]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/base/dma-coherent.c
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
[thirdparty/linux.git] / drivers / base / dma-coherent.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Coherent per-device memory handling.
4 * Borrowed from i386
5 */
6 #include <linux/io.h>
7 #include <linux/slab.h>
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/dma-mapping.h>
11
12 struct dma_coherent_mem {
13 void *virt_base;
14 dma_addr_t device_base;
15 unsigned long pfn_base;
16 int size;
17 int flags;
18 unsigned long *bitmap;
19 spinlock_t spinlock;
20 bool use_dev_dma_pfn_offset;
21 };
22
23 static struct dma_coherent_mem *dma_coherent_default_memory __ro_after_init;
24
25 static inline struct dma_coherent_mem *dev_get_coherent_memory(struct device *dev)
26 {
27 if (dev && dev->dma_mem)
28 return dev->dma_mem;
29 return NULL;
30 }
31
32 static inline dma_addr_t dma_get_device_base(struct device *dev,
33 struct dma_coherent_mem * mem)
34 {
35 if (mem->use_dev_dma_pfn_offset)
36 return (mem->pfn_base - dev->dma_pfn_offset) << PAGE_SHIFT;
37 else
38 return mem->device_base;
39 }
40
41 static int dma_init_coherent_memory(
42 phys_addr_t phys_addr, dma_addr_t device_addr, size_t size, int flags,
43 struct dma_coherent_mem **mem)
44 {
45 struct dma_coherent_mem *dma_mem = NULL;
46 void __iomem *mem_base = NULL;
47 int pages = size >> PAGE_SHIFT;
48 int bitmap_size = BITS_TO_LONGS(pages) * sizeof(long);
49 int ret;
50
51 if (!size) {
52 ret = -EINVAL;
53 goto out;
54 }
55
56 mem_base = memremap(phys_addr, size, MEMREMAP_WC);
57 if (!mem_base) {
58 ret = -EINVAL;
59 goto out;
60 }
61 dma_mem = kzalloc(sizeof(struct dma_coherent_mem), GFP_KERNEL);
62 if (!dma_mem) {
63 ret = -ENOMEM;
64 goto out;
65 }
66 dma_mem->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
67 if (!dma_mem->bitmap) {
68 ret = -ENOMEM;
69 goto out;
70 }
71
72 dma_mem->virt_base = mem_base;
73 dma_mem->device_base = device_addr;
74 dma_mem->pfn_base = PFN_DOWN(phys_addr);
75 dma_mem->size = pages;
76 dma_mem->flags = flags;
77 spin_lock_init(&dma_mem->spinlock);
78
79 *mem = dma_mem;
80 return 0;
81
82 out:
83 kfree(dma_mem);
84 if (mem_base)
85 memunmap(mem_base);
86 return ret;
87 }
88
89 static void dma_release_coherent_memory(struct dma_coherent_mem *mem)
90 {
91 if (!mem)
92 return;
93
94 memunmap(mem->virt_base);
95 kfree(mem->bitmap);
96 kfree(mem);
97 }
98
99 static int dma_assign_coherent_memory(struct device *dev,
100 struct dma_coherent_mem *mem)
101 {
102 if (!dev)
103 return -ENODEV;
104
105 if (dev->dma_mem)
106 return -EBUSY;
107
108 dev->dma_mem = mem;
109 return 0;
110 }
111
112 int dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr,
113 dma_addr_t device_addr, size_t size, int flags)
114 {
115 struct dma_coherent_mem *mem;
116 int ret;
117
118 ret = dma_init_coherent_memory(phys_addr, device_addr, size, flags, &mem);
119 if (ret)
120 return ret;
121
122 ret = dma_assign_coherent_memory(dev, mem);
123 if (ret)
124 dma_release_coherent_memory(mem);
125 return ret;
126 }
127 EXPORT_SYMBOL(dma_declare_coherent_memory);
128
129 void dma_release_declared_memory(struct device *dev)
130 {
131 struct dma_coherent_mem *mem = dev->dma_mem;
132
133 if (!mem)
134 return;
135 dma_release_coherent_memory(mem);
136 dev->dma_mem = NULL;
137 }
138 EXPORT_SYMBOL(dma_release_declared_memory);
139
140 void *dma_mark_declared_memory_occupied(struct device *dev,
141 dma_addr_t device_addr, size_t size)
142 {
143 struct dma_coherent_mem *mem = dev->dma_mem;
144 unsigned long flags;
145 int pos, err;
146
147 size += device_addr & ~PAGE_MASK;
148
149 if (!mem)
150 return ERR_PTR(-EINVAL);
151
152 spin_lock_irqsave(&mem->spinlock, flags);
153 pos = PFN_DOWN(device_addr - dma_get_device_base(dev, mem));
154 err = bitmap_allocate_region(mem->bitmap, pos, get_order(size));
155 spin_unlock_irqrestore(&mem->spinlock, flags);
156
157 if (err != 0)
158 return ERR_PTR(err);
159 return mem->virt_base + (pos << PAGE_SHIFT);
160 }
161 EXPORT_SYMBOL(dma_mark_declared_memory_occupied);
162
163 static void *__dma_alloc_from_coherent(struct dma_coherent_mem *mem,
164 ssize_t size, dma_addr_t *dma_handle)
165 {
166 int order = get_order(size);
167 unsigned long flags;
168 int pageno;
169 void *ret;
170
171 spin_lock_irqsave(&mem->spinlock, flags);
172
173 if (unlikely(size > (mem->size << PAGE_SHIFT)))
174 goto err;
175
176 pageno = bitmap_find_free_region(mem->bitmap, mem->size, order);
177 if (unlikely(pageno < 0))
178 goto err;
179
180 /*
181 * Memory was found in the coherent area.
182 */
183 *dma_handle = mem->device_base + (pageno << PAGE_SHIFT);
184 ret = mem->virt_base + (pageno << PAGE_SHIFT);
185 spin_unlock_irqrestore(&mem->spinlock, flags);
186 memset(ret, 0, size);
187 return ret;
188 err:
189 spin_unlock_irqrestore(&mem->spinlock, flags);
190 return NULL;
191 }
192
193 /**
194 * dma_alloc_from_dev_coherent() - allocate memory from device coherent pool
195 * @dev: device from which we allocate memory
196 * @size: size of requested memory area
197 * @dma_handle: This will be filled with the correct dma handle
198 * @ret: This pointer will be filled with the virtual address
199 * to allocated area.
200 *
201 * This function should be only called from per-arch dma_alloc_coherent()
202 * to support allocation from per-device coherent memory pools.
203 *
204 * Returns 0 if dma_alloc_coherent should continue with allocating from
205 * generic memory areas, or !0 if dma_alloc_coherent should return @ret.
206 */
207 int dma_alloc_from_dev_coherent(struct device *dev, ssize_t size,
208 dma_addr_t *dma_handle, void **ret)
209 {
210 struct dma_coherent_mem *mem = dev_get_coherent_memory(dev);
211
212 if (!mem)
213 return 0;
214
215 *ret = __dma_alloc_from_coherent(mem, size, dma_handle);
216 if (*ret)
217 return 1;
218
219 /*
220 * In the case where the allocation can not be satisfied from the
221 * per-device area, try to fall back to generic memory if the
222 * constraints allow it.
223 */
224 return mem->flags & DMA_MEMORY_EXCLUSIVE;
225 }
226 EXPORT_SYMBOL(dma_alloc_from_dev_coherent);
227
228 void *dma_alloc_from_global_coherent(ssize_t size, dma_addr_t *dma_handle)
229 {
230 if (!dma_coherent_default_memory)
231 return NULL;
232
233 return __dma_alloc_from_coherent(dma_coherent_default_memory, size,
234 dma_handle);
235 }
236
237 static int __dma_release_from_coherent(struct dma_coherent_mem *mem,
238 int order, void *vaddr)
239 {
240 if (mem && vaddr >= mem->virt_base && vaddr <
241 (mem->virt_base + (mem->size << PAGE_SHIFT))) {
242 int page = (vaddr - mem->virt_base) >> PAGE_SHIFT;
243 unsigned long flags;
244
245 spin_lock_irqsave(&mem->spinlock, flags);
246 bitmap_release_region(mem->bitmap, page, order);
247 spin_unlock_irqrestore(&mem->spinlock, flags);
248 return 1;
249 }
250 return 0;
251 }
252
253 /**
254 * dma_release_from_dev_coherent() - free memory to device coherent memory pool
255 * @dev: device from which the memory was allocated
256 * @order: the order of pages allocated
257 * @vaddr: virtual address of allocated pages
258 *
259 * This checks whether the memory was allocated from the per-device
260 * coherent memory pool and if so, releases that memory.
261 *
262 * Returns 1 if we correctly released the memory, or 0 if the caller should
263 * proceed with releasing memory from generic pools.
264 */
265 int dma_release_from_dev_coherent(struct device *dev, int order, void *vaddr)
266 {
267 struct dma_coherent_mem *mem = dev_get_coherent_memory(dev);
268
269 return __dma_release_from_coherent(mem, order, vaddr);
270 }
271 EXPORT_SYMBOL(dma_release_from_dev_coherent);
272
273 int dma_release_from_global_coherent(int order, void *vaddr)
274 {
275 if (!dma_coherent_default_memory)
276 return 0;
277
278 return __dma_release_from_coherent(dma_coherent_default_memory, order,
279 vaddr);
280 }
281
282 static int __dma_mmap_from_coherent(struct dma_coherent_mem *mem,
283 struct vm_area_struct *vma, void *vaddr, size_t size, int *ret)
284 {
285 if (mem && vaddr >= mem->virt_base && vaddr + size <=
286 (mem->virt_base + (mem->size << PAGE_SHIFT))) {
287 unsigned long off = vma->vm_pgoff;
288 int start = (vaddr - mem->virt_base) >> PAGE_SHIFT;
289 int user_count = vma_pages(vma);
290 int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
291
292 *ret = -ENXIO;
293 if (off < count && user_count <= count - off) {
294 unsigned long pfn = mem->pfn_base + start + off;
295 *ret = remap_pfn_range(vma, vma->vm_start, pfn,
296 user_count << PAGE_SHIFT,
297 vma->vm_page_prot);
298 }
299 return 1;
300 }
301 return 0;
302 }
303
304 /**
305 * dma_mmap_from_dev_coherent() - mmap memory from the device coherent pool
306 * @dev: device from which the memory was allocated
307 * @vma: vm_area for the userspace memory
308 * @vaddr: cpu address returned by dma_alloc_from_dev_coherent
309 * @size: size of the memory buffer allocated
310 * @ret: result from remap_pfn_range()
311 *
312 * This checks whether the memory was allocated from the per-device
313 * coherent memory pool and if so, maps that memory to the provided vma.
314 *
315 * Returns 1 if we correctly mapped the memory, or 0 if the caller should
316 * proceed with mapping memory from generic pools.
317 */
318 int dma_mmap_from_dev_coherent(struct device *dev, struct vm_area_struct *vma,
319 void *vaddr, size_t size, int *ret)
320 {
321 struct dma_coherent_mem *mem = dev_get_coherent_memory(dev);
322
323 return __dma_mmap_from_coherent(mem, vma, vaddr, size, ret);
324 }
325 EXPORT_SYMBOL(dma_mmap_from_dev_coherent);
326
327 int dma_mmap_from_global_coherent(struct vm_area_struct *vma, void *vaddr,
328 size_t size, int *ret)
329 {
330 if (!dma_coherent_default_memory)
331 return 0;
332
333 return __dma_mmap_from_coherent(dma_coherent_default_memory, vma,
334 vaddr, size, ret);
335 }
336
337 /*
338 * Support for reserved memory regions defined in device tree
339 */
340 #ifdef CONFIG_OF_RESERVED_MEM
341 #include <linux/of.h>
342 #include <linux/of_fdt.h>
343 #include <linux/of_reserved_mem.h>
344
345 static struct reserved_mem *dma_reserved_default_memory __initdata;
346
347 static int rmem_dma_device_init(struct reserved_mem *rmem, struct device *dev)
348 {
349 struct dma_coherent_mem *mem = rmem->priv;
350 int ret;
351
352 if (!mem) {
353 ret = dma_init_coherent_memory(rmem->base, rmem->base,
354 rmem->size,
355 DMA_MEMORY_EXCLUSIVE, &mem);
356 if (ret) {
357 pr_err("Reserved memory: failed to init DMA memory pool at %pa, size %ld MiB\n",
358 &rmem->base, (unsigned long)rmem->size / SZ_1M);
359 return ret;
360 }
361 }
362 mem->use_dev_dma_pfn_offset = true;
363 rmem->priv = mem;
364 dma_assign_coherent_memory(dev, mem);
365 return 0;
366 }
367
368 static void rmem_dma_device_release(struct reserved_mem *rmem,
369 struct device *dev)
370 {
371 if (dev)
372 dev->dma_mem = NULL;
373 }
374
375 static const struct reserved_mem_ops rmem_dma_ops = {
376 .device_init = rmem_dma_device_init,
377 .device_release = rmem_dma_device_release,
378 };
379
380 static int __init rmem_dma_setup(struct reserved_mem *rmem)
381 {
382 unsigned long node = rmem->fdt_node;
383
384 if (of_get_flat_dt_prop(node, "reusable", NULL))
385 return -EINVAL;
386
387 #ifdef CONFIG_ARM
388 if (!of_get_flat_dt_prop(node, "no-map", NULL)) {
389 pr_err("Reserved memory: regions without no-map are not yet supported\n");
390 return -EINVAL;
391 }
392
393 if (of_get_flat_dt_prop(node, "linux,dma-default", NULL)) {
394 WARN(dma_reserved_default_memory,
395 "Reserved memory: region for default DMA coherent area is redefined\n");
396 dma_reserved_default_memory = rmem;
397 }
398 #endif
399
400 rmem->ops = &rmem_dma_ops;
401 pr_info("Reserved memory: created DMA memory pool at %pa, size %ld MiB\n",
402 &rmem->base, (unsigned long)rmem->size / SZ_1M);
403 return 0;
404 }
405
406 static int __init dma_init_reserved_memory(void)
407 {
408 const struct reserved_mem_ops *ops;
409 int ret;
410
411 if (!dma_reserved_default_memory)
412 return -ENOMEM;
413
414 ops = dma_reserved_default_memory->ops;
415
416 /*
417 * We rely on rmem_dma_device_init() does not propagate error of
418 * dma_assign_coherent_memory() for "NULL" device.
419 */
420 ret = ops->device_init(dma_reserved_default_memory, NULL);
421
422 if (!ret) {
423 dma_coherent_default_memory = dma_reserved_default_memory->priv;
424 pr_info("DMA: default coherent area is set\n");
425 }
426
427 return ret;
428 }
429
430 core_initcall(dma_init_reserved_memory);
431
432 RESERVEDMEM_OF_DECLARE(dma, "shared-dma-pool", rmem_dma_setup);
433 #endif