]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - drivers/clocksource/arm_arch_timer.c
drm/i915/icl: Ungate ddi clocks before IO enable
[thirdparty/kernel/stable.git] / drivers / clocksource / arm_arch_timer.c
1 /*
2 * linux/drivers/clocksource/arm_arch_timer.c
3 *
4 * Copyright (C) 2011 ARM Ltd.
5 * All Rights Reserved
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 #define pr_fmt(fmt) "arm_arch_timer: " fmt
13
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/device.h>
17 #include <linux/smp.h>
18 #include <linux/cpu.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/clockchips.h>
21 #include <linux/clocksource.h>
22 #include <linux/interrupt.h>
23 #include <linux/of_irq.h>
24 #include <linux/of_address.h>
25 #include <linux/io.h>
26 #include <linux/slab.h>
27 #include <linux/sched/clock.h>
28 #include <linux/sched_clock.h>
29 #include <linux/acpi.h>
30
31 #include <asm/arch_timer.h>
32 #include <asm/virt.h>
33
34 #include <clocksource/arm_arch_timer.h>
35
36 #undef pr_fmt
37 #define pr_fmt(fmt) "arch_timer: " fmt
38
39 #define CNTTIDR 0x08
40 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
41
42 #define CNTACR(n) (0x40 + ((n) * 4))
43 #define CNTACR_RPCT BIT(0)
44 #define CNTACR_RVCT BIT(1)
45 #define CNTACR_RFRQ BIT(2)
46 #define CNTACR_RVOFF BIT(3)
47 #define CNTACR_RWVT BIT(4)
48 #define CNTACR_RWPT BIT(5)
49
50 #define CNTVCT_LO 0x08
51 #define CNTVCT_HI 0x0c
52 #define CNTFRQ 0x10
53 #define CNTP_TVAL 0x28
54 #define CNTP_CTL 0x2c
55 #define CNTV_TVAL 0x38
56 #define CNTV_CTL 0x3c
57
58 static unsigned arch_timers_present __initdata;
59
60 static void __iomem *arch_counter_base;
61
62 struct arch_timer {
63 void __iomem *base;
64 struct clock_event_device evt;
65 };
66
67 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
68
69 static u32 arch_timer_rate;
70 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI];
71
72 static struct clock_event_device __percpu *arch_timer_evt;
73
74 static enum arch_timer_ppi_nr arch_timer_uses_ppi = ARCH_TIMER_VIRT_PPI;
75 static bool arch_timer_c3stop;
76 static bool arch_timer_mem_use_virtual;
77 static bool arch_counter_suspend_stop;
78 static bool vdso_default = true;
79
80 static cpumask_t evtstrm_available = CPU_MASK_NONE;
81 static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
82
83 static int __init early_evtstrm_cfg(char *buf)
84 {
85 return strtobool(buf, &evtstrm_enable);
86 }
87 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
88
89 /*
90 * Architected system timer support.
91 */
92
93 static __always_inline
94 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
95 struct clock_event_device *clk)
96 {
97 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
98 struct arch_timer *timer = to_arch_timer(clk);
99 switch (reg) {
100 case ARCH_TIMER_REG_CTRL:
101 writel_relaxed(val, timer->base + CNTP_CTL);
102 break;
103 case ARCH_TIMER_REG_TVAL:
104 writel_relaxed(val, timer->base + CNTP_TVAL);
105 break;
106 }
107 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
108 struct arch_timer *timer = to_arch_timer(clk);
109 switch (reg) {
110 case ARCH_TIMER_REG_CTRL:
111 writel_relaxed(val, timer->base + CNTV_CTL);
112 break;
113 case ARCH_TIMER_REG_TVAL:
114 writel_relaxed(val, timer->base + CNTV_TVAL);
115 break;
116 }
117 } else {
118 arch_timer_reg_write_cp15(access, reg, val);
119 }
120 }
121
122 static __always_inline
123 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
124 struct clock_event_device *clk)
125 {
126 u32 val;
127
128 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
129 struct arch_timer *timer = to_arch_timer(clk);
130 switch (reg) {
131 case ARCH_TIMER_REG_CTRL:
132 val = readl_relaxed(timer->base + CNTP_CTL);
133 break;
134 case ARCH_TIMER_REG_TVAL:
135 val = readl_relaxed(timer->base + CNTP_TVAL);
136 break;
137 }
138 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
139 struct arch_timer *timer = to_arch_timer(clk);
140 switch (reg) {
141 case ARCH_TIMER_REG_CTRL:
142 val = readl_relaxed(timer->base + CNTV_CTL);
143 break;
144 case ARCH_TIMER_REG_TVAL:
145 val = readl_relaxed(timer->base + CNTV_TVAL);
146 break;
147 }
148 } else {
149 val = arch_timer_reg_read_cp15(access, reg);
150 }
151
152 return val;
153 }
154
155 /*
156 * Default to cp15 based access because arm64 uses this function for
157 * sched_clock() before DT is probed and the cp15 method is guaranteed
158 * to exist on arm64. arm doesn't use this before DT is probed so even
159 * if we don't have the cp15 accessors we won't have a problem.
160 */
161 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
162 EXPORT_SYMBOL_GPL(arch_timer_read_counter);
163
164 static u64 arch_counter_read(struct clocksource *cs)
165 {
166 return arch_timer_read_counter();
167 }
168
169 static u64 arch_counter_read_cc(const struct cyclecounter *cc)
170 {
171 return arch_timer_read_counter();
172 }
173
174 static struct clocksource clocksource_counter = {
175 .name = "arch_sys_counter",
176 .rating = 400,
177 .read = arch_counter_read,
178 .mask = CLOCKSOURCE_MASK(56),
179 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
180 };
181
182 static struct cyclecounter cyclecounter __ro_after_init = {
183 .read = arch_counter_read_cc,
184 .mask = CLOCKSOURCE_MASK(56),
185 };
186
187 struct ate_acpi_oem_info {
188 char oem_id[ACPI_OEM_ID_SIZE + 1];
189 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
190 u32 oem_revision;
191 };
192
193 #ifdef CONFIG_FSL_ERRATUM_A008585
194 /*
195 * The number of retries is an arbitrary value well beyond the highest number
196 * of iterations the loop has been observed to take.
197 */
198 #define __fsl_a008585_read_reg(reg) ({ \
199 u64 _old, _new; \
200 int _retries = 200; \
201 \
202 do { \
203 _old = read_sysreg(reg); \
204 _new = read_sysreg(reg); \
205 _retries--; \
206 } while (unlikely(_old != _new) && _retries); \
207 \
208 WARN_ON_ONCE(!_retries); \
209 _new; \
210 })
211
212 static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
213 {
214 return __fsl_a008585_read_reg(cntp_tval_el0);
215 }
216
217 static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
218 {
219 return __fsl_a008585_read_reg(cntv_tval_el0);
220 }
221
222 static u64 notrace fsl_a008585_read_cntpct_el0(void)
223 {
224 return __fsl_a008585_read_reg(cntpct_el0);
225 }
226
227 static u64 notrace fsl_a008585_read_cntvct_el0(void)
228 {
229 return __fsl_a008585_read_reg(cntvct_el0);
230 }
231 #endif
232
233 #ifdef CONFIG_HISILICON_ERRATUM_161010101
234 /*
235 * Verify whether the value of the second read is larger than the first by
236 * less than 32 is the only way to confirm the value is correct, so clear the
237 * lower 5 bits to check whether the difference is greater than 32 or not.
238 * Theoretically the erratum should not occur more than twice in succession
239 * when reading the system counter, but it is possible that some interrupts
240 * may lead to more than twice read errors, triggering the warning, so setting
241 * the number of retries far beyond the number of iterations the loop has been
242 * observed to take.
243 */
244 #define __hisi_161010101_read_reg(reg) ({ \
245 u64 _old, _new; \
246 int _retries = 50; \
247 \
248 do { \
249 _old = read_sysreg(reg); \
250 _new = read_sysreg(reg); \
251 _retries--; \
252 } while (unlikely((_new - _old) >> 5) && _retries); \
253 \
254 WARN_ON_ONCE(!_retries); \
255 _new; \
256 })
257
258 static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
259 {
260 return __hisi_161010101_read_reg(cntp_tval_el0);
261 }
262
263 static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
264 {
265 return __hisi_161010101_read_reg(cntv_tval_el0);
266 }
267
268 static u64 notrace hisi_161010101_read_cntpct_el0(void)
269 {
270 return __hisi_161010101_read_reg(cntpct_el0);
271 }
272
273 static u64 notrace hisi_161010101_read_cntvct_el0(void)
274 {
275 return __hisi_161010101_read_reg(cntvct_el0);
276 }
277
278 static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
279 /*
280 * Note that trailing spaces are required to properly match
281 * the OEM table information.
282 */
283 {
284 .oem_id = "HISI ",
285 .oem_table_id = "HIP05 ",
286 .oem_revision = 0,
287 },
288 {
289 .oem_id = "HISI ",
290 .oem_table_id = "HIP06 ",
291 .oem_revision = 0,
292 },
293 {
294 .oem_id = "HISI ",
295 .oem_table_id = "HIP07 ",
296 .oem_revision = 0,
297 },
298 { /* Sentinel indicating the end of the OEM array */ },
299 };
300 #endif
301
302 #ifdef CONFIG_ARM64_ERRATUM_858921
303 static u64 notrace arm64_858921_read_cntpct_el0(void)
304 {
305 u64 old, new;
306
307 old = read_sysreg(cntpct_el0);
308 new = read_sysreg(cntpct_el0);
309 return (((old ^ new) >> 32) & 1) ? old : new;
310 }
311
312 static u64 notrace arm64_858921_read_cntvct_el0(void)
313 {
314 u64 old, new;
315
316 old = read_sysreg(cntvct_el0);
317 new = read_sysreg(cntvct_el0);
318 return (((old ^ new) >> 32) & 1) ? old : new;
319 }
320 #endif
321
322 #ifdef CONFIG_ARM64_ERRATUM_1188873
323 static u64 notrace arm64_1188873_read_cntvct_el0(void)
324 {
325 return read_sysreg(cntvct_el0);
326 }
327 #endif
328
329 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
330 /*
331 * The low bits of the counter registers are indeterminate while bit 10 or
332 * greater is rolling over. Since the counter value can jump both backward
333 * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
334 * with all ones or all zeros in the low bits. Bound the loop by the maximum
335 * number of CPU cycles in 3 consecutive 24 MHz counter periods.
336 */
337 #define __sun50i_a64_read_reg(reg) ({ \
338 u64 _val; \
339 int _retries = 150; \
340 \
341 do { \
342 _val = read_sysreg(reg); \
343 _retries--; \
344 } while (((_val + 1) & GENMASK(9, 0)) <= 1 && _retries); \
345 \
346 WARN_ON_ONCE(!_retries); \
347 _val; \
348 })
349
350 static u64 notrace sun50i_a64_read_cntpct_el0(void)
351 {
352 return __sun50i_a64_read_reg(cntpct_el0);
353 }
354
355 static u64 notrace sun50i_a64_read_cntvct_el0(void)
356 {
357 return __sun50i_a64_read_reg(cntvct_el0);
358 }
359
360 static u32 notrace sun50i_a64_read_cntp_tval_el0(void)
361 {
362 return read_sysreg(cntp_cval_el0) - sun50i_a64_read_cntpct_el0();
363 }
364
365 static u32 notrace sun50i_a64_read_cntv_tval_el0(void)
366 {
367 return read_sysreg(cntv_cval_el0) - sun50i_a64_read_cntvct_el0();
368 }
369 #endif
370
371 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
372 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
373 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
374
375 DEFINE_STATIC_KEY_FALSE(arch_timer_read_ool_enabled);
376 EXPORT_SYMBOL_GPL(arch_timer_read_ool_enabled);
377
378 static void erratum_set_next_event_tval_generic(const int access, unsigned long evt,
379 struct clock_event_device *clk)
380 {
381 unsigned long ctrl;
382 u64 cval;
383
384 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
385 ctrl |= ARCH_TIMER_CTRL_ENABLE;
386 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
387
388 if (access == ARCH_TIMER_PHYS_ACCESS) {
389 cval = evt + arch_counter_get_cntpct();
390 write_sysreg(cval, cntp_cval_el0);
391 } else {
392 cval = evt + arch_counter_get_cntvct();
393 write_sysreg(cval, cntv_cval_el0);
394 }
395
396 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
397 }
398
399 static __maybe_unused int erratum_set_next_event_tval_virt(unsigned long evt,
400 struct clock_event_device *clk)
401 {
402 erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
403 return 0;
404 }
405
406 static __maybe_unused int erratum_set_next_event_tval_phys(unsigned long evt,
407 struct clock_event_device *clk)
408 {
409 erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
410 return 0;
411 }
412
413 static const struct arch_timer_erratum_workaround ool_workarounds[] = {
414 #ifdef CONFIG_FSL_ERRATUM_A008585
415 {
416 .match_type = ate_match_dt,
417 .id = "fsl,erratum-a008585",
418 .desc = "Freescale erratum a005858",
419 .read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
420 .read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
421 .read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
422 .read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
423 .set_next_event_phys = erratum_set_next_event_tval_phys,
424 .set_next_event_virt = erratum_set_next_event_tval_virt,
425 },
426 #endif
427 #ifdef CONFIG_HISILICON_ERRATUM_161010101
428 {
429 .match_type = ate_match_dt,
430 .id = "hisilicon,erratum-161010101",
431 .desc = "HiSilicon erratum 161010101",
432 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
433 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
434 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
435 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
436 .set_next_event_phys = erratum_set_next_event_tval_phys,
437 .set_next_event_virt = erratum_set_next_event_tval_virt,
438 },
439 {
440 .match_type = ate_match_acpi_oem_info,
441 .id = hisi_161010101_oem_info,
442 .desc = "HiSilicon erratum 161010101",
443 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
444 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
445 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
446 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
447 .set_next_event_phys = erratum_set_next_event_tval_phys,
448 .set_next_event_virt = erratum_set_next_event_tval_virt,
449 },
450 #endif
451 #ifdef CONFIG_ARM64_ERRATUM_858921
452 {
453 .match_type = ate_match_local_cap_id,
454 .id = (void *)ARM64_WORKAROUND_858921,
455 .desc = "ARM erratum 858921",
456 .read_cntpct_el0 = arm64_858921_read_cntpct_el0,
457 .read_cntvct_el0 = arm64_858921_read_cntvct_el0,
458 },
459 #endif
460 #ifdef CONFIG_ARM64_ERRATUM_1188873
461 {
462 .match_type = ate_match_local_cap_id,
463 .id = (void *)ARM64_WORKAROUND_1188873,
464 .desc = "ARM erratum 1188873",
465 .read_cntvct_el0 = arm64_1188873_read_cntvct_el0,
466 },
467 #endif
468 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
469 {
470 .match_type = ate_match_dt,
471 .id = "allwinner,erratum-unknown1",
472 .desc = "Allwinner erratum UNKNOWN1",
473 .read_cntp_tval_el0 = sun50i_a64_read_cntp_tval_el0,
474 .read_cntv_tval_el0 = sun50i_a64_read_cntv_tval_el0,
475 .read_cntpct_el0 = sun50i_a64_read_cntpct_el0,
476 .read_cntvct_el0 = sun50i_a64_read_cntvct_el0,
477 .set_next_event_phys = erratum_set_next_event_tval_phys,
478 .set_next_event_virt = erratum_set_next_event_tval_virt,
479 },
480 #endif
481 };
482
483 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
484 const void *);
485
486 static
487 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
488 const void *arg)
489 {
490 const struct device_node *np = arg;
491
492 return of_property_read_bool(np, wa->id);
493 }
494
495 static
496 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
497 const void *arg)
498 {
499 return this_cpu_has_cap((uintptr_t)wa->id);
500 }
501
502
503 static
504 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
505 const void *arg)
506 {
507 static const struct ate_acpi_oem_info empty_oem_info = {};
508 const struct ate_acpi_oem_info *info = wa->id;
509 const struct acpi_table_header *table = arg;
510
511 /* Iterate over the ACPI OEM info array, looking for a match */
512 while (memcmp(info, &empty_oem_info, sizeof(*info))) {
513 if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
514 !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
515 info->oem_revision == table->oem_revision)
516 return true;
517
518 info++;
519 }
520
521 return false;
522 }
523
524 static const struct arch_timer_erratum_workaround *
525 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
526 ate_match_fn_t match_fn,
527 void *arg)
528 {
529 int i;
530
531 for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
532 if (ool_workarounds[i].match_type != type)
533 continue;
534
535 if (match_fn(&ool_workarounds[i], arg))
536 return &ool_workarounds[i];
537 }
538
539 return NULL;
540 }
541
542 static
543 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
544 bool local)
545 {
546 int i;
547
548 if (local) {
549 __this_cpu_write(timer_unstable_counter_workaround, wa);
550 } else {
551 for_each_possible_cpu(i)
552 per_cpu(timer_unstable_counter_workaround, i) = wa;
553 }
554
555 /*
556 * Use the locked version, as we're called from the CPU
557 * hotplug framework. Otherwise, we end-up in deadlock-land.
558 */
559 static_branch_enable_cpuslocked(&arch_timer_read_ool_enabled);
560
561 /*
562 * Don't use the vdso fastpath if errata require using the
563 * out-of-line counter accessor. We may change our mind pretty
564 * late in the game (with a per-CPU erratum, for example), so
565 * change both the default value and the vdso itself.
566 */
567 if (wa->read_cntvct_el0) {
568 clocksource_counter.archdata.vdso_direct = false;
569 vdso_default = false;
570 }
571 }
572
573 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
574 void *arg)
575 {
576 const struct arch_timer_erratum_workaround *wa;
577 ate_match_fn_t match_fn = NULL;
578 bool local = false;
579
580 switch (type) {
581 case ate_match_dt:
582 match_fn = arch_timer_check_dt_erratum;
583 break;
584 case ate_match_local_cap_id:
585 match_fn = arch_timer_check_local_cap_erratum;
586 local = true;
587 break;
588 case ate_match_acpi_oem_info:
589 match_fn = arch_timer_check_acpi_oem_erratum;
590 break;
591 default:
592 WARN_ON(1);
593 return;
594 }
595
596 wa = arch_timer_iterate_errata(type, match_fn, arg);
597 if (!wa)
598 return;
599
600 if (needs_unstable_timer_counter_workaround()) {
601 const struct arch_timer_erratum_workaround *__wa;
602 __wa = __this_cpu_read(timer_unstable_counter_workaround);
603 if (__wa && wa != __wa)
604 pr_warn("Can't enable workaround for %s (clashes with %s\n)",
605 wa->desc, __wa->desc);
606
607 if (__wa)
608 return;
609 }
610
611 arch_timer_enable_workaround(wa, local);
612 pr_info("Enabling %s workaround for %s\n",
613 local ? "local" : "global", wa->desc);
614 }
615
616 #define erratum_handler(fn, r, ...) \
617 ({ \
618 bool __val; \
619 if (needs_unstable_timer_counter_workaround()) { \
620 const struct arch_timer_erratum_workaround *__wa; \
621 __wa = __this_cpu_read(timer_unstable_counter_workaround); \
622 if (__wa && __wa->fn) { \
623 r = __wa->fn(__VA_ARGS__); \
624 __val = true; \
625 } else { \
626 __val = false; \
627 } \
628 } else { \
629 __val = false; \
630 } \
631 __val; \
632 })
633
634 static bool arch_timer_this_cpu_has_cntvct_wa(void)
635 {
636 const struct arch_timer_erratum_workaround *wa;
637
638 wa = __this_cpu_read(timer_unstable_counter_workaround);
639 return wa && wa->read_cntvct_el0;
640 }
641 #else
642 #define arch_timer_check_ool_workaround(t,a) do { } while(0)
643 #define erratum_set_next_event_tval_virt(...) ({BUG(); 0;})
644 #define erratum_set_next_event_tval_phys(...) ({BUG(); 0;})
645 #define erratum_handler(fn, r, ...) ({false;})
646 #define arch_timer_this_cpu_has_cntvct_wa() ({false;})
647 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
648
649 static __always_inline irqreturn_t timer_handler(const int access,
650 struct clock_event_device *evt)
651 {
652 unsigned long ctrl;
653
654 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
655 if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
656 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
657 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
658 evt->event_handler(evt);
659 return IRQ_HANDLED;
660 }
661
662 return IRQ_NONE;
663 }
664
665 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
666 {
667 struct clock_event_device *evt = dev_id;
668
669 return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
670 }
671
672 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
673 {
674 struct clock_event_device *evt = dev_id;
675
676 return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
677 }
678
679 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
680 {
681 struct clock_event_device *evt = dev_id;
682
683 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
684 }
685
686 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
687 {
688 struct clock_event_device *evt = dev_id;
689
690 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
691 }
692
693 static __always_inline int timer_shutdown(const int access,
694 struct clock_event_device *clk)
695 {
696 unsigned long ctrl;
697
698 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
699 ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
700 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
701
702 return 0;
703 }
704
705 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
706 {
707 return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
708 }
709
710 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
711 {
712 return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
713 }
714
715 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
716 {
717 return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
718 }
719
720 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
721 {
722 return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
723 }
724
725 static __always_inline void set_next_event(const int access, unsigned long evt,
726 struct clock_event_device *clk)
727 {
728 unsigned long ctrl;
729 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
730 ctrl |= ARCH_TIMER_CTRL_ENABLE;
731 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
732 arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
733 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
734 }
735
736 static int arch_timer_set_next_event_virt(unsigned long evt,
737 struct clock_event_device *clk)
738 {
739 int ret;
740
741 if (erratum_handler(set_next_event_virt, ret, evt, clk))
742 return ret;
743
744 set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
745 return 0;
746 }
747
748 static int arch_timer_set_next_event_phys(unsigned long evt,
749 struct clock_event_device *clk)
750 {
751 int ret;
752
753 if (erratum_handler(set_next_event_phys, ret, evt, clk))
754 return ret;
755
756 set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
757 return 0;
758 }
759
760 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
761 struct clock_event_device *clk)
762 {
763 set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
764 return 0;
765 }
766
767 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
768 struct clock_event_device *clk)
769 {
770 set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
771 return 0;
772 }
773
774 static void __arch_timer_setup(unsigned type,
775 struct clock_event_device *clk)
776 {
777 clk->features = CLOCK_EVT_FEAT_ONESHOT;
778
779 if (type == ARCH_TIMER_TYPE_CP15) {
780 if (arch_timer_c3stop)
781 clk->features |= CLOCK_EVT_FEAT_C3STOP;
782 clk->name = "arch_sys_timer";
783 clk->rating = 450;
784 clk->cpumask = cpumask_of(smp_processor_id());
785 clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
786 switch (arch_timer_uses_ppi) {
787 case ARCH_TIMER_VIRT_PPI:
788 clk->set_state_shutdown = arch_timer_shutdown_virt;
789 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
790 clk->set_next_event = arch_timer_set_next_event_virt;
791 break;
792 case ARCH_TIMER_PHYS_SECURE_PPI:
793 case ARCH_TIMER_PHYS_NONSECURE_PPI:
794 case ARCH_TIMER_HYP_PPI:
795 clk->set_state_shutdown = arch_timer_shutdown_phys;
796 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
797 clk->set_next_event = arch_timer_set_next_event_phys;
798 break;
799 default:
800 BUG();
801 }
802
803 arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
804 } else {
805 clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
806 clk->name = "arch_mem_timer";
807 clk->rating = 400;
808 clk->cpumask = cpu_possible_mask;
809 if (arch_timer_mem_use_virtual) {
810 clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
811 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
812 clk->set_next_event =
813 arch_timer_set_next_event_virt_mem;
814 } else {
815 clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
816 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
817 clk->set_next_event =
818 arch_timer_set_next_event_phys_mem;
819 }
820 }
821
822 clk->set_state_shutdown(clk);
823
824 clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
825 }
826
827 static void arch_timer_evtstrm_enable(int divider)
828 {
829 u32 cntkctl = arch_timer_get_cntkctl();
830
831 cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
832 /* Set the divider and enable virtual event stream */
833 cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
834 | ARCH_TIMER_VIRT_EVT_EN;
835 arch_timer_set_cntkctl(cntkctl);
836 elf_hwcap |= HWCAP_EVTSTRM;
837 #ifdef CONFIG_COMPAT
838 compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
839 #endif
840 cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
841 }
842
843 static void arch_timer_configure_evtstream(void)
844 {
845 int evt_stream_div, pos;
846
847 /* Find the closest power of two to the divisor */
848 evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
849 pos = fls(evt_stream_div);
850 if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
851 pos--;
852 /* enable event stream */
853 arch_timer_evtstrm_enable(min(pos, 15));
854 }
855
856 static void arch_counter_set_user_access(void)
857 {
858 u32 cntkctl = arch_timer_get_cntkctl();
859
860 /* Disable user access to the timers and both counters */
861 /* Also disable virtual event stream */
862 cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
863 | ARCH_TIMER_USR_VT_ACCESS_EN
864 | ARCH_TIMER_USR_VCT_ACCESS_EN
865 | ARCH_TIMER_VIRT_EVT_EN
866 | ARCH_TIMER_USR_PCT_ACCESS_EN);
867
868 /*
869 * Enable user access to the virtual counter if it doesn't
870 * need to be workaround. The vdso may have been already
871 * disabled though.
872 */
873 if (arch_timer_this_cpu_has_cntvct_wa())
874 pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
875 else
876 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
877
878 arch_timer_set_cntkctl(cntkctl);
879 }
880
881 static bool arch_timer_has_nonsecure_ppi(void)
882 {
883 return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
884 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
885 }
886
887 static u32 check_ppi_trigger(int irq)
888 {
889 u32 flags = irq_get_trigger_type(irq);
890
891 if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
892 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
893 pr_warn("WARNING: Please fix your firmware\n");
894 flags = IRQF_TRIGGER_LOW;
895 }
896
897 return flags;
898 }
899
900 static int arch_timer_starting_cpu(unsigned int cpu)
901 {
902 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
903 u32 flags;
904
905 __arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
906
907 flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
908 enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
909
910 if (arch_timer_has_nonsecure_ppi()) {
911 flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
912 enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
913 flags);
914 }
915
916 arch_counter_set_user_access();
917 if (evtstrm_enable)
918 arch_timer_configure_evtstream();
919
920 return 0;
921 }
922
923 /*
924 * For historical reasons, when probing with DT we use whichever (non-zero)
925 * rate was probed first, and don't verify that others match. If the first node
926 * probed has a clock-frequency property, this overrides the HW register.
927 */
928 static void arch_timer_of_configure_rate(u32 rate, struct device_node *np)
929 {
930 /* Who has more than one independent system counter? */
931 if (arch_timer_rate)
932 return;
933
934 if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
935 arch_timer_rate = rate;
936
937 /* Check the timer frequency. */
938 if (arch_timer_rate == 0)
939 pr_warn("frequency not available\n");
940 }
941
942 static void arch_timer_banner(unsigned type)
943 {
944 pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
945 type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
946 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
947 " and " : "",
948 type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
949 (unsigned long)arch_timer_rate / 1000000,
950 (unsigned long)(arch_timer_rate / 10000) % 100,
951 type & ARCH_TIMER_TYPE_CP15 ?
952 (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
953 "",
954 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
955 type & ARCH_TIMER_TYPE_MEM ?
956 arch_timer_mem_use_virtual ? "virt" : "phys" :
957 "");
958 }
959
960 u32 arch_timer_get_rate(void)
961 {
962 return arch_timer_rate;
963 }
964
965 bool arch_timer_evtstrm_available(void)
966 {
967 /*
968 * We might get called from a preemptible context. This is fine
969 * because availability of the event stream should be always the same
970 * for a preemptible context and context where we might resume a task.
971 */
972 return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
973 }
974
975 static u64 arch_counter_get_cntvct_mem(void)
976 {
977 u32 vct_lo, vct_hi, tmp_hi;
978
979 do {
980 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
981 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
982 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
983 } while (vct_hi != tmp_hi);
984
985 return ((u64) vct_hi << 32) | vct_lo;
986 }
987
988 static struct arch_timer_kvm_info arch_timer_kvm_info;
989
990 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
991 {
992 return &arch_timer_kvm_info;
993 }
994
995 static void __init arch_counter_register(unsigned type)
996 {
997 u64 start_count;
998
999 /* Register the CP15 based counter if we have one */
1000 if (type & ARCH_TIMER_TYPE_CP15) {
1001 if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
1002 arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI)
1003 arch_timer_read_counter = arch_counter_get_cntvct;
1004 else
1005 arch_timer_read_counter = arch_counter_get_cntpct;
1006
1007 clocksource_counter.archdata.vdso_direct = vdso_default;
1008 } else {
1009 arch_timer_read_counter = arch_counter_get_cntvct_mem;
1010 }
1011
1012 if (!arch_counter_suspend_stop)
1013 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1014 start_count = arch_timer_read_counter();
1015 clocksource_register_hz(&clocksource_counter, arch_timer_rate);
1016 cyclecounter.mult = clocksource_counter.mult;
1017 cyclecounter.shift = clocksource_counter.shift;
1018 timecounter_init(&arch_timer_kvm_info.timecounter,
1019 &cyclecounter, start_count);
1020
1021 /* 56 bits minimum, so we assume worst case rollover */
1022 sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
1023 }
1024
1025 static void arch_timer_stop(struct clock_event_device *clk)
1026 {
1027 pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
1028
1029 disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
1030 if (arch_timer_has_nonsecure_ppi())
1031 disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1032
1033 clk->set_state_shutdown(clk);
1034 }
1035
1036 static int arch_timer_dying_cpu(unsigned int cpu)
1037 {
1038 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
1039
1040 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1041
1042 arch_timer_stop(clk);
1043 return 0;
1044 }
1045
1046 #ifdef CONFIG_CPU_PM
1047 static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
1048 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
1049 unsigned long action, void *hcpu)
1050 {
1051 if (action == CPU_PM_ENTER) {
1052 __this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
1053
1054 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1055 } else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
1056 arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
1057
1058 if (elf_hwcap & HWCAP_EVTSTRM)
1059 cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
1060 }
1061 return NOTIFY_OK;
1062 }
1063
1064 static struct notifier_block arch_timer_cpu_pm_notifier = {
1065 .notifier_call = arch_timer_cpu_pm_notify,
1066 };
1067
1068 static int __init arch_timer_cpu_pm_init(void)
1069 {
1070 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
1071 }
1072
1073 static void __init arch_timer_cpu_pm_deinit(void)
1074 {
1075 WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
1076 }
1077
1078 #else
1079 static int __init arch_timer_cpu_pm_init(void)
1080 {
1081 return 0;
1082 }
1083
1084 static void __init arch_timer_cpu_pm_deinit(void)
1085 {
1086 }
1087 #endif
1088
1089 static int __init arch_timer_register(void)
1090 {
1091 int err;
1092 int ppi;
1093
1094 arch_timer_evt = alloc_percpu(struct clock_event_device);
1095 if (!arch_timer_evt) {
1096 err = -ENOMEM;
1097 goto out;
1098 }
1099
1100 ppi = arch_timer_ppi[arch_timer_uses_ppi];
1101 switch (arch_timer_uses_ppi) {
1102 case ARCH_TIMER_VIRT_PPI:
1103 err = request_percpu_irq(ppi, arch_timer_handler_virt,
1104 "arch_timer", arch_timer_evt);
1105 break;
1106 case ARCH_TIMER_PHYS_SECURE_PPI:
1107 case ARCH_TIMER_PHYS_NONSECURE_PPI:
1108 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1109 "arch_timer", arch_timer_evt);
1110 if (!err && arch_timer_has_nonsecure_ppi()) {
1111 ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1112 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1113 "arch_timer", arch_timer_evt);
1114 if (err)
1115 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1116 arch_timer_evt);
1117 }
1118 break;
1119 case ARCH_TIMER_HYP_PPI:
1120 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1121 "arch_timer", arch_timer_evt);
1122 break;
1123 default:
1124 BUG();
1125 }
1126
1127 if (err) {
1128 pr_err("can't register interrupt %d (%d)\n", ppi, err);
1129 goto out_free;
1130 }
1131
1132 err = arch_timer_cpu_pm_init();
1133 if (err)
1134 goto out_unreg_notify;
1135
1136 /* Register and immediately configure the timer on the boot CPU */
1137 err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1138 "clockevents/arm/arch_timer:starting",
1139 arch_timer_starting_cpu, arch_timer_dying_cpu);
1140 if (err)
1141 goto out_unreg_cpupm;
1142 return 0;
1143
1144 out_unreg_cpupm:
1145 arch_timer_cpu_pm_deinit();
1146
1147 out_unreg_notify:
1148 free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1149 if (arch_timer_has_nonsecure_ppi())
1150 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1151 arch_timer_evt);
1152
1153 out_free:
1154 free_percpu(arch_timer_evt);
1155 out:
1156 return err;
1157 }
1158
1159 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1160 {
1161 int ret;
1162 irq_handler_t func;
1163 struct arch_timer *t;
1164
1165 t = kzalloc(sizeof(*t), GFP_KERNEL);
1166 if (!t)
1167 return -ENOMEM;
1168
1169 t->base = base;
1170 t->evt.irq = irq;
1171 __arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt);
1172
1173 if (arch_timer_mem_use_virtual)
1174 func = arch_timer_handler_virt_mem;
1175 else
1176 func = arch_timer_handler_phys_mem;
1177
1178 ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
1179 if (ret) {
1180 pr_err("Failed to request mem timer irq\n");
1181 kfree(t);
1182 }
1183
1184 return ret;
1185 }
1186
1187 static const struct of_device_id arch_timer_of_match[] __initconst = {
1188 { .compatible = "arm,armv7-timer", },
1189 { .compatible = "arm,armv8-timer", },
1190 {},
1191 };
1192
1193 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1194 { .compatible = "arm,armv7-timer-mem", },
1195 {},
1196 };
1197
1198 static bool __init arch_timer_needs_of_probing(void)
1199 {
1200 struct device_node *dn;
1201 bool needs_probing = false;
1202 unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1203
1204 /* We have two timers, and both device-tree nodes are probed. */
1205 if ((arch_timers_present & mask) == mask)
1206 return false;
1207
1208 /*
1209 * Only one type of timer is probed,
1210 * check if we have another type of timer node in device-tree.
1211 */
1212 if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1213 dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1214 else
1215 dn = of_find_matching_node(NULL, arch_timer_of_match);
1216
1217 if (dn && of_device_is_available(dn))
1218 needs_probing = true;
1219
1220 of_node_put(dn);
1221
1222 return needs_probing;
1223 }
1224
1225 static int __init arch_timer_common_init(void)
1226 {
1227 arch_timer_banner(arch_timers_present);
1228 arch_counter_register(arch_timers_present);
1229 return arch_timer_arch_init();
1230 }
1231
1232 /**
1233 * arch_timer_select_ppi() - Select suitable PPI for the current system.
1234 *
1235 * If HYP mode is available, we know that the physical timer
1236 * has been configured to be accessible from PL1. Use it, so
1237 * that a guest can use the virtual timer instead.
1238 *
1239 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1240 * accesses to CNTP_*_EL1 registers are silently redirected to
1241 * their CNTHP_*_EL2 counterparts, and use a different PPI
1242 * number.
1243 *
1244 * If no interrupt provided for virtual timer, we'll have to
1245 * stick to the physical timer. It'd better be accessible...
1246 * For arm64 we never use the secure interrupt.
1247 *
1248 * Return: a suitable PPI type for the current system.
1249 */
1250 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1251 {
1252 if (is_kernel_in_hyp_mode())
1253 return ARCH_TIMER_HYP_PPI;
1254
1255 if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1256 return ARCH_TIMER_VIRT_PPI;
1257
1258 if (IS_ENABLED(CONFIG_ARM64))
1259 return ARCH_TIMER_PHYS_NONSECURE_PPI;
1260
1261 return ARCH_TIMER_PHYS_SECURE_PPI;
1262 }
1263
1264 static void __init arch_timer_populate_kvm_info(void)
1265 {
1266 arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1267 if (is_kernel_in_hyp_mode())
1268 arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1269 }
1270
1271 static int __init arch_timer_of_init(struct device_node *np)
1272 {
1273 int i, ret;
1274 u32 rate;
1275
1276 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1277 pr_warn("multiple nodes in dt, skipping\n");
1278 return 0;
1279 }
1280
1281 arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1282 for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++)
1283 arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
1284
1285 arch_timer_populate_kvm_info();
1286
1287 rate = arch_timer_get_cntfrq();
1288 arch_timer_of_configure_rate(rate, np);
1289
1290 arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1291
1292 /* Check for globally applicable workarounds */
1293 arch_timer_check_ool_workaround(ate_match_dt, np);
1294
1295 /*
1296 * If we cannot rely on firmware initializing the timer registers then
1297 * we should use the physical timers instead.
1298 */
1299 if (IS_ENABLED(CONFIG_ARM) &&
1300 of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1301 arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1302 else
1303 arch_timer_uses_ppi = arch_timer_select_ppi();
1304
1305 if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1306 pr_err("No interrupt available, giving up\n");
1307 return -EINVAL;
1308 }
1309
1310 /* On some systems, the counter stops ticking when in suspend. */
1311 arch_counter_suspend_stop = of_property_read_bool(np,
1312 "arm,no-tick-in-suspend");
1313
1314 ret = arch_timer_register();
1315 if (ret)
1316 return ret;
1317
1318 if (arch_timer_needs_of_probing())
1319 return 0;
1320
1321 return arch_timer_common_init();
1322 }
1323 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1324 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1325
1326 static u32 __init
1327 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1328 {
1329 void __iomem *base;
1330 u32 rate;
1331
1332 base = ioremap(frame->cntbase, frame->size);
1333 if (!base) {
1334 pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1335 return 0;
1336 }
1337
1338 rate = readl_relaxed(base + CNTFRQ);
1339
1340 iounmap(base);
1341
1342 return rate;
1343 }
1344
1345 static struct arch_timer_mem_frame * __init
1346 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1347 {
1348 struct arch_timer_mem_frame *frame, *best_frame = NULL;
1349 void __iomem *cntctlbase;
1350 u32 cnttidr;
1351 int i;
1352
1353 cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1354 if (!cntctlbase) {
1355 pr_err("Can't map CNTCTLBase @ %pa\n",
1356 &timer_mem->cntctlbase);
1357 return NULL;
1358 }
1359
1360 cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1361
1362 /*
1363 * Try to find a virtual capable frame. Otherwise fall back to a
1364 * physical capable frame.
1365 */
1366 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1367 u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1368 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1369
1370 frame = &timer_mem->frame[i];
1371 if (!frame->valid)
1372 continue;
1373
1374 /* Try enabling everything, and see what sticks */
1375 writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1376 cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1377
1378 if ((cnttidr & CNTTIDR_VIRT(i)) &&
1379 !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1380 best_frame = frame;
1381 arch_timer_mem_use_virtual = true;
1382 break;
1383 }
1384
1385 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1386 continue;
1387
1388 best_frame = frame;
1389 }
1390
1391 iounmap(cntctlbase);
1392
1393 return best_frame;
1394 }
1395
1396 static int __init
1397 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1398 {
1399 void __iomem *base;
1400 int ret, irq = 0;
1401
1402 if (arch_timer_mem_use_virtual)
1403 irq = frame->virt_irq;
1404 else
1405 irq = frame->phys_irq;
1406
1407 if (!irq) {
1408 pr_err("Frame missing %s irq.\n",
1409 arch_timer_mem_use_virtual ? "virt" : "phys");
1410 return -EINVAL;
1411 }
1412
1413 if (!request_mem_region(frame->cntbase, frame->size,
1414 "arch_mem_timer"))
1415 return -EBUSY;
1416
1417 base = ioremap(frame->cntbase, frame->size);
1418 if (!base) {
1419 pr_err("Can't map frame's registers\n");
1420 return -ENXIO;
1421 }
1422
1423 ret = arch_timer_mem_register(base, irq);
1424 if (ret) {
1425 iounmap(base);
1426 return ret;
1427 }
1428
1429 arch_counter_base = base;
1430 arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1431
1432 return 0;
1433 }
1434
1435 static int __init arch_timer_mem_of_init(struct device_node *np)
1436 {
1437 struct arch_timer_mem *timer_mem;
1438 struct arch_timer_mem_frame *frame;
1439 struct device_node *frame_node;
1440 struct resource res;
1441 int ret = -EINVAL;
1442 u32 rate;
1443
1444 timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1445 if (!timer_mem)
1446 return -ENOMEM;
1447
1448 if (of_address_to_resource(np, 0, &res))
1449 goto out;
1450 timer_mem->cntctlbase = res.start;
1451 timer_mem->size = resource_size(&res);
1452
1453 for_each_available_child_of_node(np, frame_node) {
1454 u32 n;
1455 struct arch_timer_mem_frame *frame;
1456
1457 if (of_property_read_u32(frame_node, "frame-number", &n)) {
1458 pr_err(FW_BUG "Missing frame-number.\n");
1459 of_node_put(frame_node);
1460 goto out;
1461 }
1462 if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1463 pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1464 ARCH_TIMER_MEM_MAX_FRAMES - 1);
1465 of_node_put(frame_node);
1466 goto out;
1467 }
1468 frame = &timer_mem->frame[n];
1469
1470 if (frame->valid) {
1471 pr_err(FW_BUG "Duplicated frame-number.\n");
1472 of_node_put(frame_node);
1473 goto out;
1474 }
1475
1476 if (of_address_to_resource(frame_node, 0, &res)) {
1477 of_node_put(frame_node);
1478 goto out;
1479 }
1480 frame->cntbase = res.start;
1481 frame->size = resource_size(&res);
1482
1483 frame->virt_irq = irq_of_parse_and_map(frame_node,
1484 ARCH_TIMER_VIRT_SPI);
1485 frame->phys_irq = irq_of_parse_and_map(frame_node,
1486 ARCH_TIMER_PHYS_SPI);
1487
1488 frame->valid = true;
1489 }
1490
1491 frame = arch_timer_mem_find_best_frame(timer_mem);
1492 if (!frame) {
1493 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1494 &timer_mem->cntctlbase);
1495 ret = -EINVAL;
1496 goto out;
1497 }
1498
1499 rate = arch_timer_mem_frame_get_cntfrq(frame);
1500 arch_timer_of_configure_rate(rate, np);
1501
1502 ret = arch_timer_mem_frame_register(frame);
1503 if (!ret && !arch_timer_needs_of_probing())
1504 ret = arch_timer_common_init();
1505 out:
1506 kfree(timer_mem);
1507 return ret;
1508 }
1509 TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1510 arch_timer_mem_of_init);
1511
1512 #ifdef CONFIG_ACPI_GTDT
1513 static int __init
1514 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1515 {
1516 struct arch_timer_mem_frame *frame;
1517 u32 rate;
1518 int i;
1519
1520 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1521 frame = &timer_mem->frame[i];
1522
1523 if (!frame->valid)
1524 continue;
1525
1526 rate = arch_timer_mem_frame_get_cntfrq(frame);
1527 if (rate == arch_timer_rate)
1528 continue;
1529
1530 pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1531 &frame->cntbase,
1532 (unsigned long)rate, (unsigned long)arch_timer_rate);
1533
1534 return -EINVAL;
1535 }
1536
1537 return 0;
1538 }
1539
1540 static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1541 {
1542 struct arch_timer_mem *timers, *timer;
1543 struct arch_timer_mem_frame *frame, *best_frame = NULL;
1544 int timer_count, i, ret = 0;
1545
1546 timers = kcalloc(platform_timer_count, sizeof(*timers),
1547 GFP_KERNEL);
1548 if (!timers)
1549 return -ENOMEM;
1550
1551 ret = acpi_arch_timer_mem_init(timers, &timer_count);
1552 if (ret || !timer_count)
1553 goto out;
1554
1555 /*
1556 * While unlikely, it's theoretically possible that none of the frames
1557 * in a timer expose the combination of feature we want.
1558 */
1559 for (i = 0; i < timer_count; i++) {
1560 timer = &timers[i];
1561
1562 frame = arch_timer_mem_find_best_frame(timer);
1563 if (!best_frame)
1564 best_frame = frame;
1565
1566 ret = arch_timer_mem_verify_cntfrq(timer);
1567 if (ret) {
1568 pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1569 goto out;
1570 }
1571
1572 if (!best_frame) /* implies !frame */
1573 /*
1574 * Only complain about missing suitable frames if we
1575 * haven't already found one in a previous iteration.
1576 */
1577 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1578 &timer->cntctlbase);
1579 }
1580
1581 if (best_frame)
1582 ret = arch_timer_mem_frame_register(best_frame);
1583 out:
1584 kfree(timers);
1585 return ret;
1586 }
1587
1588 /* Initialize per-processor generic timer and memory-mapped timer(if present) */
1589 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1590 {
1591 int ret, platform_timer_count;
1592
1593 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1594 pr_warn("already initialized, skipping\n");
1595 return -EINVAL;
1596 }
1597
1598 arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1599
1600 ret = acpi_gtdt_init(table, &platform_timer_count);
1601 if (ret) {
1602 pr_err("Failed to init GTDT table.\n");
1603 return ret;
1604 }
1605
1606 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1607 acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1608
1609 arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1610 acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1611
1612 arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1613 acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1614
1615 arch_timer_populate_kvm_info();
1616
1617 /*
1618 * When probing via ACPI, we have no mechanism to override the sysreg
1619 * CNTFRQ value. This *must* be correct.
1620 */
1621 arch_timer_rate = arch_timer_get_cntfrq();
1622 if (!arch_timer_rate) {
1623 pr_err(FW_BUG "frequency not available.\n");
1624 return -EINVAL;
1625 }
1626
1627 arch_timer_uses_ppi = arch_timer_select_ppi();
1628 if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1629 pr_err("No interrupt available, giving up\n");
1630 return -EINVAL;
1631 }
1632
1633 /* Always-on capability */
1634 arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1635
1636 /* Check for globally applicable workarounds */
1637 arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1638
1639 ret = arch_timer_register();
1640 if (ret)
1641 return ret;
1642
1643 if (platform_timer_count &&
1644 arch_timer_mem_acpi_init(platform_timer_count))
1645 pr_err("Failed to initialize memory-mapped timer.\n");
1646
1647 return arch_timer_common_init();
1648 }
1649 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1650 #endif