]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/bluetooth/hci_intel.c
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 156
[thirdparty/linux.git] / drivers / bluetooth / hci_intel.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 *
4 * Bluetooth HCI UART driver for Intel devices
5 *
6 * Copyright (C) 2015 Intel Corporation
7 */
8
9 #include <linux/kernel.h>
10 #include <linux/errno.h>
11 #include <linux/skbuff.h>
12 #include <linux/firmware.h>
13 #include <linux/module.h>
14 #include <linux/wait.h>
15 #include <linux/tty.h>
16 #include <linux/platform_device.h>
17 #include <linux/gpio/consumer.h>
18 #include <linux/acpi.h>
19 #include <linux/interrupt.h>
20 #include <linux/pm_runtime.h>
21
22 #include <net/bluetooth/bluetooth.h>
23 #include <net/bluetooth/hci_core.h>
24
25 #include "hci_uart.h"
26 #include "btintel.h"
27
28 #define STATE_BOOTLOADER 0
29 #define STATE_DOWNLOADING 1
30 #define STATE_FIRMWARE_LOADED 2
31 #define STATE_FIRMWARE_FAILED 3
32 #define STATE_BOOTING 4
33 #define STATE_LPM_ENABLED 5
34 #define STATE_TX_ACTIVE 6
35 #define STATE_SUSPENDED 7
36 #define STATE_LPM_TRANSACTION 8
37
38 #define HCI_LPM_WAKE_PKT 0xf0
39 #define HCI_LPM_PKT 0xf1
40 #define HCI_LPM_MAX_SIZE 10
41 #define HCI_LPM_HDR_SIZE HCI_EVENT_HDR_SIZE
42
43 #define LPM_OP_TX_NOTIFY 0x00
44 #define LPM_OP_SUSPEND_ACK 0x02
45 #define LPM_OP_RESUME_ACK 0x03
46
47 #define LPM_SUSPEND_DELAY_MS 1000
48
49 struct hci_lpm_pkt {
50 __u8 opcode;
51 __u8 dlen;
52 __u8 data[0];
53 } __packed;
54
55 struct intel_device {
56 struct list_head list;
57 struct platform_device *pdev;
58 struct gpio_desc *reset;
59 struct hci_uart *hu;
60 struct mutex hu_lock;
61 int irq;
62 };
63
64 static LIST_HEAD(intel_device_list);
65 static DEFINE_MUTEX(intel_device_list_lock);
66
67 struct intel_data {
68 struct sk_buff *rx_skb;
69 struct sk_buff_head txq;
70 struct work_struct busy_work;
71 struct hci_uart *hu;
72 unsigned long flags;
73 };
74
75 static u8 intel_convert_speed(unsigned int speed)
76 {
77 switch (speed) {
78 case 9600:
79 return 0x00;
80 case 19200:
81 return 0x01;
82 case 38400:
83 return 0x02;
84 case 57600:
85 return 0x03;
86 case 115200:
87 return 0x04;
88 case 230400:
89 return 0x05;
90 case 460800:
91 return 0x06;
92 case 921600:
93 return 0x07;
94 case 1843200:
95 return 0x08;
96 case 3250000:
97 return 0x09;
98 case 2000000:
99 return 0x0a;
100 case 3000000:
101 return 0x0b;
102 default:
103 return 0xff;
104 }
105 }
106
107 static int intel_wait_booting(struct hci_uart *hu)
108 {
109 struct intel_data *intel = hu->priv;
110 int err;
111
112 err = wait_on_bit_timeout(&intel->flags, STATE_BOOTING,
113 TASK_INTERRUPTIBLE,
114 msecs_to_jiffies(1000));
115
116 if (err == -EINTR) {
117 bt_dev_err(hu->hdev, "Device boot interrupted");
118 return -EINTR;
119 }
120
121 if (err) {
122 bt_dev_err(hu->hdev, "Device boot timeout");
123 return -ETIMEDOUT;
124 }
125
126 return err;
127 }
128
129 #ifdef CONFIG_PM
130 static int intel_wait_lpm_transaction(struct hci_uart *hu)
131 {
132 struct intel_data *intel = hu->priv;
133 int err;
134
135 err = wait_on_bit_timeout(&intel->flags, STATE_LPM_TRANSACTION,
136 TASK_INTERRUPTIBLE,
137 msecs_to_jiffies(1000));
138
139 if (err == -EINTR) {
140 bt_dev_err(hu->hdev, "LPM transaction interrupted");
141 return -EINTR;
142 }
143
144 if (err) {
145 bt_dev_err(hu->hdev, "LPM transaction timeout");
146 return -ETIMEDOUT;
147 }
148
149 return err;
150 }
151
152 static int intel_lpm_suspend(struct hci_uart *hu)
153 {
154 static const u8 suspend[] = { 0x01, 0x01, 0x01 };
155 struct intel_data *intel = hu->priv;
156 struct sk_buff *skb;
157
158 if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
159 test_bit(STATE_SUSPENDED, &intel->flags))
160 return 0;
161
162 if (test_bit(STATE_TX_ACTIVE, &intel->flags))
163 return -EAGAIN;
164
165 bt_dev_dbg(hu->hdev, "Suspending");
166
167 skb = bt_skb_alloc(sizeof(suspend), GFP_KERNEL);
168 if (!skb) {
169 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
170 return -ENOMEM;
171 }
172
173 skb_put_data(skb, suspend, sizeof(suspend));
174 hci_skb_pkt_type(skb) = HCI_LPM_PKT;
175
176 set_bit(STATE_LPM_TRANSACTION, &intel->flags);
177
178 /* LPM flow is a priority, enqueue packet at list head */
179 skb_queue_head(&intel->txq, skb);
180 hci_uart_tx_wakeup(hu);
181
182 intel_wait_lpm_transaction(hu);
183 /* Even in case of failure, continue and test the suspended flag */
184
185 clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
186
187 if (!test_bit(STATE_SUSPENDED, &intel->flags)) {
188 bt_dev_err(hu->hdev, "Device suspend error");
189 return -EINVAL;
190 }
191
192 bt_dev_dbg(hu->hdev, "Suspended");
193
194 hci_uart_set_flow_control(hu, true);
195
196 return 0;
197 }
198
199 static int intel_lpm_resume(struct hci_uart *hu)
200 {
201 struct intel_data *intel = hu->priv;
202 struct sk_buff *skb;
203
204 if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
205 !test_bit(STATE_SUSPENDED, &intel->flags))
206 return 0;
207
208 bt_dev_dbg(hu->hdev, "Resuming");
209
210 hci_uart_set_flow_control(hu, false);
211
212 skb = bt_skb_alloc(0, GFP_KERNEL);
213 if (!skb) {
214 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
215 return -ENOMEM;
216 }
217
218 hci_skb_pkt_type(skb) = HCI_LPM_WAKE_PKT;
219
220 set_bit(STATE_LPM_TRANSACTION, &intel->flags);
221
222 /* LPM flow is a priority, enqueue packet at list head */
223 skb_queue_head(&intel->txq, skb);
224 hci_uart_tx_wakeup(hu);
225
226 intel_wait_lpm_transaction(hu);
227 /* Even in case of failure, continue and test the suspended flag */
228
229 clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
230
231 if (test_bit(STATE_SUSPENDED, &intel->flags)) {
232 bt_dev_err(hu->hdev, "Device resume error");
233 return -EINVAL;
234 }
235
236 bt_dev_dbg(hu->hdev, "Resumed");
237
238 return 0;
239 }
240 #endif /* CONFIG_PM */
241
242 static int intel_lpm_host_wake(struct hci_uart *hu)
243 {
244 static const u8 lpm_resume_ack[] = { LPM_OP_RESUME_ACK, 0x00 };
245 struct intel_data *intel = hu->priv;
246 struct sk_buff *skb;
247
248 hci_uart_set_flow_control(hu, false);
249
250 clear_bit(STATE_SUSPENDED, &intel->flags);
251
252 skb = bt_skb_alloc(sizeof(lpm_resume_ack), GFP_KERNEL);
253 if (!skb) {
254 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
255 return -ENOMEM;
256 }
257
258 skb_put_data(skb, lpm_resume_ack, sizeof(lpm_resume_ack));
259 hci_skb_pkt_type(skb) = HCI_LPM_PKT;
260
261 /* LPM flow is a priority, enqueue packet at list head */
262 skb_queue_head(&intel->txq, skb);
263 hci_uart_tx_wakeup(hu);
264
265 bt_dev_dbg(hu->hdev, "Resumed by controller");
266
267 return 0;
268 }
269
270 static irqreturn_t intel_irq(int irq, void *dev_id)
271 {
272 struct intel_device *idev = dev_id;
273
274 dev_info(&idev->pdev->dev, "hci_intel irq\n");
275
276 mutex_lock(&idev->hu_lock);
277 if (idev->hu)
278 intel_lpm_host_wake(idev->hu);
279 mutex_unlock(&idev->hu_lock);
280
281 /* Host/Controller are now LPM resumed, trigger a new delayed suspend */
282 pm_runtime_get(&idev->pdev->dev);
283 pm_runtime_mark_last_busy(&idev->pdev->dev);
284 pm_runtime_put_autosuspend(&idev->pdev->dev);
285
286 return IRQ_HANDLED;
287 }
288
289 static int intel_set_power(struct hci_uart *hu, bool powered)
290 {
291 struct list_head *p;
292 int err = -ENODEV;
293
294 if (!hu->tty->dev)
295 return err;
296
297 mutex_lock(&intel_device_list_lock);
298
299 list_for_each(p, &intel_device_list) {
300 struct intel_device *idev = list_entry(p, struct intel_device,
301 list);
302
303 /* tty device and pdev device should share the same parent
304 * which is the UART port.
305 */
306 if (hu->tty->dev->parent != idev->pdev->dev.parent)
307 continue;
308
309 if (!idev->reset) {
310 err = -ENOTSUPP;
311 break;
312 }
313
314 BT_INFO("hu %p, Switching compatible pm device (%s) to %u",
315 hu, dev_name(&idev->pdev->dev), powered);
316
317 gpiod_set_value(idev->reset, powered);
318
319 /* Provide to idev a hu reference which is used to run LPM
320 * transactions (lpm suspend/resume) from PM callbacks.
321 * hu needs to be protected against concurrent removing during
322 * these PM ops.
323 */
324 mutex_lock(&idev->hu_lock);
325 idev->hu = powered ? hu : NULL;
326 mutex_unlock(&idev->hu_lock);
327
328 if (idev->irq < 0)
329 break;
330
331 if (powered && device_can_wakeup(&idev->pdev->dev)) {
332 err = devm_request_threaded_irq(&idev->pdev->dev,
333 idev->irq, NULL,
334 intel_irq,
335 IRQF_ONESHOT,
336 "bt-host-wake", idev);
337 if (err) {
338 BT_ERR("hu %p, unable to allocate irq-%d",
339 hu, idev->irq);
340 break;
341 }
342
343 device_wakeup_enable(&idev->pdev->dev);
344
345 pm_runtime_set_active(&idev->pdev->dev);
346 pm_runtime_use_autosuspend(&idev->pdev->dev);
347 pm_runtime_set_autosuspend_delay(&idev->pdev->dev,
348 LPM_SUSPEND_DELAY_MS);
349 pm_runtime_enable(&idev->pdev->dev);
350 } else if (!powered && device_may_wakeup(&idev->pdev->dev)) {
351 devm_free_irq(&idev->pdev->dev, idev->irq, idev);
352 device_wakeup_disable(&idev->pdev->dev);
353
354 pm_runtime_disable(&idev->pdev->dev);
355 }
356 }
357
358 mutex_unlock(&intel_device_list_lock);
359
360 return err;
361 }
362
363 static void intel_busy_work(struct work_struct *work)
364 {
365 struct list_head *p;
366 struct intel_data *intel = container_of(work, struct intel_data,
367 busy_work);
368
369 if (!intel->hu->tty->dev)
370 return;
371
372 /* Link is busy, delay the suspend */
373 mutex_lock(&intel_device_list_lock);
374 list_for_each(p, &intel_device_list) {
375 struct intel_device *idev = list_entry(p, struct intel_device,
376 list);
377
378 if (intel->hu->tty->dev->parent == idev->pdev->dev.parent) {
379 pm_runtime_get(&idev->pdev->dev);
380 pm_runtime_mark_last_busy(&idev->pdev->dev);
381 pm_runtime_put_autosuspend(&idev->pdev->dev);
382 break;
383 }
384 }
385 mutex_unlock(&intel_device_list_lock);
386 }
387
388 static int intel_open(struct hci_uart *hu)
389 {
390 struct intel_data *intel;
391
392 BT_DBG("hu %p", hu);
393
394 intel = kzalloc(sizeof(*intel), GFP_KERNEL);
395 if (!intel)
396 return -ENOMEM;
397
398 skb_queue_head_init(&intel->txq);
399 INIT_WORK(&intel->busy_work, intel_busy_work);
400
401 intel->hu = hu;
402
403 hu->priv = intel;
404
405 if (!intel_set_power(hu, true))
406 set_bit(STATE_BOOTING, &intel->flags);
407
408 return 0;
409 }
410
411 static int intel_close(struct hci_uart *hu)
412 {
413 struct intel_data *intel = hu->priv;
414
415 BT_DBG("hu %p", hu);
416
417 cancel_work_sync(&intel->busy_work);
418
419 intel_set_power(hu, false);
420
421 skb_queue_purge(&intel->txq);
422 kfree_skb(intel->rx_skb);
423 kfree(intel);
424
425 hu->priv = NULL;
426 return 0;
427 }
428
429 static int intel_flush(struct hci_uart *hu)
430 {
431 struct intel_data *intel = hu->priv;
432
433 BT_DBG("hu %p", hu);
434
435 skb_queue_purge(&intel->txq);
436
437 return 0;
438 }
439
440 static int inject_cmd_complete(struct hci_dev *hdev, __u16 opcode)
441 {
442 struct sk_buff *skb;
443 struct hci_event_hdr *hdr;
444 struct hci_ev_cmd_complete *evt;
445
446 skb = bt_skb_alloc(sizeof(*hdr) + sizeof(*evt) + 1, GFP_KERNEL);
447 if (!skb)
448 return -ENOMEM;
449
450 hdr = skb_put(skb, sizeof(*hdr));
451 hdr->evt = HCI_EV_CMD_COMPLETE;
452 hdr->plen = sizeof(*evt) + 1;
453
454 evt = skb_put(skb, sizeof(*evt));
455 evt->ncmd = 0x01;
456 evt->opcode = cpu_to_le16(opcode);
457
458 skb_put_u8(skb, 0x00);
459
460 hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
461
462 return hci_recv_frame(hdev, skb);
463 }
464
465 static int intel_set_baudrate(struct hci_uart *hu, unsigned int speed)
466 {
467 struct intel_data *intel = hu->priv;
468 struct hci_dev *hdev = hu->hdev;
469 u8 speed_cmd[] = { 0x06, 0xfc, 0x01, 0x00 };
470 struct sk_buff *skb;
471 int err;
472
473 /* This can be the first command sent to the chip, check
474 * that the controller is ready.
475 */
476 err = intel_wait_booting(hu);
477
478 clear_bit(STATE_BOOTING, &intel->flags);
479
480 /* In case of timeout, try to continue anyway */
481 if (err && err != -ETIMEDOUT)
482 return err;
483
484 bt_dev_info(hdev, "Change controller speed to %d", speed);
485
486 speed_cmd[3] = intel_convert_speed(speed);
487 if (speed_cmd[3] == 0xff) {
488 bt_dev_err(hdev, "Unsupported speed");
489 return -EINVAL;
490 }
491
492 /* Device will not accept speed change if Intel version has not been
493 * previously requested.
494 */
495 skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_CMD_TIMEOUT);
496 if (IS_ERR(skb)) {
497 bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
498 PTR_ERR(skb));
499 return PTR_ERR(skb);
500 }
501 kfree_skb(skb);
502
503 skb = bt_skb_alloc(sizeof(speed_cmd), GFP_KERNEL);
504 if (!skb) {
505 bt_dev_err(hdev, "Failed to alloc memory for baudrate packet");
506 return -ENOMEM;
507 }
508
509 skb_put_data(skb, speed_cmd, sizeof(speed_cmd));
510 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
511
512 hci_uart_set_flow_control(hu, true);
513
514 skb_queue_tail(&intel->txq, skb);
515 hci_uart_tx_wakeup(hu);
516
517 /* wait 100ms to change baudrate on controller side */
518 msleep(100);
519
520 hci_uart_set_baudrate(hu, speed);
521 hci_uart_set_flow_control(hu, false);
522
523 return 0;
524 }
525
526 static int intel_setup(struct hci_uart *hu)
527 {
528 struct intel_data *intel = hu->priv;
529 struct hci_dev *hdev = hu->hdev;
530 struct sk_buff *skb;
531 struct intel_version ver;
532 struct intel_boot_params params;
533 struct list_head *p;
534 const struct firmware *fw;
535 char fwname[64];
536 u32 boot_param;
537 ktime_t calltime, delta, rettime;
538 unsigned long long duration;
539 unsigned int init_speed, oper_speed;
540 int speed_change = 0;
541 int err;
542
543 bt_dev_dbg(hdev, "start intel_setup");
544
545 hu->hdev->set_diag = btintel_set_diag;
546 hu->hdev->set_bdaddr = btintel_set_bdaddr;
547
548 /* Set the default boot parameter to 0x0 and it is updated to
549 * SKU specific boot parameter after reading Intel_Write_Boot_Params
550 * command while downloading the firmware.
551 */
552 boot_param = 0x00000000;
553
554 calltime = ktime_get();
555
556 if (hu->init_speed)
557 init_speed = hu->init_speed;
558 else
559 init_speed = hu->proto->init_speed;
560
561 if (hu->oper_speed)
562 oper_speed = hu->oper_speed;
563 else
564 oper_speed = hu->proto->oper_speed;
565
566 if (oper_speed && init_speed && oper_speed != init_speed)
567 speed_change = 1;
568
569 /* Check that the controller is ready */
570 err = intel_wait_booting(hu);
571
572 clear_bit(STATE_BOOTING, &intel->flags);
573
574 /* In case of timeout, try to continue anyway */
575 if (err && err != -ETIMEDOUT)
576 return err;
577
578 set_bit(STATE_BOOTLOADER, &intel->flags);
579
580 /* Read the Intel version information to determine if the device
581 * is in bootloader mode or if it already has operational firmware
582 * loaded.
583 */
584 err = btintel_read_version(hdev, &ver);
585 if (err)
586 return err;
587
588 /* The hardware platform number has a fixed value of 0x37 and
589 * for now only accept this single value.
590 */
591 if (ver.hw_platform != 0x37) {
592 bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)",
593 ver.hw_platform);
594 return -EINVAL;
595 }
596
597 /* Check for supported iBT hardware variants of this firmware
598 * loading method.
599 *
600 * This check has been put in place to ensure correct forward
601 * compatibility options when newer hardware variants come along.
602 */
603 switch (ver.hw_variant) {
604 case 0x0b: /* LnP */
605 case 0x0c: /* WsP */
606 case 0x12: /* ThP */
607 break;
608 default:
609 bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
610 ver.hw_variant);
611 return -EINVAL;
612 }
613
614 btintel_version_info(hdev, &ver);
615
616 /* The firmware variant determines if the device is in bootloader
617 * mode or is running operational firmware. The value 0x06 identifies
618 * the bootloader and the value 0x23 identifies the operational
619 * firmware.
620 *
621 * When the operational firmware is already present, then only
622 * the check for valid Bluetooth device address is needed. This
623 * determines if the device will be added as configured or
624 * unconfigured controller.
625 *
626 * It is not possible to use the Secure Boot Parameters in this
627 * case since that command is only available in bootloader mode.
628 */
629 if (ver.fw_variant == 0x23) {
630 clear_bit(STATE_BOOTLOADER, &intel->flags);
631 btintel_check_bdaddr(hdev);
632 return 0;
633 }
634
635 /* If the device is not in bootloader mode, then the only possible
636 * choice is to return an error and abort the device initialization.
637 */
638 if (ver.fw_variant != 0x06) {
639 bt_dev_err(hdev, "Unsupported Intel firmware variant (%u)",
640 ver.fw_variant);
641 return -ENODEV;
642 }
643
644 /* Read the secure boot parameters to identify the operating
645 * details of the bootloader.
646 */
647 err = btintel_read_boot_params(hdev, &params);
648 if (err)
649 return err;
650
651 /* It is required that every single firmware fragment is acknowledged
652 * with a command complete event. If the boot parameters indicate
653 * that this bootloader does not send them, then abort the setup.
654 */
655 if (params.limited_cce != 0x00) {
656 bt_dev_err(hdev, "Unsupported Intel firmware loading method (%u)",
657 params.limited_cce);
658 return -EINVAL;
659 }
660
661 /* If the OTP has no valid Bluetooth device address, then there will
662 * also be no valid address for the operational firmware.
663 */
664 if (!bacmp(&params.otp_bdaddr, BDADDR_ANY)) {
665 bt_dev_info(hdev, "No device address configured");
666 set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
667 }
668
669 /* With this Intel bootloader only the hardware variant and device
670 * revision information are used to select the right firmware for SfP
671 * and WsP.
672 *
673 * The firmware filename is ibt-<hw_variant>-<dev_revid>.sfi.
674 *
675 * Currently the supported hardware variants are:
676 * 11 (0x0b) for iBT 3.0 (LnP/SfP)
677 * 12 (0x0c) for iBT 3.5 (WsP)
678 *
679 * For ThP/JfP and for future SKU's, the FW name varies based on HW
680 * variant, HW revision and FW revision, as these are dependent on CNVi
681 * and RF Combination.
682 *
683 * 18 (0x12) for iBT3.5 (ThP/JfP)
684 *
685 * The firmware file name for these will be
686 * ibt-<hw_variant>-<hw_revision>-<fw_revision>.sfi.
687 *
688 */
689 switch (ver.hw_variant) {
690 case 0x0b: /* SfP */
691 case 0x0c: /* WsP */
692 snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u.sfi",
693 le16_to_cpu(ver.hw_variant),
694 le16_to_cpu(params.dev_revid));
695 break;
696 case 0x12: /* ThP */
697 snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u-%u.sfi",
698 le16_to_cpu(ver.hw_variant),
699 le16_to_cpu(ver.hw_revision),
700 le16_to_cpu(ver.fw_revision));
701 break;
702 default:
703 bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
704 ver.hw_variant);
705 return -EINVAL;
706 }
707
708 err = request_firmware(&fw, fwname, &hdev->dev);
709 if (err < 0) {
710 bt_dev_err(hdev, "Failed to load Intel firmware file (%d)",
711 err);
712 return err;
713 }
714
715 bt_dev_info(hdev, "Found device firmware: %s", fwname);
716
717 /* Save the DDC file name for later */
718 switch (ver.hw_variant) {
719 case 0x0b: /* SfP */
720 case 0x0c: /* WsP */
721 snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u.ddc",
722 le16_to_cpu(ver.hw_variant),
723 le16_to_cpu(params.dev_revid));
724 break;
725 case 0x12: /* ThP */
726 snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u-%u.ddc",
727 le16_to_cpu(ver.hw_variant),
728 le16_to_cpu(ver.hw_revision),
729 le16_to_cpu(ver.fw_revision));
730 break;
731 default:
732 bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
733 ver.hw_variant);
734 return -EINVAL;
735 }
736
737 if (fw->size < 644) {
738 bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
739 fw->size);
740 err = -EBADF;
741 goto done;
742 }
743
744 set_bit(STATE_DOWNLOADING, &intel->flags);
745
746 /* Start firmware downloading and get boot parameter */
747 err = btintel_download_firmware(hdev, fw, &boot_param);
748 if (err < 0)
749 goto done;
750
751 set_bit(STATE_FIRMWARE_LOADED, &intel->flags);
752
753 bt_dev_info(hdev, "Waiting for firmware download to complete");
754
755 /* Before switching the device into operational mode and with that
756 * booting the loaded firmware, wait for the bootloader notification
757 * that all fragments have been successfully received.
758 *
759 * When the event processing receives the notification, then the
760 * STATE_DOWNLOADING flag will be cleared.
761 *
762 * The firmware loading should not take longer than 5 seconds
763 * and thus just timeout if that happens and fail the setup
764 * of this device.
765 */
766 err = wait_on_bit_timeout(&intel->flags, STATE_DOWNLOADING,
767 TASK_INTERRUPTIBLE,
768 msecs_to_jiffies(5000));
769 if (err == -EINTR) {
770 bt_dev_err(hdev, "Firmware loading interrupted");
771 err = -EINTR;
772 goto done;
773 }
774
775 if (err) {
776 bt_dev_err(hdev, "Firmware loading timeout");
777 err = -ETIMEDOUT;
778 goto done;
779 }
780
781 if (test_bit(STATE_FIRMWARE_FAILED, &intel->flags)) {
782 bt_dev_err(hdev, "Firmware loading failed");
783 err = -ENOEXEC;
784 goto done;
785 }
786
787 rettime = ktime_get();
788 delta = ktime_sub(rettime, calltime);
789 duration = (unsigned long long) ktime_to_ns(delta) >> 10;
790
791 bt_dev_info(hdev, "Firmware loaded in %llu usecs", duration);
792
793 done:
794 release_firmware(fw);
795
796 if (err < 0)
797 return err;
798
799 /* We need to restore the default speed before Intel reset */
800 if (speed_change) {
801 err = intel_set_baudrate(hu, init_speed);
802 if (err)
803 return err;
804 }
805
806 calltime = ktime_get();
807
808 set_bit(STATE_BOOTING, &intel->flags);
809
810 err = btintel_send_intel_reset(hdev, boot_param);
811 if (err)
812 return err;
813
814 /* The bootloader will not indicate when the device is ready. This
815 * is done by the operational firmware sending bootup notification.
816 *
817 * Booting into operational firmware should not take longer than
818 * 1 second. However if that happens, then just fail the setup
819 * since something went wrong.
820 */
821 bt_dev_info(hdev, "Waiting for device to boot");
822
823 err = intel_wait_booting(hu);
824 if (err)
825 return err;
826
827 clear_bit(STATE_BOOTING, &intel->flags);
828
829 rettime = ktime_get();
830 delta = ktime_sub(rettime, calltime);
831 duration = (unsigned long long) ktime_to_ns(delta) >> 10;
832
833 bt_dev_info(hdev, "Device booted in %llu usecs", duration);
834
835 /* Enable LPM if matching pdev with wakeup enabled, set TX active
836 * until further LPM TX notification.
837 */
838 mutex_lock(&intel_device_list_lock);
839 list_for_each(p, &intel_device_list) {
840 struct intel_device *dev = list_entry(p, struct intel_device,
841 list);
842 if (!hu->tty->dev)
843 break;
844 if (hu->tty->dev->parent == dev->pdev->dev.parent) {
845 if (device_may_wakeup(&dev->pdev->dev)) {
846 set_bit(STATE_LPM_ENABLED, &intel->flags);
847 set_bit(STATE_TX_ACTIVE, &intel->flags);
848 }
849 break;
850 }
851 }
852 mutex_unlock(&intel_device_list_lock);
853
854 /* Ignore errors, device can work without DDC parameters */
855 btintel_load_ddc_config(hdev, fwname);
856
857 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_CMD_TIMEOUT);
858 if (IS_ERR(skb))
859 return PTR_ERR(skb);
860 kfree_skb(skb);
861
862 if (speed_change) {
863 err = intel_set_baudrate(hu, oper_speed);
864 if (err)
865 return err;
866 }
867
868 bt_dev_info(hdev, "Setup complete");
869
870 clear_bit(STATE_BOOTLOADER, &intel->flags);
871
872 return 0;
873 }
874
875 static int intel_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
876 {
877 struct hci_uart *hu = hci_get_drvdata(hdev);
878 struct intel_data *intel = hu->priv;
879 struct hci_event_hdr *hdr;
880
881 if (!test_bit(STATE_BOOTLOADER, &intel->flags) &&
882 !test_bit(STATE_BOOTING, &intel->flags))
883 goto recv;
884
885 hdr = (void *)skb->data;
886
887 /* When the firmware loading completes the device sends
888 * out a vendor specific event indicating the result of
889 * the firmware loading.
890 */
891 if (skb->len == 7 && hdr->evt == 0xff && hdr->plen == 0x05 &&
892 skb->data[2] == 0x06) {
893 if (skb->data[3] != 0x00)
894 set_bit(STATE_FIRMWARE_FAILED, &intel->flags);
895
896 if (test_and_clear_bit(STATE_DOWNLOADING, &intel->flags) &&
897 test_bit(STATE_FIRMWARE_LOADED, &intel->flags))
898 wake_up_bit(&intel->flags, STATE_DOWNLOADING);
899
900 /* When switching to the operational firmware the device
901 * sends a vendor specific event indicating that the bootup
902 * completed.
903 */
904 } else if (skb->len == 9 && hdr->evt == 0xff && hdr->plen == 0x07 &&
905 skb->data[2] == 0x02) {
906 if (test_and_clear_bit(STATE_BOOTING, &intel->flags))
907 wake_up_bit(&intel->flags, STATE_BOOTING);
908 }
909 recv:
910 return hci_recv_frame(hdev, skb);
911 }
912
913 static void intel_recv_lpm_notify(struct hci_dev *hdev, int value)
914 {
915 struct hci_uart *hu = hci_get_drvdata(hdev);
916 struct intel_data *intel = hu->priv;
917
918 bt_dev_dbg(hdev, "TX idle notification (%d)", value);
919
920 if (value) {
921 set_bit(STATE_TX_ACTIVE, &intel->flags);
922 schedule_work(&intel->busy_work);
923 } else {
924 clear_bit(STATE_TX_ACTIVE, &intel->flags);
925 }
926 }
927
928 static int intel_recv_lpm(struct hci_dev *hdev, struct sk_buff *skb)
929 {
930 struct hci_lpm_pkt *lpm = (void *)skb->data;
931 struct hci_uart *hu = hci_get_drvdata(hdev);
932 struct intel_data *intel = hu->priv;
933
934 switch (lpm->opcode) {
935 case LPM_OP_TX_NOTIFY:
936 if (lpm->dlen < 1) {
937 bt_dev_err(hu->hdev, "Invalid LPM notification packet");
938 break;
939 }
940 intel_recv_lpm_notify(hdev, lpm->data[0]);
941 break;
942 case LPM_OP_SUSPEND_ACK:
943 set_bit(STATE_SUSPENDED, &intel->flags);
944 if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags))
945 wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
946 break;
947 case LPM_OP_RESUME_ACK:
948 clear_bit(STATE_SUSPENDED, &intel->flags);
949 if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags))
950 wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
951 break;
952 default:
953 bt_dev_err(hdev, "Unknown LPM opcode (%02x)", lpm->opcode);
954 break;
955 }
956
957 kfree_skb(skb);
958
959 return 0;
960 }
961
962 #define INTEL_RECV_LPM \
963 .type = HCI_LPM_PKT, \
964 .hlen = HCI_LPM_HDR_SIZE, \
965 .loff = 1, \
966 .lsize = 1, \
967 .maxlen = HCI_LPM_MAX_SIZE
968
969 static const struct h4_recv_pkt intel_recv_pkts[] = {
970 { H4_RECV_ACL, .recv = hci_recv_frame },
971 { H4_RECV_SCO, .recv = hci_recv_frame },
972 { H4_RECV_EVENT, .recv = intel_recv_event },
973 { INTEL_RECV_LPM, .recv = intel_recv_lpm },
974 };
975
976 static int intel_recv(struct hci_uart *hu, const void *data, int count)
977 {
978 struct intel_data *intel = hu->priv;
979
980 if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
981 return -EUNATCH;
982
983 intel->rx_skb = h4_recv_buf(hu->hdev, intel->rx_skb, data, count,
984 intel_recv_pkts,
985 ARRAY_SIZE(intel_recv_pkts));
986 if (IS_ERR(intel->rx_skb)) {
987 int err = PTR_ERR(intel->rx_skb);
988 bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
989 intel->rx_skb = NULL;
990 return err;
991 }
992
993 return count;
994 }
995
996 static int intel_enqueue(struct hci_uart *hu, struct sk_buff *skb)
997 {
998 struct intel_data *intel = hu->priv;
999 struct list_head *p;
1000
1001 BT_DBG("hu %p skb %p", hu, skb);
1002
1003 if (!hu->tty->dev)
1004 goto out_enqueue;
1005
1006 /* Be sure our controller is resumed and potential LPM transaction
1007 * completed before enqueuing any packet.
1008 */
1009 mutex_lock(&intel_device_list_lock);
1010 list_for_each(p, &intel_device_list) {
1011 struct intel_device *idev = list_entry(p, struct intel_device,
1012 list);
1013
1014 if (hu->tty->dev->parent == idev->pdev->dev.parent) {
1015 pm_runtime_get_sync(&idev->pdev->dev);
1016 pm_runtime_mark_last_busy(&idev->pdev->dev);
1017 pm_runtime_put_autosuspend(&idev->pdev->dev);
1018 break;
1019 }
1020 }
1021 mutex_unlock(&intel_device_list_lock);
1022 out_enqueue:
1023 skb_queue_tail(&intel->txq, skb);
1024
1025 return 0;
1026 }
1027
1028 static struct sk_buff *intel_dequeue(struct hci_uart *hu)
1029 {
1030 struct intel_data *intel = hu->priv;
1031 struct sk_buff *skb;
1032
1033 skb = skb_dequeue(&intel->txq);
1034 if (!skb)
1035 return skb;
1036
1037 if (test_bit(STATE_BOOTLOADER, &intel->flags) &&
1038 (hci_skb_pkt_type(skb) == HCI_COMMAND_PKT)) {
1039 struct hci_command_hdr *cmd = (void *)skb->data;
1040 __u16 opcode = le16_to_cpu(cmd->opcode);
1041
1042 /* When the 0xfc01 command is issued to boot into
1043 * the operational firmware, it will actually not
1044 * send a command complete event. To keep the flow
1045 * control working inject that event here.
1046 */
1047 if (opcode == 0xfc01)
1048 inject_cmd_complete(hu->hdev, opcode);
1049 }
1050
1051 /* Prepend skb with frame type */
1052 memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
1053
1054 return skb;
1055 }
1056
1057 static const struct hci_uart_proto intel_proto = {
1058 .id = HCI_UART_INTEL,
1059 .name = "Intel",
1060 .manufacturer = 2,
1061 .init_speed = 115200,
1062 .oper_speed = 3000000,
1063 .open = intel_open,
1064 .close = intel_close,
1065 .flush = intel_flush,
1066 .setup = intel_setup,
1067 .set_baudrate = intel_set_baudrate,
1068 .recv = intel_recv,
1069 .enqueue = intel_enqueue,
1070 .dequeue = intel_dequeue,
1071 };
1072
1073 #ifdef CONFIG_ACPI
1074 static const struct acpi_device_id intel_acpi_match[] = {
1075 { "INT33E1", 0 },
1076 { },
1077 };
1078 MODULE_DEVICE_TABLE(acpi, intel_acpi_match);
1079 #endif
1080
1081 #ifdef CONFIG_PM
1082 static int intel_suspend_device(struct device *dev)
1083 {
1084 struct intel_device *idev = dev_get_drvdata(dev);
1085
1086 mutex_lock(&idev->hu_lock);
1087 if (idev->hu)
1088 intel_lpm_suspend(idev->hu);
1089 mutex_unlock(&idev->hu_lock);
1090
1091 return 0;
1092 }
1093
1094 static int intel_resume_device(struct device *dev)
1095 {
1096 struct intel_device *idev = dev_get_drvdata(dev);
1097
1098 mutex_lock(&idev->hu_lock);
1099 if (idev->hu)
1100 intel_lpm_resume(idev->hu);
1101 mutex_unlock(&idev->hu_lock);
1102
1103 return 0;
1104 }
1105 #endif
1106
1107 #ifdef CONFIG_PM_SLEEP
1108 static int intel_suspend(struct device *dev)
1109 {
1110 struct intel_device *idev = dev_get_drvdata(dev);
1111
1112 if (device_may_wakeup(dev))
1113 enable_irq_wake(idev->irq);
1114
1115 return intel_suspend_device(dev);
1116 }
1117
1118 static int intel_resume(struct device *dev)
1119 {
1120 struct intel_device *idev = dev_get_drvdata(dev);
1121
1122 if (device_may_wakeup(dev))
1123 disable_irq_wake(idev->irq);
1124
1125 return intel_resume_device(dev);
1126 }
1127 #endif
1128
1129 static const struct dev_pm_ops intel_pm_ops = {
1130 SET_SYSTEM_SLEEP_PM_OPS(intel_suspend, intel_resume)
1131 SET_RUNTIME_PM_OPS(intel_suspend_device, intel_resume_device, NULL)
1132 };
1133
1134 static const struct acpi_gpio_params reset_gpios = { 0, 0, false };
1135 static const struct acpi_gpio_params host_wake_gpios = { 1, 0, false };
1136
1137 static const struct acpi_gpio_mapping acpi_hci_intel_gpios[] = {
1138 { "reset-gpios", &reset_gpios, 1 },
1139 { "host-wake-gpios", &host_wake_gpios, 1 },
1140 { },
1141 };
1142
1143 static int intel_probe(struct platform_device *pdev)
1144 {
1145 struct intel_device *idev;
1146 int ret;
1147
1148 idev = devm_kzalloc(&pdev->dev, sizeof(*idev), GFP_KERNEL);
1149 if (!idev)
1150 return -ENOMEM;
1151
1152 mutex_init(&idev->hu_lock);
1153
1154 idev->pdev = pdev;
1155
1156 ret = devm_acpi_dev_add_driver_gpios(&pdev->dev, acpi_hci_intel_gpios);
1157 if (ret)
1158 dev_dbg(&pdev->dev, "Unable to add GPIO mapping table\n");
1159
1160 idev->reset = devm_gpiod_get(&pdev->dev, "reset", GPIOD_OUT_LOW);
1161 if (IS_ERR(idev->reset)) {
1162 dev_err(&pdev->dev, "Unable to retrieve gpio\n");
1163 return PTR_ERR(idev->reset);
1164 }
1165
1166 idev->irq = platform_get_irq(pdev, 0);
1167 if (idev->irq < 0) {
1168 struct gpio_desc *host_wake;
1169
1170 dev_err(&pdev->dev, "No IRQ, falling back to gpio-irq\n");
1171
1172 host_wake = devm_gpiod_get(&pdev->dev, "host-wake", GPIOD_IN);
1173 if (IS_ERR(host_wake)) {
1174 dev_err(&pdev->dev, "Unable to retrieve IRQ\n");
1175 goto no_irq;
1176 }
1177
1178 idev->irq = gpiod_to_irq(host_wake);
1179 if (idev->irq < 0) {
1180 dev_err(&pdev->dev, "No corresponding irq for gpio\n");
1181 goto no_irq;
1182 }
1183 }
1184
1185 /* Only enable wake-up/irq when controller is powered */
1186 device_set_wakeup_capable(&pdev->dev, true);
1187 device_wakeup_disable(&pdev->dev);
1188
1189 no_irq:
1190 platform_set_drvdata(pdev, idev);
1191
1192 /* Place this instance on the device list */
1193 mutex_lock(&intel_device_list_lock);
1194 list_add_tail(&idev->list, &intel_device_list);
1195 mutex_unlock(&intel_device_list_lock);
1196
1197 dev_info(&pdev->dev, "registered, gpio(%d)/irq(%d).\n",
1198 desc_to_gpio(idev->reset), idev->irq);
1199
1200 return 0;
1201 }
1202
1203 static int intel_remove(struct platform_device *pdev)
1204 {
1205 struct intel_device *idev = platform_get_drvdata(pdev);
1206
1207 device_wakeup_disable(&pdev->dev);
1208
1209 mutex_lock(&intel_device_list_lock);
1210 list_del(&idev->list);
1211 mutex_unlock(&intel_device_list_lock);
1212
1213 dev_info(&pdev->dev, "unregistered.\n");
1214
1215 return 0;
1216 }
1217
1218 static struct platform_driver intel_driver = {
1219 .probe = intel_probe,
1220 .remove = intel_remove,
1221 .driver = {
1222 .name = "hci_intel",
1223 .acpi_match_table = ACPI_PTR(intel_acpi_match),
1224 .pm = &intel_pm_ops,
1225 },
1226 };
1227
1228 int __init intel_init(void)
1229 {
1230 platform_driver_register(&intel_driver);
1231
1232 return hci_uart_register_proto(&intel_proto);
1233 }
1234
1235 int __exit intel_deinit(void)
1236 {
1237 platform_driver_unregister(&intel_driver);
1238
1239 return hci_uart_unregister_proto(&intel_proto);
1240 }