]> git.ipfire.org Git - thirdparty/u-boot.git/blob - drivers/clk/clk_stm32mp1.c
mmc: sdhci: use phys2bus macro when dma address is accessed
[thirdparty/u-boot.git] / drivers / clk / clk_stm32mp1.c
1 // SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
2 /*
3 * Copyright (C) 2018, STMicroelectronics - All Rights Reserved
4 */
5
6 #include <common.h>
7 #include <clk-uclass.h>
8 #include <div64.h>
9 #include <dm.h>
10 #include <regmap.h>
11 #include <spl.h>
12 #include <syscon.h>
13 #include <time.h>
14 #include <vsprintf.h>
15 #include <linux/io.h>
16 #include <linux/iopoll.h>
17 #include <dt-bindings/clock/stm32mp1-clks.h>
18 #include <dt-bindings/clock/stm32mp1-clksrc.h>
19
20 DECLARE_GLOBAL_DATA_PTR;
21
22 #ifndef CONFIG_TFABOOT
23 #if !defined(CONFIG_SPL) || defined(CONFIG_SPL_BUILD)
24 /* activate clock tree initialization in the driver */
25 #define STM32MP1_CLOCK_TREE_INIT
26 #endif
27 #endif
28
29 #define MAX_HSI_HZ 64000000
30
31 /* TIMEOUT */
32 #define TIMEOUT_200MS 200000
33 #define TIMEOUT_1S 1000000
34
35 /* STGEN registers */
36 #define STGENC_CNTCR 0x00
37 #define STGENC_CNTSR 0x04
38 #define STGENC_CNTCVL 0x08
39 #define STGENC_CNTCVU 0x0C
40 #define STGENC_CNTFID0 0x20
41
42 #define STGENC_CNTCR_EN BIT(0)
43
44 /* RCC registers */
45 #define RCC_OCENSETR 0x0C
46 #define RCC_OCENCLRR 0x10
47 #define RCC_HSICFGR 0x18
48 #define RCC_MPCKSELR 0x20
49 #define RCC_ASSCKSELR 0x24
50 #define RCC_RCK12SELR 0x28
51 #define RCC_MPCKDIVR 0x2C
52 #define RCC_AXIDIVR 0x30
53 #define RCC_APB4DIVR 0x3C
54 #define RCC_APB5DIVR 0x40
55 #define RCC_RTCDIVR 0x44
56 #define RCC_MSSCKSELR 0x48
57 #define RCC_PLL1CR 0x80
58 #define RCC_PLL1CFGR1 0x84
59 #define RCC_PLL1CFGR2 0x88
60 #define RCC_PLL1FRACR 0x8C
61 #define RCC_PLL1CSGR 0x90
62 #define RCC_PLL2CR 0x94
63 #define RCC_PLL2CFGR1 0x98
64 #define RCC_PLL2CFGR2 0x9C
65 #define RCC_PLL2FRACR 0xA0
66 #define RCC_PLL2CSGR 0xA4
67 #define RCC_I2C46CKSELR 0xC0
68 #define RCC_CPERCKSELR 0xD0
69 #define RCC_STGENCKSELR 0xD4
70 #define RCC_DDRITFCR 0xD8
71 #define RCC_BDCR 0x140
72 #define RCC_RDLSICR 0x144
73 #define RCC_MP_APB4ENSETR 0x200
74 #define RCC_MP_APB5ENSETR 0x208
75 #define RCC_MP_AHB5ENSETR 0x210
76 #define RCC_MP_AHB6ENSETR 0x218
77 #define RCC_OCRDYR 0x808
78 #define RCC_DBGCFGR 0x80C
79 #define RCC_RCK3SELR 0x820
80 #define RCC_RCK4SELR 0x824
81 #define RCC_MCUDIVR 0x830
82 #define RCC_APB1DIVR 0x834
83 #define RCC_APB2DIVR 0x838
84 #define RCC_APB3DIVR 0x83C
85 #define RCC_PLL3CR 0x880
86 #define RCC_PLL3CFGR1 0x884
87 #define RCC_PLL3CFGR2 0x888
88 #define RCC_PLL3FRACR 0x88C
89 #define RCC_PLL3CSGR 0x890
90 #define RCC_PLL4CR 0x894
91 #define RCC_PLL4CFGR1 0x898
92 #define RCC_PLL4CFGR2 0x89C
93 #define RCC_PLL4FRACR 0x8A0
94 #define RCC_PLL4CSGR 0x8A4
95 #define RCC_I2C12CKSELR 0x8C0
96 #define RCC_I2C35CKSELR 0x8C4
97 #define RCC_SPI2S1CKSELR 0x8D8
98 #define RCC_SPI45CKSELR 0x8E0
99 #define RCC_UART6CKSELR 0x8E4
100 #define RCC_UART24CKSELR 0x8E8
101 #define RCC_UART35CKSELR 0x8EC
102 #define RCC_UART78CKSELR 0x8F0
103 #define RCC_SDMMC12CKSELR 0x8F4
104 #define RCC_SDMMC3CKSELR 0x8F8
105 #define RCC_ETHCKSELR 0x8FC
106 #define RCC_QSPICKSELR 0x900
107 #define RCC_FMCCKSELR 0x904
108 #define RCC_USBCKSELR 0x91C
109 #define RCC_DSICKSELR 0x924
110 #define RCC_ADCCKSELR 0x928
111 #define RCC_MP_APB1ENSETR 0xA00
112 #define RCC_MP_APB2ENSETR 0XA08
113 #define RCC_MP_APB3ENSETR 0xA10
114 #define RCC_MP_AHB2ENSETR 0xA18
115 #define RCC_MP_AHB3ENSETR 0xA20
116 #define RCC_MP_AHB4ENSETR 0xA28
117
118 /* used for most of SELR register */
119 #define RCC_SELR_SRC_MASK GENMASK(2, 0)
120 #define RCC_SELR_SRCRDY BIT(31)
121
122 /* Values of RCC_MPCKSELR register */
123 #define RCC_MPCKSELR_HSI 0
124 #define RCC_MPCKSELR_HSE 1
125 #define RCC_MPCKSELR_PLL 2
126 #define RCC_MPCKSELR_PLL_MPUDIV 3
127
128 /* Values of RCC_ASSCKSELR register */
129 #define RCC_ASSCKSELR_HSI 0
130 #define RCC_ASSCKSELR_HSE 1
131 #define RCC_ASSCKSELR_PLL 2
132
133 /* Values of RCC_MSSCKSELR register */
134 #define RCC_MSSCKSELR_HSI 0
135 #define RCC_MSSCKSELR_HSE 1
136 #define RCC_MSSCKSELR_CSI 2
137 #define RCC_MSSCKSELR_PLL 3
138
139 /* Values of RCC_CPERCKSELR register */
140 #define RCC_CPERCKSELR_HSI 0
141 #define RCC_CPERCKSELR_CSI 1
142 #define RCC_CPERCKSELR_HSE 2
143
144 /* used for most of DIVR register : max div for RTC */
145 #define RCC_DIVR_DIV_MASK GENMASK(5, 0)
146 #define RCC_DIVR_DIVRDY BIT(31)
147
148 /* Masks for specific DIVR registers */
149 #define RCC_APBXDIV_MASK GENMASK(2, 0)
150 #define RCC_MPUDIV_MASK GENMASK(2, 0)
151 #define RCC_AXIDIV_MASK GENMASK(2, 0)
152 #define RCC_MCUDIV_MASK GENMASK(3, 0)
153
154 /* offset between RCC_MP_xxxENSETR and RCC_MP_xxxENCLRR registers */
155 #define RCC_MP_ENCLRR_OFFSET 4
156
157 /* Fields of RCC_BDCR register */
158 #define RCC_BDCR_LSEON BIT(0)
159 #define RCC_BDCR_LSEBYP BIT(1)
160 #define RCC_BDCR_LSERDY BIT(2)
161 #define RCC_BDCR_DIGBYP BIT(3)
162 #define RCC_BDCR_LSEDRV_MASK GENMASK(5, 4)
163 #define RCC_BDCR_LSEDRV_SHIFT 4
164 #define RCC_BDCR_LSECSSON BIT(8)
165 #define RCC_BDCR_RTCCKEN BIT(20)
166 #define RCC_BDCR_RTCSRC_MASK GENMASK(17, 16)
167 #define RCC_BDCR_RTCSRC_SHIFT 16
168
169 /* Fields of RCC_RDLSICR register */
170 #define RCC_RDLSICR_LSION BIT(0)
171 #define RCC_RDLSICR_LSIRDY BIT(1)
172
173 /* used for ALL PLLNCR registers */
174 #define RCC_PLLNCR_PLLON BIT(0)
175 #define RCC_PLLNCR_PLLRDY BIT(1)
176 #define RCC_PLLNCR_SSCG_CTRL BIT(2)
177 #define RCC_PLLNCR_DIVPEN BIT(4)
178 #define RCC_PLLNCR_DIVQEN BIT(5)
179 #define RCC_PLLNCR_DIVREN BIT(6)
180 #define RCC_PLLNCR_DIVEN_SHIFT 4
181
182 /* used for ALL PLLNCFGR1 registers */
183 #define RCC_PLLNCFGR1_DIVM_SHIFT 16
184 #define RCC_PLLNCFGR1_DIVM_MASK GENMASK(21, 16)
185 #define RCC_PLLNCFGR1_DIVN_SHIFT 0
186 #define RCC_PLLNCFGR1_DIVN_MASK GENMASK(8, 0)
187 /* only for PLL3 and PLL4 */
188 #define RCC_PLLNCFGR1_IFRGE_SHIFT 24
189 #define RCC_PLLNCFGR1_IFRGE_MASK GENMASK(25, 24)
190
191 /* used for ALL PLLNCFGR2 registers , using stm32mp1_div_id */
192 #define RCC_PLLNCFGR2_SHIFT(div_id) ((div_id) * 8)
193 #define RCC_PLLNCFGR2_DIVX_MASK GENMASK(6, 0)
194 #define RCC_PLLNCFGR2_DIVP_SHIFT RCC_PLLNCFGR2_SHIFT(_DIV_P)
195 #define RCC_PLLNCFGR2_DIVP_MASK GENMASK(6, 0)
196 #define RCC_PLLNCFGR2_DIVQ_SHIFT RCC_PLLNCFGR2_SHIFT(_DIV_Q)
197 #define RCC_PLLNCFGR2_DIVQ_MASK GENMASK(14, 8)
198 #define RCC_PLLNCFGR2_DIVR_SHIFT RCC_PLLNCFGR2_SHIFT(_DIV_R)
199 #define RCC_PLLNCFGR2_DIVR_MASK GENMASK(22, 16)
200
201 /* used for ALL PLLNFRACR registers */
202 #define RCC_PLLNFRACR_FRACV_SHIFT 3
203 #define RCC_PLLNFRACR_FRACV_MASK GENMASK(15, 3)
204 #define RCC_PLLNFRACR_FRACLE BIT(16)
205
206 /* used for ALL PLLNCSGR registers */
207 #define RCC_PLLNCSGR_INC_STEP_SHIFT 16
208 #define RCC_PLLNCSGR_INC_STEP_MASK GENMASK(30, 16)
209 #define RCC_PLLNCSGR_MOD_PER_SHIFT 0
210 #define RCC_PLLNCSGR_MOD_PER_MASK GENMASK(12, 0)
211 #define RCC_PLLNCSGR_SSCG_MODE_SHIFT 15
212 #define RCC_PLLNCSGR_SSCG_MODE_MASK BIT(15)
213
214 /* used for RCC_OCENSETR and RCC_OCENCLRR registers */
215 #define RCC_OCENR_HSION BIT(0)
216 #define RCC_OCENR_CSION BIT(4)
217 #define RCC_OCENR_DIGBYP BIT(7)
218 #define RCC_OCENR_HSEON BIT(8)
219 #define RCC_OCENR_HSEBYP BIT(10)
220 #define RCC_OCENR_HSECSSON BIT(11)
221
222 /* Fields of RCC_OCRDYR register */
223 #define RCC_OCRDYR_HSIRDY BIT(0)
224 #define RCC_OCRDYR_HSIDIVRDY BIT(2)
225 #define RCC_OCRDYR_CSIRDY BIT(4)
226 #define RCC_OCRDYR_HSERDY BIT(8)
227
228 /* Fields of DDRITFCR register */
229 #define RCC_DDRITFCR_DDRCKMOD_MASK GENMASK(22, 20)
230 #define RCC_DDRITFCR_DDRCKMOD_SHIFT 20
231 #define RCC_DDRITFCR_DDRCKMOD_SSR 0
232
233 /* Fields of RCC_HSICFGR register */
234 #define RCC_HSICFGR_HSIDIV_MASK GENMASK(1, 0)
235
236 /* used for MCO related operations */
237 #define RCC_MCOCFG_MCOON BIT(12)
238 #define RCC_MCOCFG_MCODIV_MASK GENMASK(7, 4)
239 #define RCC_MCOCFG_MCODIV_SHIFT 4
240 #define RCC_MCOCFG_MCOSRC_MASK GENMASK(2, 0)
241
242 enum stm32mp1_parent_id {
243 /*
244 * _HSI, _HSE, _CSI, _LSI, _LSE should not be moved
245 * they are used as index in osc[] as entry point
246 */
247 _HSI,
248 _HSE,
249 _CSI,
250 _LSI,
251 _LSE,
252 _I2S_CKIN,
253 NB_OSC,
254
255 /* other parent source */
256 _HSI_KER = NB_OSC,
257 _HSE_KER,
258 _HSE_KER_DIV2,
259 _CSI_KER,
260 _PLL1_P,
261 _PLL1_Q,
262 _PLL1_R,
263 _PLL2_P,
264 _PLL2_Q,
265 _PLL2_R,
266 _PLL3_P,
267 _PLL3_Q,
268 _PLL3_R,
269 _PLL4_P,
270 _PLL4_Q,
271 _PLL4_R,
272 _ACLK,
273 _PCLK1,
274 _PCLK2,
275 _PCLK3,
276 _PCLK4,
277 _PCLK5,
278 _HCLK6,
279 _HCLK2,
280 _CK_PER,
281 _CK_MPU,
282 _CK_MCU,
283 _DSI_PHY,
284 _USB_PHY_48,
285 _PARENT_NB,
286 _UNKNOWN_ID = 0xff,
287 };
288
289 enum stm32mp1_parent_sel {
290 _I2C12_SEL,
291 _I2C35_SEL,
292 _I2C46_SEL,
293 _UART6_SEL,
294 _UART24_SEL,
295 _UART35_SEL,
296 _UART78_SEL,
297 _SDMMC12_SEL,
298 _SDMMC3_SEL,
299 _ETH_SEL,
300 _QSPI_SEL,
301 _FMC_SEL,
302 _USBPHY_SEL,
303 _USBO_SEL,
304 _STGEN_SEL,
305 _DSI_SEL,
306 _ADC12_SEL,
307 _SPI1_SEL,
308 _SPI45_SEL,
309 _RTC_SEL,
310 _PARENT_SEL_NB,
311 _UNKNOWN_SEL = 0xff,
312 };
313
314 enum stm32mp1_pll_id {
315 _PLL1,
316 _PLL2,
317 _PLL3,
318 _PLL4,
319 _PLL_NB
320 };
321
322 enum stm32mp1_div_id {
323 _DIV_P,
324 _DIV_Q,
325 _DIV_R,
326 _DIV_NB,
327 };
328
329 enum stm32mp1_clksrc_id {
330 CLKSRC_MPU,
331 CLKSRC_AXI,
332 CLKSRC_MCU,
333 CLKSRC_PLL12,
334 CLKSRC_PLL3,
335 CLKSRC_PLL4,
336 CLKSRC_RTC,
337 CLKSRC_MCO1,
338 CLKSRC_MCO2,
339 CLKSRC_NB
340 };
341
342 enum stm32mp1_clkdiv_id {
343 CLKDIV_MPU,
344 CLKDIV_AXI,
345 CLKDIV_MCU,
346 CLKDIV_APB1,
347 CLKDIV_APB2,
348 CLKDIV_APB3,
349 CLKDIV_APB4,
350 CLKDIV_APB5,
351 CLKDIV_RTC,
352 CLKDIV_MCO1,
353 CLKDIV_MCO2,
354 CLKDIV_NB
355 };
356
357 enum stm32mp1_pllcfg {
358 PLLCFG_M,
359 PLLCFG_N,
360 PLLCFG_P,
361 PLLCFG_Q,
362 PLLCFG_R,
363 PLLCFG_O,
364 PLLCFG_NB
365 };
366
367 enum stm32mp1_pllcsg {
368 PLLCSG_MOD_PER,
369 PLLCSG_INC_STEP,
370 PLLCSG_SSCG_MODE,
371 PLLCSG_NB
372 };
373
374 enum stm32mp1_plltype {
375 PLL_800,
376 PLL_1600,
377 PLL_TYPE_NB
378 };
379
380 struct stm32mp1_pll {
381 u8 refclk_min;
382 u8 refclk_max;
383 u8 divn_max;
384 };
385
386 struct stm32mp1_clk_gate {
387 u16 offset;
388 u8 bit;
389 u8 index;
390 u8 set_clr;
391 u8 sel;
392 u8 fixed;
393 };
394
395 struct stm32mp1_clk_sel {
396 u16 offset;
397 u8 src;
398 u8 msk;
399 u8 nb_parent;
400 const u8 *parent;
401 };
402
403 #define REFCLK_SIZE 4
404 struct stm32mp1_clk_pll {
405 enum stm32mp1_plltype plltype;
406 u16 rckxselr;
407 u16 pllxcfgr1;
408 u16 pllxcfgr2;
409 u16 pllxfracr;
410 u16 pllxcr;
411 u16 pllxcsgr;
412 u8 refclk[REFCLK_SIZE];
413 };
414
415 struct stm32mp1_clk_data {
416 const struct stm32mp1_clk_gate *gate;
417 const struct stm32mp1_clk_sel *sel;
418 const struct stm32mp1_clk_pll *pll;
419 const int nb_gate;
420 };
421
422 struct stm32mp1_clk_priv {
423 fdt_addr_t base;
424 const struct stm32mp1_clk_data *data;
425 ulong osc[NB_OSC];
426 struct udevice *osc_dev[NB_OSC];
427 };
428
429 #define STM32MP1_CLK(off, b, idx, s) \
430 { \
431 .offset = (off), \
432 .bit = (b), \
433 .index = (idx), \
434 .set_clr = 0, \
435 .sel = (s), \
436 .fixed = _UNKNOWN_ID, \
437 }
438
439 #define STM32MP1_CLK_F(off, b, idx, f) \
440 { \
441 .offset = (off), \
442 .bit = (b), \
443 .index = (idx), \
444 .set_clr = 0, \
445 .sel = _UNKNOWN_SEL, \
446 .fixed = (f), \
447 }
448
449 #define STM32MP1_CLK_SET_CLR(off, b, idx, s) \
450 { \
451 .offset = (off), \
452 .bit = (b), \
453 .index = (idx), \
454 .set_clr = 1, \
455 .sel = (s), \
456 .fixed = _UNKNOWN_ID, \
457 }
458
459 #define STM32MP1_CLK_SET_CLR_F(off, b, idx, f) \
460 { \
461 .offset = (off), \
462 .bit = (b), \
463 .index = (idx), \
464 .set_clr = 1, \
465 .sel = _UNKNOWN_SEL, \
466 .fixed = (f), \
467 }
468
469 #define STM32MP1_CLK_PARENT(idx, off, s, m, p) \
470 [(idx)] = { \
471 .offset = (off), \
472 .src = (s), \
473 .msk = (m), \
474 .parent = (p), \
475 .nb_parent = ARRAY_SIZE((p)) \
476 }
477
478 #define STM32MP1_CLK_PLL(idx, type, off1, off2, off3, off4, off5, off6,\
479 p1, p2, p3, p4) \
480 [(idx)] = { \
481 .plltype = (type), \
482 .rckxselr = (off1), \
483 .pllxcfgr1 = (off2), \
484 .pllxcfgr2 = (off3), \
485 .pllxfracr = (off4), \
486 .pllxcr = (off5), \
487 .pllxcsgr = (off6), \
488 .refclk[0] = (p1), \
489 .refclk[1] = (p2), \
490 .refclk[2] = (p3), \
491 .refclk[3] = (p4), \
492 }
493
494 static const u8 stm32mp1_clks[][2] = {
495 {CK_PER, _CK_PER},
496 {CK_MPU, _CK_MPU},
497 {CK_AXI, _ACLK},
498 {CK_MCU, _CK_MCU},
499 {CK_HSE, _HSE},
500 {CK_CSI, _CSI},
501 {CK_LSI, _LSI},
502 {CK_LSE, _LSE},
503 {CK_HSI, _HSI},
504 {CK_HSE_DIV2, _HSE_KER_DIV2},
505 };
506
507 static const struct stm32mp1_clk_gate stm32mp1_clk_gate[] = {
508 STM32MP1_CLK(RCC_DDRITFCR, 0, DDRC1, _UNKNOWN_SEL),
509 STM32MP1_CLK(RCC_DDRITFCR, 1, DDRC1LP, _UNKNOWN_SEL),
510 STM32MP1_CLK(RCC_DDRITFCR, 2, DDRC2, _UNKNOWN_SEL),
511 STM32MP1_CLK(RCC_DDRITFCR, 3, DDRC2LP, _UNKNOWN_SEL),
512 STM32MP1_CLK_F(RCC_DDRITFCR, 4, DDRPHYC, _PLL2_R),
513 STM32MP1_CLK(RCC_DDRITFCR, 5, DDRPHYCLP, _UNKNOWN_SEL),
514 STM32MP1_CLK(RCC_DDRITFCR, 6, DDRCAPB, _UNKNOWN_SEL),
515 STM32MP1_CLK(RCC_DDRITFCR, 7, DDRCAPBLP, _UNKNOWN_SEL),
516 STM32MP1_CLK(RCC_DDRITFCR, 8, AXIDCG, _UNKNOWN_SEL),
517 STM32MP1_CLK(RCC_DDRITFCR, 9, DDRPHYCAPB, _UNKNOWN_SEL),
518 STM32MP1_CLK(RCC_DDRITFCR, 10, DDRPHYCAPBLP, _UNKNOWN_SEL),
519
520 STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 14, USART2_K, _UART24_SEL),
521 STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 15, USART3_K, _UART35_SEL),
522 STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 16, UART4_K, _UART24_SEL),
523 STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 17, UART5_K, _UART35_SEL),
524 STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 18, UART7_K, _UART78_SEL),
525 STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 19, UART8_K, _UART78_SEL),
526 STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 21, I2C1_K, _I2C12_SEL),
527 STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 22, I2C2_K, _I2C12_SEL),
528 STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 23, I2C3_K, _I2C35_SEL),
529 STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 24, I2C5_K, _I2C35_SEL),
530
531 STM32MP1_CLK_SET_CLR(RCC_MP_APB2ENSETR, 8, SPI1_K, _SPI1_SEL),
532 STM32MP1_CLK_SET_CLR(RCC_MP_APB2ENSETR, 10, SPI5_K, _SPI45_SEL),
533 STM32MP1_CLK_SET_CLR(RCC_MP_APB2ENSETR, 13, USART6_K, _UART6_SEL),
534
535 STM32MP1_CLK_SET_CLR_F(RCC_MP_APB3ENSETR, 13, VREF, _PCLK3),
536
537 STM32MP1_CLK_SET_CLR_F(RCC_MP_APB4ENSETR, 0, LTDC_PX, _PLL4_Q),
538 STM32MP1_CLK_SET_CLR_F(RCC_MP_APB4ENSETR, 4, DSI_PX, _PLL4_Q),
539 STM32MP1_CLK_SET_CLR(RCC_MP_APB4ENSETR, 4, DSI_K, _DSI_SEL),
540 STM32MP1_CLK_SET_CLR(RCC_MP_APB4ENSETR, 8, DDRPERFM, _UNKNOWN_SEL),
541 STM32MP1_CLK_SET_CLR(RCC_MP_APB4ENSETR, 15, IWDG2, _UNKNOWN_SEL),
542 STM32MP1_CLK_SET_CLR(RCC_MP_APB4ENSETR, 16, USBPHY_K, _USBPHY_SEL),
543
544 STM32MP1_CLK_SET_CLR(RCC_MP_APB5ENSETR, 2, I2C4_K, _I2C46_SEL),
545 STM32MP1_CLK_SET_CLR(RCC_MP_APB5ENSETR, 8, RTCAPB, _PCLK5),
546 STM32MP1_CLK_SET_CLR(RCC_MP_APB5ENSETR, 20, STGEN_K, _STGEN_SEL),
547
548 STM32MP1_CLK_SET_CLR_F(RCC_MP_AHB2ENSETR, 5, ADC12, _HCLK2),
549 STM32MP1_CLK_SET_CLR(RCC_MP_AHB2ENSETR, 5, ADC12_K, _ADC12_SEL),
550 STM32MP1_CLK_SET_CLR(RCC_MP_AHB2ENSETR, 8, USBO_K, _USBO_SEL),
551 STM32MP1_CLK_SET_CLR(RCC_MP_AHB2ENSETR, 16, SDMMC3_K, _SDMMC3_SEL),
552
553 STM32MP1_CLK_SET_CLR(RCC_MP_AHB3ENSETR, 11, HSEM, _UNKNOWN_SEL),
554 STM32MP1_CLK_SET_CLR(RCC_MP_AHB3ENSETR, 12, IPCC, _UNKNOWN_SEL),
555
556 STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 0, GPIOA, _UNKNOWN_SEL),
557 STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 1, GPIOB, _UNKNOWN_SEL),
558 STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 2, GPIOC, _UNKNOWN_SEL),
559 STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 3, GPIOD, _UNKNOWN_SEL),
560 STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 4, GPIOE, _UNKNOWN_SEL),
561 STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 5, GPIOF, _UNKNOWN_SEL),
562 STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 6, GPIOG, _UNKNOWN_SEL),
563 STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 7, GPIOH, _UNKNOWN_SEL),
564 STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 8, GPIOI, _UNKNOWN_SEL),
565 STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 9, GPIOJ, _UNKNOWN_SEL),
566 STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 10, GPIOK, _UNKNOWN_SEL),
567
568 STM32MP1_CLK_SET_CLR(RCC_MP_AHB5ENSETR, 0, GPIOZ, _UNKNOWN_SEL),
569 STM32MP1_CLK_SET_CLR(RCC_MP_AHB5ENSETR, 6, RNG1_K, _UNKNOWN_SEL),
570
571 STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 7, ETHCK_K, _ETH_SEL),
572 STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 8, ETHTX, _UNKNOWN_SEL),
573 STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 9, ETHRX, _UNKNOWN_SEL),
574 STM32MP1_CLK_SET_CLR_F(RCC_MP_AHB6ENSETR, 10, ETHMAC, _ACLK),
575 STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 12, FMC_K, _FMC_SEL),
576 STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 14, QSPI_K, _QSPI_SEL),
577 STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 16, SDMMC1_K, _SDMMC12_SEL),
578 STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 17, SDMMC2_K, _SDMMC12_SEL),
579 STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 24, USBH, _UNKNOWN_SEL),
580
581 STM32MP1_CLK(RCC_DBGCFGR, 8, CK_DBG, _UNKNOWN_SEL),
582
583 STM32MP1_CLK(RCC_BDCR, 20, RTC, _RTC_SEL),
584 };
585
586 static const u8 i2c12_parents[] = {_PCLK1, _PLL4_R, _HSI_KER, _CSI_KER};
587 static const u8 i2c35_parents[] = {_PCLK1, _PLL4_R, _HSI_KER, _CSI_KER};
588 static const u8 i2c46_parents[] = {_PCLK5, _PLL3_Q, _HSI_KER, _CSI_KER};
589 static const u8 uart6_parents[] = {_PCLK2, _PLL4_Q, _HSI_KER, _CSI_KER,
590 _HSE_KER};
591 static const u8 uart24_parents[] = {_PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER,
592 _HSE_KER};
593 static const u8 uart35_parents[] = {_PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER,
594 _HSE_KER};
595 static const u8 uart78_parents[] = {_PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER,
596 _HSE_KER};
597 static const u8 sdmmc12_parents[] = {_HCLK6, _PLL3_R, _PLL4_P, _HSI_KER};
598 static const u8 sdmmc3_parents[] = {_HCLK2, _PLL3_R, _PLL4_P, _HSI_KER};
599 static const u8 eth_parents[] = {_PLL4_P, _PLL3_Q};
600 static const u8 qspi_parents[] = {_ACLK, _PLL3_R, _PLL4_P, _CK_PER};
601 static const u8 fmc_parents[] = {_ACLK, _PLL3_R, _PLL4_P, _CK_PER};
602 static const u8 usbphy_parents[] = {_HSE_KER, _PLL4_R, _HSE_KER_DIV2};
603 static const u8 usbo_parents[] = {_PLL4_R, _USB_PHY_48};
604 static const u8 stgen_parents[] = {_HSI_KER, _HSE_KER};
605 static const u8 dsi_parents[] = {_DSI_PHY, _PLL4_P};
606 static const u8 adc_parents[] = {_PLL4_R, _CK_PER, _PLL3_Q};
607 static const u8 spi_parents[] = {_PLL4_P, _PLL3_Q, _I2S_CKIN, _CK_PER,
608 _PLL3_R};
609 static const u8 spi45_parents[] = {_PCLK2, _PLL4_Q, _HSI_KER, _CSI_KER,
610 _HSE_KER};
611 static const u8 rtc_parents[] = {_UNKNOWN_ID, _LSE, _LSI, _HSE};
612
613 static const struct stm32mp1_clk_sel stm32mp1_clk_sel[_PARENT_SEL_NB] = {
614 STM32MP1_CLK_PARENT(_I2C12_SEL, RCC_I2C12CKSELR, 0, 0x7, i2c12_parents),
615 STM32MP1_CLK_PARENT(_I2C35_SEL, RCC_I2C35CKSELR, 0, 0x7, i2c35_parents),
616 STM32MP1_CLK_PARENT(_I2C46_SEL, RCC_I2C46CKSELR, 0, 0x7, i2c46_parents),
617 STM32MP1_CLK_PARENT(_UART6_SEL, RCC_UART6CKSELR, 0, 0x7, uart6_parents),
618 STM32MP1_CLK_PARENT(_UART24_SEL, RCC_UART24CKSELR, 0, 0x7,
619 uart24_parents),
620 STM32MP1_CLK_PARENT(_UART35_SEL, RCC_UART35CKSELR, 0, 0x7,
621 uart35_parents),
622 STM32MP1_CLK_PARENT(_UART78_SEL, RCC_UART78CKSELR, 0, 0x7,
623 uart78_parents),
624 STM32MP1_CLK_PARENT(_SDMMC12_SEL, RCC_SDMMC12CKSELR, 0, 0x7,
625 sdmmc12_parents),
626 STM32MP1_CLK_PARENT(_SDMMC3_SEL, RCC_SDMMC3CKSELR, 0, 0x7,
627 sdmmc3_parents),
628 STM32MP1_CLK_PARENT(_ETH_SEL, RCC_ETHCKSELR, 0, 0x3, eth_parents),
629 STM32MP1_CLK_PARENT(_QSPI_SEL, RCC_QSPICKSELR, 0, 0x3, qspi_parents),
630 STM32MP1_CLK_PARENT(_FMC_SEL, RCC_FMCCKSELR, 0, 0x3, fmc_parents),
631 STM32MP1_CLK_PARENT(_USBPHY_SEL, RCC_USBCKSELR, 0, 0x3, usbphy_parents),
632 STM32MP1_CLK_PARENT(_USBO_SEL, RCC_USBCKSELR, 4, 0x1, usbo_parents),
633 STM32MP1_CLK_PARENT(_STGEN_SEL, RCC_STGENCKSELR, 0, 0x3, stgen_parents),
634 STM32MP1_CLK_PARENT(_DSI_SEL, RCC_DSICKSELR, 0, 0x1, dsi_parents),
635 STM32MP1_CLK_PARENT(_ADC12_SEL, RCC_ADCCKSELR, 0, 0x3, adc_parents),
636 STM32MP1_CLK_PARENT(_SPI1_SEL, RCC_SPI2S1CKSELR, 0, 0x7, spi_parents),
637 STM32MP1_CLK_PARENT(_SPI45_SEL, RCC_SPI45CKSELR, 0, 0x7, spi45_parents),
638 STM32MP1_CLK_PARENT(_RTC_SEL, RCC_BDCR, RCC_BDCR_RTCSRC_SHIFT,
639 (RCC_BDCR_RTCSRC_MASK >> RCC_BDCR_RTCSRC_SHIFT),
640 rtc_parents),
641 };
642
643 #ifdef STM32MP1_CLOCK_TREE_INIT
644 /* define characteristic of PLL according type */
645 #define DIVN_MIN 24
646 static const struct stm32mp1_pll stm32mp1_pll[PLL_TYPE_NB] = {
647 [PLL_800] = {
648 .refclk_min = 4,
649 .refclk_max = 16,
650 .divn_max = 99,
651 },
652 [PLL_1600] = {
653 .refclk_min = 8,
654 .refclk_max = 16,
655 .divn_max = 199,
656 },
657 };
658 #endif /* STM32MP1_CLOCK_TREE_INIT */
659
660 static const struct stm32mp1_clk_pll stm32mp1_clk_pll[_PLL_NB] = {
661 STM32MP1_CLK_PLL(_PLL1, PLL_1600,
662 RCC_RCK12SELR, RCC_PLL1CFGR1, RCC_PLL1CFGR2,
663 RCC_PLL1FRACR, RCC_PLL1CR, RCC_PLL1CSGR,
664 _HSI, _HSE, _UNKNOWN_ID, _UNKNOWN_ID),
665 STM32MP1_CLK_PLL(_PLL2, PLL_1600,
666 RCC_RCK12SELR, RCC_PLL2CFGR1, RCC_PLL2CFGR2,
667 RCC_PLL2FRACR, RCC_PLL2CR, RCC_PLL2CSGR,
668 _HSI, _HSE, _UNKNOWN_ID, _UNKNOWN_ID),
669 STM32MP1_CLK_PLL(_PLL3, PLL_800,
670 RCC_RCK3SELR, RCC_PLL3CFGR1, RCC_PLL3CFGR2,
671 RCC_PLL3FRACR, RCC_PLL3CR, RCC_PLL3CSGR,
672 _HSI, _HSE, _CSI, _UNKNOWN_ID),
673 STM32MP1_CLK_PLL(_PLL4, PLL_800,
674 RCC_RCK4SELR, RCC_PLL4CFGR1, RCC_PLL4CFGR2,
675 RCC_PLL4FRACR, RCC_PLL4CR, RCC_PLL4CSGR,
676 _HSI, _HSE, _CSI, _I2S_CKIN),
677 };
678
679 /* Prescaler table lookups for clock computation */
680 /* div = /1 /2 /4 /8 / 16 /64 /128 /512 */
681 static const u8 stm32mp1_mcu_div[16] = {
682 0, 1, 2, 3, 4, 6, 7, 8, 9, 9, 9, 9, 9, 9, 9, 9
683 };
684
685 /* div = /1 /2 /4 /8 /16 : same divider for pmu and apbx*/
686 #define stm32mp1_mpu_div stm32mp1_mpu_apbx_div
687 #define stm32mp1_apbx_div stm32mp1_mpu_apbx_div
688 static const u8 stm32mp1_mpu_apbx_div[8] = {
689 0, 1, 2, 3, 4, 4, 4, 4
690 };
691
692 /* div = /1 /2 /3 /4 */
693 static const u8 stm32mp1_axi_div[8] = {
694 1, 2, 3, 4, 4, 4, 4, 4
695 };
696
697 static const __maybe_unused
698 char * const stm32mp1_clk_parent_name[_PARENT_NB] = {
699 [_HSI] = "HSI",
700 [_HSE] = "HSE",
701 [_CSI] = "CSI",
702 [_LSI] = "LSI",
703 [_LSE] = "LSE",
704 [_I2S_CKIN] = "I2S_CKIN",
705 [_HSI_KER] = "HSI_KER",
706 [_HSE_KER] = "HSE_KER",
707 [_HSE_KER_DIV2] = "HSE_KER_DIV2",
708 [_CSI_KER] = "CSI_KER",
709 [_PLL1_P] = "PLL1_P",
710 [_PLL1_Q] = "PLL1_Q",
711 [_PLL1_R] = "PLL1_R",
712 [_PLL2_P] = "PLL2_P",
713 [_PLL2_Q] = "PLL2_Q",
714 [_PLL2_R] = "PLL2_R",
715 [_PLL3_P] = "PLL3_P",
716 [_PLL3_Q] = "PLL3_Q",
717 [_PLL3_R] = "PLL3_R",
718 [_PLL4_P] = "PLL4_P",
719 [_PLL4_Q] = "PLL4_Q",
720 [_PLL4_R] = "PLL4_R",
721 [_ACLK] = "ACLK",
722 [_PCLK1] = "PCLK1",
723 [_PCLK2] = "PCLK2",
724 [_PCLK3] = "PCLK3",
725 [_PCLK4] = "PCLK4",
726 [_PCLK5] = "PCLK5",
727 [_HCLK6] = "KCLK6",
728 [_HCLK2] = "HCLK2",
729 [_CK_PER] = "CK_PER",
730 [_CK_MPU] = "CK_MPU",
731 [_CK_MCU] = "CK_MCU",
732 [_USB_PHY_48] = "USB_PHY_48",
733 [_DSI_PHY] = "DSI_PHY_PLL",
734 };
735
736 static const __maybe_unused
737 char * const stm32mp1_clk_parent_sel_name[_PARENT_SEL_NB] = {
738 [_I2C12_SEL] = "I2C12",
739 [_I2C35_SEL] = "I2C35",
740 [_I2C46_SEL] = "I2C46",
741 [_UART6_SEL] = "UART6",
742 [_UART24_SEL] = "UART24",
743 [_UART35_SEL] = "UART35",
744 [_UART78_SEL] = "UART78",
745 [_SDMMC12_SEL] = "SDMMC12",
746 [_SDMMC3_SEL] = "SDMMC3",
747 [_ETH_SEL] = "ETH",
748 [_QSPI_SEL] = "QSPI",
749 [_FMC_SEL] = "FMC",
750 [_USBPHY_SEL] = "USBPHY",
751 [_USBO_SEL] = "USBO",
752 [_STGEN_SEL] = "STGEN",
753 [_DSI_SEL] = "DSI",
754 [_ADC12_SEL] = "ADC12",
755 [_SPI1_SEL] = "SPI1",
756 [_SPI45_SEL] = "SPI45",
757 [_RTC_SEL] = "RTC",
758 };
759
760 static const struct stm32mp1_clk_data stm32mp1_data = {
761 .gate = stm32mp1_clk_gate,
762 .sel = stm32mp1_clk_sel,
763 .pll = stm32mp1_clk_pll,
764 .nb_gate = ARRAY_SIZE(stm32mp1_clk_gate),
765 };
766
767 static ulong stm32mp1_clk_get_fixed(struct stm32mp1_clk_priv *priv, int idx)
768 {
769 if (idx >= NB_OSC) {
770 debug("%s: clk id %d not found\n", __func__, idx);
771 return 0;
772 }
773
774 return priv->osc[idx];
775 }
776
777 static int stm32mp1_clk_get_id(struct stm32mp1_clk_priv *priv, unsigned long id)
778 {
779 const struct stm32mp1_clk_gate *gate = priv->data->gate;
780 int i, nb_clks = priv->data->nb_gate;
781
782 for (i = 0; i < nb_clks; i++) {
783 if (gate[i].index == id)
784 break;
785 }
786
787 if (i == nb_clks) {
788 printf("%s: clk id %d not found\n", __func__, (u32)id);
789 return -EINVAL;
790 }
791
792 return i;
793 }
794
795 static int stm32mp1_clk_get_sel(struct stm32mp1_clk_priv *priv,
796 int i)
797 {
798 const struct stm32mp1_clk_gate *gate = priv->data->gate;
799
800 if (gate[i].sel > _PARENT_SEL_NB) {
801 printf("%s: parents for clk id %d not found\n",
802 __func__, i);
803 return -EINVAL;
804 }
805
806 return gate[i].sel;
807 }
808
809 static int stm32mp1_clk_get_fixed_parent(struct stm32mp1_clk_priv *priv,
810 int i)
811 {
812 const struct stm32mp1_clk_gate *gate = priv->data->gate;
813
814 if (gate[i].fixed == _UNKNOWN_ID)
815 return -ENOENT;
816
817 return gate[i].fixed;
818 }
819
820 static int stm32mp1_clk_get_parent(struct stm32mp1_clk_priv *priv,
821 unsigned long id)
822 {
823 const struct stm32mp1_clk_sel *sel = priv->data->sel;
824 int i;
825 int s, p;
826 unsigned int idx;
827
828 for (idx = 0; idx < ARRAY_SIZE(stm32mp1_clks); idx++)
829 if (stm32mp1_clks[idx][0] == id)
830 return stm32mp1_clks[idx][1];
831
832 i = stm32mp1_clk_get_id(priv, id);
833 if (i < 0)
834 return i;
835
836 p = stm32mp1_clk_get_fixed_parent(priv, i);
837 if (p >= 0 && p < _PARENT_NB)
838 return p;
839
840 s = stm32mp1_clk_get_sel(priv, i);
841 if (s < 0)
842 return s;
843
844 p = (readl(priv->base + sel[s].offset) >> sel[s].src) & sel[s].msk;
845
846 if (p < sel[s].nb_parent) {
847 #ifdef DEBUG
848 debug("%s: %s clock is the parent %s of clk id %d\n", __func__,
849 stm32mp1_clk_parent_name[sel[s].parent[p]],
850 stm32mp1_clk_parent_sel_name[s],
851 (u32)id);
852 #endif
853 return sel[s].parent[p];
854 }
855
856 pr_err("%s: no parents defined for clk id %d\n",
857 __func__, (u32)id);
858
859 return -EINVAL;
860 }
861
862 static ulong pll_get_fref_ck(struct stm32mp1_clk_priv *priv,
863 int pll_id)
864 {
865 const struct stm32mp1_clk_pll *pll = priv->data->pll;
866 u32 selr;
867 int src;
868 ulong refclk;
869
870 /* Get current refclk */
871 selr = readl(priv->base + pll[pll_id].rckxselr);
872 src = selr & RCC_SELR_SRC_MASK;
873
874 refclk = stm32mp1_clk_get_fixed(priv, pll[pll_id].refclk[src]);
875
876 return refclk;
877 }
878
879 /*
880 * pll_get_fvco() : return the VCO or (VCO / 2) frequency for the requested PLL
881 * - PLL1 & PLL2 => return VCO / 2 with Fpll_y_ck = FVCO / 2 * (DIVy + 1)
882 * - PLL3 & PLL4 => return VCO with Fpll_y_ck = FVCO / (DIVy + 1)
883 * => in all the case Fpll_y_ck = pll_get_fvco() / (DIVy + 1)
884 */
885 static ulong pll_get_fvco(struct stm32mp1_clk_priv *priv,
886 int pll_id)
887 {
888 const struct stm32mp1_clk_pll *pll = priv->data->pll;
889 int divm, divn;
890 ulong refclk, fvco;
891 u32 cfgr1, fracr;
892
893 cfgr1 = readl(priv->base + pll[pll_id].pllxcfgr1);
894 fracr = readl(priv->base + pll[pll_id].pllxfracr);
895
896 divm = (cfgr1 & (RCC_PLLNCFGR1_DIVM_MASK)) >> RCC_PLLNCFGR1_DIVM_SHIFT;
897 divn = cfgr1 & RCC_PLLNCFGR1_DIVN_MASK;
898
899 refclk = pll_get_fref_ck(priv, pll_id);
900
901 /* with FRACV :
902 * Fvco = Fck_ref * ((DIVN + 1) + FRACV / 2^13) / (DIVM + 1)
903 * without FRACV
904 * Fvco = Fck_ref * ((DIVN + 1) / (DIVM + 1)
905 */
906 if (fracr & RCC_PLLNFRACR_FRACLE) {
907 u32 fracv = (fracr & RCC_PLLNFRACR_FRACV_MASK)
908 >> RCC_PLLNFRACR_FRACV_SHIFT;
909 fvco = (ulong)lldiv((unsigned long long)refclk *
910 (((divn + 1) << 13) + fracv),
911 ((unsigned long long)(divm + 1)) << 13);
912 } else {
913 fvco = (ulong)(refclk * (divn + 1) / (divm + 1));
914 }
915
916 return fvco;
917 }
918
919 static ulong stm32mp1_read_pll_freq(struct stm32mp1_clk_priv *priv,
920 int pll_id, int div_id)
921 {
922 const struct stm32mp1_clk_pll *pll = priv->data->pll;
923 int divy;
924 ulong dfout;
925 u32 cfgr2;
926
927 if (div_id >= _DIV_NB)
928 return 0;
929
930 cfgr2 = readl(priv->base + pll[pll_id].pllxcfgr2);
931 divy = (cfgr2 >> RCC_PLLNCFGR2_SHIFT(div_id)) & RCC_PLLNCFGR2_DIVX_MASK;
932
933 dfout = pll_get_fvco(priv, pll_id) / (divy + 1);
934
935 return dfout;
936 }
937
938 static ulong stm32mp1_clk_get(struct stm32mp1_clk_priv *priv, int p)
939 {
940 u32 reg;
941 ulong clock = 0;
942
943 switch (p) {
944 case _CK_MPU:
945 /* MPU sub system */
946 reg = readl(priv->base + RCC_MPCKSELR);
947 switch (reg & RCC_SELR_SRC_MASK) {
948 case RCC_MPCKSELR_HSI:
949 clock = stm32mp1_clk_get_fixed(priv, _HSI);
950 break;
951 case RCC_MPCKSELR_HSE:
952 clock = stm32mp1_clk_get_fixed(priv, _HSE);
953 break;
954 case RCC_MPCKSELR_PLL:
955 case RCC_MPCKSELR_PLL_MPUDIV:
956 clock = stm32mp1_read_pll_freq(priv, _PLL1, _DIV_P);
957 if (p == RCC_MPCKSELR_PLL_MPUDIV) {
958 reg = readl(priv->base + RCC_MPCKDIVR);
959 clock /= stm32mp1_mpu_div[reg &
960 RCC_MPUDIV_MASK];
961 }
962 break;
963 }
964 break;
965 /* AXI sub system */
966 case _ACLK:
967 case _HCLK2:
968 case _HCLK6:
969 case _PCLK4:
970 case _PCLK5:
971 reg = readl(priv->base + RCC_ASSCKSELR);
972 switch (reg & RCC_SELR_SRC_MASK) {
973 case RCC_ASSCKSELR_HSI:
974 clock = stm32mp1_clk_get_fixed(priv, _HSI);
975 break;
976 case RCC_ASSCKSELR_HSE:
977 clock = stm32mp1_clk_get_fixed(priv, _HSE);
978 break;
979 case RCC_ASSCKSELR_PLL:
980 clock = stm32mp1_read_pll_freq(priv, _PLL2, _DIV_P);
981 break;
982 }
983
984 /* System clock divider */
985 reg = readl(priv->base + RCC_AXIDIVR);
986 clock /= stm32mp1_axi_div[reg & RCC_AXIDIV_MASK];
987
988 switch (p) {
989 case _PCLK4:
990 reg = readl(priv->base + RCC_APB4DIVR);
991 clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
992 break;
993 case _PCLK5:
994 reg = readl(priv->base + RCC_APB5DIVR);
995 clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
996 break;
997 default:
998 break;
999 }
1000 break;
1001 /* MCU sub system */
1002 case _CK_MCU:
1003 case _PCLK1:
1004 case _PCLK2:
1005 case _PCLK3:
1006 reg = readl(priv->base + RCC_MSSCKSELR);
1007 switch (reg & RCC_SELR_SRC_MASK) {
1008 case RCC_MSSCKSELR_HSI:
1009 clock = stm32mp1_clk_get_fixed(priv, _HSI);
1010 break;
1011 case RCC_MSSCKSELR_HSE:
1012 clock = stm32mp1_clk_get_fixed(priv, _HSE);
1013 break;
1014 case RCC_MSSCKSELR_CSI:
1015 clock = stm32mp1_clk_get_fixed(priv, _CSI);
1016 break;
1017 case RCC_MSSCKSELR_PLL:
1018 clock = stm32mp1_read_pll_freq(priv, _PLL3, _DIV_P);
1019 break;
1020 }
1021
1022 /* MCU clock divider */
1023 reg = readl(priv->base + RCC_MCUDIVR);
1024 clock >>= stm32mp1_mcu_div[reg & RCC_MCUDIV_MASK];
1025
1026 switch (p) {
1027 case _PCLK1:
1028 reg = readl(priv->base + RCC_APB1DIVR);
1029 clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
1030 break;
1031 case _PCLK2:
1032 reg = readl(priv->base + RCC_APB2DIVR);
1033 clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
1034 break;
1035 case _PCLK3:
1036 reg = readl(priv->base + RCC_APB3DIVR);
1037 clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
1038 break;
1039 case _CK_MCU:
1040 default:
1041 break;
1042 }
1043 break;
1044 case _CK_PER:
1045 reg = readl(priv->base + RCC_CPERCKSELR);
1046 switch (reg & RCC_SELR_SRC_MASK) {
1047 case RCC_CPERCKSELR_HSI:
1048 clock = stm32mp1_clk_get_fixed(priv, _HSI);
1049 break;
1050 case RCC_CPERCKSELR_HSE:
1051 clock = stm32mp1_clk_get_fixed(priv, _HSE);
1052 break;
1053 case RCC_CPERCKSELR_CSI:
1054 clock = stm32mp1_clk_get_fixed(priv, _CSI);
1055 break;
1056 }
1057 break;
1058 case _HSI:
1059 case _HSI_KER:
1060 clock = stm32mp1_clk_get_fixed(priv, _HSI);
1061 break;
1062 case _CSI:
1063 case _CSI_KER:
1064 clock = stm32mp1_clk_get_fixed(priv, _CSI);
1065 break;
1066 case _HSE:
1067 case _HSE_KER:
1068 case _HSE_KER_DIV2:
1069 clock = stm32mp1_clk_get_fixed(priv, _HSE);
1070 if (p == _HSE_KER_DIV2)
1071 clock >>= 1;
1072 break;
1073 case _LSI:
1074 clock = stm32mp1_clk_get_fixed(priv, _LSI);
1075 break;
1076 case _LSE:
1077 clock = stm32mp1_clk_get_fixed(priv, _LSE);
1078 break;
1079 /* PLL */
1080 case _PLL1_P:
1081 case _PLL1_Q:
1082 case _PLL1_R:
1083 clock = stm32mp1_read_pll_freq(priv, _PLL1, p - _PLL1_P);
1084 break;
1085 case _PLL2_P:
1086 case _PLL2_Q:
1087 case _PLL2_R:
1088 clock = stm32mp1_read_pll_freq(priv, _PLL2, p - _PLL2_P);
1089 break;
1090 case _PLL3_P:
1091 case _PLL3_Q:
1092 case _PLL3_R:
1093 clock = stm32mp1_read_pll_freq(priv, _PLL3, p - _PLL3_P);
1094 break;
1095 case _PLL4_P:
1096 case _PLL4_Q:
1097 case _PLL4_R:
1098 clock = stm32mp1_read_pll_freq(priv, _PLL4, p - _PLL4_P);
1099 break;
1100 /* other */
1101 case _USB_PHY_48:
1102 clock = 48000000;
1103 break;
1104 case _DSI_PHY:
1105 {
1106 struct clk clk;
1107 struct udevice *dev = NULL;
1108
1109 if (!uclass_get_device_by_name(UCLASS_CLK, "ck_dsi_phy",
1110 &dev)) {
1111 if (clk_request(dev, &clk)) {
1112 pr_err("ck_dsi_phy request");
1113 } else {
1114 clk.id = 0;
1115 clock = clk_get_rate(&clk);
1116 }
1117 }
1118 break;
1119 }
1120 default:
1121 break;
1122 }
1123
1124 debug("%s(%d) clock = %lx : %ld kHz\n",
1125 __func__, p, clock, clock / 1000);
1126
1127 return clock;
1128 }
1129
1130 static int stm32mp1_clk_enable(struct clk *clk)
1131 {
1132 struct stm32mp1_clk_priv *priv = dev_get_priv(clk->dev);
1133 const struct stm32mp1_clk_gate *gate = priv->data->gate;
1134 int i = stm32mp1_clk_get_id(priv, clk->id);
1135
1136 if (i < 0)
1137 return i;
1138
1139 if (gate[i].set_clr)
1140 writel(BIT(gate[i].bit), priv->base + gate[i].offset);
1141 else
1142 setbits_le32(priv->base + gate[i].offset, BIT(gate[i].bit));
1143
1144 debug("%s: id clock %d has been enabled\n", __func__, (u32)clk->id);
1145
1146 return 0;
1147 }
1148
1149 static int stm32mp1_clk_disable(struct clk *clk)
1150 {
1151 struct stm32mp1_clk_priv *priv = dev_get_priv(clk->dev);
1152 const struct stm32mp1_clk_gate *gate = priv->data->gate;
1153 int i = stm32mp1_clk_get_id(priv, clk->id);
1154
1155 if (i < 0)
1156 return i;
1157
1158 if (gate[i].set_clr)
1159 writel(BIT(gate[i].bit),
1160 priv->base + gate[i].offset
1161 + RCC_MP_ENCLRR_OFFSET);
1162 else
1163 clrbits_le32(priv->base + gate[i].offset, BIT(gate[i].bit));
1164
1165 debug("%s: id clock %d has been disabled\n", __func__, (u32)clk->id);
1166
1167 return 0;
1168 }
1169
1170 static ulong stm32mp1_clk_get_rate(struct clk *clk)
1171 {
1172 struct stm32mp1_clk_priv *priv = dev_get_priv(clk->dev);
1173 int p = stm32mp1_clk_get_parent(priv, clk->id);
1174 ulong rate;
1175
1176 if (p < 0)
1177 return 0;
1178
1179 rate = stm32mp1_clk_get(priv, p);
1180
1181 #ifdef DEBUG
1182 debug("%s: computed rate for id clock %d is %d (parent is %s)\n",
1183 __func__, (u32)clk->id, (u32)rate, stm32mp1_clk_parent_name[p]);
1184 #endif
1185 return rate;
1186 }
1187
1188 #ifdef STM32MP1_CLOCK_TREE_INIT
1189 static void stm32mp1_ls_osc_set(int enable, fdt_addr_t rcc, u32 offset,
1190 u32 mask_on)
1191 {
1192 u32 address = rcc + offset;
1193
1194 if (enable)
1195 setbits_le32(address, mask_on);
1196 else
1197 clrbits_le32(address, mask_on);
1198 }
1199
1200 static void stm32mp1_hs_ocs_set(int enable, fdt_addr_t rcc, u32 mask_on)
1201 {
1202 writel(mask_on, rcc + (enable ? RCC_OCENSETR : RCC_OCENCLRR));
1203 }
1204
1205 static int stm32mp1_osc_wait(int enable, fdt_addr_t rcc, u32 offset,
1206 u32 mask_rdy)
1207 {
1208 u32 mask_test = 0;
1209 u32 address = rcc + offset;
1210 u32 val;
1211 int ret;
1212
1213 if (enable)
1214 mask_test = mask_rdy;
1215
1216 ret = readl_poll_timeout(address, val,
1217 (val & mask_rdy) == mask_test,
1218 TIMEOUT_1S);
1219
1220 if (ret)
1221 pr_err("OSC %x @ %x timeout for enable=%d : 0x%x\n",
1222 mask_rdy, address, enable, readl(address));
1223
1224 return ret;
1225 }
1226
1227 static void stm32mp1_lse_enable(fdt_addr_t rcc, int bypass, int digbyp,
1228 u32 lsedrv)
1229 {
1230 u32 value;
1231
1232 if (digbyp)
1233 setbits_le32(rcc + RCC_BDCR, RCC_BDCR_DIGBYP);
1234
1235 if (bypass || digbyp)
1236 setbits_le32(rcc + RCC_BDCR, RCC_BDCR_LSEBYP);
1237
1238 /*
1239 * warning: not recommended to switch directly from "high drive"
1240 * to "medium low drive", and vice-versa.
1241 */
1242 value = (readl(rcc + RCC_BDCR) & RCC_BDCR_LSEDRV_MASK)
1243 >> RCC_BDCR_LSEDRV_SHIFT;
1244
1245 while (value != lsedrv) {
1246 if (value > lsedrv)
1247 value--;
1248 else
1249 value++;
1250
1251 clrsetbits_le32(rcc + RCC_BDCR,
1252 RCC_BDCR_LSEDRV_MASK,
1253 value << RCC_BDCR_LSEDRV_SHIFT);
1254 }
1255
1256 stm32mp1_ls_osc_set(1, rcc, RCC_BDCR, RCC_BDCR_LSEON);
1257 }
1258
1259 static void stm32mp1_lse_wait(fdt_addr_t rcc)
1260 {
1261 stm32mp1_osc_wait(1, rcc, RCC_BDCR, RCC_BDCR_LSERDY);
1262 }
1263
1264 static void stm32mp1_lsi_set(fdt_addr_t rcc, int enable)
1265 {
1266 stm32mp1_ls_osc_set(enable, rcc, RCC_RDLSICR, RCC_RDLSICR_LSION);
1267 stm32mp1_osc_wait(enable, rcc, RCC_RDLSICR, RCC_RDLSICR_LSIRDY);
1268 }
1269
1270 static void stm32mp1_hse_enable(fdt_addr_t rcc, int bypass, int digbyp, int css)
1271 {
1272 if (digbyp)
1273 writel(RCC_OCENR_DIGBYP, rcc + RCC_OCENSETR);
1274 if (bypass || digbyp)
1275 writel(RCC_OCENR_HSEBYP, rcc + RCC_OCENSETR);
1276
1277 stm32mp1_hs_ocs_set(1, rcc, RCC_OCENR_HSEON);
1278 stm32mp1_osc_wait(1, rcc, RCC_OCRDYR, RCC_OCRDYR_HSERDY);
1279
1280 if (css)
1281 writel(RCC_OCENR_HSECSSON, rcc + RCC_OCENSETR);
1282 }
1283
1284 static void stm32mp1_csi_set(fdt_addr_t rcc, int enable)
1285 {
1286 stm32mp1_hs_ocs_set(enable, rcc, RCC_OCENR_CSION);
1287 stm32mp1_osc_wait(enable, rcc, RCC_OCRDYR, RCC_OCRDYR_CSIRDY);
1288 }
1289
1290 static void stm32mp1_hsi_set(fdt_addr_t rcc, int enable)
1291 {
1292 stm32mp1_hs_ocs_set(enable, rcc, RCC_OCENR_HSION);
1293 stm32mp1_osc_wait(enable, rcc, RCC_OCRDYR, RCC_OCRDYR_HSIRDY);
1294 }
1295
1296 static int stm32mp1_set_hsidiv(fdt_addr_t rcc, u8 hsidiv)
1297 {
1298 u32 address = rcc + RCC_OCRDYR;
1299 u32 val;
1300 int ret;
1301
1302 clrsetbits_le32(rcc + RCC_HSICFGR,
1303 RCC_HSICFGR_HSIDIV_MASK,
1304 RCC_HSICFGR_HSIDIV_MASK & hsidiv);
1305
1306 ret = readl_poll_timeout(address, val,
1307 val & RCC_OCRDYR_HSIDIVRDY,
1308 TIMEOUT_200MS);
1309 if (ret)
1310 pr_err("HSIDIV failed @ 0x%x: 0x%x\n",
1311 address, readl(address));
1312
1313 return ret;
1314 }
1315
1316 static int stm32mp1_hsidiv(fdt_addr_t rcc, ulong hsifreq)
1317 {
1318 u8 hsidiv;
1319 u32 hsidivfreq = MAX_HSI_HZ;
1320
1321 for (hsidiv = 0; hsidiv < 4; hsidiv++,
1322 hsidivfreq = hsidivfreq / 2)
1323 if (hsidivfreq == hsifreq)
1324 break;
1325
1326 if (hsidiv == 4) {
1327 pr_err("clk-hsi frequency invalid");
1328 return -1;
1329 }
1330
1331 if (hsidiv > 0)
1332 return stm32mp1_set_hsidiv(rcc, hsidiv);
1333
1334 return 0;
1335 }
1336
1337 static void pll_start(struct stm32mp1_clk_priv *priv, int pll_id)
1338 {
1339 const struct stm32mp1_clk_pll *pll = priv->data->pll;
1340
1341 clrsetbits_le32(priv->base + pll[pll_id].pllxcr,
1342 RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN |
1343 RCC_PLLNCR_DIVREN,
1344 RCC_PLLNCR_PLLON);
1345 }
1346
1347 static int pll_output(struct stm32mp1_clk_priv *priv, int pll_id, int output)
1348 {
1349 const struct stm32mp1_clk_pll *pll = priv->data->pll;
1350 u32 pllxcr = priv->base + pll[pll_id].pllxcr;
1351 u32 val;
1352 int ret;
1353
1354 ret = readl_poll_timeout(pllxcr, val, val & RCC_PLLNCR_PLLRDY,
1355 TIMEOUT_200MS);
1356
1357 if (ret) {
1358 pr_err("PLL%d start failed @ 0x%x: 0x%x\n",
1359 pll_id, pllxcr, readl(pllxcr));
1360 return ret;
1361 }
1362
1363 /* start the requested output */
1364 setbits_le32(pllxcr, output << RCC_PLLNCR_DIVEN_SHIFT);
1365
1366 return 0;
1367 }
1368
1369 static int pll_stop(struct stm32mp1_clk_priv *priv, int pll_id)
1370 {
1371 const struct stm32mp1_clk_pll *pll = priv->data->pll;
1372 u32 pllxcr = priv->base + pll[pll_id].pllxcr;
1373 u32 val;
1374
1375 /* stop all output */
1376 clrbits_le32(pllxcr,
1377 RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN | RCC_PLLNCR_DIVREN);
1378
1379 /* stop PLL */
1380 clrbits_le32(pllxcr, RCC_PLLNCR_PLLON);
1381
1382 /* wait PLL stopped */
1383 return readl_poll_timeout(pllxcr, val, (val & RCC_PLLNCR_PLLRDY) == 0,
1384 TIMEOUT_200MS);
1385 }
1386
1387 static void pll_config_output(struct stm32mp1_clk_priv *priv,
1388 int pll_id, u32 *pllcfg)
1389 {
1390 const struct stm32mp1_clk_pll *pll = priv->data->pll;
1391 fdt_addr_t rcc = priv->base;
1392 u32 value;
1393
1394 value = (pllcfg[PLLCFG_P] << RCC_PLLNCFGR2_DIVP_SHIFT)
1395 & RCC_PLLNCFGR2_DIVP_MASK;
1396 value |= (pllcfg[PLLCFG_Q] << RCC_PLLNCFGR2_DIVQ_SHIFT)
1397 & RCC_PLLNCFGR2_DIVQ_MASK;
1398 value |= (pllcfg[PLLCFG_R] << RCC_PLLNCFGR2_DIVR_SHIFT)
1399 & RCC_PLLNCFGR2_DIVR_MASK;
1400 writel(value, rcc + pll[pll_id].pllxcfgr2);
1401 }
1402
1403 static int pll_config(struct stm32mp1_clk_priv *priv, int pll_id,
1404 u32 *pllcfg, u32 fracv)
1405 {
1406 const struct stm32mp1_clk_pll *pll = priv->data->pll;
1407 fdt_addr_t rcc = priv->base;
1408 enum stm32mp1_plltype type = pll[pll_id].plltype;
1409 int src;
1410 ulong refclk;
1411 u8 ifrge = 0;
1412 u32 value;
1413
1414 src = readl(priv->base + pll[pll_id].rckxselr) & RCC_SELR_SRC_MASK;
1415
1416 refclk = stm32mp1_clk_get_fixed(priv, pll[pll_id].refclk[src]) /
1417 (pllcfg[PLLCFG_M] + 1);
1418
1419 if (refclk < (stm32mp1_pll[type].refclk_min * 1000000) ||
1420 refclk > (stm32mp1_pll[type].refclk_max * 1000000)) {
1421 debug("invalid refclk = %x\n", (u32)refclk);
1422 return -EINVAL;
1423 }
1424 if (type == PLL_800 && refclk >= 8000000)
1425 ifrge = 1;
1426
1427 value = (pllcfg[PLLCFG_N] << RCC_PLLNCFGR1_DIVN_SHIFT)
1428 & RCC_PLLNCFGR1_DIVN_MASK;
1429 value |= (pllcfg[PLLCFG_M] << RCC_PLLNCFGR1_DIVM_SHIFT)
1430 & RCC_PLLNCFGR1_DIVM_MASK;
1431 value |= (ifrge << RCC_PLLNCFGR1_IFRGE_SHIFT)
1432 & RCC_PLLNCFGR1_IFRGE_MASK;
1433 writel(value, rcc + pll[pll_id].pllxcfgr1);
1434
1435 /* fractional configuration: load sigma-delta modulator (SDM) */
1436
1437 /* Write into FRACV the new fractional value , and FRACLE to 0 */
1438 writel(fracv << RCC_PLLNFRACR_FRACV_SHIFT,
1439 rcc + pll[pll_id].pllxfracr);
1440
1441 /* Write FRACLE to 1 : FRACV value is loaded into the SDM */
1442 setbits_le32(rcc + pll[pll_id].pllxfracr,
1443 RCC_PLLNFRACR_FRACLE);
1444
1445 pll_config_output(priv, pll_id, pllcfg);
1446
1447 return 0;
1448 }
1449
1450 static void pll_csg(struct stm32mp1_clk_priv *priv, int pll_id, u32 *csg)
1451 {
1452 const struct stm32mp1_clk_pll *pll = priv->data->pll;
1453 u32 pllxcsg;
1454
1455 pllxcsg = ((csg[PLLCSG_MOD_PER] << RCC_PLLNCSGR_MOD_PER_SHIFT) &
1456 RCC_PLLNCSGR_MOD_PER_MASK) |
1457 ((csg[PLLCSG_INC_STEP] << RCC_PLLNCSGR_INC_STEP_SHIFT) &
1458 RCC_PLLNCSGR_INC_STEP_MASK) |
1459 ((csg[PLLCSG_SSCG_MODE] << RCC_PLLNCSGR_SSCG_MODE_SHIFT) &
1460 RCC_PLLNCSGR_SSCG_MODE_MASK);
1461
1462 writel(pllxcsg, priv->base + pll[pll_id].pllxcsgr);
1463
1464 setbits_le32(priv->base + pll[pll_id].pllxcr, RCC_PLLNCR_SSCG_CTRL);
1465 }
1466
1467 static __maybe_unused int pll_set_rate(struct udevice *dev,
1468 int pll_id,
1469 int div_id,
1470 unsigned long clk_rate)
1471 {
1472 struct stm32mp1_clk_priv *priv = dev_get_priv(dev);
1473 unsigned int pllcfg[PLLCFG_NB];
1474 ofnode plloff;
1475 char name[12];
1476 const struct stm32mp1_clk_pll *pll = priv->data->pll;
1477 enum stm32mp1_plltype type = pll[pll_id].plltype;
1478 int divm, divn, divy;
1479 int ret;
1480 ulong fck_ref;
1481 u32 fracv;
1482 u64 value;
1483
1484 if (div_id > _DIV_NB)
1485 return -EINVAL;
1486
1487 sprintf(name, "st,pll@%d", pll_id);
1488 plloff = dev_read_subnode(dev, name);
1489 if (!ofnode_valid(plloff))
1490 return -FDT_ERR_NOTFOUND;
1491
1492 ret = ofnode_read_u32_array(plloff, "cfg",
1493 pllcfg, PLLCFG_NB);
1494 if (ret < 0)
1495 return -FDT_ERR_NOTFOUND;
1496
1497 fck_ref = pll_get_fref_ck(priv, pll_id);
1498
1499 divm = pllcfg[PLLCFG_M];
1500 /* select output divider = 0: for _DIV_P, 1:_DIV_Q 2:_DIV_R */
1501 divy = pllcfg[PLLCFG_P + div_id];
1502
1503 /* For: PLL1 & PLL2 => VCO is * 2 but ck_pll_y is also / 2
1504 * So same final result than PLL2 et 4
1505 * with FRACV
1506 * Fck_pll_y = Fck_ref * ((DIVN + 1) + FRACV / 2^13)
1507 * / (DIVy + 1) * (DIVM + 1)
1508 * value = (DIVN + 1) * 2^13 + FRACV / 2^13
1509 * = Fck_pll_y (DIVy + 1) * (DIVM + 1) * 2^13 / Fck_ref
1510 */
1511 value = ((u64)clk_rate * (divy + 1) * (divm + 1)) << 13;
1512 value = lldiv(value, fck_ref);
1513
1514 divn = (value >> 13) - 1;
1515 if (divn < DIVN_MIN ||
1516 divn > stm32mp1_pll[type].divn_max) {
1517 pr_err("divn invalid = %d", divn);
1518 return -EINVAL;
1519 }
1520 fracv = value - ((divn + 1) << 13);
1521 pllcfg[PLLCFG_N] = divn;
1522
1523 /* reconfigure PLL */
1524 pll_stop(priv, pll_id);
1525 pll_config(priv, pll_id, pllcfg, fracv);
1526 pll_start(priv, pll_id);
1527 pll_output(priv, pll_id, pllcfg[PLLCFG_O]);
1528
1529 return 0;
1530 }
1531
1532 static int set_clksrc(struct stm32mp1_clk_priv *priv, unsigned int clksrc)
1533 {
1534 u32 address = priv->base + (clksrc >> 4);
1535 u32 val;
1536 int ret;
1537
1538 clrsetbits_le32(address, RCC_SELR_SRC_MASK, clksrc & RCC_SELR_SRC_MASK);
1539 ret = readl_poll_timeout(address, val, val & RCC_SELR_SRCRDY,
1540 TIMEOUT_200MS);
1541 if (ret)
1542 pr_err("CLKSRC %x start failed @ 0x%x: 0x%x\n",
1543 clksrc, address, readl(address));
1544
1545 return ret;
1546 }
1547
1548 static void stgen_config(struct stm32mp1_clk_priv *priv)
1549 {
1550 int p;
1551 u32 stgenc, cntfid0;
1552 ulong rate;
1553
1554 stgenc = STM32_STGEN_BASE;
1555 cntfid0 = readl(stgenc + STGENC_CNTFID0);
1556 p = stm32mp1_clk_get_parent(priv, STGEN_K);
1557 rate = stm32mp1_clk_get(priv, p);
1558
1559 if (cntfid0 != rate) {
1560 u64 counter;
1561
1562 pr_debug("System Generic Counter (STGEN) update\n");
1563 clrbits_le32(stgenc + STGENC_CNTCR, STGENC_CNTCR_EN);
1564 counter = (u64)readl(stgenc + STGENC_CNTCVL);
1565 counter |= ((u64)(readl(stgenc + STGENC_CNTCVU))) << 32;
1566 counter = lldiv(counter * (u64)rate, cntfid0);
1567 writel((u32)counter, stgenc + STGENC_CNTCVL);
1568 writel((u32)(counter >> 32), stgenc + STGENC_CNTCVU);
1569 writel(rate, stgenc + STGENC_CNTFID0);
1570 setbits_le32(stgenc + STGENC_CNTCR, STGENC_CNTCR_EN);
1571
1572 __asm__ volatile("mcr p15, 0, %0, c14, c0, 0" : : "r" (rate));
1573
1574 /* need to update gd->arch.timer_rate_hz with new frequency */
1575 timer_init();
1576 }
1577 }
1578
1579 static int set_clkdiv(unsigned int clkdiv, u32 address)
1580 {
1581 u32 val;
1582 int ret;
1583
1584 clrsetbits_le32(address, RCC_DIVR_DIV_MASK, clkdiv & RCC_DIVR_DIV_MASK);
1585 ret = readl_poll_timeout(address, val, val & RCC_DIVR_DIVRDY,
1586 TIMEOUT_200MS);
1587 if (ret)
1588 pr_err("CLKDIV %x start failed @ 0x%x: 0x%x\n",
1589 clkdiv, address, readl(address));
1590
1591 return ret;
1592 }
1593
1594 static void stm32mp1_mco_csg(struct stm32mp1_clk_priv *priv,
1595 u32 clksrc, u32 clkdiv)
1596 {
1597 u32 address = priv->base + (clksrc >> 4);
1598
1599 /*
1600 * binding clksrc : bit15-4 offset
1601 * bit3: disable
1602 * bit2-0: MCOSEL[2:0]
1603 */
1604 if (clksrc & 0x8) {
1605 clrbits_le32(address, RCC_MCOCFG_MCOON);
1606 } else {
1607 clrsetbits_le32(address,
1608 RCC_MCOCFG_MCOSRC_MASK,
1609 clksrc & RCC_MCOCFG_MCOSRC_MASK);
1610 clrsetbits_le32(address,
1611 RCC_MCOCFG_MCODIV_MASK,
1612 clkdiv << RCC_MCOCFG_MCODIV_SHIFT);
1613 setbits_le32(address, RCC_MCOCFG_MCOON);
1614 }
1615 }
1616
1617 static void set_rtcsrc(struct stm32mp1_clk_priv *priv,
1618 unsigned int clksrc,
1619 int lse_css)
1620 {
1621 u32 address = priv->base + RCC_BDCR;
1622
1623 if (readl(address) & RCC_BDCR_RTCCKEN)
1624 goto skip_rtc;
1625
1626 if (clksrc == CLK_RTC_DISABLED)
1627 goto skip_rtc;
1628
1629 clrsetbits_le32(address,
1630 RCC_BDCR_RTCSRC_MASK,
1631 clksrc << RCC_BDCR_RTCSRC_SHIFT);
1632
1633 setbits_le32(address, RCC_BDCR_RTCCKEN);
1634
1635 skip_rtc:
1636 if (lse_css)
1637 setbits_le32(address, RCC_BDCR_LSECSSON);
1638 }
1639
1640 static void pkcs_config(struct stm32mp1_clk_priv *priv, u32 pkcs)
1641 {
1642 u32 address = priv->base + ((pkcs >> 4) & 0xFFF);
1643 u32 value = pkcs & 0xF;
1644 u32 mask = 0xF;
1645
1646 if (pkcs & BIT(31)) {
1647 mask <<= 4;
1648 value <<= 4;
1649 }
1650 clrsetbits_le32(address, mask, value);
1651 }
1652
1653 static int stm32mp1_clktree(struct udevice *dev)
1654 {
1655 struct stm32mp1_clk_priv *priv = dev_get_priv(dev);
1656 fdt_addr_t rcc = priv->base;
1657 unsigned int clksrc[CLKSRC_NB];
1658 unsigned int clkdiv[CLKDIV_NB];
1659 unsigned int pllcfg[_PLL_NB][PLLCFG_NB];
1660 ofnode plloff[_PLL_NB];
1661 int ret, len;
1662 uint i;
1663 int lse_css = 0;
1664 const u32 *pkcs_cell;
1665
1666 /* check mandatory field */
1667 ret = dev_read_u32_array(dev, "st,clksrc", clksrc, CLKSRC_NB);
1668 if (ret < 0) {
1669 debug("field st,clksrc invalid: error %d\n", ret);
1670 return -FDT_ERR_NOTFOUND;
1671 }
1672
1673 ret = dev_read_u32_array(dev, "st,clkdiv", clkdiv, CLKDIV_NB);
1674 if (ret < 0) {
1675 debug("field st,clkdiv invalid: error %d\n", ret);
1676 return -FDT_ERR_NOTFOUND;
1677 }
1678
1679 /* check mandatory field in each pll */
1680 for (i = 0; i < _PLL_NB; i++) {
1681 char name[12];
1682
1683 sprintf(name, "st,pll@%d", i);
1684 plloff[i] = dev_read_subnode(dev, name);
1685 if (!ofnode_valid(plloff[i]))
1686 continue;
1687 ret = ofnode_read_u32_array(plloff[i], "cfg",
1688 pllcfg[i], PLLCFG_NB);
1689 if (ret < 0) {
1690 debug("field cfg invalid: error %d\n", ret);
1691 return -FDT_ERR_NOTFOUND;
1692 }
1693 }
1694
1695 debug("configuration MCO\n");
1696 stm32mp1_mco_csg(priv, clksrc[CLKSRC_MCO1], clkdiv[CLKDIV_MCO1]);
1697 stm32mp1_mco_csg(priv, clksrc[CLKSRC_MCO2], clkdiv[CLKDIV_MCO2]);
1698
1699 debug("switch ON osillator\n");
1700 /*
1701 * switch ON oscillator found in device-tree,
1702 * HSI already ON after bootrom
1703 */
1704 if (priv->osc[_LSI])
1705 stm32mp1_lsi_set(rcc, 1);
1706
1707 if (priv->osc[_LSE]) {
1708 int bypass, digbyp;
1709 u32 lsedrv;
1710 struct udevice *dev = priv->osc_dev[_LSE];
1711
1712 bypass = dev_read_bool(dev, "st,bypass");
1713 digbyp = dev_read_bool(dev, "st,digbypass");
1714 lse_css = dev_read_bool(dev, "st,css");
1715 lsedrv = dev_read_u32_default(dev, "st,drive",
1716 LSEDRV_MEDIUM_HIGH);
1717
1718 stm32mp1_lse_enable(rcc, bypass, digbyp, lsedrv);
1719 }
1720
1721 if (priv->osc[_HSE]) {
1722 int bypass, digbyp, css;
1723 struct udevice *dev = priv->osc_dev[_HSE];
1724
1725 bypass = dev_read_bool(dev, "st,bypass");
1726 digbyp = dev_read_bool(dev, "st,digbypass");
1727 css = dev_read_bool(dev, "st,css");
1728
1729 stm32mp1_hse_enable(rcc, bypass, digbyp, css);
1730 }
1731 /* CSI is mandatory for automatic I/O compensation (SYSCFG_CMPCR)
1732 * => switch on CSI even if node is not present in device tree
1733 */
1734 stm32mp1_csi_set(rcc, 1);
1735
1736 /* come back to HSI */
1737 debug("come back to HSI\n");
1738 set_clksrc(priv, CLK_MPU_HSI);
1739 set_clksrc(priv, CLK_AXI_HSI);
1740 set_clksrc(priv, CLK_MCU_HSI);
1741
1742 debug("pll stop\n");
1743 for (i = 0; i < _PLL_NB; i++)
1744 pll_stop(priv, i);
1745
1746 /* configure HSIDIV */
1747 debug("configure HSIDIV\n");
1748 if (priv->osc[_HSI]) {
1749 stm32mp1_hsidiv(rcc, priv->osc[_HSI]);
1750 stgen_config(priv);
1751 }
1752
1753 /* select DIV */
1754 debug("select DIV\n");
1755 /* no ready bit when MPUSRC != CLK_MPU_PLL1P_DIV, MPUDIV is disabled */
1756 writel(clkdiv[CLKDIV_MPU] & RCC_DIVR_DIV_MASK, rcc + RCC_MPCKDIVR);
1757 set_clkdiv(clkdiv[CLKDIV_AXI], rcc + RCC_AXIDIVR);
1758 set_clkdiv(clkdiv[CLKDIV_APB4], rcc + RCC_APB4DIVR);
1759 set_clkdiv(clkdiv[CLKDIV_APB5], rcc + RCC_APB5DIVR);
1760 set_clkdiv(clkdiv[CLKDIV_MCU], rcc + RCC_MCUDIVR);
1761 set_clkdiv(clkdiv[CLKDIV_APB1], rcc + RCC_APB1DIVR);
1762 set_clkdiv(clkdiv[CLKDIV_APB2], rcc + RCC_APB2DIVR);
1763 set_clkdiv(clkdiv[CLKDIV_APB3], rcc + RCC_APB3DIVR);
1764
1765 /* no ready bit for RTC */
1766 writel(clkdiv[CLKDIV_RTC] & RCC_DIVR_DIV_MASK, rcc + RCC_RTCDIVR);
1767
1768 /* configure PLLs source */
1769 debug("configure PLLs source\n");
1770 set_clksrc(priv, clksrc[CLKSRC_PLL12]);
1771 set_clksrc(priv, clksrc[CLKSRC_PLL3]);
1772 set_clksrc(priv, clksrc[CLKSRC_PLL4]);
1773
1774 /* configure and start PLLs */
1775 debug("configure PLLs\n");
1776 for (i = 0; i < _PLL_NB; i++) {
1777 u32 fracv;
1778 u32 csg[PLLCSG_NB];
1779
1780 debug("configure PLL %d @ %d\n", i,
1781 ofnode_to_offset(plloff[i]));
1782 if (!ofnode_valid(plloff[i]))
1783 continue;
1784
1785 fracv = ofnode_read_u32_default(plloff[i], "frac", 0);
1786 pll_config(priv, i, pllcfg[i], fracv);
1787 ret = ofnode_read_u32_array(plloff[i], "csg", csg, PLLCSG_NB);
1788 if (!ret) {
1789 pll_csg(priv, i, csg);
1790 } else if (ret != -FDT_ERR_NOTFOUND) {
1791 debug("invalid csg node for pll@%d res=%d\n", i, ret);
1792 return ret;
1793 }
1794 pll_start(priv, i);
1795 }
1796
1797 /* wait and start PLLs ouptut when ready */
1798 for (i = 0; i < _PLL_NB; i++) {
1799 if (!ofnode_valid(plloff[i]))
1800 continue;
1801 debug("output PLL %d\n", i);
1802 pll_output(priv, i, pllcfg[i][PLLCFG_O]);
1803 }
1804
1805 /* wait LSE ready before to use it */
1806 if (priv->osc[_LSE])
1807 stm32mp1_lse_wait(rcc);
1808
1809 /* configure with expected clock source */
1810 debug("CLKSRC\n");
1811 set_clksrc(priv, clksrc[CLKSRC_MPU]);
1812 set_clksrc(priv, clksrc[CLKSRC_AXI]);
1813 set_clksrc(priv, clksrc[CLKSRC_MCU]);
1814 set_rtcsrc(priv, clksrc[CLKSRC_RTC], lse_css);
1815
1816 /* configure PKCK */
1817 debug("PKCK\n");
1818 pkcs_cell = dev_read_prop(dev, "st,pkcs", &len);
1819 if (pkcs_cell) {
1820 bool ckper_disabled = false;
1821
1822 for (i = 0; i < len / sizeof(u32); i++) {
1823 u32 pkcs = (u32)fdt32_to_cpu(pkcs_cell[i]);
1824
1825 if (pkcs == CLK_CKPER_DISABLED) {
1826 ckper_disabled = true;
1827 continue;
1828 }
1829 pkcs_config(priv, pkcs);
1830 }
1831 /* CKPER is source for some peripheral clock
1832 * (FMC-NAND / QPSI-NOR) and switching source is allowed
1833 * only if previous clock is still ON
1834 * => deactivated CKPER only after switching clock
1835 */
1836 if (ckper_disabled)
1837 pkcs_config(priv, CLK_CKPER_DISABLED);
1838 }
1839
1840 /* STGEN clock source can change with CLK_STGEN_XXX */
1841 stgen_config(priv);
1842
1843 debug("oscillator off\n");
1844 /* switch OFF HSI if not found in device-tree */
1845 if (!priv->osc[_HSI])
1846 stm32mp1_hsi_set(rcc, 0);
1847
1848 /* Software Self-Refresh mode (SSR) during DDR initilialization */
1849 clrsetbits_le32(priv->base + RCC_DDRITFCR,
1850 RCC_DDRITFCR_DDRCKMOD_MASK,
1851 RCC_DDRITFCR_DDRCKMOD_SSR <<
1852 RCC_DDRITFCR_DDRCKMOD_SHIFT);
1853
1854 return 0;
1855 }
1856 #endif /* STM32MP1_CLOCK_TREE_INIT */
1857
1858 static int pll_set_output_rate(struct udevice *dev,
1859 int pll_id,
1860 int div_id,
1861 unsigned long clk_rate)
1862 {
1863 struct stm32mp1_clk_priv *priv = dev_get_priv(dev);
1864 const struct stm32mp1_clk_pll *pll = priv->data->pll;
1865 u32 pllxcr = priv->base + pll[pll_id].pllxcr;
1866 int div;
1867 ulong fvco;
1868
1869 if (div_id > _DIV_NB)
1870 return -EINVAL;
1871
1872 fvco = pll_get_fvco(priv, pll_id);
1873
1874 if (fvco <= clk_rate)
1875 div = 1;
1876 else
1877 div = DIV_ROUND_UP(fvco, clk_rate);
1878
1879 if (div > 128)
1880 div = 128;
1881
1882 /* stop the requested output */
1883 clrbits_le32(pllxcr, 0x1 << div_id << RCC_PLLNCR_DIVEN_SHIFT);
1884 /* change divider */
1885 clrsetbits_le32(priv->base + pll[pll_id].pllxcfgr2,
1886 RCC_PLLNCFGR2_DIVX_MASK << RCC_PLLNCFGR2_SHIFT(div_id),
1887 (div - 1) << RCC_PLLNCFGR2_SHIFT(div_id));
1888 /* start the requested output */
1889 setbits_le32(pllxcr, 0x1 << div_id << RCC_PLLNCR_DIVEN_SHIFT);
1890
1891 return 0;
1892 }
1893
1894 static ulong stm32mp1_clk_set_rate(struct clk *clk, unsigned long clk_rate)
1895 {
1896 struct stm32mp1_clk_priv *priv = dev_get_priv(clk->dev);
1897 int p;
1898
1899 switch (clk->id) {
1900 #if defined(STM32MP1_CLOCK_TREE_INIT) && \
1901 defined(CONFIG_STM32MP1_DDR_INTERACTIVE)
1902 case DDRPHYC:
1903 break;
1904 #endif
1905 case LTDC_PX:
1906 case DSI_PX:
1907 break;
1908 default:
1909 pr_err("not supported");
1910 return -EINVAL;
1911 }
1912
1913 p = stm32mp1_clk_get_parent(priv, clk->id);
1914 #ifdef DEBUG
1915 debug("%s: parent = %d:%s\n", __func__, p, stm32mp1_clk_parent_name[p]);
1916 #endif
1917 if (p < 0)
1918 return -EINVAL;
1919
1920 switch (p) {
1921 #if defined(STM32MP1_CLOCK_TREE_INIT) && \
1922 defined(CONFIG_STM32MP1_DDR_INTERACTIVE)
1923 case _PLL2_R: /* DDRPHYC */
1924 {
1925 /* only for change DDR clock in interactive mode */
1926 ulong result;
1927
1928 set_clksrc(priv, CLK_AXI_HSI);
1929 result = pll_set_rate(clk->dev, _PLL2, _DIV_R, clk_rate);
1930 set_clksrc(priv, CLK_AXI_PLL2P);
1931 return result;
1932 }
1933 #endif
1934
1935 case _PLL4_Q:
1936 /* for LTDC_PX and DSI_PX case */
1937 return pll_set_output_rate(clk->dev, _PLL4, _DIV_Q, clk_rate);
1938 }
1939
1940 return -EINVAL;
1941 }
1942
1943 static void stm32mp1_osc_clk_init(const char *name,
1944 struct stm32mp1_clk_priv *priv,
1945 int index)
1946 {
1947 struct clk clk;
1948 struct udevice *dev = NULL;
1949
1950 priv->osc[index] = 0;
1951 clk.id = 0;
1952 if (!uclass_get_device_by_name(UCLASS_CLK, name, &dev)) {
1953 if (clk_request(dev, &clk))
1954 pr_err("%s request", name);
1955 else
1956 priv->osc[index] = clk_get_rate(&clk);
1957 }
1958 priv->osc_dev[index] = dev;
1959 }
1960
1961 static void stm32mp1_osc_init(struct udevice *dev)
1962 {
1963 struct stm32mp1_clk_priv *priv = dev_get_priv(dev);
1964 int i;
1965 const char *name[NB_OSC] = {
1966 [_LSI] = "clk-lsi",
1967 [_LSE] = "clk-lse",
1968 [_HSI] = "clk-hsi",
1969 [_HSE] = "clk-hse",
1970 [_CSI] = "clk-csi",
1971 [_I2S_CKIN] = "i2s_ckin",
1972 };
1973
1974 for (i = 0; i < NB_OSC; i++) {
1975 stm32mp1_osc_clk_init(name[i], priv, i);
1976 debug("%d: %s => %x\n", i, name[i], (u32)priv->osc[i]);
1977 }
1978 }
1979
1980 static void __maybe_unused stm32mp1_clk_dump(struct stm32mp1_clk_priv *priv)
1981 {
1982 char buf[32];
1983 int i, s, p;
1984
1985 printf("Clocks:\n");
1986 for (i = 0; i < _PARENT_NB; i++) {
1987 printf("- %s : %s MHz\n",
1988 stm32mp1_clk_parent_name[i],
1989 strmhz(buf, stm32mp1_clk_get(priv, i)));
1990 }
1991 printf("Source Clocks:\n");
1992 for (i = 0; i < _PARENT_SEL_NB; i++) {
1993 p = (readl(priv->base + priv->data->sel[i].offset) >>
1994 priv->data->sel[i].src) & priv->data->sel[i].msk;
1995 if (p < priv->data->sel[i].nb_parent) {
1996 s = priv->data->sel[i].parent[p];
1997 printf("- %s(%d) => parent %s(%d)\n",
1998 stm32mp1_clk_parent_sel_name[i], i,
1999 stm32mp1_clk_parent_name[s], s);
2000 } else {
2001 printf("- %s(%d) => parent index %d is invalid\n",
2002 stm32mp1_clk_parent_sel_name[i], i, p);
2003 }
2004 }
2005 }
2006
2007 #ifdef CONFIG_CMD_CLK
2008 int soc_clk_dump(void)
2009 {
2010 struct udevice *dev;
2011 struct stm32mp1_clk_priv *priv;
2012 int ret;
2013
2014 ret = uclass_get_device_by_driver(UCLASS_CLK,
2015 DM_GET_DRIVER(stm32mp1_clock),
2016 &dev);
2017 if (ret)
2018 return ret;
2019
2020 priv = dev_get_priv(dev);
2021
2022 stm32mp1_clk_dump(priv);
2023
2024 return 0;
2025 }
2026 #endif
2027
2028 static int stm32mp1_clk_probe(struct udevice *dev)
2029 {
2030 int result = 0;
2031 struct stm32mp1_clk_priv *priv = dev_get_priv(dev);
2032
2033 priv->base = dev_read_addr(dev->parent);
2034 if (priv->base == FDT_ADDR_T_NONE)
2035 return -EINVAL;
2036
2037 priv->data = (void *)&stm32mp1_data;
2038
2039 if (!priv->data->gate || !priv->data->sel ||
2040 !priv->data->pll)
2041 return -EINVAL;
2042
2043 stm32mp1_osc_init(dev);
2044
2045 #ifdef STM32MP1_CLOCK_TREE_INIT
2046 /* clock tree init is done only one time, before relocation */
2047 if (!(gd->flags & GD_FLG_RELOC))
2048 result = stm32mp1_clktree(dev);
2049 #endif
2050
2051 #ifndef CONFIG_SPL_BUILD
2052 #if defined(DEBUG)
2053 /* display debug information for probe after relocation */
2054 if (gd->flags & GD_FLG_RELOC)
2055 stm32mp1_clk_dump(priv);
2056 #endif
2057
2058 gd->cpu_clk = stm32mp1_clk_get(priv, _CK_MPU);
2059 gd->bus_clk = stm32mp1_clk_get(priv, _ACLK);
2060 /* DDRPHYC father */
2061 gd->mem_clk = stm32mp1_clk_get(priv, _PLL2_R);
2062 #if defined(CONFIG_DISPLAY_CPUINFO)
2063 if (gd->flags & GD_FLG_RELOC) {
2064 char buf[32];
2065
2066 printf("Clocks:\n");
2067 printf("- MPU : %s MHz\n", strmhz(buf, gd->cpu_clk));
2068 printf("- MCU : %s MHz\n",
2069 strmhz(buf, stm32mp1_clk_get(priv, _CK_MCU)));
2070 printf("- AXI : %s MHz\n", strmhz(buf, gd->bus_clk));
2071 printf("- PER : %s MHz\n",
2072 strmhz(buf, stm32mp1_clk_get(priv, _CK_PER)));
2073 printf("- DDR : %s MHz\n", strmhz(buf, gd->mem_clk));
2074 }
2075 #endif /* CONFIG_DISPLAY_CPUINFO */
2076 #endif
2077
2078 return result;
2079 }
2080
2081 static const struct clk_ops stm32mp1_clk_ops = {
2082 .enable = stm32mp1_clk_enable,
2083 .disable = stm32mp1_clk_disable,
2084 .get_rate = stm32mp1_clk_get_rate,
2085 .set_rate = stm32mp1_clk_set_rate,
2086 };
2087
2088 U_BOOT_DRIVER(stm32mp1_clock) = {
2089 .name = "stm32mp1_clk",
2090 .id = UCLASS_CLK,
2091 .ops = &stm32mp1_clk_ops,
2092 .priv_auto_alloc_size = sizeof(struct stm32mp1_clk_priv),
2093 .probe = stm32mp1_clk_probe,
2094 };