc->cursg = sg_next(qc->cursg);
686 qc->cursg_ofs = 0;
687 }
688 }
689
690 /**
691 * ata_pio_sectors - Transfer one or many sectors.
692 * @qc: Command on going
693 *
694 * Transfer one or many sectors of data from/to the
695 * ATA device for the DRQ request.
696 *
697 * LOCKING:
698 * Inherited from caller.
699 */
700 static void ata_pio_sectors(struct ata_queued_cmd *qc)
701 {
702 if (is_multi_taskfile(&qc->tf)) {
703 /* READ/WRITE MULTIPLE */
704 unsigned int nsect;
705
706 WARN_ON_ONCE(qc->dev->multi_count == 0);
707
708 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
709 qc->dev->multi_count);
710 while (nsect--)
711 ata_pio_sector(qc);
712 } else
713 ata_pio_sector(qc);
714
715 ata_sff_sync(qc->ap); /* flush */
716 }
717
718 /**
719 * atapi_send_cdb - Write CDB bytes to hardware
720 * @ap: Port to which ATAPI device is attached.
721 * @qc: Taskfile currently active
722 *
723 * When device has indicated its readiness to accept
724 * a CDB, this function is called. Send the CDB.
725 *
726 * LOCKING:
727 * caller.
728 */
729 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
730 {
731 /* send SCSI cdb */
732 DPRINTK("send cdb\n");
733 WARN_ON_ONCE(qc->dev->cdb_len < 12);
734
735 ap->ops->sff_data_xfer(qc, qc->cdb, qc->dev->cdb_len, 1);
736 ata_sff_sync(ap);
737 /* FIXME: If the CDB is for DMA do we need to do the transition delay
738 or is bmdma_start guaranteed to do it ? */
739 switch (qc->tf.protocol) {
740 case ATAPI_PROT_PIO:
741 ap->hsm_task_state = HSM_ST;
742 break;
743 case ATAPI_PROT_NODATA:
744 ap->hsm_task_state = HSM_ST_LAST;
745 break;
746 #ifdef CONFIG_ATA_BMDMA
747 case ATAPI_PROT_DMA:
748 ap->hsm_task_state = HSM_ST_LAST;
749 /* initiate bmdma */
750 ap->ops->bmdma_start(qc);
751 break;
752 #endif /* CONFIG_ATA_BMDMA */
753 default:
754 BUG();
755 }
756 }
757
758 /**
759 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
760 * @qc: Command on going
761 * @bytes: number of bytes
762 *
763 * Transfer Transfer data from/to the ATAPI device.
764 *
765 * LOCKING:
766 * Inherited from caller.
767 *
768 */
769 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
770 {
771 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
772 struct ata_port *ap = qc->ap;
773 struct ata_device *dev = qc->dev;
774 struct ata_eh_info *ehi = &dev->link->eh_info;
775 struct scatterlist *sg;
776 struct page *page;
777 unsigned char *buf;
778 unsigned int offset, count, consumed;
779
780 next_sg:
781 sg = qc->cursg;
782 if (unlikely(!sg)) {
783 ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
784 "buf=%u cur=%u bytes=%u",
785 qc->nbytes, qc->curbytes, bytes);
786 return -1;
787 }
788
789 page = sg_page(sg);
790 offset = sg->offset + qc->cursg_ofs;
791
792 /* get the current page and offset */
793 page = nth_page(page, (offset >> PAGE_SHIFT));
794 offset %= PAGE_SIZE;
795
796 /* don't overrun current sg */
797 count = min(sg->length - qc->cursg_ofs, bytes);
798
799 /* don't cross page boundaries */
800 count = min(count, (unsigned int)PAGE_SIZE - offset);
801
802 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
803
804 /* do the actual data transfer */
805 buf = kmap_atomic(page);
806 consumed = ap->ops->sff_data_xfer(qc, buf + offset, count, rw);
807 kunmap_atomic(buf);
808
809 bytes -= min(bytes, consumed);
810 qc->curbytes += count;
811 qc->cursg_ofs += count;
812
813 if (qc->cursg_ofs == sg->length) {
814 qc->cursg = sg_next(qc->cursg);
815 qc->cursg_ofs = 0;
816 }
817
818 /*
819 * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed);
820 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
821 * check correctly as it doesn't know if it is the last request being
822 * made. Somebody should implement a proper sanity check.
823 */
824 if (bytes)
825 goto next_sg;
826 return 0;
827 }
828
829 /**
830 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
831 * @qc: Command on going
832 *
833 * Transfer Transfer data from/to the ATAPI device.
834 *
835 * LOCKING:
836 * Inherited from caller.
837 */
838 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
839 {
840 struct ata_port *ap = qc->ap;
841 struct ata_device *dev = qc->dev;
842 struct ata_eh_info *ehi = &dev->link->eh_info;
843 unsigned int ireason, bc_lo, bc_hi, bytes;
844 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
845
846 /* Abuse qc->result_tf for temp storage of intermediate TF
847 * here to save some kernel stack usage.
848 * For normal completion, qc->result_tf is not relevant. For
849 * error, qc->result_tf is later overwritten by ata_qc_complete().
850 * So, the correctness of qc->result_tf is not affected.
851 */
852 ap->ops->sff_tf_read(ap, &qc->result_tf);
853 ireason = qc->result_tf.nsect;
854 bc_lo = qc->result_tf.lbam;
855 bc_hi = qc->result_tf.lbah;
856 bytes = (bc_hi << 8) | bc_lo;
857
858 /* shall be cleared to zero, indicating xfer of data */
859 if (unlikely(ireason & ATAPI_COD))
860 goto atapi_check;
861
862 /* make sure transfer direction matches expected */
863 i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0;
864 if (unlikely(do_write != i_write))
865 goto atapi_check;
866
867 if (unlikely(!bytes))
868 goto atapi_check;
869
870 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
871
872 if (unlikely(__atapi_pio_bytes(qc, bytes)))
873 goto err_out;
874 ata_sff_sync(ap); /* flush */
875
876 return;
877
878 atapi_check:
879 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
880 ireason, bytes);
881 err_out:
882 qc->err_mask |= AC_ERR_HSM;
883 ap->hsm_task_state = HSM_ST_ERR;
884 }
885
886 /**
887 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
888 * @ap: the target ata_port
889 * @qc: qc on going
890 *
891 * RETURNS:
892 * 1 if ok in workqueue, 0 otherwise.
893 */
894 static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
895 struct ata_queued_cmd *qc)
896 {
897 if (qc->tf.flags & ATA_TFLAG_POLLING)
898 return 1;
899
900 if (ap->hsm_task_state == HSM_ST_FIRST) {
901 if (qc->tf.protocol == ATA_PROT_PIO &&
902 (qc->tf.flags & ATA_TFLAG_WRITE))
903 return 1;
904
905 if (ata_is_atapi(qc->tf.protocol) &&
906 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
907 return 1;
908 }
909
910 return 0;
911 }
912
913 /**
914 * ata_hsm_qc_complete - finish a qc running on standard HSM
915 * @qc: Command to complete
916 * @in_wq: 1 if called from workqueue, 0 otherwise
917 *
918 * Finish @qc which is running on standard HSM.
919 *
920 * LOCKING:
921 * If @in_wq is zero, spin_lock_irqsave(host lock).
922 * Otherwise, none on entry and grabs host lock.
923 */
924 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
925 {
926 struct ata_port *ap = qc->ap;
927
928 if (ap->ops->error_handler) {
929 if (in_wq) {
930 /* EH might have kicked in while host lock is
931 * released.
932 */
933 qc = ata_qc_from_tag(ap, qc->tag);
934 if (qc) {
935 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
936 ata_sff_irq_on(ap);
937 ata_qc_complete(qc);
938 } else
939 ata_port_freeze(ap);
940 }
941 } else {
942 if (likely(!(qc->err_mask & AC_ERR_HSM)))
943 ata_qc_complete(qc);
944 else
945 ata_port_freeze(ap);
946 }
947 } else {
948 if (in_wq) {
949 ata_sff_irq_on(ap);
950 ata_qc_complete(qc);
951 } else
952 ata_qc_complete(qc);
953 }
954 }
955
956 /**
957 * ata_sff_hsm_move - move the HSM to the next state.
958 * @ap: the target ata_port
959 * @qc: qc on going
960 * @status: current device status
961 * @in_wq: 1 if called from workqueue, 0 otherwise
962 *
963 * RETURNS:
964 * 1 when poll next status needed, 0 otherwise.
965 */
966 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
967 u8 status, int in_wq)
968 {
969 struct ata_link *link = qc->dev->link;
970 struct ata_eh_info *ehi = &link->eh_info;
971 int poll_next;
972
973 lockdep_assert_held(ap->lock);
974
975 WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
976
977 /* Make sure ata_sff_qc_issue() does not throw things
978 * like DMA polling into the workqueue. Notice that
979 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
980 */
981 WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
982
983 fsm_start:
984 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
985 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
986
987 switch (ap->hsm_task_state) {
988 case HSM_ST_FIRST:
989 /* Send first data block or PACKET CDB */
990
991 /* If polling, we will stay in the work queue after
992 * sending the data. Otherwise, interrupt handler
993 * takes over after sending the data.
994 */
995 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
996
997 /* check device status */
998 if (unlikely((status & ATA_DRQ) == 0)) {
999 /* handle BSY=0, DRQ=0 as error */
1000 if (likely(status & (ATA_ERR | ATA_DF)))
1001 /* device stops HSM for abort/error */
1002 qc->err_mask |= AC_ERR_DEV;
1003 else {
1004 /* HSM violation. Let EH handle this */
1005 ata_ehi_push_desc(ehi,
1006 "ST_FIRST: !(DRQ|ERR|DF)");
1007 qc->err_mask |= AC_ERR_HSM;
1008 }
1009
1010 ap->hsm_task_state = HSM_ST_ERR;
1011 goto fsm_start;
1012 }
1013
1014 /* Device should not ask for data transfer (DRQ=1)
1015 * when it finds something wrong.
1016 * We ignore DRQ here and stop the HSM by
1017 * changing hsm_task_state to HSM_ST_ERR and
1018 * let the EH abort the command or reset the device.
1019 */
1020 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1021 /* Some ATAPI tape drives forget to clear the ERR bit
1022 * when doing the next command (mostly request sense).
1023 * We ignore ERR here to workaround and proceed sending
1024 * the CDB.
1025 */
1026 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
1027 ata_ehi_push_desc(ehi, "ST_FIRST: "
1028 "DRQ=1 with device error, "
1029 "dev_stat 0x%X", status);
1030 qc->err_mask |= AC_ERR_HSM;
1031 ap->hsm_task_state = HSM_ST_ERR;
1032 goto fsm_start;
1033 }
1034 }
1035
1036 if (qc->tf.protocol == ATA_PROT_PIO) {
1037 /* PIO data out protocol.
1038 * send first data block.
1039 */
1040
1041 /* ata_pio_sectors() might change the state
1042 * to HSM_ST_LAST. so, the state is changed here
1043 * before ata_pio_sectors().
1044 */
1045 ap->hsm_task_state = HSM_ST;
1046 ata_pio_sectors(qc);
1047 } else
1048 /* send CDB */
1049 atapi_send_cdb(ap, qc);
1050
1051 /* if polling, ata_sff_pio_task() handles the rest.
1052 * otherwise, interrupt handler takes over from here.
1053 */
1054 break;
1055
1056 case HSM_ST:
1057 /* complete command or read/write the data register */
1058 if (qc->tf.protocol == ATAPI_PROT_PIO) {
1059 /* ATAPI PIO protocol */
1060 if ((status & ATA_DRQ) == 0) {
1061 /* No more data to transfer or device error.
1062 * Device error will be tagged in HSM_ST_LAST.
1063 */
1064 ap->hsm_task_state = HSM_ST_LAST;
1065 goto fsm_start;
1066 }
1067
1068 /* Device should not ask for data transfer (DRQ=1)
1069 * when it finds something wrong.
1070 * We ignore DRQ here and stop the HSM by
1071 * changing hsm_task_state to HSM_ST_ERR and
1072 * let the EH abort the command or reset the device.
1073 */
1074 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1075 ata_ehi_push_desc(ehi, "ST-ATAPI: "
1076 "DRQ=1 with device error, "
1077 "dev_stat 0x%X", status);
1078 qc->err_mask |= AC_ERR_HSM;
1079 ap->hsm_task_state = HSM_ST_ERR;
1080 goto fsm_start;
1081 }
1082
1083 atapi_pio_bytes(qc);
1084
1085 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1086 /* bad ireason reported by device */
1087 goto fsm_start;
1088
1089 } else {
1090 /* ATA PIO protocol */
1091 if (unlikely((status & ATA_DRQ) == 0)) {
1092 /* handle BSY=0, DRQ=0 as error */
1093 if (likely(status & (ATA_ERR | ATA_DF))) {
1094 /* device stops HSM for abort/error */
1095 qc->err_mask |= AC_ERR_DEV;
1096
1097 /* If diagnostic failed and this is
1098 * IDENTIFY, it's likely a phantom
1099 * device. Mark hint.
1100 */
1101 if (qc->dev->horkage &
1102 ATA_HORKAGE_DIAGNOSTIC)
1103 qc->err_mask |=
1104 AC_ERR_NODEV_HINT;
1105 } else {
1106 /* HSM violation. Let EH handle this.
1107 * Phantom devices also trigger this
1108 * condition. Mark hint.
1109 */
1110 ata_ehi_push_desc(ehi, "ST-ATA: "
1111 "DRQ=0 without device error, "
1112 "dev_stat 0x%X", status);
1113 qc->err_mask |= AC_ERR_HSM |
1114 AC_ERR_NODEV_HINT;
1115 }
1116
1117 ap->hsm_task_state = HSM_ST_ERR;
1118 goto fsm_start;
1119 }
1120
1121 /* For PIO reads, some devices may ask for
1122 * data transfer (DRQ=1) alone with ERR=1.
1123 * We respect DRQ here and transfer one
1124 * block of junk data before changing the
1125 * hsm_task_state to HSM_ST_ERR.
1126 *
1127 * For PIO writes, ERR=1 DRQ=1 doesn't make
1128 * sense since the data block has been
1129 * transferred to the device.
1130 */
1131 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1132 /* data might be corrputed */
1133 qc->err_mask |= AC_ERR_DEV;
1134
1135 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1136 ata_pio_sectors(qc);
1137 status = ata_wait_idle(ap);
1138 }
1139
1140 if (status & (ATA_BUSY | ATA_DRQ)) {
1141 ata_ehi_push_desc(ehi, "ST-ATA: "
1142 "BUSY|DRQ persists on ERR|DF, "
1143 "dev_stat 0x%X", status);
1144 qc->err_mask |= AC_ERR_HSM;
1145 }
1146
1147 /* There are oddball controllers with
1148 * status register stuck at 0x7f and
1149 * lbal/m/h at zero which makes it
1150 * pass all other presence detection
1151 * mechanisms we have. Set NODEV_HINT
1152 * for it. Kernel bz#7241.
1153 */
1154 if (status == 0x7f)
1155 qc->err_mask |= AC_ERR_NODEV_HINT;
1156
1157 /* ata_pio_sectors() might change the
1158 * state to HSM_ST_LAST. so, the state
1159 * is changed after ata_pio_sectors().
1160 */
1161 ap->hsm_task_state = HSM_ST_ERR;
1162 goto fsm_start;
1163 }
1164
1165 ata_pio_sectors(qc);
1166
1167 if (ap->hsm_task_state == HSM_ST_LAST &&
1168 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1169 /* all data read */
1170 status = ata_wait_idle(ap);
1171 goto fsm_start;
1172 }
1173 }
1174
1175 poll_next = 1;
1176 break;
1177
1178 case HSM_ST_LAST:
1179 if (unlikely(!ata_ok(status))) {
1180 qc->err_mask |= __ac_err_mask(status);
1181 ap->hsm_task_state = HSM_ST_ERR;
1182 goto fsm_start;
1183 }
1184
1185 /* no more data to transfer */
1186 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1187 ap->print_id, qc->dev->devno, status);
1188
1189 WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1190
1191 ap->hsm_task_state = HSM_ST_IDLE;
1192
1193 /* complete taskfile transaction */
1194 ata_hsm_qc_complete(qc, in_wq);
1195
1196 poll_next = 0;
1197 break;
1198
1199 case HSM_ST_ERR:
1200 ap->hsm_task_state = HSM_ST_IDLE;
1201
1202 /* complete taskfile transaction */
1203 ata_hsm_qc_complete(qc, in_wq);
1204
1205 poll_next = 0;
1206 break;
1207 default:
1208 poll_next = 0;
1209 WARN(true, "ata%d: SFF host state machine in invalid state %d",
1210 ap->print_id, ap->hsm_task_state);
1211 }
1212
1213 return poll_next;
1214 }
1215 EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
1216
1217 void ata_sff_queue_work(struct work_struct *work)
1218 {
1219 queue_work(ata_sff_wq, work);
1220 }
1221 EXPORT_SYMBOL_GPL(ata_sff_queue_work);
1222
1223 void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay)
1224 {
1225 queue_delayed_work(ata_sff_wq, dwork, delay);
1226 }
1227 EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work);
1228
1229 void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay)
1230 {
1231 struct ata_port *ap = link->ap;
1232
1233 WARN_ON((ap->sff_pio_task_link != NULL) &&
1234 (ap->sff_pio_task_link != link));
1235 ap->sff_pio_task_link = link;
1236
1237 /* may fail if ata_sff_flush_pio_task() in progress */
1238 ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay));
1239 }
1240 EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task);
1241
1242 void ata_sff_flush_pio_task(struct ata_port *ap)
1243 {
1244 DPRINTK("ENTER\n");
1245
1246 cancel_delayed_work_sync(&ap->sff_pio_task);
1247
1248 /*
1249 * We wanna reset the HSM state to IDLE. If we do so without
1250 * grabbing the port lock, critical sections protected by it which
1251 * expect the HSM state to stay stable may get surprised. For
1252 * example, we may set IDLE in between the time
1253 * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls
1254 * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG().
1255 */
1256 spin_lock_irq(ap->lock);
1257 ap->hsm_task_state = HSM_ST_IDLE;
1258 spin_unlock_irq(ap->lock);
1259
1260 ap->sff_pio_task_link = NULL;
1261
1262 if (ata_msg_ctl(ap))
1263 ata_port_dbg(ap, "%s: EXIT\n", __func__);
1264 }
1265
1266 static void ata_sff_pio_task(struct work_struct *work)
1267 {
1268 struct ata_port *ap =
1269 container_of(work, struct ata_port, sff_pio_task.work);
1270 struct ata_link *link = ap->sff_pio_task_link;
1271 struct ata_queued_cmd *qc;
1272 u8 status;
1273 int poll_next;
1274
1275 spin_lock_irq(ap->lock);
1276
1277 BUG_ON(ap->sff_pio_task_link == NULL);
1278 /* qc can be NULL if timeout occurred */
1279 qc = ata_qc_from_tag(ap, link->active_tag);
1280 if (!qc) {
1281 ap->sff_pio_task_link = NULL;
1282 goto out_unlock;
1283 }
1284
1285 fsm_start:
1286 WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
1287
1288 /*
1289 * This is purely heuristic. This is a fast path.
1290 * Sometimes when we enter, BSY will be cleared in
1291 * a chk-status or two. If not, the drive is probably seeking
1292 * or something. Snooze for a couple msecs, then
1293 * chk-status again. If still busy, queue delayed work.
1294 */
1295 status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1296 if (status & ATA_BUSY) {
1297 spin_unlock_irq(ap->lock);
1298 ata_msleep(ap, 2);
1299 spin_lock_irq(ap->lock);
1300
1301 status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1302 if (status & ATA_BUSY) {
1303 ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE);
1304 goto out_unlock;
1305 }
1306 }
1307
1308 /*
1309 * hsm_move() may trigger another command to be processed.
1310 * clean the link beforehand.
1311 */
1312 ap->sff_pio_task_link = NULL;
1313 /* move the HSM */
1314 poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1315
1316 /* another command or interrupt handler
1317 * may be running at this point.
1318 */
1319 if (poll_next)
1320 goto fsm_start;
1321 out_unlock:
1322 spin_unlock_irq(ap->lock);
1323 }
1324
1325 /**
1326 * ata_sff_qc_issue - issue taskfile to a SFF controller
1327 * @qc: command to issue to device
1328 *
1329 * This function issues a PIO or NODATA command to a SFF
1330 * controller.
1331 *
1332 * LOCKING:
1333 * spin_lock_irqsave(host lock)
1334 *
1335 * RETURNS:
1336 * Zero on success, AC_ERR_* mask on failure
1337 */
1338 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1339 {
1340 struct ata_port *ap = qc->ap;
1341 struct ata_link *link = qc->dev->link;
1342
1343 /* Use polling pio if the LLD doesn't handle
1344 * interrupt driven pio and atapi CDB interrupt.
1345 */
1346 if (ap->flags & ATA_FLAG_PIO_POLLING)
1347 qc->tf.flags |= ATA_TFLAG_POLLING;
1348
1349 /* select the device */
1350 ata_dev_select(ap, qc->dev->devno, 1, 0);
1351
1352 /* start the command */
1353 switch (qc->tf.protocol) {
1354 case ATA_PROT_NODATA:
1355 if (qc->tf.flags & ATA_TFLAG_POLLING)
1356 ata_qc_set_polling(qc);
1357
1358 ata_tf_to_host(ap, &qc->tf);
1359 ap->hsm_task_state = HSM_ST_LAST;
1360
1361 if (qc->tf.flags & ATA_TFLAG_POLLING)
1362 ata_sff_queue_pio_task(link, 0);
1363
1364 break;
1365
1366 case ATA_PROT_PIO:
1367 if (qc->tf.flags & ATA_TFLAG_POLLING)
1368 ata_qc_set_polling(qc);
1369
1370 ata_tf_to_host(ap, &qc->tf);
1371
1372 if (qc->tf.flags & ATA_TFLAG_WRITE) {
1373 /* PIO data out protocol */
1374 ap->hsm_task_state = HSM_ST_FIRST;
1375 ata_sff_queue_pio_task(link, 0);
1376
1377 /* always send first data block using the
1378 * ata_sff_pio_task() codepath.
1379 */
1380 } else {
1381 /* PIO data in protocol */
1382 ap->hsm_task_state = HSM_ST;
1383
1384 if (qc->tf.flags & ATA_TFLAG_POLLING)
1385 ata_sff_queue_pio_task(link, 0);
1386
1387 /* if polling, ata_sff_pio_task() handles the
1388 * rest. otherwise, interrupt handler takes
1389 * over from here.
1390 */
1391 }
1392
1393 break;
1394
1395 case ATAPI_PROT_PIO:
1396 case ATAPI_PROT_NODATA:
1397 if (qc->tf.flags & ATA_TFLAG_POLLING)
1398 ata_qc_set_polling(qc);
1399
1400 ata_tf_to_host(ap, &qc->tf);
1401
1402 ap->hsm_task_state = HSM_ST_FIRST;
1403
1404 /* send cdb by polling if no cdb interrupt */
1405 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1406 (qc->tf.flags & ATA_TFLAG_POLLING))
1407 ata_sff_queue_pio_task(link, 0);
1408 break;
1409
1410 default:
1411 return AC_ERR_SYSTEM;
1412 }
1413
1414 return 0;
1415 }
1416 EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
1417
1418 /**
1419 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1420 * @qc: qc to fill result TF for
1421 *
1422 * @qc is finished and result TF needs to be filled. Fill it
1423 * using ->sff_tf_read.
1424 *
1425 * LOCKING:
1426 * spin_lock_irqsave(host lock)
1427 *
1428 * RETURNS:
1429 * true indicating that result TF is successfully filled.
1430 */
1431 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1432 {
1433 qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1434 return true;
1435 }
1436 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
1437
1438 static unsigned int ata_sff_idle_irq(struct ata_port *ap)
1439 {
1440 ap->stats.idle_irq++;
1441
1442 #ifdef ATA_IRQ_TRAP
1443 if ((ap->stats.idle_irq % 1000) == 0) {
1444 ap->ops->sff_check_status(ap);
1445 if (ap->ops->sff_irq_clear)
1446 ap->ops->sff_irq_clear(ap);
1447 ata_port_warn(ap, "irq trap\n");
1448 return 1;
1449 }
1450 #endif
1451 return 0; /* irq not handled */
1452 }
1453
1454 static unsigned int __ata_sff_port_intr(struct ata_port *ap,
1455 struct ata_queued_cmd *qc,
1456 bool hsmv_on_idle)
1457 {
1458 u8 status;
1459
1460 VPRINTK("ata%u: protocol %d task_state %d\n",
1461 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1462
1463 /* Check whether we are expecting interrupt in this state */
1464 switch (ap->hsm_task_state) {
1465 case HSM_ST_FIRST:
1466 /* Some pre-ATAPI-4 devices assert INTRQ
1467 * at this state when ready to receive CDB.
1468 */
1469
1470 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1471 * The flag was turned on only for atapi devices. No
1472 * need to check ata_is_atapi(qc->tf.protocol) again.
1473 */
1474 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1475 return ata_sff_idle_irq(ap);
1476 break;
1477 case HSM_ST_IDLE:
1478 return ata_sff_idle_irq(ap);
1479 default:
1480 break;
1481 }
1482
1483 /* check main status, clearing INTRQ if needed */
1484 status = ata_sff_irq_status(ap);
1485 if (status & ATA_BUSY) {
1486 if (hsmv_on_idle) {
1487 /* BMDMA engine is already stopped, we're screwed */
1488 qc->err_mask |= AC_ERR_HSM;
1489 ap->hsm_task_state = HSM_ST_ERR;
1490 } else
1491 return ata_sff_idle_irq(ap);
1492 }
1493
1494 /* clear irq events */
1495 if (ap->ops->sff_irq_clear)
1496 ap->ops->sff_irq_clear(ap);
1497
1498 ata_sff_hsm_move(ap, qc, status, 0);
1499
1500 return 1; /* irq handled */
1501 }
1502
1503 /**
1504 * ata_sff_port_intr - Handle SFF port interrupt
1505 * @ap: Port on which interrupt arrived (possibly...)
1506 * @qc: Taskfile currently active in engine
1507 *
1508 * Handle port interrupt for given queued command.
1509 *
1510 * LOCKING:
1511 * spin_lock_irqsave(host lock)
1512 *
1513 * RETURNS:
1514 * One if interrupt was handled, zero if not (shared irq).
1515 */
1516 unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
1517 {
1518 return __ata_sff_port_intr(ap, qc, false);
1519 }
1520 EXPORT_SYMBOL_GPL(ata_sff_port_intr);
1521
1522 static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance,
1523 unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *))
1524 {
1525 struct ata_host *host = dev_instance;
1526 bool retried = false;
1527 unsigned int i;
1528 unsigned int handled, idle, polling;
1529 unsigned long flags;
1530
1531 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1532 spin_lock_irqsave(&host->lock, flags);
1533
1534 retry:
1535 handled = idle = polling = 0;
1536 for (i = 0; i < host->n_ports; i++) {
1537 struct ata_port *ap = host->ports[i];
1538 struct ata_queued_cmd *qc;
1539
1540 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1541 if (qc) {
1542 if (!(qc->tf.flags & ATA_TFLAG_POLLING))
1543 handled |= port_intr(ap, qc);
1544 else
1545 polling |= 1 << i;
1546 } else
1547 idle |= 1 << i;
1548 }
1549
1550 /*
1551 * If no port was expecting IRQ but the controller is actually
1552 * asserting IRQ line, nobody cared will ensue. Check IRQ
1553 * pending status if available and clear spurious IRQ.
1554 */
1555 if (!handled && !retried) {
1556 bool retry = false;
1557
1558 for (i = 0; i < host->n_ports; i++) {
1559 struct ata_port *ap = host->ports[i];
1560
1561 if (polling & (1 << i))
1562 continue;
1563
1564 if (!ap->ops->sff_irq_check ||
1565 !ap->ops->sff_irq_check(ap))
1566 continue;
1567
1568 if (idle & (1 << i)) {
1569 ap->ops->sff_check_status(ap);
1570 if (ap->ops->sff_irq_clear)
1571 ap->ops->sff_irq_clear(ap);
1572 } else {
1573 /* clear INTRQ and check if BUSY cleared */
1574 if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
1575 retry |= true;
1576 /*
1577 * With command in flight, we can't do
1578 * sff_irq_clear() w/o racing with completion.
1579 */
1580 }
1581 }
1582
1583 if (retry) {
1584 retried = true;
1585 goto retry;
1586 }
1587 }
1588
1589 spin_unlock_irqrestore(&host->lock, flags);
1590
1591 return IRQ_RETVAL(handled);
1592 }
1593
1594 /**
1595 * ata_sff_interrupt - Default SFF ATA host interrupt handler
1596 * @irq: irq line (unused)
1597 * @dev_instance: pointer to our ata_host information structure
1598 *
1599 * Default interrupt handler for PCI IDE devices. Calls
1600 * ata_sff_port_intr() for each port that is not disabled.
1601 *
1602 * LOCKING:
1603 * Obtains host lock during operation.
1604 *
1605 * RETURNS:
1606 * IRQ_NONE or IRQ_HANDLED.
1607 */
1608 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1609 {
1610 return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr);
1611 }
1612 EXPORT_SYMBOL_GPL(ata_sff_interrupt);
1613
1614 /**
1615 * ata_sff_lost_interrupt - Check for an apparent lost interrupt
1616 * @ap: port that appears to have timed out
1617 *
1618 * Called from the libata error handlers when the core code suspects
1619 * an interrupt has been lost. If it has complete anything we can and
1620 * then return. Interface must support altstatus for this faster
1621 * recovery to occur.
1622 *
1623 * Locking:
1624 * Caller holds host lock
1625 */
1626
1627 void ata_sff_lost_interrupt(struct ata_port *ap)
1628 {
1629 u8 status;
1630 struct ata_queued_cmd *qc;
1631
1632 /* Only one outstanding command per SFF channel */
1633 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1634 /* We cannot lose an interrupt on a non-existent or polled command */
1635 if (!qc || qc->tf.flags & ATA_TFLAG_POLLING)
1636 return;
1637 /* See if the controller thinks it is still busy - if so the command
1638 isn't a lost IRQ but is still in progress */
1639 status = ata_sff_altstatus(ap);
1640 if (status & ATA_BUSY)
1641 return;
1642
1643 /* There was a command running, we are no longer busy and we have
1644 no interrupt. */
1645 ata_port_warn(ap, "lost interrupt (Status 0x%x)\n",
1646 status);
1647 /* Run the host interrupt logic as if the interrupt had not been
1648 lost */
1649 ata_sff_port_intr(ap, qc);
1650 }
1651 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
1652
1653 /**
1654 * ata_sff_freeze - Freeze SFF controller port
1655 * @ap: port to freeze
1656 *
1657 * Freeze SFF controller port.
1658 *
1659 * LOCKING:
1660 * Inherited from caller.
1661 */
1662 void ata_sff_freeze(struct ata_port *ap)
1663 {
1664 ap->ctl |= ATA_NIEN;
1665 ap->last_ctl = ap->ctl;
1666
1667 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr)
1668 ata_sff_set_devctl(ap, ap->ctl);
1669
1670 /* Under certain circumstances, some controllers raise IRQ on
1671 * ATA_NIEN manipulation. Also, many controllers fail to mask
1672 * previously pending IRQ on ATA_NIEN assertion. Clear it.
1673 */
1674 ap->ops->sff_check_status(ap);
1675
1676 if (ap->ops->sff_irq_clear)
1677 ap->ops->sff_irq_clear(ap);
1678 }
1679 EXPORT_SYMBOL_GPL(ata_sff_freeze);
1680
1681 /**
1682 * ata_sff_thaw - Thaw SFF controller port
1683 * @ap: port to thaw
1684 *
1685 * Thaw SFF controller port.
1686 *
1687 * LOCKING:
1688 * Inherited from caller.
1689 */
1690 void ata_sff_thaw(struct ata_port *ap)
1691 {
1692 /* clear & re-enable interrupts */
1693 ap->ops->sff_check_status(ap);
1694 if (ap->ops->sff_irq_clear)
1695 ap->ops->sff_irq_clear(ap);
1696 ata_sff_irq_on(ap);
1697 }
1698 EXPORT_SYMBOL_GPL(ata_sff_thaw);
1699
1700 /**
1701 * ata_sff_prereset - prepare SFF link for reset
1702 * @link: SFF link to be reset
1703 * @deadline: deadline jiffies for the operation
1704 *
1705 * SFF link @link is about to be reset. Initialize it. It first
1706 * calls ata_std_prereset() and wait for !BSY if the port is
1707 * being softreset.
1708 *
1709 * LOCKING:
1710 * Kernel thread context (may sleep)
1711 *
1712 * RETURNS:
1713 * 0 on success, -errno otherwise.
1714 */
1715 int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1716 {
1717 struct ata_eh_context *ehc = &link->eh_context;
1718 int rc;
1719
1720 rc = ata_std_prereset(link, deadline);
1721 if (rc)
1722 return rc;
1723
1724 /* if we're about to do hardreset, nothing more to do */
1725 if (ehc->i.action & ATA_EH_HARDRESET)
1726 return 0;
1727
1728 /* wait for !BSY if we don't know that no device is attached */
1729 if (!ata_link_offline(link)) {
1730 rc = ata_sff_wait_ready(link, deadline);
1731 if (rc && rc != -ENODEV) {
1732 ata_link_warn(link,
1733 "device not ready (errno=%d), forcing hardreset\n",
1734 rc);
1735 ehc->i.action |= ATA_EH_HARDRESET;
1736 }
1737 }
1738
1739 return 0;
1740 }
1741 EXPORT_SYMBOL_GPL(ata_sff_prereset);
1742
1743 /**
1744 * ata_devchk - PATA device presence detection
1745 * @ap: ATA channel to examine
1746 * @device: Device to examine (starting at zero)
1747 *
1748 * This technique was originally described in
1749 * Hale Landis's ATADRVR (www.ata-atapi.com), and
1750 * later found its way into the ATA/ATAPI spec.
1751 *
1752 * Write a pattern to the ATA shadow registers,
1753 * and if a device is present, it will respond by
1754 * correctly storing and echoing back the
1755 * ATA shadow register contents.
1756 *
1757 * LOCKING:
1758 * caller.
1759 */
1760 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1761 {
1762 struct ata_ioports *ioaddr = &ap->ioaddr;
1763 u8 nsect, lbal;
1764
1765 ap->ops->sff_dev_select(ap, device);
1766
1767 iowrite8(0x55, ioaddr->nsect_addr);
1768 iowrite8(0xaa, ioaddr->lbal_addr);
1769
1770 iowrite8(0xaa, ioaddr->nsect_addr);
1771 iowrite8(0x55, ioaddr->lbal_addr);
1772
1773 iowrite8(0x55, ioaddr->nsect_addr);
1774 iowrite8(0xaa, ioaddr->lbal_addr);
1775
1776 nsect = ioread8(ioaddr->nsect_addr);
1777 lbal = ioread8(ioaddr->lbal_addr);
1778
1779 if ((nsect == 0x55) && (lbal == 0xaa))
1780 return 1; /* we found a device */
1781
1782 return 0; /* nothing found */
1783 }
1784
1785 /**
1786 * ata_sff_dev_classify - Parse returned ATA device signature
1787 * @dev: ATA device to classify (starting at zero)
1788 * @present: device seems present
1789 * @r_err: Value of error register on completion
1790 *
1791 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1792 * an ATA/ATAPI-defined set of values is placed in the ATA
1793 * shadow registers, indicating the results of device detection
1794 * and diagnostics.
1795 *
1796 * Select the ATA device, and read the values from the ATA shadow
1797 * registers. Then parse according to the Error register value,
1798 * and the spec-defined values examined by ata_dev_classify().
1799 *
1800 * LOCKING:
1801 * caller.
1802 *
1803 * RETURNS:
1804 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1805 */
1806 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
1807 u8 *r_err)
1808 {
1809 struct ata_port *ap = dev->link->ap;
1810 struct ata_taskfile tf;
1811 unsigned int class;
1812 u8 err;
1813
1814 ap->ops->sff_dev_select(ap, dev->devno);
1815
1816 memset(&tf, 0, sizeof(tf));
1817
1818 ap->ops->sff_tf_read(ap, &tf);
1819 err = tf.feature;
1820 if (r_err)
1821 *r_err = err;
1822
1823 /* see if device passed diags: continue and warn later */
1824 if (err == 0)
1825 /* diagnostic fail : do nothing _YET_ */
1826 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1827 else if (err == 1)
1828 /* do nothing */ ;
1829 else if ((dev->devno == 0) && (err == 0x81))
1830 /* do nothing */ ;
1831 else
1832 return ATA_DEV_NONE;
1833
1834 /* determine if device is ATA or ATAPI */
1835 class = ata_dev_classify(&tf);
1836
1837 if (class == ATA_DEV_UNKNOWN) {
1838 /* If the device failed diagnostic, it's likely to
1839 * have reported incorrect device signature too.
1840 * Assume ATA device if the device seems present but
1841 * device signature is invalid with diagnostic
1842 * failure.
1843 */
1844 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1845 class = ATA_DEV_ATA;
1846 else
1847 class = ATA_DEV_NONE;
1848 } else if ((class == ATA_DEV_ATA) &&
1849 (ap->ops->sff_check_status(ap) == 0))
1850 class = ATA_DEV_NONE;
1851
1852 return class;
1853 }
1854 EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
1855
1856 /**
1857 * ata_sff_wait_after_reset - wait for devices to become ready after reset
1858 * @link: SFF link which is just reset
1859 * @devmask: mask of present devices
1860 * @deadline: deadline jiffies for the operation
1861 *
1862 * Wait devices attached to SFF @link to become ready after
1863 * reset. It contains preceding 150ms wait to avoid accessing TF
1864 * status register too early.
1865 *
1866 * LOCKING:
1867 * Kernel thread context (may sleep).
1868 *
1869 * RETURNS:
1870 * 0 on success, -ENODEV if some or all of devices in @devmask
1871 * don't seem to exist. -errno on other errors.
1872 */
1873 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1874 unsigned long deadline)
1875 {
1876 struct ata_port *ap = link->ap;
1877 struct ata_ioports *ioaddr = &ap->ioaddr;
1878 unsigned int dev0 = devmask & (1 << 0);
1879 unsigned int dev1 = devmask & (1 << 1);
1880 int rc, ret = 0;
1881
1882 ata_msleep(ap, ATA_WAIT_AFTER_RESET);
1883
1884 /* always check readiness of the master device */
1885 rc = ata_sff_wait_ready(link, deadline);
1886 /* -ENODEV means the odd clown forgot the D7 pulldown resistor
1887 * and TF status is 0xff, bail out on it too.
1888 */
1889 if (rc)
1890 return rc;
1891
1892 /* if device 1 was found in ata_devchk, wait for register
1893 * access briefly, then wait for BSY to clear.
1894 */
1895 if (dev1) {
1896 int i;
1897
1898 ap->ops->sff_dev_select(ap, 1);
1899
1900 /* Wait for register access. Some ATAPI devices fail
1901 * to set nsect/lbal after reset, so don't waste too
1902 * much time on it. We're gonna wait for !BSY anyway.
1903 */
1904 for (i = 0; i < 2; i++) {
1905 u8 nsect, lbal;
1906
1907 nsect = ioread8(ioaddr->nsect_addr);
1908 lbal = ioread8(ioaddr->lbal_addr);
1909 if ((nsect == 1) && (lbal == 1))
1910 break;
1911 ata_msleep(ap, 50); /* give drive a breather */
1912 }
1913
1914 rc = ata_sff_wait_ready(link, deadline);
1915 if (rc) {
1916 if (rc != -ENODEV)
1917 return rc;
1918 ret = rc;
1919 }
1920 }
1921
1922 /* is all this really necessary? */
1923 ap->ops->sff_dev_select(ap, 0);
1924 if (dev1)
1925 ap->ops->sff_dev_select(ap, 1);
1926 if (dev0)
1927 ap->ops->sff_dev_select(ap, 0);
1928
1929 return ret;
1930 }
1931 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
1932
1933 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
1934 unsigned long deadline)
1935 {
1936 struct ata_ioports *ioaddr = &ap->ioaddr;
1937
1938 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1939
1940 if (ap->ioaddr.ctl_addr) {
1941 /* software reset. causes dev0 to be selected */
1942 iowrite8(ap->ctl, ioaddr->ctl_addr);
1943 udelay(20); /* FIXME: flush */
1944 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1945 udelay(20); /* FIXME: flush */
1946 iowrite8(ap->ctl, ioaddr->ctl_addr);
1947 ap->last_ctl = ap->ctl;
1948 }
1949
1950 /* wait the port to become ready */
1951 return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
1952 }
1953
1954 /**
1955 * ata_sff_softreset - reset host port via ATA SRST
1956 * @link: ATA link to reset
1957 * @classes: resulting classes of attached devices
1958 * @deadline: deadline jiffies for the operation
1959 *
1960 * Reset host port using ATA SRST.
1961 *
1962 * LOCKING:
1963 * Kernel thread context (may sleep)
1964 *
1965 * RETURNS:
1966 * 0 on success, -errno otherwise.
1967 */
1968 int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
1969 unsigned long deadline)
1970 {
1971 struct ata_port *ap = link->ap;
1972 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
1973 unsigned int devmask = 0;
1974 int rc;
1975 u8 err;
1976
1977 DPRINTK("ENTER\n");
1978
1979 /* determine if device 0/1 are present */
1980 if (ata_devchk(ap, 0))
1981 devmask |= (1 << 0);
1982 if (slave_possible && ata_devchk(ap, 1))
1983 devmask |= (1 << 1);
1984
1985 /* select device 0 again */
1986 ap->ops->sff_dev_select(ap, 0);
1987
1988 /* issue bus reset */
1989 DPRINTK("about to softreset, devmask=%x\n", devmask);
1990 rc = ata_bus_softreset(ap, devmask, deadline);
1991 /* if link is occupied, -ENODEV too is an error */
1992 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
1993 ata_link_err(link, "SRST failed (errno=%d)\n", rc);
1994 return rc;
1995 }
1996
1997 /* determine by signature whether we have ATA or ATAPI devices */
1998 classes[0] = ata_sff_dev_classify(&link->device[0],
1999 devmask & (1 << 0), &err);
2000 if (slave_possible && err != 0x81)
2001 classes[1] = ata_sff_dev_classify(&link->device[1],
2002 devmask & (1 << 1), &err);
2003
2004 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2005 return 0;
2006 }
2007 EXPORT_SYMBOL_GPL(ata_sff_softreset);
2008
2009 /**
2010 * sata_sff_hardreset - reset host port via SATA phy reset
2011 * @link: link to reset
2012 * @class: resulting class of attached device
2013 * @deadline: deadline jiffies for the operation
2014 *
2015 * SATA phy-reset host port using DET bits of SControl register,
2016 * wait for !BSY and classify the attached device.
2017 *
2018 * LOCKING:
2019 * Kernel thread context (may sleep)
2020 *
2021 * RETURNS:
2022 * 0 on success, -errno otherwise.
2023 */
2024 int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
2025 unsigned long deadline)
2026 {
2027 struct ata_eh_context *ehc = &link->eh_context;
2028 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2029 bool online;
2030 int rc;
2031
2032 rc = sata_link_hardreset(link, timing, deadline, &online,
2033 ata_sff_check_ready);
2034 if (online)
2035 *class = ata_sff_dev_classify(link->device, 1, NULL);
2036
2037 DPRINTK("EXIT, class=%u\n", *class);
2038 return rc;
2039 }
2040 EXPORT_SYMBOL_GPL(sata_sff_hardreset);
2041
2042 /**
2043 * ata_sff_postreset - SFF postreset callback
2044 * @link: the target SFF ata_link
2045 * @classes: classes of attached devices
2046 *
2047 * This function is invoked after a successful reset. It first
2048 * calls ata_std_postreset() and performs SFF specific postreset
2049 * processing.
2050 *
2051 * LOCKING:
2052 * Kernel thread context (may sleep)
2053 */
2054 void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
2055 {
2056 struct ata_port *ap = link->ap;
2057
2058 ata_std_postreset(link, classes);
2059
2060 /* is double-select really necessary? */
2061 if (classes[0] != ATA_DEV_NONE)
2062 ap->ops->sff_dev_select(ap, 1);
2063 if (classes[1] != ATA_DEV_NONE)
2064 ap->ops->sff_dev_select(ap, 0);
2065
2066 /* bail out if no device is present */
2067 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2068 DPRINTK("EXIT, no device\n");
2069 return;
2070 }
2071
2072 /* set up device control */
2073 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) {
2074 ata_sff_set_devctl(ap, ap->ctl);
2075 ap->last_ctl = ap->ctl;
2076 }
2077 }
2078 EXPORT_SYMBOL_GPL(ata_sff_postreset);
2079
2080 /**
2081 * ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2082 * @qc: command
2083 *
2084 * Drain the FIFO and device of any stuck data following a command
2085 * failing to complete. In some cases this is necessary before a
2086 * reset will recover the device.
2087 *
2088 */
2089
2090 void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
2091 {
2092 int count;
2093 struct ata_port *ap;
2094
2095 /* We only need to flush incoming data when a command was running */
2096 if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
2097 return;
2098
2099 ap = qc->ap;
2100 /* Drain up to 64K of data before we give up this recovery method */
2101 for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
2102 && count < 65536; count += 2)
2103 ioread16(ap->ioaddr.data_addr);
2104
2105 /* Can become DEBUG later */
2106 if (count)
2107 ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count);
2108
2109 }
2110 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
2111
2112 /**
2113 * ata_sff_error_handler - Stock error handler for SFF controller
2114 * @ap: port to handle error for
2115 *
2116 * Stock error handler for SFF controller. It can handle both
2117 * PATA and SATA controllers. Many controllers should be able to
2118 * use this EH as-is or with some added handling before and
2119 * after.
2120 *
2121 * LOCKING:
2122 * Kernel thread context (may sleep)
2123 */
2124 void ata_sff_error_handler(struct ata_port *ap)
2125 {
2126 ata_reset_fn_t softreset = ap->ops->softreset;
2127 ata_reset_fn_t hardreset = ap->ops->hardreset;
2128 struct ata_queued_cmd *qc;
2129 unsigned long flags;
2130
2131 qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2132 if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2133 qc = NULL;
2134
2135 spin_lock_irqsave(ap->lock, flags);
2136
2137 /*
2138 * We *MUST* do FIFO draining before we issue a reset as
2139 * several devices helpfully clear their internal state and
2140 * will lock solid if we touch the data port post reset. Pass
2141 * qc in case anyone wants to do different PIO/DMA recovery or
2142 * has per command fixups
2143 */
2144 if (ap->ops->sff_drain_fifo)
2145 ap->ops->sff_drain_fifo(qc);
2146
2147 spin_unlock_irqrestore(ap->lock, flags);
2148
2149 /* ignore built-in hardresets if SCR access is not available */
2150 if ((hardreset == sata_std_hardreset ||
2151 hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link))
2152 hardreset = NULL;
2153
2154 ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2155 ap->ops->postreset);
2156 }
2157 EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2158
2159 /**
2160 * ata_sff_std_ports - initialize ioaddr with standard port offsets.
2161 * @ioaddr: IO address structure to be initialized
2162 *
2163 * Utility function which initializes data_addr, error_addr,
2164 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2165 * device_addr, status_addr, and command_addr to standard offsets
2166 * relative to cmd_addr.
2167 *
2168 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2169 */
2170 void ata_sff_std_ports(struct ata_ioports *ioaddr)
2171 {
2172 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2173 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2174 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2175 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2176 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2177 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2178 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2179 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2180 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2181 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2182 }
2183 EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2184
2185 #ifdef CONFIG_PCI
2186
2187 static int ata_resources_present(struct pci_dev *pdev, int port)
2188 {
2189 int i;
2190
2191 /* Check the PCI resources for this channel are enabled */
2192 port = port * 2;
2193 for (i = 0; i < 2; i++) {
2194 if (pci_resource_start(pdev, port + i) == 0 ||
2195 pci_resource_len(pdev, port + i) == 0)
2196 return 0;
2197 }
2198 return 1;
2199 }
2200
2201 /**
2202 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2203 * @host: target ATA host
2204 *
2205 * Acquire native PCI ATA resources for @host and initialize the
2206 * first two ports of @host accordingly. Ports marked dummy are
2207 * skipped and allocation failure makes the port dummy.
2208 *
2209 * Note that native PCI resources are valid even for legacy hosts
2210 * as we fix up pdev resources array early in boot, so this
2211 * function can be used for both native and legacy SFF hosts.
2212 *
2213 * LOCKING:
2214 * Inherited from calling layer (may sleep).
2215 *
2216 * RETURNS:
2217 * 0 if at least one port is initialized, -ENODEV if no port is
2218 * available.
2219 */
2220 int ata_pci_sff_init_host(struct ata_host *host)
2221 {
2222 struct device *gdev = host->dev;
2223 struct pci_dev *pdev = to_pci_dev(gdev);
2224 unsigned int mask = 0;
2225 int i, rc;
2226
2227 /* request, iomap BARs and init port addresses accordingly */
2228 for (i = 0; i < 2; i++) {
2229 struct ata_port *ap = host->ports[i];
2230 int base = i * 2;
2231 void __iomem * const *iomap;
2232
2233 if (ata_port_is_dummy(ap))
2234 continue;
2235
2236 /* Discard disabled ports. Some controllers show
2237 * their unused channels this way. Disabled ports are
2238 * made dummy.
2239 */
2240 if (!ata_resources_present(pdev, i)) {
2241 ap->ops = &ata_dummy_port_ops;
2242 continue;
2243 }
2244
2245 rc = pcim_iomap_regions(pdev, 0x3 << base,
2246 dev_driver_string(gdev));
2247 if (rc) {
2248 dev_warn(gdev,
2249 "failed to request/iomap BARs for port %d (errno=%d)\n",
2250 i, rc);
2251 if (rc == -EBUSY)
2252 pcim_pin_device(pdev);
2253 ap->ops = &ata_dummy_port_ops;
2254 continue;
2255 }
2256 host->iomap = iomap = pcim_iomap_table(pdev);
2257
2258 ap->ioaddr.cmd_addr = iomap[base];
2259 ap->ioaddr.altstatus_addr =
2260 ap->ioaddr.ctl_addr = (void __iomem *)
2261 ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2262 ata_sff_std_ports(&ap->ioaddr);
2263
2264 ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2265 (unsigned long long)pci_resource_start(pdev, base),
2266 (unsigned long long)pci_resource_start(pdev, base + 1));
2267
2268 mask |= 1 << i;
2269 }
2270
2271 if (!mask) {
2272 dev_err(gdev, "no available native port\n");
2273 return -ENODEV;
2274 }
2275
2276 return 0;
2277 }
2278 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2279
2280 /**
2281 * ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
2282 * @pdev: target PCI device
2283 * @ppi: array of port_info, must be enough for two ports
2284 * @r_host: out argument for the initialized ATA host
2285 *
2286 * Helper to allocate PIO-only SFF ATA host for @pdev, acquire
2287 * all PCI resources and initialize it accordingly in one go.
2288 *
2289 * LOCKING:
2290 * Inherited from calling layer (may sleep).
2291 *
2292 * RETURNS:
2293 * 0 on success, -errno otherwise.
2294 */
2295 int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2296 const struct ata_port_info * const *ppi,
2297 struct ata_host **r_host)
2298 {
2299 struct ata_host *host;
2300 int rc;
2301
2302 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2303 return -ENOMEM;
2304
2305 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2306 if (!host) {
2307 dev_err(&pdev->dev, "failed to allocate ATA host\n");
2308 rc = -ENOMEM;
2309 goto err_out;
2310 }
2311
2312 rc = ata_pci_sff_init_host(host);
2313 if (rc)
2314 goto err_out;
2315
2316 devres_remove_group(&pdev->dev, NULL);
2317 *r_host = host;
2318 return 0;
2319
2320 err_out:
2321 devres_release_group(&pdev->dev, NULL);
2322 return rc;
2323 }
2324 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2325
2326 /**
2327 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2328 * @host: target SFF ATA host
2329 * @irq_handler: irq_handler used when requesting IRQ(s)
2330 * @sht: scsi_host_template to use when registering the host
2331 *
2332 * This is the counterpart of ata_host_activate() for SFF ATA
2333 * hosts. This separate helper is necessary because SFF hosts
2334 * use two separate interrupts in legacy mode.
2335 *
2336 * LOCKING:
2337 * Inherited from calling layer (may sleep).
2338 *
2339 * RETURNS:
2340 * 0 on success, -errno otherwise.
2341 */
2342 int ata_pci_sff_activate_host(struct ata_host *host,
2343 irq_handler_t irq_handler,
2344 struct scsi_host_template *sht)
2345 {
2346 struct device *dev = host->dev;
2347 struct pci_dev *pdev = to_pci_dev(dev);
2348 const char *drv_name = dev_driver_string(host->dev);
2349 int legacy_mode = 0, rc;
2350
2351 rc = ata_host_start(host);
2352 if (rc)
2353 return rc;
2354
2355 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2356 u8 tmp8, mask = 0;
2357
2358 /*
2359 * ATA spec says we should use legacy mode when one
2360 * port is in legacy mode, but disabled ports on some
2361 * PCI hosts appear as fixed legacy ports, e.g SB600/700
2362 * on which the secondary port is not wired, so
2363 * ignore ports that are marked as 'dummy' during
2364 * this check
2365 */
2366 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2367 if (!ata_port_is_dummy(host->ports[0]))
2368 mask |= (1 << 0);
2369 if (!ata_port_is_dummy(host->ports[1]))
2370 mask |= (1 << 2);
2371 if ((tmp8 & mask) != mask)
2372 legacy_mode = 1;
2373 }
2374
2375 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2376 return -ENOMEM;
2377
2378 if (!legacy_mode && pdev->irq) {
2379 int i;
2380
2381 rc = devm_request_irq(dev, pdev->irq, irq_handler,
2382 IRQF_SHARED, drv_name, host);
2383 if (rc)
2384 goto out;
2385
2386 for (i = 0; i < 2; i++) {
2387 if (ata_port_is_dummy(host->ports[i]))
2388 continue;
2389 ata_port_desc(host->ports[i], "irq %d", pdev->irq);
2390 }
2391 } else if (legacy_mode) {
2392 if (!ata_port_is_dummy(host->ports[0])) {
2393 rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2394 irq_handler, IRQF_SHARED,
2395 drv_name, host);
2396 if (rc)
2397 goto out;
2398
2399 ata_port_desc(host->ports[0], "irq %d",
2400 ATA_PRIMARY_IRQ(pdev));
2401 }
2402
2403 if (!ata_port_is_dummy(host->ports[1])) {
2404 rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2405 irq_handler, IRQF_SHARED,
2406 drv_name, host);
2407 if (rc)
2408 goto out;
2409
2410 ata_port_desc(host->ports[1], "irq %d",
2411 ATA_SECONDARY_IRQ(pdev));
2412 }
2413 }
2414
2415 rc = ata_host_register(host, sht);
2416 out:
2417 if (rc == 0)
2418 devres_remove_group(dev, NULL);
2419 else
2420 devres_release_group(dev, NULL);
2421
2422 return rc;
2423 }
2424 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2425
2426 static const struct ata_port_info *ata_sff_find_valid_pi(
2427 const struct ata_port_info * const *ppi)
2428 {
2429 int i;
2430
2431 /* look up the first valid port_info */
2432 for (i = 0; i < 2 && ppi[i]; i++)
2433 if (ppi[i]->port_ops != &ata_dummy_port_ops)
2434 return ppi[i];
2435
2436 return NULL;
2437 }
2438
2439 static int ata_pci_init_one(struct pci_dev *pdev,
2440 const struct ata_port_info * const *ppi,
2441 struct scsi_host_template *sht, void *host_priv,
2442 int hflags, bool bmdma)
2443 {
2444 struct device *dev = &pdev->dev;
2445 const struct ata_port_info *pi;
2446 struct ata_host *host = NULL;
2447 int rc;
2448
2449 DPRINTK("ENTER\n");
2450
2451 pi = ata_sff_find_valid_pi(ppi);
2452 if (!pi) {
2453 dev_err(&pdev->dev, "no valid port_info specified\n");
2454 return -EINVAL;
2455 }
2456
2457 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2458 return -ENOMEM;
2459
2460 rc = pcim_enable_device(pdev);
2461 if (rc)
2462 goto out;
2463
2464 #ifdef CONFIG_ATA_BMDMA
2465 if (bmdma)
2466 /* prepare and activate BMDMA host */
2467 rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host);
2468 else
2469 #endif
2470 /* prepare and activate SFF host */
2471 rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2472 if (rc)
2473 goto out;
2474 host->private_data = host_priv;
2475 host->flags |= hflags;
2476
2477 #ifdef CONFIG_ATA_BMDMA
2478 if (bmdma) {
2479 pci_set_master(pdev);
2480 rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht);
2481 } else
2482 #endif
2483 rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
2484 out:
2485 if (rc == 0)
2486 devres_remove_group(&pdev->dev, NULL);
2487 else
2488 devres_release_group(&pdev->dev, NULL);
2489
2490 return rc;
2491 }
2492
2493 /**
2494 * ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
2495 * @pdev: Controller to be initialized
2496 * @ppi: array of port_info, must be enough for two ports
2497 * @sht: scsi_host_template to use when registering the host
2498 * @host_priv: host private_data
2499 * @hflag: host flags
2500 *
2501 * This is a helper function which can be called from a driver's
2502 * xxx_init_one() probe function if the hardware uses traditional
2503 * IDE taskfile registers and is PIO only.
2504 *
2505 * ASSUMPTION:
2506 * Nobody makes a single channel controller that appears solely as
2507 * the secondary legacy port on PCI.
2508 *
2509 * LOCKING:
2510 * Inherited from PCI layer (may sleep).
2511 *
2512 * RETURNS:
2513 * Zero on success, negative on errno-based value on error.
2514 */
2515 int ata_pci_sff_init_one(struct pci_dev *pdev,
2516 const struct ata_port_info * const *ppi,
2517 struct scsi_host_template *sht, void *host_priv, int hflag)
2518 {
2519 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0);
2520 }
2521 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
2522
2523 #endif /* CONFIG_PCI */
2524
2525 /*
2526 * BMDMA support
2527 */
2528
2529 #ifdef CONFIG_ATA_BMDMA
2530
2531 const struct ata_port_operations ata_bmdma_port_ops = {
2532 .inherits = &ata_sff_port_ops,
2533
2534 .error_handler = ata_bmdma_error_handler,
2535 .post_internal_cmd = ata_bmdma_post_internal_cmd,
2536
2537 .qc_prep = ata_bmdma_qc_prep,
2538 .qc_issue = ata_bmdma_qc_issue,
2539
2540 .sff_irq_clear = ata_bmdma_irq_clear,
2541 .bmdma_setup = ata_bmdma_setup,
2542 .bmdma_start = ata_bmdma_start,
2543 .bmdma_stop = ata_bmdma_stop,
2544 .bmdma_status = ata_bmdma_status,
2545
2546 .port_start = ata_bmdma_port_start,
2547 };
2548 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
2549
2550 const struct ata_port_operations ata_bmdma32_port_ops = {
2551 .inherits = &ata_bmdma_port_ops,
2552
2553 .sff_data_xfer = ata_sff_data_xfer32,
2554 .port_start = ata_bmdma_port_start32,
2555 };
2556 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
2557
2558 /**
2559 * ata_bmdma_fill_sg - Fill PCI IDE PRD table
2560 * @qc: Metadata associated with taskfile to be transferred
2561 *
2562 * Fill PCI IDE PRD (scatter-gather) table with segments
2563 * associated with the current disk command.
2564 *
2565 * LOCKING:
2566 * spin_lock_irqsave(host lock)
2567 *
2568 */
2569 static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc)
2570 {
2571 struct ata_port *ap = qc->ap;
2572 struct ata_bmdma_prd *prd = ap->bmdma_prd;
2573 struct scatterlist *sg;
2574 unsigned int si, pi;
2575
2576 pi = 0;
2577 for_each_sg(qc->sg, sg, qc->n_elem, si) {
2578 u32 addr, offset;
2579 u32 sg_len, len;
2580
2581 /* determine if physical DMA addr spans 64K boundary.
2582 * Note h/w doesn't support 64-bit, so we unconditionally
2583 * truncate dma_addr_t to u32.
2584 */
2585 addr = (u32) sg_dma_address(sg);
2586 sg_len = sg_dma_len(sg);
2587
2588 while (sg_len) {
2589 offset = addr & 0xffff;
2590 len = sg_len;
2591 if ((offset + sg_len) > 0x10000)
2592 len = 0x10000 - offset;
2593
2594 prd[pi].addr = cpu_to_le32(addr);
2595 prd[pi].flags_len = cpu_to_le32(len & 0xffff);
2596 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2597
2598 pi++;
2599 sg_len -= len;
2600 addr += len;
2601 }
2602 }
2603
2604 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2605 }
2606
2607 /**
2608 * ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
2609 * @qc: Metadata associated with taskfile to be transferred
2610 *
2611 * Fill PCI IDE PRD (scatter-gather) table with segments
2612 * associated with the current disk command. Perform the fill
2613 * so that we avoid writing any length 64K records for
2614 * controllers that don't follow the spec.
2615 *
2616 * LOCKING:
2617 * spin_lock_irqsave(host lock)
2618 *
2619 */
2620 static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc)
2621 {
2622 struct ata_port *ap = qc->ap;
2623 struct ata_bmdma_prd *prd = ap->bmdma_prd;
2624 struct scatterlist *sg;
2625 unsigned int si, pi;
2626
2627 pi = 0;
2628 for_each_sg(qc->sg, sg, qc->n_elem, si) {
2629 u32 addr, offset;
2630 u32 sg_len, len, blen;
2631
2632 /* determine if physical DMA addr spans 64K boundary.
2633 * Note h/w doesn't support 64-bit, so we unconditionally
2634 * truncate dma_addr_t to u32.
2635 */
2636 addr = (u32) sg_dma_address(sg);
2637 sg_len = sg_dma_len(sg);
2638
2639 while (sg_len) {
2640 offset = addr & 0xffff;
2641 len = sg_len;
2642 if ((offset + sg_len) > 0x10000)
2643 len = 0x10000 - offset;
2644
2645 blen = len & 0xffff;
2646 prd[pi].addr = cpu_to_le32(addr);
2647 if (blen == 0) {
2648 /* Some PATA chipsets like the CS5530 can't
2649 cope with 0x0000 meaning 64K as the spec
2650 says */
2651 prd[pi].flags_len = cpu_to_le32(0x8000);
2652 blen = 0x8000;
2653 prd[++pi].addr = cpu_to_le32(addr + 0x8000);
2654 }
2655 prd[pi].flags_len = cpu_to_le32(blen);
2656 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2657
2658 pi++;
2659 sg_len -= len;
2660 addr += len;
2661 }
2662 }
2663
2664 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2665 }
2666
2667 /**
2668 * ata_bmdma_qc_prep - Prepare taskfile for submission
2669 * @qc: Metadata associated with taskfile to be prepared
2670 *
2671 * Prepare ATA taskfile for submission.
2672 *
2673 * LOCKING:
2674 * spin_lock_irqsave(host lock)
2675 */
2676 void ata_bmdma_qc_prep(struct ata_queued_cmd *qc)
2677 {
2678 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2679 return;
2680
2681 ata_bmdma_fill_sg(qc);
2682 }
2683 EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep);
2684
2685 /**
2686 * ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
2687 * @qc: Metadata associated with taskfile to be prepared
2688 *
2689 * Prepare ATA taskfile for submission.
2690 *
2691 * LOCKING:
2692 * spin_lock_irqsave(host lock)
2693 */
2694 void ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc)
2695 {
2696 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2697 return;
2698
2699 ata_bmdma_fill_sg_dumb(qc);
2700 }
2701 EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep);
2702
2703 /**
2704 * ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
2705 * @qc: command to issue to device
2706 *
2707 * This function issues a PIO, NODATA or DMA command to a
2708 * SFF/BMDMA controller. PIO and NODATA are handled by
2709 * ata_sff_qc_issue().
2710 *
2711 * LOCKING:
2712 * spin_lock_irqsave(host lock)
2713 *
2714 * RETURNS:
2715 * Zero on success, AC_ERR_* mask on failure
2716 */
2717 unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc)
2718 {
2719 struct ata_port *ap = qc->ap;
2720 struct ata_link *link = qc->dev->link;
2721
2722 /* defer PIO handling to sff_qc_issue */
2723 if (!ata_is_dma(qc->tf.protocol))
2724 return ata_sff_qc_issue(qc);
2725
2726 /* select the device */
2727 ata_dev_select(ap, qc->dev->devno, 1, 0);
2728
2729 /* start the command */
2730 switch (qc->tf.protocol) {
2731 case ATA_PROT_DMA:
2732 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2733
2734 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
2735 ap->ops->bmdma_setup(qc); /* set up bmdma */
2736 ap->ops->bmdma_start(qc); /* initiate bmdma */
2737 ap->hsm_task_state = HSM_ST_LAST;
2738 break;
2739
2740 case ATAPI_PROT_DMA:
2741 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2742
2743 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
2744 ap->ops->bmdma_setup(qc); /* set up bmdma */
2745 ap->hsm_task_state = HSM_ST_FIRST;
2746
2747 /* send cdb by polling if no cdb interrupt */
2748 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
2749 ata_sff_queue_pio_task(link, 0);
2750 break;
2751
2752 default:
2753 WARN_ON(1);
2754 return AC_ERR_SYSTEM;
2755 }
2756
2757 return 0;
2758 }
2759 EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue);
2760
2761 /**
2762 * ata_bmdma_port_intr - Handle BMDMA port interrupt
2763 * @ap: Port on which interrupt arrived (possibly...)
2764 * @qc: Taskfile currently active in engine
2765 *
2766 * Handle port interrupt for given queued command.
2767 *
2768 * LOCKING:
2769 * spin_lock_irqsave(host lock)
2770 *
2771 * RETURNS:
2772 * One if interrupt was handled, zero if not (shared irq).
2773 */
2774 unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
2775 {
2776 struct ata_eh_info *ehi = &ap->link.eh_info;
2777 u8 host_stat = 0;
2778 bool bmdma_stopped = false;
2779 unsigned int handled;
2780
2781 if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) {
2782 /* check status of DMA engine */
2783 host_stat = ap->ops->bmdma_status(ap);
2784 VPRINTK("ata%u: host_stat 0x%X\n", ap->print_id, host_stat);
2785
2786 /* if it's not our irq... */
2787 if (!(host_stat & ATA_DMA_INTR))
2788 return ata_sff_idle_irq(ap);
2789
2790 /* before we do anything else, clear DMA-Start bit */
2791 ap->ops->bmdma_stop(qc);
2792 bmdma_stopped = true;
2793
2794 if (unlikely(host_stat & ATA_DMA_ERR)) {
2795 /* error when transferring data to/from memory */
2796 qc->err_mask |= AC_ERR_HOST_BUS;
2797 ap->hsm_task_state = HSM_ST_ERR;
2798 }
2799 }
2800
2801 handled = __ata_sff_port_intr(ap, qc, bmdma_stopped);
2802
2803 if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol))
2804 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
2805
2806 return handled;
2807 }
2808 EXPORT_SYMBOL_GPL(ata_bmdma_port_intr);
2809
2810 /**
2811 * ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
2812 * @irq: irq line (unused)
2813 * @dev_instance: pointer to our ata_host information structure
2814 *
2815 * Default interrupt handler for PCI IDE devices. Calls
2816 * ata_bmdma_port_intr() for each port that is not disabled.
2817 *
2818 * LOCKING:
2819 * Obtains host lock during operation.
2820 *
2821 * RETURNS:
2822 * IRQ_NONE or IRQ_HANDLED.
2823 */
2824 irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance)
2825 {
2826 return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr);
2827 }
2828 EXPORT_SYMBOL_GPL(ata_bmdma_interrupt);
2829
2830 /**
2831 * ata_bmdma_error_handler - Stock error handler for BMDMA controller
2832 * @ap: port to handle error for
2833 *
2834 * Stock error handler for BMDMA controller. It can handle both
2835 * PATA and SATA controllers. Most BMDMA controllers should be
2836 * able to use this EH as-is or with some added handling before
2837 * and after.
2838 *
2839 * LOCKING:
2840 * Kernel thread context (may sleep)
2841 */
2842 void ata_bmdma_error_handler(struct ata_port *ap)
2843 {
2844 struct ata_queued_cmd *qc;
2845 unsigned long flags;
2846 bool thaw = false;
2847
2848 qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2849 if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2850 qc = NULL;
2851
2852 /* reset PIO HSM and stop DMA engine */
2853 spin_lock_irqsave(ap->lock, flags);
2854
2855 if (qc && ata_is_dma(qc->tf.protocol)) {
2856 u8 host_stat;
2857
2858 host_stat = ap->ops->bmdma_status(ap);
2859
2860 /* BMDMA controllers indicate host bus error by
2861 * setting DMA_ERR bit and timing out. As it wasn't
2862 * really a timeout event, adjust error mask and
2863 * cancel frozen state.
2864 */
2865 if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2866 qc->err_mask = AC_ERR_HOST_BUS;
2867 thaw = true;
2868 }
2869
2870 ap->ops->bmdma_stop(qc);
2871
2872 /* if we're gonna thaw, make sure IRQ is clear */
2873 if (thaw) {
2874 ap->ops->sff_check_status(ap);
2875 if (ap->ops->sff_irq_clear)
2876 ap->ops->sff_irq_clear(ap);
2877 }
2878 }
2879
2880 spin_unlock_irqrestore(ap->lock, flags);
2881
2882 if (thaw)
2883 ata_eh_thaw_port(ap);
2884
2885 ata_sff_error_handler(ap);
2886 }
2887 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
2888
2889 /**
2890 * ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
2891 * @qc: internal command to clean up
2892 *
2893 * LOCKING:
2894 * Kernel thread context (may sleep)
2895 */
2896 void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
2897 {
2898 struct ata_port *ap = qc->ap;
2899 unsigned long flags;
2900
2901 if (ata_is_dma(qc->tf.protocol)) {
2902 spin_lock_irqsave(ap->lock, flags);
2903 ap->ops->bmdma_stop(qc);
2904 spin_unlock_irqrestore(ap->lock, flags);
2905 }
2906 }
2907 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
2908
2909 /**
2910 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
2911 * @ap: Port associated with this ATA transaction.
2912 *
2913 * Clear interrupt and error flags in DMA status register.
2914 *
2915 * May be used as the irq_clear() entry in ata_port_operations.
2916 *
2917 * LOCKING:
2918 * spin_lock_irqsave(host lock)
2919 */
2920 void ata_bmdma_irq_clear(struct ata_port *ap)
2921 {
2922 void __iomem *mmio = ap->ioaddr.bmdma_addr;
2923
2924 if (!mmio)
2925 return;
2926
2927 iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
2928 }
2929 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
2930
2931 /**
2932 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2933 * @qc: Info associated with this ATA transaction.
2934 *
2935 * LOCKING:
2936 * spin_lock_irqsave(host lock)
2937 */
2938 void ata_bmdma_setup(struct ata_queued_cmd *qc)
2939 {
2940 struct ata_port *ap = qc->ap;
2941 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
2942 u8 dmactl;
2943
2944 /* load PRD table addr. */
2945 mb(); /* make sure PRD table writes are visible to controller */
2946 iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
2947
2948 /* specify data direction, triple-check start bit is clear */
2949 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2950 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
2951 if (!rw)
2952 dmactl |= ATA_DMA_WR;
2953 iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2954
2955 /* issue r/w command */
2956 ap->ops->sff_exec_command(ap, &qc->tf);
2957 }
2958 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
2959
2960 /**
2961 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
2962 * @qc: Info associated with this ATA transaction.
2963 *
2964 * LOCKING:
2965 * spin_lock_irqsave(host lock)
2966 */
2967 void ata_bmdma_start(struct ata_queued_cmd *qc)
2968 {
2969 struct ata_port *ap = qc->ap;
2970 u8 dmactl;
2971
2972 /* start host DMA transaction */
2973 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2974 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2975
2976 /* Strictly, one may wish to issue an ioread8() here, to
2977 * flush the mmio write. However, control also passes
2978 * to the hardware at this point, and it will interrupt
2979 * us when we are to resume control. So, in effect,
2980 * we don't care when the mmio write flushes.
2981 * Further, a read of the DMA status register _immediately_
2982 * following the write may not be what certain flaky hardware
2983 * is expected, so I think it is best to not add a readb()
2984 * without first all the MMIO ATA cards/mobos.
2985 * Or maybe I'm just being paranoid.
2986 *
2987 * FIXME: The posting of this write means I/O starts are
2988 * unnecessarily delayed for MMIO
2989 */
2990 }
2991 EXPORT_SYMBOL_GPL(ata_bmdma_start);
2992
2993 /**
2994 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
2995 * @qc: Command we are ending DMA for
2996 *
2997 * Clears the ATA_DMA_START flag in the dma control register
2998 *
2999 * May be used as the bmdma_stop() entry in ata_port_operations.
3000 *
3001 * LOCKING:
3002 * spin_lock_irqsave(host lock)
3003 */
3004 void ata_bmdma_stop(struct ata_queued_cmd *qc)
3005 {
3006 struct ata_port *ap = qc->ap;
3007 void __iomem *mmio = ap->ioaddr.bmdma_addr;
3008
3009 /* clear start/stop bit */
3010 iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
3011 mmio + ATA_DMA_CMD);
3012
3013 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3014 ata_sff_dma_pause(ap);
3015 }
3016 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
3017
3018 /**
3019 * ata_bmdma_status - Read PCI IDE BMDMA status
3020 * @ap: Port associated with this ATA transaction.
3021 *
3022 * Read and return BMDMA status register.
3023 *
3024 * May be used as the bmdma_status() entry in ata_port_operations.
3025 *
3026 * LOCKING:
3027 * spin_lock_irqsave(host lock)
3028 */
3029 u8 ata_bmdma_status(struct ata_port *ap)
3030 {
3031 return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
3032 }
3033 EXPORT_SYMBOL_GPL(ata_bmdma_status);
3034
3035
3036 /**
3037 * ata_bmdma_port_start - Set port up for bmdma.
3038 * @ap: Port to initialize
3039 *
3040 * Called just after data structures for each port are
3041 * initialized. Allocates space for PRD table.
3042 *
3043 * May be used as the port_start() entry in ata_port_operations.
3044 *
3045 * LOCKING:
3046 * Inherited from caller.
3047 */
3048 int ata_bmdma_port_start(struct ata_port *ap)
3049 {
3050 if (ap->mwdma_mask || ap->udma_mask) {
3051 ap->bmdma_prd =
3052 dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ,
3053 &ap->bmdma_prd_dma, GFP_KERNEL);
3054 if (!ap->bmdma_prd)
3055 return -ENOMEM;
3056 }
3057
3058 return 0;
3059 }
3060 EXPORT_SYMBOL_GPL(ata_bmdma_port_start);
3061
3062 /**
3063 * ata_bmdma_port_start32 - Set port up for dma.
3064 * @ap: Port to initialize
3065 *
3066 * Called just after data structures for each port are
3067 * initialized. Enables 32bit PIO and allocates space for PRD
3068 * table.
3069 *
3070 * May be used as the port_start() entry in ata_port_operations for
3071 * devices that are capable of 32bit PIO.
3072 *
3073 * LOCKING:
3074 * Inherited from caller.
3075 */
3076 int ata_bmdma_port_start32(struct ata_port *ap)
3077 {
3078 ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
3079 return ata_bmdma_port_start(ap);
3080 }
3081 EXPORT_SYMBOL_GPL(ata_bmdma_port_start32);
3082
3083 #ifdef CONFIG_PCI
3084
3085 /**
3086 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex
3087 * @pdev: PCI device
3088 *
3089 * Some PCI ATA devices report simplex mode but in fact can be told to
3090 * enter non simplex mode. This implements the necessary logic to
3091 * perform the task on such devices. Calling it on other devices will
3092 * have -undefined- behaviour.
3093 */
3094 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
3095 {
3096 unsigned long bmdma = pci_resource_start(pdev, 4);
3097 u8 simplex;
3098
3099 if (bmdma == 0)
3100 return -ENOENT;
3101
3102 simplex = inb(bmdma + 0x02);
3103 outb(simplex & 0x60, bmdma + 0x02);
3104 simplex = inb(bmdma + 0x02);
3105 if (simplex & 0x80)
3106 return -EOPNOTSUPP;
3107 return 0;
3108 }
3109 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
3110
3111 static void ata_bmdma_nodma(struct ata_host *host, const char *reason)
3112 {
3113 int i;
3114
3115 dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason);
3116
3117 for (i = 0; i < 2; i++) {
3118 host->ports[i]->mwdma_mask = 0;
3119 host->ports[i]->udma_mask = 0;
3120 }
3121 }
3122
3123 /**
3124 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3125 * @host: target ATA host
3126 *
3127 * Acquire PCI BMDMA resources and initialize @host accordingly.
3128 *
3129 * LOCKING:
3130 * Inherited from calling layer (may sleep).
3131 */
3132 void ata_pci_bmdma_init(struct ata_host *host)
3133 {
3134 struct device *gdev = host->dev;
3135 struct pci_dev *pdev = to_pci_dev(gdev);
3136 int i, rc;
3137
3138 /* No BAR4 allocation: No DMA */
3139 if (pci_resource_start(pdev, 4) == 0) {
3140 ata_bmdma_nodma(host, "BAR4 is zero");
3141 return;
3142 }
3143
3144 /*
3145 * Some controllers require BMDMA region to be initialized
3146 * even if DMA is not in use to clear IRQ status via
3147 * ->sff_irq_clear method. Try to initialize bmdma_addr
3148 * regardless of dma masks.
3149 */
3150 rc = dma_set_mask(&pdev->dev, ATA_DMA_MASK);
3151 if (rc)
3152 ata_bmdma_nodma(host, "failed to set dma mask");
3153 if (!rc) {
3154 rc = dma_set_coherent_mask(&pdev->dev, ATA_DMA_MASK);
3155 if (rc)
3156 ata_bmdma_nodma(host,
3157 "failed to set consistent dma mask");
3158 }
3159
3160 /* request and iomap DMA region */
3161 rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
3162 if (rc) {
3163 ata_bmdma_nodma(host, "failed to request/iomap BAR4");
3164 return;
3165 }
3166 host->iomap = pcim_iomap_table(pdev);
3167
3168 for (i = 0; i < 2; i++) {
3169 struct ata_port *ap = host->ports[i];
3170 void __iomem *bmdma = host->iomap[4] + 8 * i;
3171
3172 if (ata_port_is_dummy(ap))
3173 continue;
3174
3175 ap->ioaddr.bmdma_addr = bmdma;
3176 if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
3177 (ioread8(bmdma + 2) & 0x80))
3178 host->flags |= ATA_HOST_SIMPLEX;
3179
3180 ata_port_desc(ap, "bmdma 0x%llx",
3181 (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
3182 }
3183 }
3184 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
3185
3186 /**
3187 * ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
3188 * @pdev: target PCI device
3189 * @ppi: array of port_info, must be enough for two ports
3190 * @r_host: out argument for the initialized ATA host
3191 *
3192 * Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
3193 * resources and initialize it accordingly in one go.
3194 *
3195 * LOCKING:
3196 * Inherited from calling layer (may sleep).
3197 *
3198 * RETURNS:
3199 * 0 on success, -errno otherwise.
3200 */
3201 int ata_pci_bmdma_prepare_host(struct pci_dev *pdev,
3202 const struct ata_port_info * const * ppi,
3203 struct ata_host **r_host)
3204 {
3205 int rc;
3206
3207 rc = ata_pci_sff_prepare_host(pdev, ppi, r_host);
3208 if (rc)
3209 return rc;
3210
3211 ata_pci_bmdma_init(*r_host);
3212 return 0;
3213 }
3214 EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host);
3215
3216 /**
3217 * ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
3218 * @pdev: Controller to be initialized
3219 * @ppi: array of port_info, must be enough for two ports
3220 * @sht: scsi_host_template to use when registering the host
3221 * @host_priv: host private_data
3222 * @hflags: host flags
3223 *
3224 * This function is similar to ata_pci_sff_init_one() but also
3225 * takes care of BMDMA initialization.
3226 *
3227 * LOCKING:
3228 * Inherited from PCI layer (may sleep).
3229 *
3230 * RETURNS:
3231 * Zero on success, negative on errno-based value on error.
3232 */
3233 int ata_pci_bmdma_init_one(struct pci_dev *pdev,
3234 const struct ata_port_info * const * ppi,
3235 struct scsi_host_template *sht, void *host_priv,
3236 int hflags)
3237 {
3238 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1);
3239 }
3240 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one);
3241
3242 #endif /* CONFIG_PCI */
3243 #endif /* CONFIG_ATA_BMDMA */
3244
3245 /**
3246 * ata_sff_port_init - Initialize SFF/BMDMA ATA port
3247 * @ap: Port to initialize
3248 *
3249 * Called on port allocation to initialize SFF/BMDMA specific
3250 * fields.
3251 *
3252 * LOCKING:
3253 * None.
3254 */
3255 void ata_sff_port_init(struct ata_port *ap)
3256 {
3257 INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task);
3258 ap->ctl = ATA_DEVCTL_OBS;
3259 ap->last_ctl = 0xFF;
3260 }
3261
3262 int __init ata_sff_init(void)
3263 {
3264 ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE);
3265 if (!ata_sff_wq)
3266 return -ENOMEM;
3267
3268 return 0;
3269 }
3270
3271 void ata_sff_exit(void)
3272 {
3273 destroy_workqueue(ata_sff_wq);
3274 }