]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/ata/libata-sff.c
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
[thirdparty/linux.git] / drivers / ata / libata-sff.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * libata-sff.c - helper library for PCI IDE BMDMA
4 *
5 * Maintained by: Tejun Heo <tj@kernel.org>
6 * Please ALWAYS copy linux-ide@vger.kernel.org
7 * on emails.
8 *
9 * Copyright 2003-2006 Red Hat, Inc. All rights reserved.
10 * Copyright 2003-2006 Jeff Garzik
11 *
12 * libata documentation is available via 'make {ps|pdf}docs',
13 * as Documentation/driver-api/libata.rst
14 *
15 * Hardware documentation available from http://www.t13.org/ and
16 * http://www.sata-io.org/
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/gfp.h>
21 #include <linux/pci.h>
22 #include <linux/module.h>
23 #include <linux/libata.h>
24 #include <linux/highmem.h>
25
26 #include "libata.h"
27
28 static struct workqueue_struct *ata_sff_wq;
29
30 const struct ata_port_operations ata_sff_port_ops = {
31 .inherits = &ata_base_port_ops,
32
33 .qc_prep = ata_noop_qc_prep,
34 .qc_issue = ata_sff_qc_issue,
35 .qc_fill_rtf = ata_sff_qc_fill_rtf,
36
37 .freeze = ata_sff_freeze,
38 .thaw = ata_sff_thaw,
39 .prereset = ata_sff_prereset,
40 .softreset = ata_sff_softreset,
41 .hardreset = sata_sff_hardreset,
42 .postreset = ata_sff_postreset,
43 .error_handler = ata_sff_error_handler,
44
45 .sff_dev_select = ata_sff_dev_select,
46 .sff_check_status = ata_sff_check_status,
47 .sff_tf_load = ata_sff_tf_load,
48 .sff_tf_read = ata_sff_tf_read,
49 .sff_exec_command = ata_sff_exec_command,
50 .sff_data_xfer = ata_sff_data_xfer,
51 .sff_drain_fifo = ata_sff_drain_fifo,
52
53 .lost_interrupt = ata_sff_lost_interrupt,
54 };
55 EXPORT_SYMBOL_GPL(ata_sff_port_ops);
56
57 /**
58 * ata_sff_check_status - Read device status reg & clear interrupt
59 * @ap: port where the device is
60 *
61 * Reads ATA taskfile status register for currently-selected device
62 * and return its value. This also clears pending interrupts
63 * from this device
64 *
65 * LOCKING:
66 * Inherited from caller.
67 */
68 u8 ata_sff_check_status(struct ata_port *ap)
69 {
70 return ioread8(ap->ioaddr.status_addr);
71 }
72 EXPORT_SYMBOL_GPL(ata_sff_check_status);
73
74 /**
75 * ata_sff_altstatus - Read device alternate status reg
76 * @ap: port where the device is
77 *
78 * Reads ATA taskfile alternate status register for
79 * currently-selected device and return its value.
80 *
81 * Note: may NOT be used as the check_altstatus() entry in
82 * ata_port_operations.
83 *
84 * LOCKING:
85 * Inherited from caller.
86 */
87 static u8 ata_sff_altstatus(struct ata_port *ap)
88 {
89 if (ap->ops->sff_check_altstatus)
90 return ap->ops->sff_check_altstatus(ap);
91
92 return ioread8(ap->ioaddr.altstatus_addr);
93 }
94
95 /**
96 * ata_sff_irq_status - Check if the device is busy
97 * @ap: port where the device is
98 *
99 * Determine if the port is currently busy. Uses altstatus
100 * if available in order to avoid clearing shared IRQ status
101 * when finding an IRQ source. Non ctl capable devices don't
102 * share interrupt lines fortunately for us.
103 *
104 * LOCKING:
105 * Inherited from caller.
106 */
107 static u8 ata_sff_irq_status(struct ata_port *ap)
108 {
109 u8 status;
110
111 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
112 status = ata_sff_altstatus(ap);
113 /* Not us: We are busy */
114 if (status & ATA_BUSY)
115 return status;
116 }
117 /* Clear INTRQ latch */
118 status = ap->ops->sff_check_status(ap);
119 return status;
120 }
121
122 /**
123 * ata_sff_sync - Flush writes
124 * @ap: Port to wait for.
125 *
126 * CAUTION:
127 * If we have an mmio device with no ctl and no altstatus
128 * method this will fail. No such devices are known to exist.
129 *
130 * LOCKING:
131 * Inherited from caller.
132 */
133
134 static void ata_sff_sync(struct ata_port *ap)
135 {
136 if (ap->ops->sff_check_altstatus)
137 ap->ops->sff_check_altstatus(ap);
138 else if (ap->ioaddr.altstatus_addr)
139 ioread8(ap->ioaddr.altstatus_addr);
140 }
141
142 /**
143 * ata_sff_pause - Flush writes and wait 400nS
144 * @ap: Port to pause for.
145 *
146 * CAUTION:
147 * If we have an mmio device with no ctl and no altstatus
148 * method this will fail. No such devices are known to exist.
149 *
150 * LOCKING:
151 * Inherited from caller.
152 */
153
154 void ata_sff_pause(struct ata_port *ap)
155 {
156 ata_sff_sync(ap);
157 ndelay(400);
158 }
159 EXPORT_SYMBOL_GPL(ata_sff_pause);
160
161 /**
162 * ata_sff_dma_pause - Pause before commencing DMA
163 * @ap: Port to pause for.
164 *
165 * Perform I/O fencing and ensure sufficient cycle delays occur
166 * for the HDMA1:0 transition
167 */
168
169 void ata_sff_dma_pause(struct ata_port *ap)
170 {
171 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
172 /* An altstatus read will cause the needed delay without
173 messing up the IRQ status */
174 ata_sff_altstatus(ap);
175 return;
176 }
177 /* There are no DMA controllers without ctl. BUG here to ensure
178 we never violate the HDMA1:0 transition timing and risk
179 corruption. */
180 BUG();
181 }
182 EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
183
184 /**
185 * ata_sff_busy_sleep - sleep until BSY clears, or timeout
186 * @ap: port containing status register to be polled
187 * @tmout_pat: impatience timeout in msecs
188 * @tmout: overall timeout in msecs
189 *
190 * Sleep until ATA Status register bit BSY clears,
191 * or a timeout occurs.
192 *
193 * LOCKING:
194 * Kernel thread context (may sleep).
195 *
196 * RETURNS:
197 * 0 on success, -errno otherwise.
198 */
199 int ata_sff_busy_sleep(struct ata_port *ap,
200 unsigned long tmout_pat, unsigned long tmout)
201 {
202 unsigned long timer_start, timeout;
203 u8 status;
204
205 status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
206 timer_start = jiffies;
207 timeout = ata_deadline(timer_start, tmout_pat);
208 while (status != 0xff && (status & ATA_BUSY) &&
209 time_before(jiffies, timeout)) {
210 ata_msleep(ap, 50);
211 status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
212 }
213
214 if (status != 0xff && (status & ATA_BUSY))
215 ata_port_warn(ap,
216 "port is slow to respond, please be patient (Status 0x%x)\n",
217 status);
218
219 timeout = ata_deadline(timer_start, tmout);
220 while (status != 0xff && (status & ATA_BUSY) &&
221 time_before(jiffies, timeout)) {
222 ata_msleep(ap, 50);
223 status = ap->ops->sff_check_status(ap);
224 }
225
226 if (status == 0xff)
227 return -ENODEV;
228
229 if (status & ATA_BUSY) {
230 ata_port_err(ap,
231 "port failed to respond (%lu secs, Status 0x%x)\n",
232 DIV_ROUND_UP(tmout, 1000), status);
233 return -EBUSY;
234 }
235
236 return 0;
237 }
238 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
239
240 static int ata_sff_check_ready(struct ata_link *link)
241 {
242 u8 status = link->ap->ops->sff_check_status(link->ap);
243
244 return ata_check_ready(status);
245 }
246
247 /**
248 * ata_sff_wait_ready - sleep until BSY clears, or timeout
249 * @link: SFF link to wait ready status for
250 * @deadline: deadline jiffies for the operation
251 *
252 * Sleep until ATA Status register bit BSY clears, or timeout
253 * occurs.
254 *
255 * LOCKING:
256 * Kernel thread context (may sleep).
257 *
258 * RETURNS:
259 * 0 on success, -errno otherwise.
260 */
261 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
262 {
263 return ata_wait_ready(link, deadline, ata_sff_check_ready);
264 }
265 EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
266
267 /**
268 * ata_sff_set_devctl - Write device control reg
269 * @ap: port where the device is
270 * @ctl: value to write
271 *
272 * Writes ATA taskfile device control register.
273 *
274 * Note: may NOT be used as the sff_set_devctl() entry in
275 * ata_port_operations.
276 *
277 * LOCKING:
278 * Inherited from caller.
279 */
280 static void ata_sff_set_devctl(struct ata_port *ap, u8 ctl)
281 {
282 if (ap->ops->sff_set_devctl)
283 ap->ops->sff_set_devctl(ap, ctl);
284 else
285 iowrite8(ctl, ap->ioaddr.ctl_addr);
286 }
287
288 /**
289 * ata_sff_dev_select - Select device 0/1 on ATA bus
290 * @ap: ATA channel to manipulate
291 * @device: ATA device (numbered from zero) to select
292 *
293 * Use the method defined in the ATA specification to
294 * make either device 0, or device 1, active on the
295 * ATA channel. Works with both PIO and MMIO.
296 *
297 * May be used as the dev_select() entry in ata_port_operations.
298 *
299 * LOCKING:
300 * caller.
301 */
302 void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
303 {
304 u8 tmp;
305
306 if (device == 0)
307 tmp = ATA_DEVICE_OBS;
308 else
309 tmp = ATA_DEVICE_OBS | ATA_DEV1;
310
311 iowrite8(tmp, ap->ioaddr.device_addr);
312 ata_sff_pause(ap); /* needed; also flushes, for mmio */
313 }
314 EXPORT_SYMBOL_GPL(ata_sff_dev_select);
315
316 /**
317 * ata_dev_select - Select device 0/1 on ATA bus
318 * @ap: ATA channel to manipulate
319 * @device: ATA device (numbered from zero) to select
320 * @wait: non-zero to wait for Status register BSY bit to clear
321 * @can_sleep: non-zero if context allows sleeping
322 *
323 * Use the method defined in the ATA specification to
324 * make either device 0, or device 1, active on the
325 * ATA channel.
326 *
327 * This is a high-level version of ata_sff_dev_select(), which
328 * additionally provides the services of inserting the proper
329 * pauses and status polling, where needed.
330 *
331 * LOCKING:
332 * caller.
333 */
334 static void ata_dev_select(struct ata_port *ap, unsigned int device,
335 unsigned int wait, unsigned int can_sleep)
336 {
337 if (ata_msg_probe(ap))
338 ata_port_info(ap, "ata_dev_select: ENTER, device %u, wait %u\n",
339 device, wait);
340
341 if (wait)
342 ata_wait_idle(ap);
343
344 ap->ops->sff_dev_select(ap, device);
345
346 if (wait) {
347 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
348 ata_msleep(ap, 150);
349 ata_wait_idle(ap);
350 }
351 }
352
353 /**
354 * ata_sff_irq_on - Enable interrupts on a port.
355 * @ap: Port on which interrupts are enabled.
356 *
357 * Enable interrupts on a legacy IDE device using MMIO or PIO,
358 * wait for idle, clear any pending interrupts.
359 *
360 * Note: may NOT be used as the sff_irq_on() entry in
361 * ata_port_operations.
362 *
363 * LOCKING:
364 * Inherited from caller.
365 */
366 void ata_sff_irq_on(struct ata_port *ap)
367 {
368 struct ata_ioports *ioaddr = &ap->ioaddr;
369
370 if (ap->ops->sff_irq_on) {
371 ap->ops->sff_irq_on(ap);
372 return;
373 }
374
375 ap->ctl &= ~ATA_NIEN;
376 ap->last_ctl = ap->ctl;
377
378 if (ap->ops->sff_set_devctl || ioaddr->ctl_addr)
379 ata_sff_set_devctl(ap, ap->ctl);
380 ata_wait_idle(ap);
381
382 if (ap->ops->sff_irq_clear)
383 ap->ops->sff_irq_clear(ap);
384 }
385 EXPORT_SYMBOL_GPL(ata_sff_irq_on);
386
387 /**
388 * ata_sff_tf_load - send taskfile registers to host controller
389 * @ap: Port to which output is sent
390 * @tf: ATA taskfile register set
391 *
392 * Outputs ATA taskfile to standard ATA host controller.
393 *
394 * LOCKING:
395 * Inherited from caller.
396 */
397 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
398 {
399 struct ata_ioports *ioaddr = &ap->ioaddr;
400 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
401
402 if (tf->ctl != ap->last_ctl) {
403 if (ioaddr->ctl_addr)
404 iowrite8(tf->ctl, ioaddr->ctl_addr);
405 ap->last_ctl = tf->ctl;
406 ata_wait_idle(ap);
407 }
408
409 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
410 WARN_ON_ONCE(!ioaddr->ctl_addr);
411 iowrite8(tf->hob_feature, ioaddr->feature_addr);
412 iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
413 iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
414 iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
415 iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
416 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
417 tf->hob_feature,
418 tf->hob_nsect,
419 tf->hob_lbal,
420 tf->hob_lbam,
421 tf->hob_lbah);
422 }
423
424 if (is_addr) {
425 iowrite8(tf->feature, ioaddr->feature_addr);
426 iowrite8(tf->nsect, ioaddr->nsect_addr);
427 iowrite8(tf->lbal, ioaddr->lbal_addr);
428 iowrite8(tf->lbam, ioaddr->lbam_addr);
429 iowrite8(tf->lbah, ioaddr->lbah_addr);
430 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
431 tf->feature,
432 tf->nsect,
433 tf->lbal,
434 tf->lbam,
435 tf->lbah);
436 }
437
438 if (tf->flags & ATA_TFLAG_DEVICE) {
439 iowrite8(tf->device, ioaddr->device_addr);
440 VPRINTK("device 0x%X\n", tf->device);
441 }
442
443 ata_wait_idle(ap);
444 }
445 EXPORT_SYMBOL_GPL(ata_sff_tf_load);
446
447 /**
448 * ata_sff_tf_read - input device's ATA taskfile shadow registers
449 * @ap: Port from which input is read
450 * @tf: ATA taskfile register set for storing input
451 *
452 * Reads ATA taskfile registers for currently-selected device
453 * into @tf. Assumes the device has a fully SFF compliant task file
454 * layout and behaviour. If you device does not (eg has a different
455 * status method) then you will need to provide a replacement tf_read
456 *
457 * LOCKING:
458 * Inherited from caller.
459 */
460 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
461 {
462 struct ata_ioports *ioaddr = &ap->ioaddr;
463
464 tf->command = ata_sff_check_status(ap);
465 tf->feature = ioread8(ioaddr->error_addr);
466 tf->nsect = ioread8(ioaddr->nsect_addr);
467 tf->lbal = ioread8(ioaddr->lbal_addr);
468 tf->lbam = ioread8(ioaddr->lbam_addr);
469 tf->lbah = ioread8(ioaddr->lbah_addr);
470 tf->device = ioread8(ioaddr->device_addr);
471
472 if (tf->flags & ATA_TFLAG_LBA48) {
473 if (likely(ioaddr->ctl_addr)) {
474 iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
475 tf->hob_feature = ioread8(ioaddr->error_addr);
476 tf->hob_nsect = ioread8(ioaddr->nsect_addr);
477 tf->hob_lbal = ioread8(ioaddr->lbal_addr);
478 tf->hob_lbam = ioread8(ioaddr->lbam_addr);
479 tf->hob_lbah = ioread8(ioaddr->lbah_addr);
480 iowrite8(tf->ctl, ioaddr->ctl_addr);
481 ap->last_ctl = tf->ctl;
482 } else
483 WARN_ON_ONCE(1);
484 }
485 }
486 EXPORT_SYMBOL_GPL(ata_sff_tf_read);
487
488 /**
489 * ata_sff_exec_command - issue ATA command to host controller
490 * @ap: port to which command is being issued
491 * @tf: ATA taskfile register set
492 *
493 * Issues ATA command, with proper synchronization with interrupt
494 * handler / other threads.
495 *
496 * LOCKING:
497 * spin_lock_irqsave(host lock)
498 */
499 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
500 {
501 DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
502
503 iowrite8(tf->command, ap->ioaddr.command_addr);
504 ata_sff_pause(ap);
505 }
506 EXPORT_SYMBOL_GPL(ata_sff_exec_command);
507
508 /**
509 * ata_tf_to_host - issue ATA taskfile to host controller
510 * @ap: port to which command is being issued
511 * @tf: ATA taskfile register set
512 *
513 * Issues ATA taskfile register set to ATA host controller,
514 * with proper synchronization with interrupt handler and
515 * other threads.
516 *
517 * LOCKING:
518 * spin_lock_irqsave(host lock)
519 */
520 static inline void ata_tf_to_host(struct ata_port *ap,
521 const struct ata_taskfile *tf)
522 {
523 ap->ops->sff_tf_load(ap, tf);
524 ap->ops->sff_exec_command(ap, tf);
525 }
526
527 /**
528 * ata_sff_data_xfer - Transfer data by PIO
529 * @qc: queued command
530 * @buf: data buffer
531 * @buflen: buffer length
532 * @rw: read/write
533 *
534 * Transfer data from/to the device data register by PIO.
535 *
536 * LOCKING:
537 * Inherited from caller.
538 *
539 * RETURNS:
540 * Bytes consumed.
541 */
542 unsigned int ata_sff_data_xfer(struct ata_queued_cmd *qc, unsigned char *buf,
543 unsigned int buflen, int rw)
544 {
545 struct ata_port *ap = qc->dev->link->ap;
546 void __iomem *data_addr = ap->ioaddr.data_addr;
547 unsigned int words = buflen >> 1;
548
549 /* Transfer multiple of 2 bytes */
550 if (rw == READ)
551 ioread16_rep(data_addr, buf, words);
552 else
553 iowrite16_rep(data_addr, buf, words);
554
555 /* Transfer trailing byte, if any. */
556 if (unlikely(buflen & 0x01)) {
557 unsigned char pad[2] = { };
558
559 /* Point buf to the tail of buffer */
560 buf += buflen - 1;
561
562 /*
563 * Use io*16_rep() accessors here as well to avoid pointlessly
564 * swapping bytes to and from on the big endian machines...
565 */
566 if (rw == READ) {
567 ioread16_rep(data_addr, pad, 1);
568 *buf = pad[0];
569 } else {
570 pad[0] = *buf;
571 iowrite16_rep(data_addr, pad, 1);
572 }
573 words++;
574 }
575
576 return words << 1;
577 }
578 EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
579
580 /**
581 * ata_sff_data_xfer32 - Transfer data by PIO
582 * @qc: queued command
583 * @buf: data buffer
584 * @buflen: buffer length
585 * @rw: read/write
586 *
587 * Transfer data from/to the device data register by PIO using 32bit
588 * I/O operations.
589 *
590 * LOCKING:
591 * Inherited from caller.
592 *
593 * RETURNS:
594 * Bytes consumed.
595 */
596
597 unsigned int ata_sff_data_xfer32(struct ata_queued_cmd *qc, unsigned char *buf,
598 unsigned int buflen, int rw)
599 {
600 struct ata_device *dev = qc->dev;
601 struct ata_port *ap = dev->link->ap;
602 void __iomem *data_addr = ap->ioaddr.data_addr;
603 unsigned int words = buflen >> 2;
604 int slop = buflen & 3;
605
606 if (!(ap->pflags & ATA_PFLAG_PIO32))
607 return ata_sff_data_xfer(qc, buf, buflen, rw);
608
609 /* Transfer multiple of 4 bytes */
610 if (rw == READ)
611 ioread32_rep(data_addr, buf, words);
612 else
613 iowrite32_rep(data_addr, buf, words);
614
615 /* Transfer trailing bytes, if any */
616 if (unlikely(slop)) {
617 unsigned char pad[4] = { };
618
619 /* Point buf to the tail of buffer */
620 buf += buflen - slop;
621
622 /*
623 * Use io*_rep() accessors here as well to avoid pointlessly
624 * swapping bytes to and from on the big endian machines...
625 */
626 if (rw == READ) {
627 if (slop < 3)
628 ioread16_rep(data_addr, pad, 1);
629 else
630 ioread32_rep(data_addr, pad, 1);
631 memcpy(buf, pad, slop);
632 } else {
633 memcpy(pad, buf, slop);
634 if (slop < 3)
635 iowrite16_rep(data_addr, pad, 1);
636 else
637 iowrite32_rep(data_addr, pad, 1);
638 }
639 }
640 return (buflen + 1) & ~1;
641 }
642 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
643
644 /**
645 * ata_pio_sector - Transfer a sector of data.
646 * @qc: Command on going
647 *
648 * Transfer qc->sect_size bytes of data from/to the ATA device.
649 *
650 * LOCKING:
651 * Inherited from caller.
652 */
653 static void ata_pio_sector(struct ata_queued_cmd *qc)
654 {
655 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
656 struct ata_port *ap = qc->ap;
657 struct page *page;
658 unsigned int offset;
659 unsigned char *buf;
660
661 if (!qc->cursg) {
662 qc->curbytes = qc->nbytes;
663 return;
664 }
665 if (qc->curbytes == qc->nbytes - qc->sect_size)
666 ap->hsm_task_state = HSM_ST_LAST;
667
668 page = sg_page(qc->cursg);
669 offset = qc->cursg->offset + qc->cursg_ofs;
670
671 /* get the current page and offset */
672 page = nth_page(page, (offset >> PAGE_SHIFT));
673 offset %= PAGE_SIZE;
674
675 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
676
677 /* do the actual data transfer */
678 buf = kmap_atomic(page);
679 ap->ops->sff_data_xfer(qc, buf + offset, qc->sect_size, do_write);
680 kunmap_atomic(buf);
681
682 if (!do_write && !PageSlab(page))
683 flush_dcache_page(page);
684
685 qc->curbytes += qc->sect_size;
686 qc->cursg_ofs += qc->sect_size;
687
688 if (qc->cursg_ofs == qc->cursg->length) {
689 qc->cursg = sg_next(qc->cursg);
690 if (!qc->cursg)
691 ap->hsm_task_state = HSM_ST_LAST;
692 qc->cursg_ofs = 0;
693 }
694 }
695
696 /**
697 * ata_pio_sectors - Transfer one or many sectors.
698 * @qc: Command on going
699 *
700 * Transfer one or many sectors of data from/to the
701 * ATA device for the DRQ request.
702 *
703 * LOCKING:
704 * Inherited from caller.
705 */
706 static void ata_pio_sectors(struct ata_queued_cmd *qc)
707 {
708 if (is_multi_taskfile(&qc->tf)) {
709 /* READ/WRITE MULTIPLE */
710 unsigned int nsect;
711
712 WARN_ON_ONCE(qc->dev->multi_count == 0);
713
714 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
715 qc->dev->multi_count);
716 while (nsect--)
717 ata_pio_sector(qc);
718 } else
719 ata_pio_sector(qc);
720
721 ata_sff_sync(qc->ap); /* flush */
722 }
723
724 /**
725 * atapi_send_cdb - Write CDB bytes to hardware
726 * @ap: Port to which ATAPI device is attached.
727 * @qc: Taskfile currently active
728 *
729 * When device has indicated its readiness to accept
730 * a CDB, this function is called. Send the CDB.
731 *
732 * LOCKING:
733 * caller.
734 */
735 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
736 {
737 /* send SCSI cdb */
738 DPRINTK("send cdb\n");
739 WARN_ON_ONCE(qc->dev->cdb_len < 12);
740
741 ap->ops->sff_data_xfer(qc, qc->cdb, qc->dev->cdb_len, 1);
742 ata_sff_sync(ap);
743 /* FIXME: If the CDB is for DMA do we need to do the transition delay
744 or is bmdma_start guaranteed to do it ? */
745 switch (qc->tf.protocol) {
746 case ATAPI_PROT_PIO:
747 ap->hsm_task_state = HSM_ST;
748 break;
749 case ATAPI_PROT_NODATA:
750 ap->hsm_task_state = HSM_ST_LAST;
751 break;
752 #ifdef CONFIG_ATA_BMDMA
753 case ATAPI_PROT_DMA:
754 ap->hsm_task_state = HSM_ST_LAST;
755 /* initiate bmdma */
756 ap->ops->bmdma_start(qc);
757 break;
758 #endif /* CONFIG_ATA_BMDMA */
759 default:
760 BUG();
761 }
762 }
763
764 /**
765 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
766 * @qc: Command on going
767 * @bytes: number of bytes
768 *
769 * Transfer Transfer data from/to the ATAPI device.
770 *
771 * LOCKING:
772 * Inherited from caller.
773 *
774 */
775 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
776 {
777 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
778 struct ata_port *ap = qc->ap;
779 struct ata_device *dev = qc->dev;
780 struct ata_eh_info *ehi = &dev->link->eh_info;
781 struct scatterlist *sg;
782 struct page *page;
783 unsigned char *buf;
784 unsigned int offset, count, consumed;
785
786 next_sg:
787 sg = qc->cursg;
788 if (unlikely(!sg)) {
789 ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
790 "buf=%u cur=%u bytes=%u",
791 qc->nbytes, qc->curbytes, bytes);
792 return -1;
793 }
794
795 page = sg_page(sg);
796 offset = sg->offset + qc->cursg_ofs;
797
798 /* get the current page and offset */
799 page = nth_page(page, (offset >> PAGE_SHIFT));
800 offset %= PAGE_SIZE;
801
802 /* don't overrun current sg */
803 count = min(sg->length - qc->cursg_ofs, bytes);
804
805 /* don't cross page boundaries */
806 count = min(count, (unsigned int)PAGE_SIZE - offset);
807
808 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
809
810 /* do the actual data transfer */
811 buf = kmap_atomic(page);
812 consumed = ap->ops->sff_data_xfer(qc, buf + offset, count, rw);
813 kunmap_atomic(buf);
814
815 bytes -= min(bytes, consumed);
816 qc->curbytes += count;
817 qc->cursg_ofs += count;
818
819 if (qc->cursg_ofs == sg->length) {
820 qc->cursg = sg_next(qc->cursg);
821 qc->cursg_ofs = 0;
822 }
823
824 /*
825 * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed);
826 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
827 * check correctly as it doesn't know if it is the last request being
828 * made. Somebody should implement a proper sanity check.
829 */
830 if (bytes)
831 goto next_sg;
832 return 0;
833 }
834
835 /**
836 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
837 * @qc: Command on going
838 *
839 * Transfer Transfer data from/to the ATAPI device.
840 *
841 * LOCKING:
842 * Inherited from caller.
843 */
844 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
845 {
846 struct ata_port *ap = qc->ap;
847 struct ata_device *dev = qc->dev;
848 struct ata_eh_info *ehi = &dev->link->eh_info;
849 unsigned int ireason, bc_lo, bc_hi, bytes;
850 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
851
852 /* Abuse qc->result_tf for temp storage of intermediate TF
853 * here to save some kernel stack usage.
854 * For normal completion, qc->result_tf is not relevant. For
855 * error, qc->result_tf is later overwritten by ata_qc_complete().
856 * So, the correctness of qc->result_tf is not affected.
857 */
858 ap->ops->sff_tf_read(ap, &qc->result_tf);
859 ireason = qc->result_tf.nsect;
860 bc_lo = qc->result_tf.lbam;
861 bc_hi = qc->result_tf.lbah;
862 bytes = (bc_hi << 8) | bc_lo;
863
864 /* shall be cleared to zero, indicating xfer of data */
865 if (unlikely(ireason & ATAPI_COD))
866 goto atapi_check;
867
868 /* make sure transfer direction matches expected */
869 i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0;
870 if (unlikely(do_write != i_write))
871 goto atapi_check;
872
873 if (unlikely(!bytes))
874 goto atapi_check;
875
876 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
877
878 if (unlikely(__atapi_pio_bytes(qc, bytes)))
879 goto err_out;
880 ata_sff_sync(ap); /* flush */
881
882 return;
883
884 atapi_check:
885 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
886 ireason, bytes);
887 err_out:
888 qc->err_mask |= AC_ERR_HSM;
889 ap->hsm_task_state = HSM_ST_ERR;
890 }
891
892 /**
893 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
894 * @ap: the target ata_port
895 * @qc: qc on going
896 *
897 * RETURNS:
898 * 1 if ok in workqueue, 0 otherwise.
899 */
900 static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
901 struct ata_queued_cmd *qc)
902 {
903 if (qc->tf.flags & ATA_TFLAG_POLLING)
904 return 1;
905
906 if (ap->hsm_task_state == HSM_ST_FIRST) {
907 if (qc->tf.protocol == ATA_PROT_PIO &&
908 (qc->tf.flags & ATA_TFLAG_WRITE))
909 return 1;
910
911 if (ata_is_atapi(qc->tf.protocol) &&
912 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
913 return 1;
914 }
915
916 return 0;
917 }
918
919 /**
920 * ata_hsm_qc_complete - finish a qc running on standard HSM
921 * @qc: Command to complete
922 * @in_wq: 1 if called from workqueue, 0 otherwise
923 *
924 * Finish @qc which is running on standard HSM.
925 *
926 * LOCKING:
927 * If @in_wq is zero, spin_lock_irqsave(host lock).
928 * Otherwise, none on entry and grabs host lock.
929 */
930 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
931 {
932 struct ata_port *ap = qc->ap;
933
934 if (ap->ops->error_handler) {
935 if (in_wq) {
936 /* EH might have kicked in while host lock is
937 * released.
938 */
939 qc = ata_qc_from_tag(ap, qc->tag);
940 if (qc) {
941 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
942 ata_sff_irq_on(ap);
943 ata_qc_complete(qc);
944 } else
945 ata_port_freeze(ap);
946 }
947 } else {
948 if (likely(!(qc->err_mask & AC_ERR_HSM)))
949 ata_qc_complete(qc);
950 else
951 ata_port_freeze(ap);
952 }
953 } else {
954 if (in_wq) {
955 ata_sff_irq_on(ap);
956 ata_qc_complete(qc);
957 } else
958 ata_qc_complete(qc);
959 }
960 }
961
962 /**
963 * ata_sff_hsm_move - move the HSM to the next state.
964 * @ap: the target ata_port
965 * @qc: qc on going
966 * @status: current device status
967 * @in_wq: 1 if called from workqueue, 0 otherwise
968 *
969 * RETURNS:
970 * 1 when poll next status needed, 0 otherwise.
971 */
972 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
973 u8 status, int in_wq)
974 {
975 struct ata_link *link = qc->dev->link;
976 struct ata_eh_info *ehi = &link->eh_info;
977 int poll_next;
978
979 lockdep_assert_held(ap->lock);
980
981 WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
982
983 /* Make sure ata_sff_qc_issue() does not throw things
984 * like DMA polling into the workqueue. Notice that
985 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
986 */
987 WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
988
989 fsm_start:
990 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
991 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
992
993 switch (ap->hsm_task_state) {
994 case HSM_ST_FIRST:
995 /* Send first data block or PACKET CDB */
996
997 /* If polling, we will stay in the work queue after
998 * sending the data. Otherwise, interrupt handler
999 * takes over after sending the data.
1000 */
1001 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
1002
1003 /* check device status */
1004 if (unlikely((status & ATA_DRQ) == 0)) {
1005 /* handle BSY=0, DRQ=0 as error */
1006 if (likely(status & (ATA_ERR | ATA_DF)))
1007 /* device stops HSM for abort/error */
1008 qc->err_mask |= AC_ERR_DEV;
1009 else {
1010 /* HSM violation. Let EH handle this */
1011 ata_ehi_push_desc(ehi,
1012 "ST_FIRST: !(DRQ|ERR|DF)");
1013 qc->err_mask |= AC_ERR_HSM;
1014 }
1015
1016 ap->hsm_task_state = HSM_ST_ERR;
1017 goto fsm_start;
1018 }
1019
1020 /* Device should not ask for data transfer (DRQ=1)
1021 * when it finds something wrong.
1022 * We ignore DRQ here and stop the HSM by
1023 * changing hsm_task_state to HSM_ST_ERR and
1024 * let the EH abort the command or reset the device.
1025 */
1026 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1027 /* Some ATAPI tape drives forget to clear the ERR bit
1028 * when doing the next command (mostly request sense).
1029 * We ignore ERR here to workaround and proceed sending
1030 * the CDB.
1031 */
1032 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
1033 ata_ehi_push_desc(ehi, "ST_FIRST: "
1034 "DRQ=1 with device error, "
1035 "dev_stat 0x%X", status);
1036 qc->err_mask |= AC_ERR_HSM;
1037 ap->hsm_task_state = HSM_ST_ERR;
1038 goto fsm_start;
1039 }
1040 }
1041
1042 if (qc->tf.protocol == ATA_PROT_PIO) {
1043 /* PIO data out protocol.
1044 * send first data block.
1045 */
1046
1047 /* ata_pio_sectors() might change the state
1048 * to HSM_ST_LAST. so, the state is changed here
1049 * before ata_pio_sectors().
1050 */
1051 ap->hsm_task_state = HSM_ST;
1052 ata_pio_sectors(qc);
1053 } else
1054 /* send CDB */
1055 atapi_send_cdb(ap, qc);
1056
1057 /* if polling, ata_sff_pio_task() handles the rest.
1058 * otherwise, interrupt handler takes over from here.
1059 */
1060 break;
1061
1062 case HSM_ST:
1063 /* complete command or read/write the data register */
1064 if (qc->tf.protocol == ATAPI_PROT_PIO) {
1065 /* ATAPI PIO protocol */
1066 if ((status & ATA_DRQ) == 0) {
1067 /* No more data to transfer or device error.
1068 * Device error will be tagged in HSM_ST_LAST.
1069 */
1070 ap->hsm_task_state = HSM_ST_LAST;
1071 goto fsm_start;
1072 }
1073
1074 /* Device should not ask for data transfer (DRQ=1)
1075 * when it finds something wrong.
1076 * We ignore DRQ here and stop the HSM by
1077 * changing hsm_task_state to HSM_ST_ERR and
1078 * let the EH abort the command or reset the device.
1079 */
1080 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1081 ata_ehi_push_desc(ehi, "ST-ATAPI: "
1082 "DRQ=1 with device error, "
1083 "dev_stat 0x%X", status);
1084 qc->err_mask |= AC_ERR_HSM;
1085 ap->hsm_task_state = HSM_ST_ERR;
1086 goto fsm_start;
1087 }
1088
1089 atapi_pio_bytes(qc);
1090
1091 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1092 /* bad ireason reported by device */
1093 goto fsm_start;
1094
1095 } else {
1096 /* ATA PIO protocol */
1097 if (unlikely((status & ATA_DRQ) == 0)) {
1098 /* handle BSY=0, DRQ=0 as error */
1099 if (likely(status & (ATA_ERR | ATA_DF))) {
1100 /* device stops HSM for abort/error */
1101 qc->err_mask |= AC_ERR_DEV;
1102
1103 /* If diagnostic failed and this is
1104 * IDENTIFY, it's likely a phantom
1105 * device. Mark hint.
1106 */
1107 if (qc->dev->horkage &
1108 ATA_HORKAGE_DIAGNOSTIC)
1109 qc->err_mask |=
1110 AC_ERR_NODEV_HINT;
1111 } else {
1112 /* HSM violation. Let EH handle this.
1113 * Phantom devices also trigger this
1114 * condition. Mark hint.
1115 */
1116 ata_ehi_push_desc(ehi, "ST-ATA: "
1117 "DRQ=0 without device error, "
1118 "dev_stat 0x%X", status);
1119 qc->err_mask |= AC_ERR_HSM |
1120 AC_ERR_NODEV_HINT;
1121 }
1122
1123 ap->hsm_task_state = HSM_ST_ERR;
1124 goto fsm_start;
1125 }
1126
1127 /* For PIO reads, some devices may ask for
1128 * data transfer (DRQ=1) alone with ERR=1.
1129 * We respect DRQ here and transfer one
1130 * block of junk data before changing the
1131 * hsm_task_state to HSM_ST_ERR.
1132 *
1133 * For PIO writes, ERR=1 DRQ=1 doesn't make
1134 * sense since the data block has been
1135 * transferred to the device.
1136 */
1137 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1138 /* data might be corrputed */
1139 qc->err_mask |= AC_ERR_DEV;
1140
1141 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1142 ata_pio_sectors(qc);
1143 status = ata_wait_idle(ap);
1144 }
1145
1146 if (status & (ATA_BUSY | ATA_DRQ)) {
1147 ata_ehi_push_desc(ehi, "ST-ATA: "
1148 "BUSY|DRQ persists on ERR|DF, "
1149 "dev_stat 0x%X", status);
1150 qc->err_mask |= AC_ERR_HSM;
1151 }
1152
1153 /* There are oddball controllers with
1154 * status register stuck at 0x7f and
1155 * lbal/m/h at zero which makes it
1156 * pass all other presence detection
1157 * mechanisms we have. Set NODEV_HINT
1158 * for it. Kernel bz#7241.
1159 */
1160 if (status == 0x7f)
1161 qc->err_mask |= AC_ERR_NODEV_HINT;
1162
1163 /* ata_pio_sectors() might change the
1164 * state to HSM_ST_LAST. so, the state
1165 * is changed after ata_pio_sectors().
1166 */
1167 ap->hsm_task_state = HSM_ST_ERR;
1168 goto fsm_start;
1169 }
1170
1171 ata_pio_sectors(qc);
1172
1173 if (ap->hsm_task_state == HSM_ST_LAST &&
1174 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1175 /* all data read */
1176 status = ata_wait_idle(ap);
1177 goto fsm_start;
1178 }
1179 }
1180
1181 poll_next = 1;
1182 break;
1183
1184 case HSM_ST_LAST:
1185 if (unlikely(!ata_ok(status))) {
1186 qc->err_mask |= __ac_err_mask(status);
1187 ap->hsm_task_state = HSM_ST_ERR;
1188 goto fsm_start;
1189 }
1190
1191 /* no more data to transfer */
1192 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1193 ap->print_id, qc->dev->devno, status);
1194
1195 WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1196
1197 ap->hsm_task_state = HSM_ST_IDLE;
1198
1199 /* complete taskfile transaction */
1200 ata_hsm_qc_complete(qc, in_wq);
1201
1202 poll_next = 0;
1203 break;
1204
1205 case HSM_ST_ERR:
1206 ap->hsm_task_state = HSM_ST_IDLE;
1207
1208 /* complete taskfile transaction */
1209 ata_hsm_qc_complete(qc, in_wq);
1210
1211 poll_next = 0;
1212 break;
1213 default:
1214 poll_next = 0;
1215 WARN(true, "ata%d: SFF host state machine in invalid state %d",
1216 ap->print_id, ap->hsm_task_state);
1217 }
1218
1219 return poll_next;
1220 }
1221 EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
1222
1223 void ata_sff_queue_work(struct work_struct *work)
1224 {
1225 queue_work(ata_sff_wq, work);
1226 }
1227 EXPORT_SYMBOL_GPL(ata_sff_queue_work);
1228
1229 void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay)
1230 {
1231 queue_delayed_work(ata_sff_wq, dwork, delay);
1232 }
1233 EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work);
1234
1235 void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay)
1236 {
1237 struct ata_port *ap = link->ap;
1238
1239 WARN_ON((ap->sff_pio_task_link != NULL) &&
1240 (ap->sff_pio_task_link != link));
1241 ap->sff_pio_task_link = link;
1242
1243 /* may fail if ata_sff_flush_pio_task() in progress */
1244 ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay));
1245 }
1246 EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task);
1247
1248 void ata_sff_flush_pio_task(struct ata_port *ap)
1249 {
1250 DPRINTK("ENTER\n");
1251
1252 cancel_delayed_work_sync(&ap->sff_pio_task);
1253
1254 /*
1255 * We wanna reset the HSM state to IDLE. If we do so without
1256 * grabbing the port lock, critical sections protected by it which
1257 * expect the HSM state to stay stable may get surprised. For
1258 * example, we may set IDLE in between the time
1259 * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls
1260 * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG().
1261 */
1262 spin_lock_irq(ap->lock);
1263 ap->hsm_task_state = HSM_ST_IDLE;
1264 spin_unlock_irq(ap->lock);
1265
1266 ap->sff_pio_task_link = NULL;
1267
1268 if (ata_msg_ctl(ap))
1269 ata_port_dbg(ap, "%s: EXIT\n", __func__);
1270 }
1271
1272 static void ata_sff_pio_task(struct work_struct *work)
1273 {
1274 struct ata_port *ap =
1275 container_of(work, struct ata_port, sff_pio_task.work);
1276 struct ata_link *link = ap->sff_pio_task_link;
1277 struct ata_queued_cmd *qc;
1278 u8 status;
1279 int poll_next;
1280
1281 spin_lock_irq(ap->lock);
1282
1283 BUG_ON(ap->sff_pio_task_link == NULL);
1284 /* qc can be NULL if timeout occurred */
1285 qc = ata_qc_from_tag(ap, link->active_tag);
1286 if (!qc) {
1287 ap->sff_pio_task_link = NULL;
1288 goto out_unlock;
1289 }
1290
1291 fsm_start:
1292 WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
1293
1294 /*
1295 * This is purely heuristic. This is a fast path.
1296 * Sometimes when we enter, BSY will be cleared in
1297 * a chk-status or two. If not, the drive is probably seeking
1298 * or something. Snooze for a couple msecs, then
1299 * chk-status again. If still busy, queue delayed work.
1300 */
1301 status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1302 if (status & ATA_BUSY) {
1303 spin_unlock_irq(ap->lock);
1304 ata_msleep(ap, 2);
1305 spin_lock_irq(ap->lock);
1306
1307 status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1308 if (status & ATA_BUSY) {
1309 ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE);
1310 goto out_unlock;
1311 }
1312 }
1313
1314 /*
1315 * hsm_move() may trigger another command to be processed.
1316 * clean the link beforehand.
1317 */
1318 ap->sff_pio_task_link = NULL;
1319 /* move the HSM */
1320 poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1321
1322 /* another command or interrupt handler
1323 * may be running at this point.
1324 */
1325 if (poll_next)
1326 goto fsm_start;
1327 out_unlock:
1328 spin_unlock_irq(ap->lock);
1329 }
1330
1331 /**
1332 * ata_sff_qc_issue - issue taskfile to a SFF controller
1333 * @qc: command to issue to device
1334 *
1335 * This function issues a PIO or NODATA command to a SFF
1336 * controller.
1337 *
1338 * LOCKING:
1339 * spin_lock_irqsave(host lock)
1340 *
1341 * RETURNS:
1342 * Zero on success, AC_ERR_* mask on failure
1343 */
1344 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1345 {
1346 struct ata_port *ap = qc->ap;
1347 struct ata_link *link = qc->dev->link;
1348
1349 /* Use polling pio if the LLD doesn't handle
1350 * interrupt driven pio and atapi CDB interrupt.
1351 */
1352 if (ap->flags & ATA_FLAG_PIO_POLLING)
1353 qc->tf.flags |= ATA_TFLAG_POLLING;
1354
1355 /* select the device */
1356 ata_dev_select(ap, qc->dev->devno, 1, 0);
1357
1358 /* start the command */
1359 switch (qc->tf.protocol) {
1360 case ATA_PROT_NODATA:
1361 if (qc->tf.flags & ATA_TFLAG_POLLING)
1362 ata_qc_set_polling(qc);
1363
1364 ata_tf_to_host(ap, &qc->tf);
1365 ap->hsm_task_state = HSM_ST_LAST;
1366
1367 if (qc->tf.flags & ATA_TFLAG_POLLING)
1368 ata_sff_queue_pio_task(link, 0);
1369
1370 break;
1371
1372 case ATA_PROT_PIO:
1373 if (qc->tf.flags & ATA_TFLAG_POLLING)
1374 ata_qc_set_polling(qc);
1375
1376 ata_tf_to_host(ap, &qc->tf);
1377
1378 if (qc->tf.flags & ATA_TFLAG_WRITE) {
1379 /* PIO data out protocol */
1380 ap->hsm_task_state = HSM_ST_FIRST;
1381 ata_sff_queue_pio_task(link, 0);
1382
1383 /* always send first data block using the
1384 * ata_sff_pio_task() codepath.
1385 */
1386 } else {
1387 /* PIO data in protocol */
1388 ap->hsm_task_state = HSM_ST;
1389
1390 if (qc->tf.flags & ATA_TFLAG_POLLING)
1391 ata_sff_queue_pio_task(link, 0);
1392
1393 /* if polling, ata_sff_pio_task() handles the
1394 * rest. otherwise, interrupt handler takes
1395 * over from here.
1396 */
1397 }
1398
1399 break;
1400
1401 case ATAPI_PROT_PIO:
1402 case ATAPI_PROT_NODATA:
1403 if (qc->tf.flags & ATA_TFLAG_POLLING)
1404 ata_qc_set_polling(qc);
1405
1406 ata_tf_to_host(ap, &qc->tf);
1407
1408 ap->hsm_task_state = HSM_ST_FIRST;
1409
1410 /* send cdb by polling if no cdb interrupt */
1411 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1412 (qc->tf.flags & ATA_TFLAG_POLLING))
1413 ata_sff_queue_pio_task(link, 0);
1414 break;
1415
1416 default:
1417 return AC_ERR_SYSTEM;
1418 }
1419
1420 return 0;
1421 }
1422 EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
1423
1424 /**
1425 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1426 * @qc: qc to fill result TF for
1427 *
1428 * @qc is finished and result TF needs to be filled. Fill it
1429 * using ->sff_tf_read.
1430 *
1431 * LOCKING:
1432 * spin_lock_irqsave(host lock)
1433 *
1434 * RETURNS:
1435 * true indicating that result TF is successfully filled.
1436 */
1437 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1438 {
1439 qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1440 return true;
1441 }
1442 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
1443
1444 static unsigned int ata_sff_idle_irq(struct ata_port *ap)
1445 {
1446 ap->stats.idle_irq++;
1447
1448 #ifdef ATA_IRQ_TRAP
1449 if ((ap->stats.idle_irq % 1000) == 0) {
1450 ap->ops->sff_check_status(ap);
1451 if (ap->ops->sff_irq_clear)
1452 ap->ops->sff_irq_clear(ap);
1453 ata_port_warn(ap, "irq trap\n");
1454 return 1;
1455 }
1456 #endif
1457 return 0; /* irq not handled */
1458 }
1459
1460 static unsigned int __ata_sff_port_intr(struct ata_port *ap,
1461 struct ata_queued_cmd *qc,
1462 bool hsmv_on_idle)
1463 {
1464 u8 status;
1465
1466 VPRINTK("ata%u: protocol %d task_state %d\n",
1467 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1468
1469 /* Check whether we are expecting interrupt in this state */
1470 switch (ap->hsm_task_state) {
1471 case HSM_ST_FIRST:
1472 /* Some pre-ATAPI-4 devices assert INTRQ
1473 * at this state when ready to receive CDB.
1474 */
1475
1476 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1477 * The flag was turned on only for atapi devices. No
1478 * need to check ata_is_atapi(qc->tf.protocol) again.
1479 */
1480 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1481 return ata_sff_idle_irq(ap);
1482 break;
1483 case HSM_ST_IDLE:
1484 return ata_sff_idle_irq(ap);
1485 default:
1486 break;
1487 }
1488
1489 /* check main status, clearing INTRQ if needed */
1490 status = ata_sff_irq_status(ap);
1491 if (status & ATA_BUSY) {
1492 if (hsmv_on_idle) {
1493 /* BMDMA engine is already stopped, we're screwed */
1494 qc->err_mask |= AC_ERR_HSM;
1495 ap->hsm_task_state = HSM_ST_ERR;
1496 } else
1497 return ata_sff_idle_irq(ap);
1498 }
1499
1500 /* clear irq events */
1501 if (ap->ops->sff_irq_clear)
1502 ap->ops->sff_irq_clear(ap);
1503
1504 ata_sff_hsm_move(ap, qc, status, 0);
1505
1506 return 1; /* irq handled */
1507 }
1508
1509 /**
1510 * ata_sff_port_intr - Handle SFF port interrupt
1511 * @ap: Port on which interrupt arrived (possibly...)
1512 * @qc: Taskfile currently active in engine
1513 *
1514 * Handle port interrupt for given queued command.
1515 *
1516 * LOCKING:
1517 * spin_lock_irqsave(host lock)
1518 *
1519 * RETURNS:
1520 * One if interrupt was handled, zero if not (shared irq).
1521 */
1522 unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
1523 {
1524 return __ata_sff_port_intr(ap, qc, false);
1525 }
1526 EXPORT_SYMBOL_GPL(ata_sff_port_intr);
1527
1528 static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance,
1529 unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *))
1530 {
1531 struct ata_host *host = dev_instance;
1532 bool retried = false;
1533 unsigned int i;
1534 unsigned int handled, idle, polling;
1535 unsigned long flags;
1536
1537 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1538 spin_lock_irqsave(&host->lock, flags);
1539
1540 retry:
1541 handled = idle = polling = 0;
1542 for (i = 0; i < host->n_ports; i++) {
1543 struct ata_port *ap = host->ports[i];
1544 struct ata_queued_cmd *qc;
1545
1546 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1547 if (qc) {
1548 if (!(qc->tf.flags & ATA_TFLAG_POLLING))
1549 handled |= port_intr(ap, qc);
1550 else
1551 polling |= 1 << i;
1552 } else
1553 idle |= 1 << i;
1554 }
1555
1556 /*
1557 * If no port was expecting IRQ but the controller is actually
1558 * asserting IRQ line, nobody cared will ensue. Check IRQ
1559 * pending status if available and clear spurious IRQ.
1560 */
1561 if (!handled && !retried) {
1562 bool retry = false;
1563
1564 for (i = 0; i < host->n_ports; i++) {
1565 struct ata_port *ap = host->ports[i];
1566
1567 if (polling & (1 << i))
1568 continue;
1569
1570 if (!ap->ops->sff_irq_check ||
1571 !ap->ops->sff_irq_check(ap))
1572 continue;
1573
1574 if (idle & (1 << i)) {
1575 ap->ops->sff_check_status(ap);
1576 if (ap->ops->sff_irq_clear)
1577 ap->ops->sff_irq_clear(ap);
1578 } else {
1579 /* clear INTRQ and check if BUSY cleared */
1580 if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
1581 retry |= true;
1582 /*
1583 * With command in flight, we can't do
1584 * sff_irq_clear() w/o racing with completion.
1585 */
1586 }
1587 }
1588
1589 if (retry) {
1590 retried = true;
1591 goto retry;
1592 }
1593 }
1594
1595 spin_unlock_irqrestore(&host->lock, flags);
1596
1597 return IRQ_RETVAL(handled);
1598 }
1599
1600 /**
1601 * ata_sff_interrupt - Default SFF ATA host interrupt handler
1602 * @irq: irq line (unused)
1603 * @dev_instance: pointer to our ata_host information structure
1604 *
1605 * Default interrupt handler for PCI IDE devices. Calls
1606 * ata_sff_port_intr() for each port that is not disabled.
1607 *
1608 * LOCKING:
1609 * Obtains host lock during operation.
1610 *
1611 * RETURNS:
1612 * IRQ_NONE or IRQ_HANDLED.
1613 */
1614 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1615 {
1616 return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr);
1617 }
1618 EXPORT_SYMBOL_GPL(ata_sff_interrupt);
1619
1620 /**
1621 * ata_sff_lost_interrupt - Check for an apparent lost interrupt
1622 * @ap: port that appears to have timed out
1623 *
1624 * Called from the libata error handlers when the core code suspects
1625 * an interrupt has been lost. If it has complete anything we can and
1626 * then return. Interface must support altstatus for this faster
1627 * recovery to occur.
1628 *
1629 * Locking:
1630 * Caller holds host lock
1631 */
1632
1633 void ata_sff_lost_interrupt(struct ata_port *ap)
1634 {
1635 u8 status;
1636 struct ata_queued_cmd *qc;
1637
1638 /* Only one outstanding command per SFF channel */
1639 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1640 /* We cannot lose an interrupt on a non-existent or polled command */
1641 if (!qc || qc->tf.flags & ATA_TFLAG_POLLING)
1642 return;
1643 /* See if the controller thinks it is still busy - if so the command
1644 isn't a lost IRQ but is still in progress */
1645 status = ata_sff_altstatus(ap);
1646 if (status & ATA_BUSY)
1647 return;
1648
1649 /* There was a command running, we are no longer busy and we have
1650 no interrupt. */
1651 ata_port_warn(ap, "lost interrupt (Status 0x%x)\n",
1652 status);
1653 /* Run the host interrupt logic as if the interrupt had not been
1654 lost */
1655 ata_sff_port_intr(ap, qc);
1656 }
1657 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
1658
1659 /**
1660 * ata_sff_freeze - Freeze SFF controller port
1661 * @ap: port to freeze
1662 *
1663 * Freeze SFF controller port.
1664 *
1665 * LOCKING:
1666 * Inherited from caller.
1667 */
1668 void ata_sff_freeze(struct ata_port *ap)
1669 {
1670 ap->ctl |= ATA_NIEN;
1671 ap->last_ctl = ap->ctl;
1672
1673 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr)
1674 ata_sff_set_devctl(ap, ap->ctl);
1675
1676 /* Under certain circumstances, some controllers raise IRQ on
1677 * ATA_NIEN manipulation. Also, many controllers fail to mask
1678 * previously pending IRQ on ATA_NIEN assertion. Clear it.
1679 */
1680 ap->ops->sff_check_status(ap);
1681
1682 if (ap->ops->sff_irq_clear)
1683 ap->ops->sff_irq_clear(ap);
1684 }
1685 EXPORT_SYMBOL_GPL(ata_sff_freeze);
1686
1687 /**
1688 * ata_sff_thaw - Thaw SFF controller port
1689 * @ap: port to thaw
1690 *
1691 * Thaw SFF controller port.
1692 *
1693 * LOCKING:
1694 * Inherited from caller.
1695 */
1696 void ata_sff_thaw(struct ata_port *ap)
1697 {
1698 /* clear & re-enable interrupts */
1699 ap->ops->sff_check_status(ap);
1700 if (ap->ops->sff_irq_clear)
1701 ap->ops->sff_irq_clear(ap);
1702 ata_sff_irq_on(ap);
1703 }
1704 EXPORT_SYMBOL_GPL(ata_sff_thaw);
1705
1706 /**
1707 * ata_sff_prereset - prepare SFF link for reset
1708 * @link: SFF link to be reset
1709 * @deadline: deadline jiffies for the operation
1710 *
1711 * SFF link @link is about to be reset. Initialize it. It first
1712 * calls ata_std_prereset() and wait for !BSY if the port is
1713 * being softreset.
1714 *
1715 * LOCKING:
1716 * Kernel thread context (may sleep)
1717 *
1718 * RETURNS:
1719 * 0 on success, -errno otherwise.
1720 */
1721 int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1722 {
1723 struct ata_eh_context *ehc = &link->eh_context;
1724 int rc;
1725
1726 rc = ata_std_prereset(link, deadline);
1727 if (rc)
1728 return rc;
1729
1730 /* if we're about to do hardreset, nothing more to do */
1731 if (ehc->i.action & ATA_EH_HARDRESET)
1732 return 0;
1733
1734 /* wait for !BSY if we don't know that no device is attached */
1735 if (!ata_link_offline(link)) {
1736 rc = ata_sff_wait_ready(link, deadline);
1737 if (rc && rc != -ENODEV) {
1738 ata_link_warn(link,
1739 "device not ready (errno=%d), forcing hardreset\n",
1740 rc);
1741 ehc->i.action |= ATA_EH_HARDRESET;
1742 }
1743 }
1744
1745 return 0;
1746 }
1747 EXPORT_SYMBOL_GPL(ata_sff_prereset);
1748
1749 /**
1750 * ata_devchk - PATA device presence detection
1751 * @ap: ATA channel to examine
1752 * @device: Device to examine (starting at zero)
1753 *
1754 * This technique was originally described in
1755 * Hale Landis's ATADRVR (www.ata-atapi.com), and
1756 * later found its way into the ATA/ATAPI spec.
1757 *
1758 * Write a pattern to the ATA shadow registers,
1759 * and if a device is present, it will respond by
1760 * correctly storing and echoing back the
1761 * ATA shadow register contents.
1762 *
1763 * LOCKING:
1764 * caller.
1765 */
1766 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1767 {
1768 struct ata_ioports *ioaddr = &ap->ioaddr;
1769 u8 nsect, lbal;
1770
1771 ap->ops->sff_dev_select(ap, device);
1772
1773 iowrite8(0x55, ioaddr->nsect_addr);
1774 iowrite8(0xaa, ioaddr->lbal_addr);
1775
1776 iowrite8(0xaa, ioaddr->nsect_addr);
1777 iowrite8(0x55, ioaddr->lbal_addr);
1778
1779 iowrite8(0x55, ioaddr->nsect_addr);
1780 iowrite8(0xaa, ioaddr->lbal_addr);
1781
1782 nsect = ioread8(ioaddr->nsect_addr);
1783 lbal = ioread8(ioaddr->lbal_addr);
1784
1785 if ((nsect == 0x55) && (lbal == 0xaa))
1786 return 1; /* we found a device */
1787
1788 return 0; /* nothing found */
1789 }
1790
1791 /**
1792 * ata_sff_dev_classify - Parse returned ATA device signature
1793 * @dev: ATA device to classify (starting at zero)
1794 * @present: device seems present
1795 * @r_err: Value of error register on completion
1796 *
1797 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1798 * an ATA/ATAPI-defined set of values is placed in the ATA
1799 * shadow registers, indicating the results of device detection
1800 * and diagnostics.
1801 *
1802 * Select the ATA device, and read the values from the ATA shadow
1803 * registers. Then parse according to the Error register value,
1804 * and the spec-defined values examined by ata_dev_classify().
1805 *
1806 * LOCKING:
1807 * caller.
1808 *
1809 * RETURNS:
1810 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1811 */
1812 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
1813 u8 *r_err)
1814 {
1815 struct ata_port *ap = dev->link->ap;
1816 struct ata_taskfile tf;
1817 unsigned int class;
1818 u8 err;
1819
1820 ap->ops->sff_dev_select(ap, dev->devno);
1821
1822 memset(&tf, 0, sizeof(tf));
1823
1824 ap->ops->sff_tf_read(ap, &tf);
1825 err = tf.feature;
1826 if (r_err)
1827 *r_err = err;
1828
1829 /* see if device passed diags: continue and warn later */
1830 if (err == 0)
1831 /* diagnostic fail : do nothing _YET_ */
1832 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1833 else if (err == 1)
1834 /* do nothing */ ;
1835 else if ((dev->devno == 0) && (err == 0x81))
1836 /* do nothing */ ;
1837 else
1838 return ATA_DEV_NONE;
1839
1840 /* determine if device is ATA or ATAPI */
1841 class = ata_dev_classify(&tf);
1842
1843 if (class == ATA_DEV_UNKNOWN) {
1844 /* If the device failed diagnostic, it's likely to
1845 * have reported incorrect device signature too.
1846 * Assume ATA device if the device seems present but
1847 * device signature is invalid with diagnostic
1848 * failure.
1849 */
1850 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1851 class = ATA_DEV_ATA;
1852 else
1853 class = ATA_DEV_NONE;
1854 } else if ((class == ATA_DEV_ATA) &&
1855 (ap->ops->sff_check_status(ap) == 0))
1856 class = ATA_DEV_NONE;
1857
1858 return class;
1859 }
1860 EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
1861
1862 /**
1863 * ata_sff_wait_after_reset - wait for devices to become ready after reset
1864 * @link: SFF link which is just reset
1865 * @devmask: mask of present devices
1866 * @deadline: deadline jiffies for the operation
1867 *
1868 * Wait devices attached to SFF @link to become ready after
1869 * reset. It contains preceding 150ms wait to avoid accessing TF
1870 * status register too early.
1871 *
1872 * LOCKING:
1873 * Kernel thread context (may sleep).
1874 *
1875 * RETURNS:
1876 * 0 on success, -ENODEV if some or all of devices in @devmask
1877 * don't seem to exist. -errno on other errors.
1878 */
1879 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1880 unsigned long deadline)
1881 {
1882 struct ata_port *ap = link->ap;
1883 struct ata_ioports *ioaddr = &ap->ioaddr;
1884 unsigned int dev0 = devmask & (1 << 0);
1885 unsigned int dev1 = devmask & (1 << 1);
1886 int rc, ret = 0;
1887
1888 ata_msleep(ap, ATA_WAIT_AFTER_RESET);
1889
1890 /* always check readiness of the master device */
1891 rc = ata_sff_wait_ready(link, deadline);
1892 /* -ENODEV means the odd clown forgot the D7 pulldown resistor
1893 * and TF status is 0xff, bail out on it too.
1894 */
1895 if (rc)
1896 return rc;
1897
1898 /* if device 1 was found in ata_devchk, wait for register
1899 * access briefly, then wait for BSY to clear.
1900 */
1901 if (dev1) {
1902 int i;
1903
1904 ap->ops->sff_dev_select(ap, 1);
1905
1906 /* Wait for register access. Some ATAPI devices fail
1907 * to set nsect/lbal after reset, so don't waste too
1908 * much time on it. We're gonna wait for !BSY anyway.
1909 */
1910 for (i = 0; i < 2; i++) {
1911 u8 nsect, lbal;
1912
1913 nsect = ioread8(ioaddr->nsect_addr);
1914 lbal = ioread8(ioaddr->lbal_addr);
1915 if ((nsect == 1) && (lbal == 1))
1916 break;
1917 ata_msleep(ap, 50); /* give drive a breather */
1918 }
1919
1920 rc = ata_sff_wait_ready(link, deadline);
1921 if (rc) {
1922 if (rc != -ENODEV)
1923 return rc;
1924 ret = rc;
1925 }
1926 }
1927
1928 /* is all this really necessary? */
1929 ap->ops->sff_dev_select(ap, 0);
1930 if (dev1)
1931 ap->ops->sff_dev_select(ap, 1);
1932 if (dev0)
1933 ap->ops->sff_dev_select(ap, 0);
1934
1935 return ret;
1936 }
1937 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
1938
1939 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
1940 unsigned long deadline)
1941 {
1942 struct ata_ioports *ioaddr = &ap->ioaddr;
1943
1944 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1945
1946 if (ap->ioaddr.ctl_addr) {
1947 /* software reset. causes dev0 to be selected */
1948 iowrite8(ap->ctl, ioaddr->ctl_addr);
1949 udelay(20); /* FIXME: flush */
1950 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1951 udelay(20); /* FIXME: flush */
1952 iowrite8(ap->ctl, ioaddr->ctl_addr);
1953 ap->last_ctl = ap->ctl;
1954 }
1955
1956 /* wait the port to become ready */
1957 return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
1958 }
1959
1960 /**
1961 * ata_sff_softreset - reset host port via ATA SRST
1962 * @link: ATA link to reset
1963 * @classes: resulting classes of attached devices
1964 * @deadline: deadline jiffies for the operation
1965 *
1966 * Reset host port using ATA SRST.
1967 *
1968 * LOCKING:
1969 * Kernel thread context (may sleep)
1970 *
1971 * RETURNS:
1972 * 0 on success, -errno otherwise.
1973 */
1974 int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
1975 unsigned long deadline)
1976 {
1977 struct ata_port *ap = link->ap;
1978 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
1979 unsigned int devmask = 0;
1980 int rc;
1981 u8 err;
1982
1983 DPRINTK("ENTER\n");
1984
1985 /* determine if device 0/1 are present */
1986 if (ata_devchk(ap, 0))
1987 devmask |= (1 << 0);
1988 if (slave_possible && ata_devchk(ap, 1))
1989 devmask |= (1 << 1);
1990
1991 /* select device 0 again */
1992 ap->ops->sff_dev_select(ap, 0);
1993
1994 /* issue bus reset */
1995 DPRINTK("about to softreset, devmask=%x\n", devmask);
1996 rc = ata_bus_softreset(ap, devmask, deadline);
1997 /* if link is occupied, -ENODEV too is an error */
1998 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
1999 ata_link_err(link, "SRST failed (errno=%d)\n", rc);
2000 return rc;
2001 }
2002
2003 /* determine by signature whether we have ATA or ATAPI devices */
2004 classes[0] = ata_sff_dev_classify(&link->device[0],
2005 devmask & (1 << 0), &err);
2006 if (slave_possible && err != 0x81)
2007 classes[1] = ata_sff_dev_classify(&link->device[1],
2008 devmask & (1 << 1), &err);
2009
2010 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2011 return 0;
2012 }
2013 EXPORT_SYMBOL_GPL(ata_sff_softreset);
2014
2015 /**
2016 * sata_sff_hardreset - reset host port via SATA phy reset
2017 * @link: link to reset
2018 * @class: resulting class of attached device
2019 * @deadline: deadline jiffies for the operation
2020 *
2021 * SATA phy-reset host port using DET bits of SControl register,
2022 * wait for !BSY and classify the attached device.
2023 *
2024 * LOCKING:
2025 * Kernel thread context (may sleep)
2026 *
2027 * RETURNS:
2028 * 0 on success, -errno otherwise.
2029 */
2030 int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
2031 unsigned long deadline)
2032 {
2033 struct ata_eh_context *ehc = &link->eh_context;
2034 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2035 bool online;
2036 int rc;
2037
2038 rc = sata_link_hardreset(link, timing, deadline, &online,
2039 ata_sff_check_ready);
2040 if (online)
2041 *class = ata_sff_dev_classify(link->device, 1, NULL);
2042
2043 DPRINTK("EXIT, class=%u\n", *class);
2044 return rc;
2045 }
2046 EXPORT_SYMBOL_GPL(sata_sff_hardreset);
2047
2048 /**
2049 * ata_sff_postreset - SFF postreset callback
2050 * @link: the target SFF ata_link
2051 * @classes: classes of attached devices
2052 *
2053 * This function is invoked after a successful reset. It first
2054 * calls ata_std_postreset() and performs SFF specific postreset
2055 * processing.
2056 *
2057 * LOCKING:
2058 * Kernel thread context (may sleep)
2059 */
2060 void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
2061 {
2062 struct ata_port *ap = link->ap;
2063
2064 ata_std_postreset(link, classes);
2065
2066 /* is double-select really necessary? */
2067 if (classes[0] != ATA_DEV_NONE)
2068 ap->ops->sff_dev_select(ap, 1);
2069 if (classes[1] != ATA_DEV_NONE)
2070 ap->ops->sff_dev_select(ap, 0);
2071
2072 /* bail out if no device is present */
2073 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2074 DPRINTK("EXIT, no device\n");
2075 return;
2076 }
2077
2078 /* set up device control */
2079 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) {
2080 ata_sff_set_devctl(ap, ap->ctl);
2081 ap->last_ctl = ap->ctl;
2082 }
2083 }
2084 EXPORT_SYMBOL_GPL(ata_sff_postreset);
2085
2086 /**
2087 * ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2088 * @qc: command
2089 *
2090 * Drain the FIFO and device of any stuck data following a command
2091 * failing to complete. In some cases this is necessary before a
2092 * reset will recover the device.
2093 *
2094 */
2095
2096 void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
2097 {
2098 int count;
2099 struct ata_port *ap;
2100
2101 /* We only need to flush incoming data when a command was running */
2102 if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
2103 return;
2104
2105 ap = qc->ap;
2106 /* Drain up to 64K of data before we give up this recovery method */
2107 for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
2108 && count < 65536; count += 2)
2109 ioread16(ap->ioaddr.data_addr);
2110
2111 /* Can become DEBUG later */
2112 if (count)
2113 ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count);
2114
2115 }
2116 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
2117
2118 /**
2119 * ata_sff_error_handler - Stock error handler for SFF controller
2120 * @ap: port to handle error for
2121 *
2122 * Stock error handler for SFF controller. It can handle both
2123 * PATA and SATA controllers. Many controllers should be able to
2124 * use this EH as-is or with some added handling before and
2125 * after.
2126 *
2127 * LOCKING:
2128 * Kernel thread context (may sleep)
2129 */
2130 void ata_sff_error_handler(struct ata_port *ap)
2131 {
2132 ata_reset_fn_t softreset = ap->ops->softreset;
2133 ata_reset_fn_t hardreset = ap->ops->hardreset;
2134 struct ata_queued_cmd *qc;
2135 unsigned long flags;
2136
2137 qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2138 if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2139 qc = NULL;
2140
2141 spin_lock_irqsave(ap->lock, flags);
2142
2143 /*
2144 * We *MUST* do FIFO draining before we issue a reset as
2145 * several devices helpfully clear their internal state and
2146 * will lock solid if we touch the data port post reset. Pass
2147 * qc in case anyone wants to do different PIO/DMA recovery or
2148 * has per command fixups
2149 */
2150 if (ap->ops->sff_drain_fifo)
2151 ap->ops->sff_drain_fifo(qc);
2152
2153 spin_unlock_irqrestore(ap->lock, flags);
2154
2155 /* ignore built-in hardresets if SCR access is not available */
2156 if ((hardreset == sata_std_hardreset ||
2157 hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link))
2158 hardreset = NULL;
2159
2160 ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2161 ap->ops->postreset);
2162 }
2163 EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2164
2165 /**
2166 * ata_sff_std_ports - initialize ioaddr with standard port offsets.
2167 * @ioaddr: IO address structure to be initialized
2168 *
2169 * Utility function which initializes data_addr, error_addr,
2170 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2171 * device_addr, status_addr, and command_addr to standard offsets
2172 * relative to cmd_addr.
2173 *
2174 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2175 */
2176 void ata_sff_std_ports(struct ata_ioports *ioaddr)
2177 {
2178 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2179 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2180 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2181 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2182 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2183 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2184 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2185 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2186 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2187 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2188 }
2189 EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2190
2191 #ifdef CONFIG_PCI
2192
2193 static int ata_resources_present(struct pci_dev *pdev, int port)
2194 {
2195 int i;
2196
2197 /* Check the PCI resources for this channel are enabled */
2198 port = port * 2;
2199 for (i = 0; i < 2; i++) {
2200 if (pci_resource_start(pdev, port + i) == 0 ||
2201 pci_resource_len(pdev, port + i) == 0)
2202 return 0;
2203 }
2204 return 1;
2205 }
2206
2207 /**
2208 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2209 * @host: target ATA host
2210 *
2211 * Acquire native PCI ATA resources for @host and initialize the
2212 * first two ports of @host accordingly. Ports marked dummy are
2213 * skipped and allocation failure makes the port dummy.
2214 *
2215 * Note that native PCI resources are valid even for legacy hosts
2216 * as we fix up pdev resources array early in boot, so this
2217 * function can be used for both native and legacy SFF hosts.
2218 *
2219 * LOCKING:
2220 * Inherited from calling layer (may sleep).
2221 *
2222 * RETURNS:
2223 * 0 if at least one port is initialized, -ENODEV if no port is
2224 * available.
2225 */
2226 int ata_pci_sff_init_host(struct ata_host *host)
2227 {
2228 struct device *gdev = host->dev;
2229 struct pci_dev *pdev = to_pci_dev(gdev);
2230 unsigned int mask = 0;
2231 int i, rc;
2232
2233 /* request, iomap BARs and init port addresses accordingly */
2234 for (i = 0; i < 2; i++) {
2235 struct ata_port *ap = host->ports[i];
2236 int base = i * 2;
2237 void __iomem * const *iomap;
2238
2239 if (ata_port_is_dummy(ap))
2240 continue;
2241
2242 /* Discard disabled ports. Some controllers show
2243 * their unused channels this way. Disabled ports are
2244 * made dummy.
2245 */
2246 if (!ata_resources_present(pdev, i)) {
2247 ap->ops = &ata_dummy_port_ops;
2248 continue;
2249 }
2250
2251 rc = pcim_iomap_regions(pdev, 0x3 << base,
2252 dev_driver_string(gdev));
2253 if (rc) {
2254 dev_warn(gdev,
2255 "failed to request/iomap BARs for port %d (errno=%d)\n",
2256 i, rc);
2257 if (rc == -EBUSY)
2258 pcim_pin_device(pdev);
2259 ap->ops = &ata_dummy_port_ops;
2260 continue;
2261 }
2262 host->iomap = iomap = pcim_iomap_table(pdev);
2263
2264 ap->ioaddr.cmd_addr = iomap[base];
2265 ap->ioaddr.altstatus_addr =
2266 ap->ioaddr.ctl_addr = (void __iomem *)
2267 ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2268 ata_sff_std_ports(&ap->ioaddr);
2269
2270 ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2271 (unsigned long long)pci_resource_start(pdev, base),
2272 (unsigned long long)pci_resource_start(pdev, base + 1));
2273
2274 mask |= 1 << i;
2275 }
2276
2277 if (!mask) {
2278 dev_err(gdev, "no available native port\n");
2279 return -ENODEV;
2280 }
2281
2282 return 0;
2283 }
2284 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2285
2286 /**
2287 * ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
2288 * @pdev: target PCI device
2289 * @ppi: array of port_info, must be enough for two ports
2290 * @r_host: out argument for the initialized ATA host
2291 *
2292 * Helper to allocate PIO-only SFF ATA host for @pdev, acquire
2293 * all PCI resources and initialize it accordingly in one go.
2294 *
2295 * LOCKING:
2296 * Inherited from calling layer (may sleep).
2297 *
2298 * RETURNS:
2299 * 0 on success, -errno otherwise.
2300 */
2301 int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2302 const struct ata_port_info * const *ppi,
2303 struct ata_host **r_host)
2304 {
2305 struct ata_host *host;
2306 int rc;
2307
2308 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2309 return -ENOMEM;
2310
2311 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2312 if (!host) {
2313 dev_err(&pdev->dev, "failed to allocate ATA host\n");
2314 rc = -ENOMEM;
2315 goto err_out;
2316 }
2317
2318 rc = ata_pci_sff_init_host(host);
2319 if (rc)
2320 goto err_out;
2321
2322 devres_remove_group(&pdev->dev, NULL);
2323 *r_host = host;
2324 return 0;
2325
2326 err_out:
2327 devres_release_group(&pdev->dev, NULL);
2328 return rc;
2329 }
2330 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2331
2332 /**
2333 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2334 * @host: target SFF ATA host
2335 * @irq_handler: irq_handler used when requesting IRQ(s)
2336 * @sht: scsi_host_template to use when registering the host
2337 *
2338 * This is the counterpart of ata_host_activate() for SFF ATA
2339 * hosts. This separate helper is necessary because SFF hosts
2340 * use two separate interrupts in legacy mode.
2341 *
2342 * LOCKING:
2343 * Inherited from calling layer (may sleep).
2344 *
2345 * RETURNS:
2346 * 0 on success, -errno otherwise.
2347 */
2348 int ata_pci_sff_activate_host(struct ata_host *host,
2349 irq_handler_t irq_handler,
2350 struct scsi_host_template *sht)
2351 {
2352 struct device *dev = host->dev;
2353 struct pci_dev *pdev = to_pci_dev(dev);
2354 const char *drv_name = dev_driver_string(host->dev);
2355 int legacy_mode = 0, rc;
2356
2357 rc = ata_host_start(host);
2358 if (rc)
2359 return rc;
2360
2361 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2362 u8 tmp8, mask = 0;
2363
2364 /*
2365 * ATA spec says we should use legacy mode when one
2366 * port is in legacy mode, but disabled ports on some
2367 * PCI hosts appear as fixed legacy ports, e.g SB600/700
2368 * on which the secondary port is not wired, so
2369 * ignore ports that are marked as 'dummy' during
2370 * this check
2371 */
2372 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2373 if (!ata_port_is_dummy(host->ports[0]))
2374 mask |= (1 << 0);
2375 if (!ata_port_is_dummy(host->ports[1]))
2376 mask |= (1 << 2);
2377 if ((tmp8 & mask) != mask)
2378 legacy_mode = 1;
2379 }
2380
2381 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2382 return -ENOMEM;
2383
2384 if (!legacy_mode && pdev->irq) {
2385 int i;
2386
2387 rc = devm_request_irq(dev, pdev->irq, irq_handler,
2388 IRQF_SHARED, drv_name, host);
2389 if (rc)
2390 goto out;
2391
2392 for (i = 0; i < 2; i++) {
2393 if (ata_port_is_dummy(host->ports[i]))
2394 continue;
2395 ata_port_desc(host->ports[i], "irq %d", pdev->irq);
2396 }
2397 } else if (legacy_mode) {
2398 if (!ata_port_is_dummy(host->ports[0])) {
2399 rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2400 irq_handler, IRQF_SHARED,
2401 drv_name, host);
2402 if (rc)
2403 goto out;
2404
2405 ata_port_desc(host->ports[0], "irq %d",
2406 ATA_PRIMARY_IRQ(pdev));
2407 }
2408
2409 if (!ata_port_is_dummy(host->ports[1])) {
2410 rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2411 irq_handler, IRQF_SHARED,
2412 drv_name, host);
2413 if (rc)
2414 goto out;
2415
2416 ata_port_desc(host->ports[1], "irq %d",
2417 ATA_SECONDARY_IRQ(pdev));
2418 }
2419 }
2420
2421 rc = ata_host_register(host, sht);
2422 out:
2423 if (rc == 0)
2424 devres_remove_group(dev, NULL);
2425 else
2426 devres_release_group(dev, NULL);
2427
2428 return rc;
2429 }
2430 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2431
2432 static const struct ata_port_info *ata_sff_find_valid_pi(
2433 const struct ata_port_info * const *ppi)
2434 {
2435 int i;
2436
2437 /* look up the first valid port_info */
2438 for (i = 0; i < 2 && ppi[i]; i++)
2439 if (ppi[i]->port_ops != &ata_dummy_port_ops)
2440 return ppi[i];
2441
2442 return NULL;
2443 }
2444
2445 static int ata_pci_init_one(struct pci_dev *pdev,
2446 const struct ata_port_info * const *ppi,
2447 struct scsi_host_template *sht, void *host_priv,
2448 int hflags, bool bmdma)
2449 {
2450 struct device *dev = &pdev->dev;
2451 const struct ata_port_info *pi;
2452 struct ata_host *host = NULL;
2453 int rc;
2454
2455 DPRINTK("ENTER\n");
2456
2457 pi = ata_sff_find_valid_pi(ppi);
2458 if (!pi) {
2459 dev_err(&pdev->dev, "no valid port_info specified\n");
2460 return -EINVAL;
2461 }
2462
2463 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2464 return -ENOMEM;
2465
2466 rc = pcim_enable_device(pdev);
2467 if (rc)
2468 goto out;
2469
2470 #ifdef CONFIG_ATA_BMDMA
2471 if (bmdma)
2472 /* prepare and activate BMDMA host */
2473 rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host);
2474 else
2475 #endif
2476 /* prepare and activate SFF host */
2477 rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2478 if (rc)
2479 goto out;
2480 host->private_data = host_priv;
2481 host->flags |= hflags;
2482
2483 #ifdef CONFIG_ATA_BMDMA
2484 if (bmdma) {
2485 pci_set_master(pdev);
2486 rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht);
2487 } else
2488 #endif
2489 rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
2490 out:
2491 if (rc == 0)
2492 devres_remove_group(&pdev->dev, NULL);
2493 else
2494 devres_release_group(&pdev->dev, NULL);
2495
2496 return rc;
2497 }
2498
2499 /**
2500 * ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
2501 * @pdev: Controller to be initialized
2502 * @ppi: array of port_info, must be enough for two ports
2503 * @sht: scsi_host_template to use when registering the host
2504 * @host_priv: host private_data
2505 * @hflag: host flags
2506 *
2507 * This is a helper function which can be called from a driver's
2508 * xxx_init_one() probe function if the hardware uses traditional
2509 * IDE taskfile registers and is PIO only.
2510 *
2511 * ASSUMPTION:
2512 * Nobody makes a single channel controller that appears solely as
2513 * the secondary legacy port on PCI.
2514 *
2515 * LOCKING:
2516 * Inherited from PCI layer (may sleep).
2517 *
2518 * RETURNS:
2519 * Zero on success, negative on errno-based value on error.
2520 */
2521 int ata_pci_sff_init_one(struct pci_dev *pdev,
2522 const struct ata_port_info * const *ppi,
2523 struct scsi_host_template *sht, void *host_priv, int hflag)
2524 {
2525 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0);
2526 }
2527 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
2528
2529 #endif /* CONFIG_PCI */
2530
2531 /*
2532 * BMDMA support
2533 */
2534
2535 #ifdef CONFIG_ATA_BMDMA
2536
2537 const struct ata_port_operations ata_bmdma_port_ops = {
2538 .inherits = &ata_sff_port_ops,
2539
2540 .error_handler = ata_bmdma_error_handler,
2541 .post_internal_cmd = ata_bmdma_post_internal_cmd,
2542
2543 .qc_prep = ata_bmdma_qc_prep,
2544 .qc_issue = ata_bmdma_qc_issue,
2545
2546 .sff_irq_clear = ata_bmdma_irq_clear,
2547 .bmdma_setup = ata_bmdma_setup,
2548 .bmdma_start = ata_bmdma_start,
2549 .bmdma_stop = ata_bmdma_stop,
2550 .bmdma_status = ata_bmdma_status,
2551
2552 .port_start = ata_bmdma_port_start,
2553 };
2554 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
2555
2556 const struct ata_port_operations ata_bmdma32_port_ops = {
2557 .inherits = &ata_bmdma_port_ops,
2558
2559 .sff_data_xfer = ata_sff_data_xfer32,
2560 .port_start = ata_bmdma_port_start32,
2561 };
2562 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
2563
2564 /**
2565 * ata_bmdma_fill_sg - Fill PCI IDE PRD table
2566 * @qc: Metadata associated with taskfile to be transferred
2567 *
2568 * Fill PCI IDE PRD (scatter-gather) table with segments
2569 * associated with the current disk command.
2570 *
2571 * LOCKING:
2572 * spin_lock_irqsave(host lock)
2573 *
2574 */
2575 static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc)
2576 {
2577 struct ata_port *ap = qc->ap;
2578 struct ata_bmdma_prd *prd = ap->bmdma_prd;
2579 struct scatterlist *sg;
2580 unsigned int si, pi;
2581
2582 pi = 0;
2583 for_each_sg(qc->sg, sg, qc->n_elem, si) {
2584 u32 addr, offset;
2585 u32 sg_len, len;
2586
2587 /* determine if physical DMA addr spans 64K boundary.
2588 * Note h/w doesn't support 64-bit, so we unconditionally
2589 * truncate dma_addr_t to u32.
2590 */
2591 addr = (u32) sg_dma_address(sg);
2592 sg_len = sg_dma_len(sg);
2593
2594 while (sg_len) {
2595 offset = addr & 0xffff;
2596 len = sg_len;
2597 if ((offset + sg_len) > 0x10000)
2598 len = 0x10000 - offset;
2599
2600 prd[pi].addr = cpu_to_le32(addr);
2601 prd[pi].flags_len = cpu_to_le32(len & 0xffff);
2602 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2603
2604 pi++;
2605 sg_len -= len;
2606 addr += len;
2607 }
2608 }
2609
2610 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2611 }
2612
2613 /**
2614 * ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
2615 * @qc: Metadata associated with taskfile to be transferred
2616 *
2617 * Fill PCI IDE PRD (scatter-gather) table with segments
2618 * associated with the current disk command. Perform the fill
2619 * so that we avoid writing any length 64K records for
2620 * controllers that don't follow the spec.
2621 *
2622 * LOCKING:
2623 * spin_lock_irqsave(host lock)
2624 *
2625 */
2626 static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc)
2627 {
2628 struct ata_port *ap = qc->ap;
2629 struct ata_bmdma_prd *prd = ap->bmdma_prd;
2630 struct scatterlist *sg;
2631 unsigned int si, pi;
2632
2633 pi = 0;
2634 for_each_sg(qc->sg, sg, qc->n_elem, si) {
2635 u32 addr, offset;
2636 u32 sg_len, len, blen;
2637
2638 /* determine if physical DMA addr spans 64K boundary.
2639 * Note h/w doesn't support 64-bit, so we unconditionally
2640 * truncate dma_addr_t to u32.
2641 */
2642 addr = (u32) sg_dma_address(sg);
2643 sg_len = sg_dma_len(sg);
2644
2645 while (sg_len) {
2646 offset = addr & 0xffff;
2647 len = sg_len;
2648 if ((offset + sg_len) > 0x10000)
2649 len = 0x10000 - offset;
2650
2651 blen = len & 0xffff;
2652 prd[pi].addr = cpu_to_le32(addr);
2653 if (blen == 0) {
2654 /* Some PATA chipsets like the CS5530 can't
2655 cope with 0x0000 meaning 64K as the spec
2656 says */
2657 prd[pi].flags_len = cpu_to_le32(0x8000);
2658 blen = 0x8000;
2659 prd[++pi].addr = cpu_to_le32(addr + 0x8000);
2660 }
2661 prd[pi].flags_len = cpu_to_le32(blen);
2662 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2663
2664 pi++;
2665 sg_len -= len;
2666 addr += len;
2667 }
2668 }
2669
2670 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2671 }
2672
2673 /**
2674 * ata_bmdma_qc_prep - Prepare taskfile for submission
2675 * @qc: Metadata associated with taskfile to be prepared
2676 *
2677 * Prepare ATA taskfile for submission.
2678 *
2679 * LOCKING:
2680 * spin_lock_irqsave(host lock)
2681 */
2682 void ata_bmdma_qc_prep(struct ata_queued_cmd *qc)
2683 {
2684 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2685 return;
2686
2687 ata_bmdma_fill_sg(qc);
2688 }
2689 EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep);
2690
2691 /**
2692 * ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
2693 * @qc: Metadata associated with taskfile to be prepared
2694 *
2695 * Prepare ATA taskfile for submission.
2696 *
2697 * LOCKING:
2698 * spin_lock_irqsave(host lock)
2699 */
2700 void ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc)
2701 {
2702 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2703 return;
2704
2705 ata_bmdma_fill_sg_dumb(qc);
2706 }
2707 EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep);
2708
2709 /**
2710 * ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
2711 * @qc: command to issue to device
2712 *
2713 * This function issues a PIO, NODATA or DMA command to a
2714 * SFF/BMDMA controller. PIO and NODATA are handled by
2715 * ata_sff_qc_issue().
2716 *
2717 * LOCKING:
2718 * spin_lock_irqsave(host lock)
2719 *
2720 * RETURNS:
2721 * Zero on success, AC_ERR_* mask on failure
2722 */
2723 unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc)
2724 {
2725 struct ata_port *ap = qc->ap;
2726 struct ata_link *link = qc->dev->link;
2727
2728 /* defer PIO handling to sff_qc_issue */
2729 if (!ata_is_dma(qc->tf.protocol))
2730 return ata_sff_qc_issue(qc);
2731
2732 /* select the device */
2733 ata_dev_select(ap, qc->dev->devno, 1, 0);
2734
2735 /* start the command */
2736 switch (qc->tf.protocol) {
2737 case ATA_PROT_DMA:
2738 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2739
2740 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
2741 ap->ops->bmdma_setup(qc); /* set up bmdma */
2742 ap->ops->bmdma_start(qc); /* initiate bmdma */
2743 ap->hsm_task_state = HSM_ST_LAST;
2744 break;
2745
2746 case ATAPI_PROT_DMA:
2747 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2748
2749 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
2750 ap->ops->bmdma_setup(qc); /* set up bmdma */
2751 ap->hsm_task_state = HSM_ST_FIRST;
2752
2753 /* send cdb by polling if no cdb interrupt */
2754 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
2755 ata_sff_queue_pio_task(link, 0);
2756 break;
2757
2758 default:
2759 WARN_ON(1);
2760 return AC_ERR_SYSTEM;
2761 }
2762
2763 return 0;
2764 }
2765 EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue);
2766
2767 /**
2768 * ata_bmdma_port_intr - Handle BMDMA port interrupt
2769 * @ap: Port on which interrupt arrived (possibly...)
2770 * @qc: Taskfile currently active in engine
2771 *
2772 * Handle port interrupt for given queued command.
2773 *
2774 * LOCKING:
2775 * spin_lock_irqsave(host lock)
2776 *
2777 * RETURNS:
2778 * One if interrupt was handled, zero if not (shared irq).
2779 */
2780 unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
2781 {
2782 struct ata_eh_info *ehi = &ap->link.eh_info;
2783 u8 host_stat = 0;
2784 bool bmdma_stopped = false;
2785 unsigned int handled;
2786
2787 if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) {
2788 /* check status of DMA engine */
2789 host_stat = ap->ops->bmdma_status(ap);
2790 VPRINTK("ata%u: host_stat 0x%X\n", ap->print_id, host_stat);
2791
2792 /* if it's not our irq... */
2793 if (!(host_stat & ATA_DMA_INTR))
2794 return ata_sff_idle_irq(ap);
2795
2796 /* before we do anything else, clear DMA-Start bit */
2797 ap->ops->bmdma_stop(qc);
2798 bmdma_stopped = true;
2799
2800 if (unlikely(host_stat & ATA_DMA_ERR)) {
2801 /* error when transferring data to/from memory */
2802 qc->err_mask |= AC_ERR_HOST_BUS;
2803 ap->hsm_task_state = HSM_ST_ERR;
2804 }
2805 }
2806
2807 handled = __ata_sff_port_intr(ap, qc, bmdma_stopped);
2808
2809 if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol))
2810 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
2811
2812 return handled;
2813 }
2814 EXPORT_SYMBOL_GPL(ata_bmdma_port_intr);
2815
2816 /**
2817 * ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
2818 * @irq: irq line (unused)
2819 * @dev_instance: pointer to our ata_host information structure
2820 *
2821 * Default interrupt handler for PCI IDE devices. Calls
2822 * ata_bmdma_port_intr() for each port that is not disabled.
2823 *
2824 * LOCKING:
2825 * Obtains host lock during operation.
2826 *
2827 * RETURNS:
2828 * IRQ_NONE or IRQ_HANDLED.
2829 */
2830 irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance)
2831 {
2832 return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr);
2833 }
2834 EXPORT_SYMBOL_GPL(ata_bmdma_interrupt);
2835
2836 /**
2837 * ata_bmdma_error_handler - Stock error handler for BMDMA controller
2838 * @ap: port to handle error for
2839 *
2840 * Stock error handler for BMDMA controller. It can handle both
2841 * PATA and SATA controllers. Most BMDMA controllers should be
2842 * able to use this EH as-is or with some added handling before
2843 * and after.
2844 *
2845 * LOCKING:
2846 * Kernel thread context (may sleep)
2847 */
2848 void ata_bmdma_error_handler(struct ata_port *ap)
2849 {
2850 struct ata_queued_cmd *qc;
2851 unsigned long flags;
2852 bool thaw = false;
2853
2854 qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2855 if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2856 qc = NULL;
2857
2858 /* reset PIO HSM and stop DMA engine */
2859 spin_lock_irqsave(ap->lock, flags);
2860
2861 if (qc && ata_is_dma(qc->tf.protocol)) {
2862 u8 host_stat;
2863
2864 host_stat = ap->ops->bmdma_status(ap);
2865
2866 /* BMDMA controllers indicate host bus error by
2867 * setting DMA_ERR bit and timing out. As it wasn't
2868 * really a timeout event, adjust error mask and
2869 * cancel frozen state.
2870 */
2871 if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2872 qc->err_mask = AC_ERR_HOST_BUS;
2873 thaw = true;
2874 }
2875
2876 ap->ops->bmdma_stop(qc);
2877
2878 /* if we're gonna thaw, make sure IRQ is clear */
2879 if (thaw) {
2880 ap->ops->sff_check_status(ap);
2881 if (ap->ops->sff_irq_clear)
2882 ap->ops->sff_irq_clear(ap);
2883 }
2884 }
2885
2886 spin_unlock_irqrestore(ap->lock, flags);
2887
2888 if (thaw)
2889 ata_eh_thaw_port(ap);
2890
2891 ata_sff_error_handler(ap);
2892 }
2893 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
2894
2895 /**
2896 * ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
2897 * @qc: internal command to clean up
2898 *
2899 * LOCKING:
2900 * Kernel thread context (may sleep)
2901 */
2902 void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
2903 {
2904 struct ata_port *ap = qc->ap;
2905 unsigned long flags;
2906
2907 if (ata_is_dma(qc->tf.protocol)) {
2908 spin_lock_irqsave(ap->lock, flags);
2909 ap->ops->bmdma_stop(qc);
2910 spin_unlock_irqrestore(ap->lock, flags);
2911 }
2912 }
2913 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
2914
2915 /**
2916 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
2917 * @ap: Port associated with this ATA transaction.
2918 *
2919 * Clear interrupt and error flags in DMA status register.
2920 *
2921 * May be used as the irq_clear() entry in ata_port_operations.
2922 *
2923 * LOCKING:
2924 * spin_lock_irqsave(host lock)
2925 */
2926 void ata_bmdma_irq_clear(struct ata_port *ap)
2927 {
2928 void __iomem *mmio = ap->ioaddr.bmdma_addr;
2929
2930 if (!mmio)
2931 return;
2932
2933 iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
2934 }
2935 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
2936
2937 /**
2938 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2939 * @qc: Info associated with this ATA transaction.
2940 *
2941 * LOCKING:
2942 * spin_lock_irqsave(host lock)
2943 */
2944 void ata_bmdma_setup(struct ata_queued_cmd *qc)
2945 {
2946 struct ata_port *ap = qc->ap;
2947 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
2948 u8 dmactl;
2949
2950 /* load PRD table addr. */
2951 mb(); /* make sure PRD table writes are visible to controller */
2952 iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
2953
2954 /* specify data direction, triple-check start bit is clear */
2955 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2956 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
2957 if (!rw)
2958 dmactl |= ATA_DMA_WR;
2959 iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2960
2961 /* issue r/w command */
2962 ap->ops->sff_exec_command(ap, &qc->tf);
2963 }
2964 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
2965
2966 /**
2967 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
2968 * @qc: Info associated with this ATA transaction.
2969 *
2970 * LOCKING:
2971 * spin_lock_irqsave(host lock)
2972 */
2973 void ata_bmdma_start(struct ata_queued_cmd *qc)
2974 {
2975 struct ata_port *ap = qc->ap;
2976 u8 dmactl;
2977
2978 /* start host DMA transaction */
2979 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2980 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2981
2982 /* Strictly, one may wish to issue an ioread8() here, to
2983 * flush the mmio write. However, control also passes
2984 * to the hardware at this point, and it will interrupt
2985 * us when we are to resume control. So, in effect,
2986 * we don't care when the mmio write flushes.
2987 * Further, a read of the DMA status register _immediately_
2988 * following the write may not be what certain flaky hardware
2989 * is expected, so I think it is best to not add a readb()
2990 * without first all the MMIO ATA cards/mobos.
2991 * Or maybe I'm just being paranoid.
2992 *
2993 * FIXME: The posting of this write means I/O starts are
2994 * unnecessarily delayed for MMIO
2995 */
2996 }
2997 EXPORT_SYMBOL_GPL(ata_bmdma_start);
2998
2999 /**
3000 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
3001 * @qc: Command we are ending DMA for
3002 *
3003 * Clears the ATA_DMA_START flag in the dma control register
3004 *
3005 * May be used as the bmdma_stop() entry in ata_port_operations.
3006 *
3007 * LOCKING:
3008 * spin_lock_irqsave(host lock)
3009 */
3010 void ata_bmdma_stop(struct ata_queued_cmd *qc)
3011 {
3012 struct ata_port *ap = qc->ap;
3013 void __iomem *mmio = ap->ioaddr.bmdma_addr;
3014
3015 /* clear start/stop bit */
3016 iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
3017 mmio + ATA_DMA_CMD);
3018
3019 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3020 ata_sff_dma_pause(ap);
3021 }
3022 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
3023
3024 /**
3025 * ata_bmdma_status - Read PCI IDE BMDMA status
3026 * @ap: Port associated with this ATA transaction.
3027 *
3028 * Read and return BMDMA status register.
3029 *
3030 * May be used as the bmdma_status() entry in ata_port_operations.
3031 *
3032 * LOCKING:
3033 * spin_lock_irqsave(host lock)
3034 */
3035 u8 ata_bmdma_status(struct ata_port *ap)
3036 {
3037 return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
3038 }
3039 EXPORT_SYMBOL_GPL(ata_bmdma_status);
3040
3041
3042 /**
3043 * ata_bmdma_port_start - Set port up for bmdma.
3044 * @ap: Port to initialize
3045 *
3046 * Called just after data structures for each port are
3047 * initialized. Allocates space for PRD table.
3048 *
3049 * May be used as the port_start() entry in ata_port_operations.
3050 *
3051 * LOCKING:
3052 * Inherited from caller.
3053 */
3054 int ata_bmdma_port_start(struct ata_port *ap)
3055 {
3056 if (ap->mwdma_mask || ap->udma_mask) {
3057 ap->bmdma_prd =
3058 dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ,
3059 &ap->bmdma_prd_dma, GFP_KERNEL);
3060 if (!ap->bmdma_prd)
3061 return -ENOMEM;
3062 }
3063
3064 return 0;
3065 }
3066 EXPORT_SYMBOL_GPL(ata_bmdma_port_start);
3067
3068 /**
3069 * ata_bmdma_port_start32 - Set port up for dma.
3070 * @ap: Port to initialize
3071 *
3072 * Called just after data structures for each port are
3073 * initialized. Enables 32bit PIO and allocates space for PRD
3074 * table.
3075 *
3076 * May be used as the port_start() entry in ata_port_operations for
3077 * devices that are capable of 32bit PIO.
3078 *
3079 * LOCKING:
3080 * Inherited from caller.
3081 */
3082 int ata_bmdma_port_start32(struct ata_port *ap)
3083 {
3084 ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
3085 return ata_bmdma_port_start(ap);
3086 }
3087 EXPORT_SYMBOL_GPL(ata_bmdma_port_start32);
3088
3089 #ifdef CONFIG_PCI
3090
3091 /**
3092 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex
3093 * @pdev: PCI device
3094 *
3095 * Some PCI ATA devices report simplex mode but in fact can be told to
3096 * enter non simplex mode. This implements the necessary logic to
3097 * perform the task on such devices. Calling it on other devices will
3098 * have -undefined- behaviour.
3099 */
3100 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
3101 {
3102 unsigned long bmdma = pci_resource_start(pdev, 4);
3103 u8 simplex;
3104
3105 if (bmdma == 0)
3106 return -ENOENT;
3107
3108 simplex = inb(bmdma + 0x02);
3109 outb(simplex & 0x60, bmdma + 0x02);
3110 simplex = inb(bmdma + 0x02);
3111 if (simplex & 0x80)
3112 return -EOPNOTSUPP;
3113 return 0;
3114 }
3115 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
3116
3117 static void ata_bmdma_nodma(struct ata_host *host, const char *reason)
3118 {
3119 int i;
3120
3121 dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason);
3122
3123 for (i = 0; i < 2; i++) {
3124 host->ports[i]->mwdma_mask = 0;
3125 host->ports[i]->udma_mask = 0;
3126 }
3127 }
3128
3129 /**
3130 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3131 * @host: target ATA host
3132 *
3133 * Acquire PCI BMDMA resources and initialize @host accordingly.
3134 *
3135 * LOCKING:
3136 * Inherited from calling layer (may sleep).
3137 */
3138 void ata_pci_bmdma_init(struct ata_host *host)
3139 {
3140 struct device *gdev = host->dev;
3141 struct pci_dev *pdev = to_pci_dev(gdev);
3142 int i, rc;
3143
3144 /* No BAR4 allocation: No DMA */
3145 if (pci_resource_start(pdev, 4) == 0) {
3146 ata_bmdma_nodma(host, "BAR4 is zero");
3147 return;
3148 }
3149
3150 /*
3151 * Some controllers require BMDMA region to be initialized
3152 * even if DMA is not in use to clear IRQ status via
3153 * ->sff_irq_clear method. Try to initialize bmdma_addr
3154 * regardless of dma masks.
3155 */
3156 rc = dma_set_mask(&pdev->dev, ATA_DMA_MASK);
3157 if (rc)
3158 ata_bmdma_nodma(host, "failed to set dma mask");
3159 if (!rc) {
3160 rc = dma_set_coherent_mask(&pdev->dev, ATA_DMA_MASK);
3161 if (rc)
3162 ata_bmdma_nodma(host,
3163 "failed to set consistent dma mask");
3164 }
3165
3166 /* request and iomap DMA region */
3167 rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
3168 if (rc) {
3169 ata_bmdma_nodma(host, "failed to request/iomap BAR4");
3170 return;
3171 }
3172 host->iomap = pcim_iomap_table(pdev);
3173
3174 for (i = 0; i < 2; i++) {
3175 struct ata_port *ap = host->ports[i];
3176 void __iomem *bmdma = host->iomap[4] + 8 * i;
3177
3178 if (ata_port_is_dummy(ap))
3179 continue;
3180
3181 ap->ioaddr.bmdma_addr = bmdma;
3182 if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
3183 (ioread8(bmdma + 2) & 0x80))
3184 host->flags |= ATA_HOST_SIMPLEX;
3185
3186 ata_port_desc(ap, "bmdma 0x%llx",
3187 (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
3188 }
3189 }
3190 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
3191
3192 /**
3193 * ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
3194 * @pdev: target PCI device
3195 * @ppi: array of port_info, must be enough for two ports
3196 * @r_host: out argument for the initialized ATA host
3197 *
3198 * Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
3199 * resources and initialize it accordingly in one go.
3200 *
3201 * LOCKING:
3202 * Inherited from calling layer (may sleep).
3203 *
3204 * RETURNS:
3205 * 0 on success, -errno otherwise.
3206 */
3207 int ata_pci_bmdma_prepare_host(struct pci_dev *pdev,
3208 const struct ata_port_info * const * ppi,
3209 struct ata_host **r_host)
3210 {
3211 int rc;
3212
3213 rc = ata_pci_sff_prepare_host(pdev, ppi, r_host);
3214 if (rc)
3215 return rc;
3216
3217 ata_pci_bmdma_init(*r_host);
3218 return 0;
3219 }
3220 EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host);
3221
3222 /**
3223 * ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
3224 * @pdev: Controller to be initialized
3225 * @ppi: array of port_info, must be enough for two ports
3226 * @sht: scsi_host_template to use when registering the host
3227 * @host_priv: host private_data
3228 * @hflags: host flags
3229 *
3230 * This function is similar to ata_pci_sff_init_one() but also
3231 * takes care of BMDMA initialization.
3232 *
3233 * LOCKING:
3234 * Inherited from PCI layer (may sleep).
3235 *
3236 * RETURNS:
3237 * Zero on success, negative on errno-based value on error.
3238 */
3239 int ata_pci_bmdma_init_one(struct pci_dev *pdev,
3240 const struct ata_port_info * const * ppi,
3241 struct scsi_host_template *sht, void *host_priv,
3242 int hflags)
3243 {
3244 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1);
3245 }
3246 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one);
3247
3248 #endif /* CONFIG_PCI */
3249 #endif /* CONFIG_ATA_BMDMA */
3250
3251 /**
3252 * ata_sff_port_init - Initialize SFF/BMDMA ATA port
3253 * @ap: Port to initialize
3254 *
3255 * Called on port allocation to initialize SFF/BMDMA specific
3256 * fields.
3257 *
3258 * LOCKING:
3259 * None.
3260 */
3261 void ata_sff_port_init(struct ata_port *ap)
3262 {
3263 INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task);
3264 ap->ctl = ATA_DEVCTL_OBS;
3265 ap->last_ctl = 0xFF;
3266 }
3267
3268 int __init ata_sff_init(void)
3269 {
3270 ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE);
3271 if (!ata_sff_wq)
3272 return -ENOMEM;
3273
3274 return 0;
3275 }
3276
3277 void ata_sff_exit(void)
3278 {
3279 destroy_workqueue(ata_sff_wq);
3280 }