]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/base/transport_class.c
Linux-2.6.12-rc2
[thirdparty/linux.git] / drivers / base / transport_class.c
1 /*
2 * transport_class.c - implementation of generic transport classes
3 * using attribute_containers
4 *
5 * Copyright (c) 2005 - James Bottomley <James.Bottomley@steeleye.com>
6 *
7 * This file is licensed under GPLv2
8 *
9 * The basic idea here is to allow any "device controller" (which
10 * would most often be a Host Bus Adapter" to use the services of one
11 * or more tranport classes for performing transport specific
12 * services. Transport specific services are things that the generic
13 * command layer doesn't want to know about (speed settings, line
14 * condidtioning, etc), but which the user might be interested in.
15 * Thus, the HBA's use the routines exported by the transport classes
16 * to perform these functions. The transport classes export certain
17 * values to the user via sysfs using attribute containers.
18 *
19 * Note: because not every HBA will care about every transport
20 * attribute, there's a many to one relationship that goes like this:
21 *
22 * transport class<-----attribute container<----class device
23 *
24 * Usually the attribute container is per-HBA, but the design doesn't
25 * mandate that. Although most of the services will be specific to
26 * the actual external storage connection used by the HBA, the generic
27 * transport class is framed entirely in terms of generic devices to
28 * allow it to be used by any physical HBA in the system.
29 */
30 #include <linux/attribute_container.h>
31 #include <linux/transport_class.h>
32
33 /**
34 * transport_class_register - register an initial transport class
35 *
36 * @tclass: a pointer to the transport class structure to be initialised
37 *
38 * The transport class contains an embedded class which is used to
39 * identify it. The caller should initialise this structure with
40 * zeros and then generic class must have been initialised with the
41 * actual transport class unique name. There's a macro
42 * DECLARE_TRANSPORT_CLASS() to do this (declared classes still must
43 * be registered).
44 *
45 * Returns 0 on success or error on failure.
46 */
47 int transport_class_register(struct transport_class *tclass)
48 {
49 return class_register(&tclass->class);
50 }
51 EXPORT_SYMBOL_GPL(transport_class_register);
52
53 /**
54 * transport_class_unregister - unregister a previously registered class
55 *
56 * @tclass: The transport class to unregister
57 *
58 * Must be called prior to deallocating the memory for the transport
59 * class.
60 */
61 void transport_class_unregister(struct transport_class *tclass)
62 {
63 class_unregister(&tclass->class);
64 }
65 EXPORT_SYMBOL_GPL(transport_class_unregister);
66
67 static int anon_transport_dummy_function(struct device *dev)
68 {
69 /* do nothing */
70 return 0;
71 }
72
73 /**
74 * anon_transport_class_register - register an anonymous class
75 *
76 * @atc: The anon transport class to register
77 *
78 * The anonymous transport class contains both a transport class and a
79 * container. The idea of an anonymous class is that it never
80 * actually has any device attributes associated with it (and thus
81 * saves on container storage). So it can only be used for triggering
82 * events. Use prezero and then use DECLARE_ANON_TRANSPORT_CLASS() to
83 * initialise the anon transport class storage.
84 */
85 int anon_transport_class_register(struct anon_transport_class *atc)
86 {
87 int error;
88 atc->container.class = &atc->tclass.class;
89 attribute_container_set_no_classdevs(&atc->container);
90 error = attribute_container_register(&atc->container);
91 if (error)
92 return error;
93 atc->tclass.setup = anon_transport_dummy_function;
94 atc->tclass.remove = anon_transport_dummy_function;
95 return 0;
96 }
97 EXPORT_SYMBOL_GPL(anon_transport_class_register);
98
99 /**
100 * anon_transport_class_unregister - unregister an anon class
101 *
102 * @atc: Pointer to the anon transport class to unregister
103 *
104 * Must be called prior to deallocating the memory for the anon
105 * transport class.
106 */
107 void anon_transport_class_unregister(struct anon_transport_class *atc)
108 {
109 attribute_container_unregister(&atc->container);
110 }
111 EXPORT_SYMBOL_GPL(anon_transport_class_unregister);
112
113 static int transport_setup_classdev(struct attribute_container *cont,
114 struct device *dev,
115 struct class_device *classdev)
116 {
117 struct transport_class *tclass = class_to_transport_class(cont->class);
118
119 if (tclass->setup)
120 tclass->setup(dev);
121
122 return 0;
123 }
124
125 /**
126 * transport_setup_device - declare a new dev for transport class association
127 * but don't make it visible yet.
128 *
129 * @dev: the generic device representing the entity being added
130 *
131 * Usually, dev represents some component in the HBA system (either
132 * the HBA itself or a device remote across the HBA bus). This
133 * routine is simply a trigger point to see if any set of transport
134 * classes wishes to associate with the added device. This allocates
135 * storage for the class device and initialises it, but does not yet
136 * add it to the system or add attributes to it (you do this with
137 * transport_add_device). If you have no need for a separate setup
138 * and add operations, use transport_register_device (see
139 * transport_class.h).
140 */
141
142 void transport_setup_device(struct device *dev)
143 {
144 attribute_container_add_device(dev, transport_setup_classdev);
145 }
146 EXPORT_SYMBOL_GPL(transport_setup_device);
147
148 static int transport_add_class_device(struct attribute_container *cont,
149 struct device *dev,
150 struct class_device *classdev)
151 {
152 int error = attribute_container_add_class_device(classdev);
153 struct transport_container *tcont =
154 attribute_container_to_transport_container(cont);
155
156 if (!error && tcont->statistics)
157 error = sysfs_create_group(&classdev->kobj, tcont->statistics);
158
159 return error;
160 }
161
162
163 /**
164 * transport_add_device - declare a new dev for transport class association
165 *
166 * @dev: the generic device representing the entity being added
167 *
168 * Usually, dev represents some component in the HBA system (either
169 * the HBA itself or a device remote across the HBA bus). This
170 * routine is simply a trigger point used to add the device to the
171 * system and register attributes for it.
172 */
173
174 void transport_add_device(struct device *dev)
175 {
176 attribute_container_device_trigger(dev, transport_add_class_device);
177 }
178 EXPORT_SYMBOL_GPL(transport_add_device);
179
180 static int transport_configure(struct attribute_container *cont,
181 struct device *dev)
182 {
183 struct transport_class *tclass = class_to_transport_class(cont->class);
184
185 if (tclass->configure)
186 tclass->configure(dev);
187
188 return 0;
189 }
190
191 /**
192 * transport_configure_device - configure an already set up device
193 *
194 * @dev: generic device representing device to be configured
195 *
196 * The idea of configure is simply to provide a point within the setup
197 * process to allow the transport class to extract information from a
198 * device after it has been setup. This is used in SCSI because we
199 * have to have a setup device to begin using the HBA, but after we
200 * send the initial inquiry, we use configure to extract the device
201 * parameters. The device need not have been added to be configured.
202 */
203 void transport_configure_device(struct device *dev)
204 {
205 attribute_container_trigger(dev, transport_configure);
206 }
207 EXPORT_SYMBOL_GPL(transport_configure_device);
208
209 static int transport_remove_classdev(struct attribute_container *cont,
210 struct device *dev,
211 struct class_device *classdev)
212 {
213 struct transport_container *tcont =
214 attribute_container_to_transport_container(cont);
215 struct transport_class *tclass = class_to_transport_class(cont->class);
216
217 if (tclass->remove)
218 tclass->remove(dev);
219
220 if (tclass->remove != anon_transport_dummy_function) {
221 if (tcont->statistics)
222 sysfs_remove_group(&classdev->kobj, tcont->statistics);
223 attribute_container_class_device_del(classdev);
224 }
225
226 return 0;
227 }
228
229
230 /**
231 * transport_remove_device - remove the visibility of a device
232 *
233 * @dev: generic device to remove
234 *
235 * This call removes the visibility of the device (to the user from
236 * sysfs), but does not destroy it. To eliminate a device entirely
237 * you must also call transport_destroy_device. If you don't need to
238 * do remove and destroy as separate operations, use
239 * transport_unregister_device() (see transport_class.h) which will
240 * perform both calls for you.
241 */
242 void transport_remove_device(struct device *dev)
243 {
244 attribute_container_device_trigger(dev, transport_remove_classdev);
245 }
246 EXPORT_SYMBOL_GPL(transport_remove_device);
247
248 static void transport_destroy_classdev(struct attribute_container *cont,
249 struct device *dev,
250 struct class_device *classdev)
251 {
252 struct transport_class *tclass = class_to_transport_class(cont->class);
253
254 if (tclass->remove != anon_transport_dummy_function)
255 class_device_put(classdev);
256 }
257
258
259 /**
260 * transport_destroy_device - destroy a removed device
261 *
262 * @dev: device to eliminate from the transport class.
263 *
264 * This call triggers the elimination of storage associated with the
265 * transport classdev. Note: all it really does is relinquish a
266 * reference to the classdev. The memory will not be freed until the
267 * last reference goes to zero. Note also that the classdev retains a
268 * reference count on dev, so dev too will remain for as long as the
269 * transport class device remains around.
270 */
271 void transport_destroy_device(struct device *dev)
272 {
273 attribute_container_remove_device(dev, transport_destroy_classdev);
274 }
275 EXPORT_SYMBOL_GPL(transport_destroy_device);