]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/cpufreq/intel_pstate.c
gpu: host1x: Use SMMU on Tegra124 and Tegra210
[thirdparty/linux.git] / drivers / cpufreq / intel_pstate.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * intel_pstate.c: Native P state management for Intel processors
4 *
5 * (C) Copyright 2012 Intel Corporation
6 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/module.h>
14 #include <linux/ktime.h>
15 #include <linux/hrtimer.h>
16 #include <linux/tick.h>
17 #include <linux/slab.h>
18 #include <linux/sched/cpufreq.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/sysfs.h>
23 #include <linux/types.h>
24 #include <linux/fs.h>
25 #include <linux/acpi.h>
26 #include <linux/vmalloc.h>
27 #include <linux/pm_qos.h>
28 #include <trace/events/power.h>
29
30 #include <asm/div64.h>
31 #include <asm/msr.h>
32 #include <asm/cpu_device_id.h>
33 #include <asm/cpufeature.h>
34 #include <asm/intel-family.h>
35
36 #define INTEL_PSTATE_SAMPLING_INTERVAL (10 * NSEC_PER_MSEC)
37
38 #define INTEL_CPUFREQ_TRANSITION_LATENCY 20000
39 #define INTEL_CPUFREQ_TRANSITION_DELAY 500
40
41 #ifdef CONFIG_ACPI
42 #include <acpi/processor.h>
43 #include <acpi/cppc_acpi.h>
44 #endif
45
46 #define FRAC_BITS 8
47 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
48 #define fp_toint(X) ((X) >> FRAC_BITS)
49
50 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
51
52 #define EXT_BITS 6
53 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
54 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
55 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
56
57 static inline int32_t mul_fp(int32_t x, int32_t y)
58 {
59 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
60 }
61
62 static inline int32_t div_fp(s64 x, s64 y)
63 {
64 return div64_s64((int64_t)x << FRAC_BITS, y);
65 }
66
67 static inline int ceiling_fp(int32_t x)
68 {
69 int mask, ret;
70
71 ret = fp_toint(x);
72 mask = (1 << FRAC_BITS) - 1;
73 if (x & mask)
74 ret += 1;
75 return ret;
76 }
77
78 static inline int32_t percent_fp(int percent)
79 {
80 return div_fp(percent, 100);
81 }
82
83 static inline u64 mul_ext_fp(u64 x, u64 y)
84 {
85 return (x * y) >> EXT_FRAC_BITS;
86 }
87
88 static inline u64 div_ext_fp(u64 x, u64 y)
89 {
90 return div64_u64(x << EXT_FRAC_BITS, y);
91 }
92
93 static inline int32_t percent_ext_fp(int percent)
94 {
95 return div_ext_fp(percent, 100);
96 }
97
98 /**
99 * struct sample - Store performance sample
100 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
101 * performance during last sample period
102 * @busy_scaled: Scaled busy value which is used to calculate next
103 * P state. This can be different than core_avg_perf
104 * to account for cpu idle period
105 * @aperf: Difference of actual performance frequency clock count
106 * read from APERF MSR between last and current sample
107 * @mperf: Difference of maximum performance frequency clock count
108 * read from MPERF MSR between last and current sample
109 * @tsc: Difference of time stamp counter between last and
110 * current sample
111 * @time: Current time from scheduler
112 *
113 * This structure is used in the cpudata structure to store performance sample
114 * data for choosing next P State.
115 */
116 struct sample {
117 int32_t core_avg_perf;
118 int32_t busy_scaled;
119 u64 aperf;
120 u64 mperf;
121 u64 tsc;
122 u64 time;
123 };
124
125 /**
126 * struct pstate_data - Store P state data
127 * @current_pstate: Current requested P state
128 * @min_pstate: Min P state possible for this platform
129 * @max_pstate: Max P state possible for this platform
130 * @max_pstate_physical:This is physical Max P state for a processor
131 * This can be higher than the max_pstate which can
132 * be limited by platform thermal design power limits
133 * @scaling: Scaling factor to convert frequency to cpufreq
134 * frequency units
135 * @turbo_pstate: Max Turbo P state possible for this platform
136 * @max_freq: @max_pstate frequency in cpufreq units
137 * @turbo_freq: @turbo_pstate frequency in cpufreq units
138 *
139 * Stores the per cpu model P state limits and current P state.
140 */
141 struct pstate_data {
142 int current_pstate;
143 int min_pstate;
144 int max_pstate;
145 int max_pstate_physical;
146 int scaling;
147 int turbo_pstate;
148 unsigned int max_freq;
149 unsigned int turbo_freq;
150 };
151
152 /**
153 * struct vid_data - Stores voltage information data
154 * @min: VID data for this platform corresponding to
155 * the lowest P state
156 * @max: VID data corresponding to the highest P State.
157 * @turbo: VID data for turbo P state
158 * @ratio: Ratio of (vid max - vid min) /
159 * (max P state - Min P State)
160 *
161 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
162 * This data is used in Atom platforms, where in addition to target P state,
163 * the voltage data needs to be specified to select next P State.
164 */
165 struct vid_data {
166 int min;
167 int max;
168 int turbo;
169 int32_t ratio;
170 };
171
172 /**
173 * struct global_params - Global parameters, mostly tunable via sysfs.
174 * @no_turbo: Whether or not to use turbo P-states.
175 * @turbo_disabled: Whether or not turbo P-states are available at all,
176 * based on the MSR_IA32_MISC_ENABLE value and whether or
177 * not the maximum reported turbo P-state is different from
178 * the maximum reported non-turbo one.
179 * @turbo_disabled_mf: The @turbo_disabled value reflected by cpuinfo.max_freq.
180 * @min_perf_pct: Minimum capacity limit in percent of the maximum turbo
181 * P-state capacity.
182 * @max_perf_pct: Maximum capacity limit in percent of the maximum turbo
183 * P-state capacity.
184 */
185 struct global_params {
186 bool no_turbo;
187 bool turbo_disabled;
188 bool turbo_disabled_mf;
189 int max_perf_pct;
190 int min_perf_pct;
191 };
192
193 /**
194 * struct cpudata - Per CPU instance data storage
195 * @cpu: CPU number for this instance data
196 * @policy: CPUFreq policy value
197 * @update_util: CPUFreq utility callback information
198 * @update_util_set: CPUFreq utility callback is set
199 * @iowait_boost: iowait-related boost fraction
200 * @last_update: Time of the last update.
201 * @pstate: Stores P state limits for this CPU
202 * @vid: Stores VID limits for this CPU
203 * @last_sample_time: Last Sample time
204 * @aperf_mperf_shift: Number of clock cycles after aperf, merf is incremented
205 * This shift is a multiplier to mperf delta to
206 * calculate CPU busy.
207 * @prev_aperf: Last APERF value read from APERF MSR
208 * @prev_mperf: Last MPERF value read from MPERF MSR
209 * @prev_tsc: Last timestamp counter (TSC) value
210 * @prev_cummulative_iowait: IO Wait time difference from last and
211 * current sample
212 * @sample: Storage for storing last Sample data
213 * @min_perf_ratio: Minimum capacity in terms of PERF or HWP ratios
214 * @max_perf_ratio: Maximum capacity in terms of PERF or HWP ratios
215 * @acpi_perf_data: Stores ACPI perf information read from _PSS
216 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
217 * @epp_powersave: Last saved HWP energy performance preference
218 * (EPP) or energy performance bias (EPB),
219 * when policy switched to performance
220 * @epp_policy: Last saved policy used to set EPP/EPB
221 * @epp_default: Power on default HWP energy performance
222 * preference/bias
223 * @epp_saved: Saved EPP/EPB during system suspend or CPU offline
224 * operation
225 * @hwp_req_cached: Cached value of the last HWP Request MSR
226 * @hwp_cap_cached: Cached value of the last HWP Capabilities MSR
227 * @last_io_update: Last time when IO wake flag was set
228 * @sched_flags: Store scheduler flags for possible cross CPU update
229 * @hwp_boost_min: Last HWP boosted min performance
230 *
231 * This structure stores per CPU instance data for all CPUs.
232 */
233 struct cpudata {
234 int cpu;
235
236 unsigned int policy;
237 struct update_util_data update_util;
238 bool update_util_set;
239
240 struct pstate_data pstate;
241 struct vid_data vid;
242
243 u64 last_update;
244 u64 last_sample_time;
245 u64 aperf_mperf_shift;
246 u64 prev_aperf;
247 u64 prev_mperf;
248 u64 prev_tsc;
249 u64 prev_cummulative_iowait;
250 struct sample sample;
251 int32_t min_perf_ratio;
252 int32_t max_perf_ratio;
253 #ifdef CONFIG_ACPI
254 struct acpi_processor_performance acpi_perf_data;
255 bool valid_pss_table;
256 #endif
257 unsigned int iowait_boost;
258 s16 epp_powersave;
259 s16 epp_policy;
260 s16 epp_default;
261 s16 epp_saved;
262 u64 hwp_req_cached;
263 u64 hwp_cap_cached;
264 u64 last_io_update;
265 unsigned int sched_flags;
266 u32 hwp_boost_min;
267 };
268
269 static struct cpudata **all_cpu_data;
270
271 /**
272 * struct pstate_funcs - Per CPU model specific callbacks
273 * @get_max: Callback to get maximum non turbo effective P state
274 * @get_max_physical: Callback to get maximum non turbo physical P state
275 * @get_min: Callback to get minimum P state
276 * @get_turbo: Callback to get turbo P state
277 * @get_scaling: Callback to get frequency scaling factor
278 * @get_val: Callback to convert P state to actual MSR write value
279 * @get_vid: Callback to get VID data for Atom platforms
280 *
281 * Core and Atom CPU models have different way to get P State limits. This
282 * structure is used to store those callbacks.
283 */
284 struct pstate_funcs {
285 int (*get_max)(void);
286 int (*get_max_physical)(void);
287 int (*get_min)(void);
288 int (*get_turbo)(void);
289 int (*get_scaling)(void);
290 int (*get_aperf_mperf_shift)(void);
291 u64 (*get_val)(struct cpudata*, int pstate);
292 void (*get_vid)(struct cpudata *);
293 };
294
295 static struct pstate_funcs pstate_funcs __read_mostly;
296
297 static int hwp_active __read_mostly;
298 static int hwp_mode_bdw __read_mostly;
299 static bool per_cpu_limits __read_mostly;
300 static bool hwp_boost __read_mostly;
301
302 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
303
304 #ifdef CONFIG_ACPI
305 static bool acpi_ppc;
306 #endif
307
308 static struct global_params global;
309
310 static DEFINE_MUTEX(intel_pstate_driver_lock);
311 static DEFINE_MUTEX(intel_pstate_limits_lock);
312
313 #ifdef CONFIG_ACPI
314
315 static bool intel_pstate_acpi_pm_profile_server(void)
316 {
317 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
318 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
319 return true;
320
321 return false;
322 }
323
324 static bool intel_pstate_get_ppc_enable_status(void)
325 {
326 if (intel_pstate_acpi_pm_profile_server())
327 return true;
328
329 return acpi_ppc;
330 }
331
332 #ifdef CONFIG_ACPI_CPPC_LIB
333
334 /* The work item is needed to avoid CPU hotplug locking issues */
335 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
336 {
337 sched_set_itmt_support();
338 }
339
340 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
341
342 static void intel_pstate_set_itmt_prio(int cpu)
343 {
344 struct cppc_perf_caps cppc_perf;
345 static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
346 int ret;
347
348 ret = cppc_get_perf_caps(cpu, &cppc_perf);
349 if (ret)
350 return;
351
352 /*
353 * The priorities can be set regardless of whether or not
354 * sched_set_itmt_support(true) has been called and it is valid to
355 * update them at any time after it has been called.
356 */
357 sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
358
359 if (max_highest_perf <= min_highest_perf) {
360 if (cppc_perf.highest_perf > max_highest_perf)
361 max_highest_perf = cppc_perf.highest_perf;
362
363 if (cppc_perf.highest_perf < min_highest_perf)
364 min_highest_perf = cppc_perf.highest_perf;
365
366 if (max_highest_perf > min_highest_perf) {
367 /*
368 * This code can be run during CPU online under the
369 * CPU hotplug locks, so sched_set_itmt_support()
370 * cannot be called from here. Queue up a work item
371 * to invoke it.
372 */
373 schedule_work(&sched_itmt_work);
374 }
375 }
376 }
377
378 static int intel_pstate_get_cppc_guranteed(int cpu)
379 {
380 struct cppc_perf_caps cppc_perf;
381 int ret;
382
383 ret = cppc_get_perf_caps(cpu, &cppc_perf);
384 if (ret)
385 return ret;
386
387 if (cppc_perf.guaranteed_perf)
388 return cppc_perf.guaranteed_perf;
389
390 return cppc_perf.nominal_perf;
391 }
392
393 #else /* CONFIG_ACPI_CPPC_LIB */
394 static void intel_pstate_set_itmt_prio(int cpu)
395 {
396 }
397 #endif /* CONFIG_ACPI_CPPC_LIB */
398
399 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
400 {
401 struct cpudata *cpu;
402 int ret;
403 int i;
404
405 if (hwp_active) {
406 intel_pstate_set_itmt_prio(policy->cpu);
407 return;
408 }
409
410 if (!intel_pstate_get_ppc_enable_status())
411 return;
412
413 cpu = all_cpu_data[policy->cpu];
414
415 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
416 policy->cpu);
417 if (ret)
418 return;
419
420 /*
421 * Check if the control value in _PSS is for PERF_CTL MSR, which should
422 * guarantee that the states returned by it map to the states in our
423 * list directly.
424 */
425 if (cpu->acpi_perf_data.control_register.space_id !=
426 ACPI_ADR_SPACE_FIXED_HARDWARE)
427 goto err;
428
429 /*
430 * If there is only one entry _PSS, simply ignore _PSS and continue as
431 * usual without taking _PSS into account
432 */
433 if (cpu->acpi_perf_data.state_count < 2)
434 goto err;
435
436 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
437 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
438 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
439 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
440 (u32) cpu->acpi_perf_data.states[i].core_frequency,
441 (u32) cpu->acpi_perf_data.states[i].power,
442 (u32) cpu->acpi_perf_data.states[i].control);
443 }
444
445 /*
446 * The _PSS table doesn't contain whole turbo frequency range.
447 * This just contains +1 MHZ above the max non turbo frequency,
448 * with control value corresponding to max turbo ratio. But
449 * when cpufreq set policy is called, it will call with this
450 * max frequency, which will cause a reduced performance as
451 * this driver uses real max turbo frequency as the max
452 * frequency. So correct this frequency in _PSS table to
453 * correct max turbo frequency based on the turbo state.
454 * Also need to convert to MHz as _PSS freq is in MHz.
455 */
456 if (!global.turbo_disabled)
457 cpu->acpi_perf_data.states[0].core_frequency =
458 policy->cpuinfo.max_freq / 1000;
459 cpu->valid_pss_table = true;
460 pr_debug("_PPC limits will be enforced\n");
461
462 return;
463
464 err:
465 cpu->valid_pss_table = false;
466 acpi_processor_unregister_performance(policy->cpu);
467 }
468
469 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
470 {
471 struct cpudata *cpu;
472
473 cpu = all_cpu_data[policy->cpu];
474 if (!cpu->valid_pss_table)
475 return;
476
477 acpi_processor_unregister_performance(policy->cpu);
478 }
479 #else /* CONFIG_ACPI */
480 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
481 {
482 }
483
484 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
485 {
486 }
487
488 static inline bool intel_pstate_acpi_pm_profile_server(void)
489 {
490 return false;
491 }
492 #endif /* CONFIG_ACPI */
493
494 #ifndef CONFIG_ACPI_CPPC_LIB
495 static int intel_pstate_get_cppc_guranteed(int cpu)
496 {
497 return -ENOTSUPP;
498 }
499 #endif /* CONFIG_ACPI_CPPC_LIB */
500
501 static inline void update_turbo_state(void)
502 {
503 u64 misc_en;
504 struct cpudata *cpu;
505
506 cpu = all_cpu_data[0];
507 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
508 global.turbo_disabled =
509 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
510 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
511 }
512
513 static int min_perf_pct_min(void)
514 {
515 struct cpudata *cpu = all_cpu_data[0];
516 int turbo_pstate = cpu->pstate.turbo_pstate;
517
518 return turbo_pstate ?
519 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
520 }
521
522 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
523 {
524 u64 epb;
525 int ret;
526
527 if (!boot_cpu_has(X86_FEATURE_EPB))
528 return -ENXIO;
529
530 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
531 if (ret)
532 return (s16)ret;
533
534 return (s16)(epb & 0x0f);
535 }
536
537 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
538 {
539 s16 epp;
540
541 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
542 /*
543 * When hwp_req_data is 0, means that caller didn't read
544 * MSR_HWP_REQUEST, so need to read and get EPP.
545 */
546 if (!hwp_req_data) {
547 epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
548 &hwp_req_data);
549 if (epp)
550 return epp;
551 }
552 epp = (hwp_req_data >> 24) & 0xff;
553 } else {
554 /* When there is no EPP present, HWP uses EPB settings */
555 epp = intel_pstate_get_epb(cpu_data);
556 }
557
558 return epp;
559 }
560
561 static int intel_pstate_set_epb(int cpu, s16 pref)
562 {
563 u64 epb;
564 int ret;
565
566 if (!boot_cpu_has(X86_FEATURE_EPB))
567 return -ENXIO;
568
569 ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
570 if (ret)
571 return ret;
572
573 epb = (epb & ~0x0f) | pref;
574 wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
575
576 return 0;
577 }
578
579 /*
580 * EPP/EPB display strings corresponding to EPP index in the
581 * energy_perf_strings[]
582 * index String
583 *-------------------------------------
584 * 0 default
585 * 1 performance
586 * 2 balance_performance
587 * 3 balance_power
588 * 4 power
589 */
590 static const char * const energy_perf_strings[] = {
591 "default",
592 "performance",
593 "balance_performance",
594 "balance_power",
595 "power",
596 NULL
597 };
598 static const unsigned int epp_values[] = {
599 HWP_EPP_PERFORMANCE,
600 HWP_EPP_BALANCE_PERFORMANCE,
601 HWP_EPP_BALANCE_POWERSAVE,
602 HWP_EPP_POWERSAVE
603 };
604
605 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
606 {
607 s16 epp;
608 int index = -EINVAL;
609
610 epp = intel_pstate_get_epp(cpu_data, 0);
611 if (epp < 0)
612 return epp;
613
614 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
615 if (epp == HWP_EPP_PERFORMANCE)
616 return 1;
617 if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
618 return 2;
619 if (epp <= HWP_EPP_BALANCE_POWERSAVE)
620 return 3;
621 else
622 return 4;
623 } else if (boot_cpu_has(X86_FEATURE_EPB)) {
624 /*
625 * Range:
626 * 0x00-0x03 : Performance
627 * 0x04-0x07 : Balance performance
628 * 0x08-0x0B : Balance power
629 * 0x0C-0x0F : Power
630 * The EPB is a 4 bit value, but our ranges restrict the
631 * value which can be set. Here only using top two bits
632 * effectively.
633 */
634 index = (epp >> 2) + 1;
635 }
636
637 return index;
638 }
639
640 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
641 int pref_index)
642 {
643 int epp = -EINVAL;
644 int ret;
645
646 if (!pref_index)
647 epp = cpu_data->epp_default;
648
649 mutex_lock(&intel_pstate_limits_lock);
650
651 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
652 u64 value;
653
654 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
655 if (ret)
656 goto return_pref;
657
658 value &= ~GENMASK_ULL(31, 24);
659
660 if (epp == -EINVAL)
661 epp = epp_values[pref_index - 1];
662
663 value |= (u64)epp << 24;
664 ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
665 } else {
666 if (epp == -EINVAL)
667 epp = (pref_index - 1) << 2;
668 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
669 }
670 return_pref:
671 mutex_unlock(&intel_pstate_limits_lock);
672
673 return ret;
674 }
675
676 static ssize_t show_energy_performance_available_preferences(
677 struct cpufreq_policy *policy, char *buf)
678 {
679 int i = 0;
680 int ret = 0;
681
682 while (energy_perf_strings[i] != NULL)
683 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
684
685 ret += sprintf(&buf[ret], "\n");
686
687 return ret;
688 }
689
690 cpufreq_freq_attr_ro(energy_performance_available_preferences);
691
692 static ssize_t store_energy_performance_preference(
693 struct cpufreq_policy *policy, const char *buf, size_t count)
694 {
695 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
696 char str_preference[21];
697 int ret;
698
699 ret = sscanf(buf, "%20s", str_preference);
700 if (ret != 1)
701 return -EINVAL;
702
703 ret = match_string(energy_perf_strings, -1, str_preference);
704 if (ret < 0)
705 return ret;
706
707 intel_pstate_set_energy_pref_index(cpu_data, ret);
708 return count;
709 }
710
711 static ssize_t show_energy_performance_preference(
712 struct cpufreq_policy *policy, char *buf)
713 {
714 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
715 int preference;
716
717 preference = intel_pstate_get_energy_pref_index(cpu_data);
718 if (preference < 0)
719 return preference;
720
721 return sprintf(buf, "%s\n", energy_perf_strings[preference]);
722 }
723
724 cpufreq_freq_attr_rw(energy_performance_preference);
725
726 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
727 {
728 struct cpudata *cpu;
729 u64 cap;
730 int ratio;
731
732 ratio = intel_pstate_get_cppc_guranteed(policy->cpu);
733 if (ratio <= 0) {
734 rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
735 ratio = HWP_GUARANTEED_PERF(cap);
736 }
737
738 cpu = all_cpu_data[policy->cpu];
739
740 return sprintf(buf, "%d\n", ratio * cpu->pstate.scaling);
741 }
742
743 cpufreq_freq_attr_ro(base_frequency);
744
745 static struct freq_attr *hwp_cpufreq_attrs[] = {
746 &energy_performance_preference,
747 &energy_performance_available_preferences,
748 &base_frequency,
749 NULL,
750 };
751
752 static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
753 int *current_max)
754 {
755 u64 cap;
756
757 rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
758 WRITE_ONCE(all_cpu_data[cpu]->hwp_cap_cached, cap);
759 if (global.no_turbo)
760 *current_max = HWP_GUARANTEED_PERF(cap);
761 else
762 *current_max = HWP_HIGHEST_PERF(cap);
763
764 *phy_max = HWP_HIGHEST_PERF(cap);
765 }
766
767 static void intel_pstate_hwp_set(unsigned int cpu)
768 {
769 struct cpudata *cpu_data = all_cpu_data[cpu];
770 int max, min;
771 u64 value;
772 s16 epp;
773
774 max = cpu_data->max_perf_ratio;
775 min = cpu_data->min_perf_ratio;
776
777 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
778 min = max;
779
780 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
781
782 value &= ~HWP_MIN_PERF(~0L);
783 value |= HWP_MIN_PERF(min);
784
785 value &= ~HWP_MAX_PERF(~0L);
786 value |= HWP_MAX_PERF(max);
787
788 if (cpu_data->epp_policy == cpu_data->policy)
789 goto skip_epp;
790
791 cpu_data->epp_policy = cpu_data->policy;
792
793 if (cpu_data->epp_saved >= 0) {
794 epp = cpu_data->epp_saved;
795 cpu_data->epp_saved = -EINVAL;
796 goto update_epp;
797 }
798
799 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
800 epp = intel_pstate_get_epp(cpu_data, value);
801 cpu_data->epp_powersave = epp;
802 /* If EPP read was failed, then don't try to write */
803 if (epp < 0)
804 goto skip_epp;
805
806 epp = 0;
807 } else {
808 /* skip setting EPP, when saved value is invalid */
809 if (cpu_data->epp_powersave < 0)
810 goto skip_epp;
811
812 /*
813 * No need to restore EPP when it is not zero. This
814 * means:
815 * - Policy is not changed
816 * - user has manually changed
817 * - Error reading EPB
818 */
819 epp = intel_pstate_get_epp(cpu_data, value);
820 if (epp)
821 goto skip_epp;
822
823 epp = cpu_data->epp_powersave;
824 }
825 update_epp:
826 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
827 value &= ~GENMASK_ULL(31, 24);
828 value |= (u64)epp << 24;
829 } else {
830 intel_pstate_set_epb(cpu, epp);
831 }
832 skip_epp:
833 WRITE_ONCE(cpu_data->hwp_req_cached, value);
834 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
835 }
836
837 static void intel_pstate_hwp_force_min_perf(int cpu)
838 {
839 u64 value;
840 int min_perf;
841
842 value = all_cpu_data[cpu]->hwp_req_cached;
843 value &= ~GENMASK_ULL(31, 0);
844 min_perf = HWP_LOWEST_PERF(all_cpu_data[cpu]->hwp_cap_cached);
845
846 /* Set hwp_max = hwp_min */
847 value |= HWP_MAX_PERF(min_perf);
848 value |= HWP_MIN_PERF(min_perf);
849
850 /* Set EPP to min */
851 if (boot_cpu_has(X86_FEATURE_HWP_EPP))
852 value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
853
854 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
855 }
856
857 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
858 {
859 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
860
861 if (!hwp_active)
862 return 0;
863
864 cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
865
866 return 0;
867 }
868
869 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
870
871 static int intel_pstate_resume(struct cpufreq_policy *policy)
872 {
873 if (!hwp_active)
874 return 0;
875
876 mutex_lock(&intel_pstate_limits_lock);
877
878 if (policy->cpu == 0)
879 intel_pstate_hwp_enable(all_cpu_data[policy->cpu]);
880
881 all_cpu_data[policy->cpu]->epp_policy = 0;
882 intel_pstate_hwp_set(policy->cpu);
883
884 mutex_unlock(&intel_pstate_limits_lock);
885
886 return 0;
887 }
888
889 static void intel_pstate_update_policies(void)
890 {
891 int cpu;
892
893 for_each_possible_cpu(cpu)
894 cpufreq_update_policy(cpu);
895 }
896
897 static void intel_pstate_update_max_freq(unsigned int cpu)
898 {
899 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
900 struct cpudata *cpudata;
901
902 if (!policy)
903 return;
904
905 cpudata = all_cpu_data[cpu];
906 policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
907 cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
908
909 refresh_frequency_limits(policy);
910
911 cpufreq_cpu_release(policy);
912 }
913
914 static void intel_pstate_update_limits(unsigned int cpu)
915 {
916 mutex_lock(&intel_pstate_driver_lock);
917
918 update_turbo_state();
919 /*
920 * If turbo has been turned on or off globally, policy limits for
921 * all CPUs need to be updated to reflect that.
922 */
923 if (global.turbo_disabled_mf != global.turbo_disabled) {
924 global.turbo_disabled_mf = global.turbo_disabled;
925 arch_set_max_freq_ratio(global.turbo_disabled);
926 for_each_possible_cpu(cpu)
927 intel_pstate_update_max_freq(cpu);
928 } else {
929 cpufreq_update_policy(cpu);
930 }
931
932 mutex_unlock(&intel_pstate_driver_lock);
933 }
934
935 /************************** sysfs begin ************************/
936 #define show_one(file_name, object) \
937 static ssize_t show_##file_name \
938 (struct kobject *kobj, struct kobj_attribute *attr, char *buf) \
939 { \
940 return sprintf(buf, "%u\n", global.object); \
941 }
942
943 static ssize_t intel_pstate_show_status(char *buf);
944 static int intel_pstate_update_status(const char *buf, size_t size);
945
946 static ssize_t show_status(struct kobject *kobj,
947 struct kobj_attribute *attr, char *buf)
948 {
949 ssize_t ret;
950
951 mutex_lock(&intel_pstate_driver_lock);
952 ret = intel_pstate_show_status(buf);
953 mutex_unlock(&intel_pstate_driver_lock);
954
955 return ret;
956 }
957
958 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
959 const char *buf, size_t count)
960 {
961 char *p = memchr(buf, '\n', count);
962 int ret;
963
964 mutex_lock(&intel_pstate_driver_lock);
965 ret = intel_pstate_update_status(buf, p ? p - buf : count);
966 mutex_unlock(&intel_pstate_driver_lock);
967
968 return ret < 0 ? ret : count;
969 }
970
971 static ssize_t show_turbo_pct(struct kobject *kobj,
972 struct kobj_attribute *attr, char *buf)
973 {
974 struct cpudata *cpu;
975 int total, no_turbo, turbo_pct;
976 uint32_t turbo_fp;
977
978 mutex_lock(&intel_pstate_driver_lock);
979
980 if (!intel_pstate_driver) {
981 mutex_unlock(&intel_pstate_driver_lock);
982 return -EAGAIN;
983 }
984
985 cpu = all_cpu_data[0];
986
987 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
988 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
989 turbo_fp = div_fp(no_turbo, total);
990 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
991
992 mutex_unlock(&intel_pstate_driver_lock);
993
994 return sprintf(buf, "%u\n", turbo_pct);
995 }
996
997 static ssize_t show_num_pstates(struct kobject *kobj,
998 struct kobj_attribute *attr, char *buf)
999 {
1000 struct cpudata *cpu;
1001 int total;
1002
1003 mutex_lock(&intel_pstate_driver_lock);
1004
1005 if (!intel_pstate_driver) {
1006 mutex_unlock(&intel_pstate_driver_lock);
1007 return -EAGAIN;
1008 }
1009
1010 cpu = all_cpu_data[0];
1011 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1012
1013 mutex_unlock(&intel_pstate_driver_lock);
1014
1015 return sprintf(buf, "%u\n", total);
1016 }
1017
1018 static ssize_t show_no_turbo(struct kobject *kobj,
1019 struct kobj_attribute *attr, char *buf)
1020 {
1021 ssize_t ret;
1022
1023 mutex_lock(&intel_pstate_driver_lock);
1024
1025 if (!intel_pstate_driver) {
1026 mutex_unlock(&intel_pstate_driver_lock);
1027 return -EAGAIN;
1028 }
1029
1030 update_turbo_state();
1031 if (global.turbo_disabled)
1032 ret = sprintf(buf, "%u\n", global.turbo_disabled);
1033 else
1034 ret = sprintf(buf, "%u\n", global.no_turbo);
1035
1036 mutex_unlock(&intel_pstate_driver_lock);
1037
1038 return ret;
1039 }
1040
1041 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1042 const char *buf, size_t count)
1043 {
1044 unsigned int input;
1045 int ret;
1046
1047 ret = sscanf(buf, "%u", &input);
1048 if (ret != 1)
1049 return -EINVAL;
1050
1051 mutex_lock(&intel_pstate_driver_lock);
1052
1053 if (!intel_pstate_driver) {
1054 mutex_unlock(&intel_pstate_driver_lock);
1055 return -EAGAIN;
1056 }
1057
1058 mutex_lock(&intel_pstate_limits_lock);
1059
1060 update_turbo_state();
1061 if (global.turbo_disabled) {
1062 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1063 mutex_unlock(&intel_pstate_limits_lock);
1064 mutex_unlock(&intel_pstate_driver_lock);
1065 return -EPERM;
1066 }
1067
1068 global.no_turbo = clamp_t(int, input, 0, 1);
1069
1070 if (global.no_turbo) {
1071 struct cpudata *cpu = all_cpu_data[0];
1072 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1073
1074 /* Squash the global minimum into the permitted range. */
1075 if (global.min_perf_pct > pct)
1076 global.min_perf_pct = pct;
1077 }
1078
1079 mutex_unlock(&intel_pstate_limits_lock);
1080
1081 intel_pstate_update_policies();
1082
1083 mutex_unlock(&intel_pstate_driver_lock);
1084
1085 return count;
1086 }
1087
1088 static struct cpufreq_driver intel_pstate;
1089
1090 static void update_qos_request(enum freq_qos_req_type type)
1091 {
1092 int max_state, turbo_max, freq, i, perf_pct;
1093 struct freq_qos_request *req;
1094 struct cpufreq_policy *policy;
1095
1096 for_each_possible_cpu(i) {
1097 struct cpudata *cpu = all_cpu_data[i];
1098
1099 policy = cpufreq_cpu_get(i);
1100 if (!policy)
1101 continue;
1102
1103 req = policy->driver_data;
1104 cpufreq_cpu_put(policy);
1105
1106 if (!req)
1107 continue;
1108
1109 if (hwp_active)
1110 intel_pstate_get_hwp_max(i, &turbo_max, &max_state);
1111 else
1112 turbo_max = cpu->pstate.turbo_pstate;
1113
1114 if (type == FREQ_QOS_MIN) {
1115 perf_pct = global.min_perf_pct;
1116 } else {
1117 req++;
1118 perf_pct = global.max_perf_pct;
1119 }
1120
1121 freq = DIV_ROUND_UP(turbo_max * perf_pct, 100);
1122 freq *= cpu->pstate.scaling;
1123
1124 if (freq_qos_update_request(req, freq) < 0)
1125 pr_warn("Failed to update freq constraint: CPU%d\n", i);
1126 }
1127 }
1128
1129 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1130 const char *buf, size_t count)
1131 {
1132 unsigned int input;
1133 int ret;
1134
1135 ret = sscanf(buf, "%u", &input);
1136 if (ret != 1)
1137 return -EINVAL;
1138
1139 mutex_lock(&intel_pstate_driver_lock);
1140
1141 if (!intel_pstate_driver) {
1142 mutex_unlock(&intel_pstate_driver_lock);
1143 return -EAGAIN;
1144 }
1145
1146 mutex_lock(&intel_pstate_limits_lock);
1147
1148 global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1149
1150 mutex_unlock(&intel_pstate_limits_lock);
1151
1152 if (intel_pstate_driver == &intel_pstate)
1153 intel_pstate_update_policies();
1154 else
1155 update_qos_request(FREQ_QOS_MAX);
1156
1157 mutex_unlock(&intel_pstate_driver_lock);
1158
1159 return count;
1160 }
1161
1162 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1163 const char *buf, size_t count)
1164 {
1165 unsigned int input;
1166 int ret;
1167
1168 ret = sscanf(buf, "%u", &input);
1169 if (ret != 1)
1170 return -EINVAL;
1171
1172 mutex_lock(&intel_pstate_driver_lock);
1173
1174 if (!intel_pstate_driver) {
1175 mutex_unlock(&intel_pstate_driver_lock);
1176 return -EAGAIN;
1177 }
1178
1179 mutex_lock(&intel_pstate_limits_lock);
1180
1181 global.min_perf_pct = clamp_t(int, input,
1182 min_perf_pct_min(), global.max_perf_pct);
1183
1184 mutex_unlock(&intel_pstate_limits_lock);
1185
1186 if (intel_pstate_driver == &intel_pstate)
1187 intel_pstate_update_policies();
1188 else
1189 update_qos_request(FREQ_QOS_MIN);
1190
1191 mutex_unlock(&intel_pstate_driver_lock);
1192
1193 return count;
1194 }
1195
1196 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1197 struct kobj_attribute *attr, char *buf)
1198 {
1199 return sprintf(buf, "%u\n", hwp_boost);
1200 }
1201
1202 static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1203 struct kobj_attribute *b,
1204 const char *buf, size_t count)
1205 {
1206 unsigned int input;
1207 int ret;
1208
1209 ret = kstrtouint(buf, 10, &input);
1210 if (ret)
1211 return ret;
1212
1213 mutex_lock(&intel_pstate_driver_lock);
1214 hwp_boost = !!input;
1215 intel_pstate_update_policies();
1216 mutex_unlock(&intel_pstate_driver_lock);
1217
1218 return count;
1219 }
1220
1221 show_one(max_perf_pct, max_perf_pct);
1222 show_one(min_perf_pct, min_perf_pct);
1223
1224 define_one_global_rw(status);
1225 define_one_global_rw(no_turbo);
1226 define_one_global_rw(max_perf_pct);
1227 define_one_global_rw(min_perf_pct);
1228 define_one_global_ro(turbo_pct);
1229 define_one_global_ro(num_pstates);
1230 define_one_global_rw(hwp_dynamic_boost);
1231
1232 static struct attribute *intel_pstate_attributes[] = {
1233 &status.attr,
1234 &no_turbo.attr,
1235 &turbo_pct.attr,
1236 &num_pstates.attr,
1237 NULL
1238 };
1239
1240 static const struct attribute_group intel_pstate_attr_group = {
1241 .attrs = intel_pstate_attributes,
1242 };
1243
1244 static void __init intel_pstate_sysfs_expose_params(void)
1245 {
1246 struct kobject *intel_pstate_kobject;
1247 int rc;
1248
1249 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1250 &cpu_subsys.dev_root->kobj);
1251 if (WARN_ON(!intel_pstate_kobject))
1252 return;
1253
1254 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1255 if (WARN_ON(rc))
1256 return;
1257
1258 /*
1259 * If per cpu limits are enforced there are no global limits, so
1260 * return without creating max/min_perf_pct attributes
1261 */
1262 if (per_cpu_limits)
1263 return;
1264
1265 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1266 WARN_ON(rc);
1267
1268 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1269 WARN_ON(rc);
1270
1271 if (hwp_active) {
1272 rc = sysfs_create_file(intel_pstate_kobject,
1273 &hwp_dynamic_boost.attr);
1274 WARN_ON(rc);
1275 }
1276 }
1277 /************************** sysfs end ************************/
1278
1279 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1280 {
1281 /* First disable HWP notification interrupt as we don't process them */
1282 if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1283 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1284
1285 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1286 cpudata->epp_policy = 0;
1287 if (cpudata->epp_default == -EINVAL)
1288 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1289 }
1290
1291 #define MSR_IA32_POWER_CTL_BIT_EE 19
1292
1293 /* Disable energy efficiency optimization */
1294 static void intel_pstate_disable_ee(int cpu)
1295 {
1296 u64 power_ctl;
1297 int ret;
1298
1299 ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1300 if (ret)
1301 return;
1302
1303 if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1304 pr_info("Disabling energy efficiency optimization\n");
1305 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1306 wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1307 }
1308 }
1309
1310 static int atom_get_min_pstate(void)
1311 {
1312 u64 value;
1313
1314 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1315 return (value >> 8) & 0x7F;
1316 }
1317
1318 static int atom_get_max_pstate(void)
1319 {
1320 u64 value;
1321
1322 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1323 return (value >> 16) & 0x7F;
1324 }
1325
1326 static int atom_get_turbo_pstate(void)
1327 {
1328 u64 value;
1329
1330 rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1331 return value & 0x7F;
1332 }
1333
1334 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1335 {
1336 u64 val;
1337 int32_t vid_fp;
1338 u32 vid;
1339
1340 val = (u64)pstate << 8;
1341 if (global.no_turbo && !global.turbo_disabled)
1342 val |= (u64)1 << 32;
1343
1344 vid_fp = cpudata->vid.min + mul_fp(
1345 int_tofp(pstate - cpudata->pstate.min_pstate),
1346 cpudata->vid.ratio);
1347
1348 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1349 vid = ceiling_fp(vid_fp);
1350
1351 if (pstate > cpudata->pstate.max_pstate)
1352 vid = cpudata->vid.turbo;
1353
1354 return val | vid;
1355 }
1356
1357 static int silvermont_get_scaling(void)
1358 {
1359 u64 value;
1360 int i;
1361 /* Defined in Table 35-6 from SDM (Sept 2015) */
1362 static int silvermont_freq_table[] = {
1363 83300, 100000, 133300, 116700, 80000};
1364
1365 rdmsrl(MSR_FSB_FREQ, value);
1366 i = value & 0x7;
1367 WARN_ON(i > 4);
1368
1369 return silvermont_freq_table[i];
1370 }
1371
1372 static int airmont_get_scaling(void)
1373 {
1374 u64 value;
1375 int i;
1376 /* Defined in Table 35-10 from SDM (Sept 2015) */
1377 static int airmont_freq_table[] = {
1378 83300, 100000, 133300, 116700, 80000,
1379 93300, 90000, 88900, 87500};
1380
1381 rdmsrl(MSR_FSB_FREQ, value);
1382 i = value & 0xF;
1383 WARN_ON(i > 8);
1384
1385 return airmont_freq_table[i];
1386 }
1387
1388 static void atom_get_vid(struct cpudata *cpudata)
1389 {
1390 u64 value;
1391
1392 rdmsrl(MSR_ATOM_CORE_VIDS, value);
1393 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1394 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1395 cpudata->vid.ratio = div_fp(
1396 cpudata->vid.max - cpudata->vid.min,
1397 int_tofp(cpudata->pstate.max_pstate -
1398 cpudata->pstate.min_pstate));
1399
1400 rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1401 cpudata->vid.turbo = value & 0x7f;
1402 }
1403
1404 static int core_get_min_pstate(void)
1405 {
1406 u64 value;
1407
1408 rdmsrl(MSR_PLATFORM_INFO, value);
1409 return (value >> 40) & 0xFF;
1410 }
1411
1412 static int core_get_max_pstate_physical(void)
1413 {
1414 u64 value;
1415
1416 rdmsrl(MSR_PLATFORM_INFO, value);
1417 return (value >> 8) & 0xFF;
1418 }
1419
1420 static int core_get_tdp_ratio(u64 plat_info)
1421 {
1422 /* Check how many TDP levels present */
1423 if (plat_info & 0x600000000) {
1424 u64 tdp_ctrl;
1425 u64 tdp_ratio;
1426 int tdp_msr;
1427 int err;
1428
1429 /* Get the TDP level (0, 1, 2) to get ratios */
1430 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1431 if (err)
1432 return err;
1433
1434 /* TDP MSR are continuous starting at 0x648 */
1435 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1436 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1437 if (err)
1438 return err;
1439
1440 /* For level 1 and 2, bits[23:16] contain the ratio */
1441 if (tdp_ctrl & 0x03)
1442 tdp_ratio >>= 16;
1443
1444 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1445 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1446
1447 return (int)tdp_ratio;
1448 }
1449
1450 return -ENXIO;
1451 }
1452
1453 static int core_get_max_pstate(void)
1454 {
1455 u64 tar;
1456 u64 plat_info;
1457 int max_pstate;
1458 int tdp_ratio;
1459 int err;
1460
1461 rdmsrl(MSR_PLATFORM_INFO, plat_info);
1462 max_pstate = (plat_info >> 8) & 0xFF;
1463
1464 tdp_ratio = core_get_tdp_ratio(plat_info);
1465 if (tdp_ratio <= 0)
1466 return max_pstate;
1467
1468 if (hwp_active) {
1469 /* Turbo activation ratio is not used on HWP platforms */
1470 return tdp_ratio;
1471 }
1472
1473 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1474 if (!err) {
1475 int tar_levels;
1476
1477 /* Do some sanity checking for safety */
1478 tar_levels = tar & 0xff;
1479 if (tdp_ratio - 1 == tar_levels) {
1480 max_pstate = tar_levels;
1481 pr_debug("max_pstate=TAC %x\n", max_pstate);
1482 }
1483 }
1484
1485 return max_pstate;
1486 }
1487
1488 static int core_get_turbo_pstate(void)
1489 {
1490 u64 value;
1491 int nont, ret;
1492
1493 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1494 nont = core_get_max_pstate();
1495 ret = (value) & 255;
1496 if (ret <= nont)
1497 ret = nont;
1498 return ret;
1499 }
1500
1501 static inline int core_get_scaling(void)
1502 {
1503 return 100000;
1504 }
1505
1506 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1507 {
1508 u64 val;
1509
1510 val = (u64)pstate << 8;
1511 if (global.no_turbo && !global.turbo_disabled)
1512 val |= (u64)1 << 32;
1513
1514 return val;
1515 }
1516
1517 static int knl_get_aperf_mperf_shift(void)
1518 {
1519 return 10;
1520 }
1521
1522 static int knl_get_turbo_pstate(void)
1523 {
1524 u64 value;
1525 int nont, ret;
1526
1527 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1528 nont = core_get_max_pstate();
1529 ret = (((value) >> 8) & 0xFF);
1530 if (ret <= nont)
1531 ret = nont;
1532 return ret;
1533 }
1534
1535 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1536 {
1537 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1538 cpu->pstate.current_pstate = pstate;
1539 /*
1540 * Generally, there is no guarantee that this code will always run on
1541 * the CPU being updated, so force the register update to run on the
1542 * right CPU.
1543 */
1544 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1545 pstate_funcs.get_val(cpu, pstate));
1546 }
1547
1548 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1549 {
1550 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1551 }
1552
1553 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1554 {
1555 int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1556
1557 update_turbo_state();
1558 intel_pstate_set_pstate(cpu, pstate);
1559 }
1560
1561 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1562 {
1563 cpu->pstate.min_pstate = pstate_funcs.get_min();
1564 cpu->pstate.max_pstate = pstate_funcs.get_max();
1565 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1566 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1567 cpu->pstate.scaling = pstate_funcs.get_scaling();
1568 cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1569
1570 if (hwp_active && !hwp_mode_bdw) {
1571 unsigned int phy_max, current_max;
1572
1573 intel_pstate_get_hwp_max(cpu->cpu, &phy_max, &current_max);
1574 cpu->pstate.turbo_freq = phy_max * cpu->pstate.scaling;
1575 } else {
1576 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1577 }
1578
1579 if (pstate_funcs.get_aperf_mperf_shift)
1580 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
1581
1582 if (pstate_funcs.get_vid)
1583 pstate_funcs.get_vid(cpu);
1584
1585 intel_pstate_set_min_pstate(cpu);
1586 }
1587
1588 /*
1589 * Long hold time will keep high perf limits for long time,
1590 * which negatively impacts perf/watt for some workloads,
1591 * like specpower. 3ms is based on experiements on some
1592 * workoads.
1593 */
1594 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
1595
1596 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
1597 {
1598 u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
1599 u32 max_limit = (hwp_req & 0xff00) >> 8;
1600 u32 min_limit = (hwp_req & 0xff);
1601 u32 boost_level1;
1602
1603 /*
1604 * Cases to consider (User changes via sysfs or boot time):
1605 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
1606 * No boost, return.
1607 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
1608 * Should result in one level boost only for P0.
1609 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
1610 * Should result in two level boost:
1611 * (min + p1)/2 and P1.
1612 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
1613 * Should result in three level boost:
1614 * (min + p1)/2, P1 and P0.
1615 */
1616
1617 /* If max and min are equal or already at max, nothing to boost */
1618 if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
1619 return;
1620
1621 if (!cpu->hwp_boost_min)
1622 cpu->hwp_boost_min = min_limit;
1623
1624 /* level at half way mark between min and guranteed */
1625 boost_level1 = (HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) + min_limit) >> 1;
1626
1627 if (cpu->hwp_boost_min < boost_level1)
1628 cpu->hwp_boost_min = boost_level1;
1629 else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1630 cpu->hwp_boost_min = HWP_GUARANTEED_PERF(cpu->hwp_cap_cached);
1631 else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) &&
1632 max_limit != HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1633 cpu->hwp_boost_min = max_limit;
1634 else
1635 return;
1636
1637 hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
1638 wrmsrl(MSR_HWP_REQUEST, hwp_req);
1639 cpu->last_update = cpu->sample.time;
1640 }
1641
1642 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
1643 {
1644 if (cpu->hwp_boost_min) {
1645 bool expired;
1646
1647 /* Check if we are idle for hold time to boost down */
1648 expired = time_after64(cpu->sample.time, cpu->last_update +
1649 hwp_boost_hold_time_ns);
1650 if (expired) {
1651 wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
1652 cpu->hwp_boost_min = 0;
1653 }
1654 }
1655 cpu->last_update = cpu->sample.time;
1656 }
1657
1658 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
1659 u64 time)
1660 {
1661 cpu->sample.time = time;
1662
1663 if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
1664 bool do_io = false;
1665
1666 cpu->sched_flags = 0;
1667 /*
1668 * Set iowait_boost flag and update time. Since IO WAIT flag
1669 * is set all the time, we can't just conclude that there is
1670 * some IO bound activity is scheduled on this CPU with just
1671 * one occurrence. If we receive at least two in two
1672 * consecutive ticks, then we treat as boost candidate.
1673 */
1674 if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
1675 do_io = true;
1676
1677 cpu->last_io_update = time;
1678
1679 if (do_io)
1680 intel_pstate_hwp_boost_up(cpu);
1681
1682 } else {
1683 intel_pstate_hwp_boost_down(cpu);
1684 }
1685 }
1686
1687 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
1688 u64 time, unsigned int flags)
1689 {
1690 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1691
1692 cpu->sched_flags |= flags;
1693
1694 if (smp_processor_id() == cpu->cpu)
1695 intel_pstate_update_util_hwp_local(cpu, time);
1696 }
1697
1698 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1699 {
1700 struct sample *sample = &cpu->sample;
1701
1702 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1703 }
1704
1705 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1706 {
1707 u64 aperf, mperf;
1708 unsigned long flags;
1709 u64 tsc;
1710
1711 local_irq_save(flags);
1712 rdmsrl(MSR_IA32_APERF, aperf);
1713 rdmsrl(MSR_IA32_MPERF, mperf);
1714 tsc = rdtsc();
1715 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1716 local_irq_restore(flags);
1717 return false;
1718 }
1719 local_irq_restore(flags);
1720
1721 cpu->last_sample_time = cpu->sample.time;
1722 cpu->sample.time = time;
1723 cpu->sample.aperf = aperf;
1724 cpu->sample.mperf = mperf;
1725 cpu->sample.tsc = tsc;
1726 cpu->sample.aperf -= cpu->prev_aperf;
1727 cpu->sample.mperf -= cpu->prev_mperf;
1728 cpu->sample.tsc -= cpu->prev_tsc;
1729
1730 cpu->prev_aperf = aperf;
1731 cpu->prev_mperf = mperf;
1732 cpu->prev_tsc = tsc;
1733 /*
1734 * First time this function is invoked in a given cycle, all of the
1735 * previous sample data fields are equal to zero or stale and they must
1736 * be populated with meaningful numbers for things to work, so assume
1737 * that sample.time will always be reset before setting the utilization
1738 * update hook and make the caller skip the sample then.
1739 */
1740 if (cpu->last_sample_time) {
1741 intel_pstate_calc_avg_perf(cpu);
1742 return true;
1743 }
1744 return false;
1745 }
1746
1747 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1748 {
1749 return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1750 }
1751
1752 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1753 {
1754 return mul_ext_fp(cpu->pstate.max_pstate_physical,
1755 cpu->sample.core_avg_perf);
1756 }
1757
1758 static inline int32_t get_target_pstate(struct cpudata *cpu)
1759 {
1760 struct sample *sample = &cpu->sample;
1761 int32_t busy_frac;
1762 int target, avg_pstate;
1763
1764 busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
1765 sample->tsc);
1766
1767 if (busy_frac < cpu->iowait_boost)
1768 busy_frac = cpu->iowait_boost;
1769
1770 sample->busy_scaled = busy_frac * 100;
1771
1772 target = global.no_turbo || global.turbo_disabled ?
1773 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1774 target += target >> 2;
1775 target = mul_fp(target, busy_frac);
1776 if (target < cpu->pstate.min_pstate)
1777 target = cpu->pstate.min_pstate;
1778
1779 /*
1780 * If the average P-state during the previous cycle was higher than the
1781 * current target, add 50% of the difference to the target to reduce
1782 * possible performance oscillations and offset possible performance
1783 * loss related to moving the workload from one CPU to another within
1784 * a package/module.
1785 */
1786 avg_pstate = get_avg_pstate(cpu);
1787 if (avg_pstate > target)
1788 target += (avg_pstate - target) >> 1;
1789
1790 return target;
1791 }
1792
1793 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1794 {
1795 int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
1796 int max_pstate = max(min_pstate, cpu->max_perf_ratio);
1797
1798 return clamp_t(int, pstate, min_pstate, max_pstate);
1799 }
1800
1801 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1802 {
1803 if (pstate == cpu->pstate.current_pstate)
1804 return;
1805
1806 cpu->pstate.current_pstate = pstate;
1807 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1808 }
1809
1810 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1811 {
1812 int from = cpu->pstate.current_pstate;
1813 struct sample *sample;
1814 int target_pstate;
1815
1816 update_turbo_state();
1817
1818 target_pstate = get_target_pstate(cpu);
1819 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1820 trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1821 intel_pstate_update_pstate(cpu, target_pstate);
1822
1823 sample = &cpu->sample;
1824 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1825 fp_toint(sample->busy_scaled),
1826 from,
1827 cpu->pstate.current_pstate,
1828 sample->mperf,
1829 sample->aperf,
1830 sample->tsc,
1831 get_avg_frequency(cpu),
1832 fp_toint(cpu->iowait_boost * 100));
1833 }
1834
1835 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1836 unsigned int flags)
1837 {
1838 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1839 u64 delta_ns;
1840
1841 /* Don't allow remote callbacks */
1842 if (smp_processor_id() != cpu->cpu)
1843 return;
1844
1845 delta_ns = time - cpu->last_update;
1846 if (flags & SCHED_CPUFREQ_IOWAIT) {
1847 /* Start over if the CPU may have been idle. */
1848 if (delta_ns > TICK_NSEC) {
1849 cpu->iowait_boost = ONE_EIGHTH_FP;
1850 } else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
1851 cpu->iowait_boost <<= 1;
1852 if (cpu->iowait_boost > int_tofp(1))
1853 cpu->iowait_boost = int_tofp(1);
1854 } else {
1855 cpu->iowait_boost = ONE_EIGHTH_FP;
1856 }
1857 } else if (cpu->iowait_boost) {
1858 /* Clear iowait_boost if the CPU may have been idle. */
1859 if (delta_ns > TICK_NSEC)
1860 cpu->iowait_boost = 0;
1861 else
1862 cpu->iowait_boost >>= 1;
1863 }
1864 cpu->last_update = time;
1865 delta_ns = time - cpu->sample.time;
1866 if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
1867 return;
1868
1869 if (intel_pstate_sample(cpu, time))
1870 intel_pstate_adjust_pstate(cpu);
1871 }
1872
1873 static struct pstate_funcs core_funcs = {
1874 .get_max = core_get_max_pstate,
1875 .get_max_physical = core_get_max_pstate_physical,
1876 .get_min = core_get_min_pstate,
1877 .get_turbo = core_get_turbo_pstate,
1878 .get_scaling = core_get_scaling,
1879 .get_val = core_get_val,
1880 };
1881
1882 static const struct pstate_funcs silvermont_funcs = {
1883 .get_max = atom_get_max_pstate,
1884 .get_max_physical = atom_get_max_pstate,
1885 .get_min = atom_get_min_pstate,
1886 .get_turbo = atom_get_turbo_pstate,
1887 .get_val = atom_get_val,
1888 .get_scaling = silvermont_get_scaling,
1889 .get_vid = atom_get_vid,
1890 };
1891
1892 static const struct pstate_funcs airmont_funcs = {
1893 .get_max = atom_get_max_pstate,
1894 .get_max_physical = atom_get_max_pstate,
1895 .get_min = atom_get_min_pstate,
1896 .get_turbo = atom_get_turbo_pstate,
1897 .get_val = atom_get_val,
1898 .get_scaling = airmont_get_scaling,
1899 .get_vid = atom_get_vid,
1900 };
1901
1902 static const struct pstate_funcs knl_funcs = {
1903 .get_max = core_get_max_pstate,
1904 .get_max_physical = core_get_max_pstate_physical,
1905 .get_min = core_get_min_pstate,
1906 .get_turbo = knl_get_turbo_pstate,
1907 .get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1908 .get_scaling = core_get_scaling,
1909 .get_val = core_get_val,
1910 };
1911
1912 #define X86_MATCH(model, policy) \
1913 X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
1914 X86_FEATURE_APERFMPERF, &policy)
1915
1916 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1917 X86_MATCH(SANDYBRIDGE, core_funcs),
1918 X86_MATCH(SANDYBRIDGE_X, core_funcs),
1919 X86_MATCH(ATOM_SILVERMONT, silvermont_funcs),
1920 X86_MATCH(IVYBRIDGE, core_funcs),
1921 X86_MATCH(HASWELL, core_funcs),
1922 X86_MATCH(BROADWELL, core_funcs),
1923 X86_MATCH(IVYBRIDGE_X, core_funcs),
1924 X86_MATCH(HASWELL_X, core_funcs),
1925 X86_MATCH(HASWELL_L, core_funcs),
1926 X86_MATCH(HASWELL_G, core_funcs),
1927 X86_MATCH(BROADWELL_G, core_funcs),
1928 X86_MATCH(ATOM_AIRMONT, airmont_funcs),
1929 X86_MATCH(SKYLAKE_L, core_funcs),
1930 X86_MATCH(BROADWELL_X, core_funcs),
1931 X86_MATCH(SKYLAKE, core_funcs),
1932 X86_MATCH(BROADWELL_D, core_funcs),
1933 X86_MATCH(XEON_PHI_KNL, knl_funcs),
1934 X86_MATCH(XEON_PHI_KNM, knl_funcs),
1935 X86_MATCH(ATOM_GOLDMONT, core_funcs),
1936 X86_MATCH(ATOM_GOLDMONT_PLUS, core_funcs),
1937 X86_MATCH(SKYLAKE_X, core_funcs),
1938 {}
1939 };
1940 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1941
1942 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1943 X86_MATCH(BROADWELL_D, core_funcs),
1944 X86_MATCH(BROADWELL_X, core_funcs),
1945 X86_MATCH(SKYLAKE_X, core_funcs),
1946 {}
1947 };
1948
1949 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1950 X86_MATCH(KABYLAKE, core_funcs),
1951 {}
1952 };
1953
1954 static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
1955 X86_MATCH(SKYLAKE_X, core_funcs),
1956 X86_MATCH(SKYLAKE, core_funcs),
1957 {}
1958 };
1959
1960 static int intel_pstate_init_cpu(unsigned int cpunum)
1961 {
1962 struct cpudata *cpu;
1963
1964 cpu = all_cpu_data[cpunum];
1965
1966 if (!cpu) {
1967 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1968 if (!cpu)
1969 return -ENOMEM;
1970
1971 all_cpu_data[cpunum] = cpu;
1972
1973 cpu->epp_default = -EINVAL;
1974 cpu->epp_powersave = -EINVAL;
1975 cpu->epp_saved = -EINVAL;
1976 }
1977
1978 cpu = all_cpu_data[cpunum];
1979
1980 cpu->cpu = cpunum;
1981
1982 if (hwp_active) {
1983 const struct x86_cpu_id *id;
1984
1985 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1986 if (id)
1987 intel_pstate_disable_ee(cpunum);
1988
1989 intel_pstate_hwp_enable(cpu);
1990
1991 id = x86_match_cpu(intel_pstate_hwp_boost_ids);
1992 if (id && intel_pstate_acpi_pm_profile_server())
1993 hwp_boost = true;
1994 }
1995
1996 intel_pstate_get_cpu_pstates(cpu);
1997
1998 pr_debug("controlling: cpu %d\n", cpunum);
1999
2000 return 0;
2001 }
2002
2003 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2004 {
2005 struct cpudata *cpu = all_cpu_data[cpu_num];
2006
2007 if (hwp_active && !hwp_boost)
2008 return;
2009
2010 if (cpu->update_util_set)
2011 return;
2012
2013 /* Prevent intel_pstate_update_util() from using stale data. */
2014 cpu->sample.time = 0;
2015 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2016 (hwp_active ?
2017 intel_pstate_update_util_hwp :
2018 intel_pstate_update_util));
2019 cpu->update_util_set = true;
2020 }
2021
2022 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2023 {
2024 struct cpudata *cpu_data = all_cpu_data[cpu];
2025
2026 if (!cpu_data->update_util_set)
2027 return;
2028
2029 cpufreq_remove_update_util_hook(cpu);
2030 cpu_data->update_util_set = false;
2031 synchronize_rcu();
2032 }
2033
2034 static int intel_pstate_get_max_freq(struct cpudata *cpu)
2035 {
2036 return global.turbo_disabled || global.no_turbo ?
2037 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2038 }
2039
2040 static void intel_pstate_update_perf_limits(struct cpudata *cpu,
2041 unsigned int policy_min,
2042 unsigned int policy_max)
2043 {
2044 int max_freq = intel_pstate_get_max_freq(cpu);
2045 int32_t max_policy_perf, min_policy_perf;
2046 int max_state, turbo_max;
2047
2048 /*
2049 * HWP needs some special consideration, because on BDX the
2050 * HWP_REQUEST uses abstract value to represent performance
2051 * rather than pure ratios.
2052 */
2053 if (hwp_active) {
2054 intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
2055 } else {
2056 max_state = global.no_turbo || global.turbo_disabled ?
2057 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2058 turbo_max = cpu->pstate.turbo_pstate;
2059 }
2060
2061 max_policy_perf = max_state * policy_max / max_freq;
2062 if (policy_max == policy_min) {
2063 min_policy_perf = max_policy_perf;
2064 } else {
2065 min_policy_perf = max_state * policy_min / max_freq;
2066 min_policy_perf = clamp_t(int32_t, min_policy_perf,
2067 0, max_policy_perf);
2068 }
2069
2070 pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
2071 cpu->cpu, max_state, min_policy_perf, max_policy_perf);
2072
2073 /* Normalize user input to [min_perf, max_perf] */
2074 if (per_cpu_limits) {
2075 cpu->min_perf_ratio = min_policy_perf;
2076 cpu->max_perf_ratio = max_policy_perf;
2077 } else {
2078 int32_t global_min, global_max;
2079
2080 /* Global limits are in percent of the maximum turbo P-state. */
2081 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2082 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2083 global_min = clamp_t(int32_t, global_min, 0, global_max);
2084
2085 pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
2086 global_min, global_max);
2087
2088 cpu->min_perf_ratio = max(min_policy_perf, global_min);
2089 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2090 cpu->max_perf_ratio = min(max_policy_perf, global_max);
2091 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2092
2093 /* Make sure min_perf <= max_perf */
2094 cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2095 cpu->max_perf_ratio);
2096
2097 }
2098 pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
2099 cpu->max_perf_ratio,
2100 cpu->min_perf_ratio);
2101 }
2102
2103 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2104 {
2105 struct cpudata *cpu;
2106
2107 if (!policy->cpuinfo.max_freq)
2108 return -ENODEV;
2109
2110 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2111 policy->cpuinfo.max_freq, policy->max);
2112
2113 cpu = all_cpu_data[policy->cpu];
2114 cpu->policy = policy->policy;
2115
2116 mutex_lock(&intel_pstate_limits_lock);
2117
2118 intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2119
2120 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2121 /*
2122 * NOHZ_FULL CPUs need this as the governor callback may not
2123 * be invoked on them.
2124 */
2125 intel_pstate_clear_update_util_hook(policy->cpu);
2126 intel_pstate_max_within_limits(cpu);
2127 } else {
2128 intel_pstate_set_update_util_hook(policy->cpu);
2129 }
2130
2131 if (hwp_active) {
2132 /*
2133 * When hwp_boost was active before and dynamically it
2134 * was turned off, in that case we need to clear the
2135 * update util hook.
2136 */
2137 if (!hwp_boost)
2138 intel_pstate_clear_update_util_hook(policy->cpu);
2139 intel_pstate_hwp_set(policy->cpu);
2140 }
2141
2142 mutex_unlock(&intel_pstate_limits_lock);
2143
2144 return 0;
2145 }
2146
2147 static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
2148 struct cpufreq_policy_data *policy)
2149 {
2150 if (!hwp_active &&
2151 cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2152 policy->max < policy->cpuinfo.max_freq &&
2153 policy->max > cpu->pstate.max_freq) {
2154 pr_debug("policy->max > max non turbo frequency\n");
2155 policy->max = policy->cpuinfo.max_freq;
2156 }
2157 }
2158
2159 static void intel_pstate_verify_cpu_policy(struct cpudata *cpu,
2160 struct cpufreq_policy_data *policy)
2161 {
2162 update_turbo_state();
2163 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2164 intel_pstate_get_max_freq(cpu));
2165
2166 intel_pstate_adjust_policy_max(cpu, policy);
2167 }
2168
2169 static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
2170 {
2171 intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy);
2172
2173 return 0;
2174 }
2175
2176 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2177 {
2178 intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2179 }
2180
2181 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2182 {
2183 pr_debug("CPU %d exiting\n", policy->cpu);
2184
2185 intel_pstate_clear_update_util_hook(policy->cpu);
2186 if (hwp_active) {
2187 intel_pstate_hwp_save_state(policy);
2188 intel_pstate_hwp_force_min_perf(policy->cpu);
2189 } else {
2190 intel_cpufreq_stop_cpu(policy);
2191 }
2192 }
2193
2194 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2195 {
2196 intel_pstate_exit_perf_limits(policy);
2197
2198 policy->fast_switch_possible = false;
2199
2200 return 0;
2201 }
2202
2203 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2204 {
2205 struct cpudata *cpu;
2206 int rc;
2207
2208 rc = intel_pstate_init_cpu(policy->cpu);
2209 if (rc)
2210 return rc;
2211
2212 cpu = all_cpu_data[policy->cpu];
2213
2214 cpu->max_perf_ratio = 0xFF;
2215 cpu->min_perf_ratio = 0;
2216
2217 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2218 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2219
2220 /* cpuinfo and default policy values */
2221 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2222 update_turbo_state();
2223 global.turbo_disabled_mf = global.turbo_disabled;
2224 policy->cpuinfo.max_freq = global.turbo_disabled ?
2225 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2226 policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2227
2228 if (hwp_active) {
2229 unsigned int max_freq;
2230
2231 max_freq = global.turbo_disabled ?
2232 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2233 if (max_freq < policy->cpuinfo.max_freq)
2234 policy->cpuinfo.max_freq = max_freq;
2235 }
2236
2237 intel_pstate_init_acpi_perf_limits(policy);
2238
2239 policy->fast_switch_possible = true;
2240
2241 return 0;
2242 }
2243
2244 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2245 {
2246 int ret = __intel_pstate_cpu_init(policy);
2247
2248 if (ret)
2249 return ret;
2250
2251 /*
2252 * Set the policy to powersave to provide a valid fallback value in case
2253 * the default cpufreq governor is neither powersave nor performance.
2254 */
2255 policy->policy = CPUFREQ_POLICY_POWERSAVE;
2256
2257 return 0;
2258 }
2259
2260 static struct cpufreq_driver intel_pstate = {
2261 .flags = CPUFREQ_CONST_LOOPS,
2262 .verify = intel_pstate_verify_policy,
2263 .setpolicy = intel_pstate_set_policy,
2264 .suspend = intel_pstate_hwp_save_state,
2265 .resume = intel_pstate_resume,
2266 .init = intel_pstate_cpu_init,
2267 .exit = intel_pstate_cpu_exit,
2268 .stop_cpu = intel_pstate_stop_cpu,
2269 .update_limits = intel_pstate_update_limits,
2270 .name = "intel_pstate",
2271 };
2272
2273 static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
2274 {
2275 struct cpudata *cpu = all_cpu_data[policy->cpu];
2276
2277 intel_pstate_verify_cpu_policy(cpu, policy);
2278 intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2279
2280 return 0;
2281 }
2282
2283 /* Use of trace in passive mode:
2284 *
2285 * In passive mode the trace core_busy field (also known as the
2286 * performance field, and lablelled as such on the graphs; also known as
2287 * core_avg_perf) is not needed and so is re-assigned to indicate if the
2288 * driver call was via the normal or fast switch path. Various graphs
2289 * output from the intel_pstate_tracer.py utility that include core_busy
2290 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2291 * so we use 10 to indicate the the normal path through the driver, and
2292 * 90 to indicate the fast switch path through the driver.
2293 * The scaled_busy field is not used, and is set to 0.
2294 */
2295
2296 #define INTEL_PSTATE_TRACE_TARGET 10
2297 #define INTEL_PSTATE_TRACE_FAST_SWITCH 90
2298
2299 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2300 {
2301 struct sample *sample;
2302
2303 if (!trace_pstate_sample_enabled())
2304 return;
2305
2306 if (!intel_pstate_sample(cpu, ktime_get()))
2307 return;
2308
2309 sample = &cpu->sample;
2310 trace_pstate_sample(trace_type,
2311 0,
2312 old_pstate,
2313 cpu->pstate.current_pstate,
2314 sample->mperf,
2315 sample->aperf,
2316 sample->tsc,
2317 get_avg_frequency(cpu),
2318 fp_toint(cpu->iowait_boost * 100));
2319 }
2320
2321 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2322 unsigned int target_freq,
2323 unsigned int relation)
2324 {
2325 struct cpudata *cpu = all_cpu_data[policy->cpu];
2326 struct cpufreq_freqs freqs;
2327 int target_pstate, old_pstate;
2328
2329 update_turbo_state();
2330
2331 freqs.old = policy->cur;
2332 freqs.new = target_freq;
2333
2334 cpufreq_freq_transition_begin(policy, &freqs);
2335 switch (relation) {
2336 case CPUFREQ_RELATION_L:
2337 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2338 break;
2339 case CPUFREQ_RELATION_H:
2340 target_pstate = freqs.new / cpu->pstate.scaling;
2341 break;
2342 default:
2343 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2344 break;
2345 }
2346 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2347 old_pstate = cpu->pstate.current_pstate;
2348 if (target_pstate != cpu->pstate.current_pstate) {
2349 cpu->pstate.current_pstate = target_pstate;
2350 wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2351 pstate_funcs.get_val(cpu, target_pstate));
2352 }
2353 freqs.new = target_pstate * cpu->pstate.scaling;
2354 intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_TARGET, old_pstate);
2355 cpufreq_freq_transition_end(policy, &freqs, false);
2356
2357 return 0;
2358 }
2359
2360 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2361 unsigned int target_freq)
2362 {
2363 struct cpudata *cpu = all_cpu_data[policy->cpu];
2364 int target_pstate, old_pstate;
2365
2366 update_turbo_state();
2367
2368 target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2369 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2370 old_pstate = cpu->pstate.current_pstate;
2371 intel_pstate_update_pstate(cpu, target_pstate);
2372 intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2373 return target_pstate * cpu->pstate.scaling;
2374 }
2375
2376 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2377 {
2378 int max_state, turbo_max, min_freq, max_freq, ret;
2379 struct freq_qos_request *req;
2380 struct cpudata *cpu;
2381 struct device *dev;
2382
2383 dev = get_cpu_device(policy->cpu);
2384 if (!dev)
2385 return -ENODEV;
2386
2387 ret = __intel_pstate_cpu_init(policy);
2388 if (ret)
2389 return ret;
2390
2391 policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2392 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2393 /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2394 policy->cur = policy->cpuinfo.min_freq;
2395
2396 req = kcalloc(2, sizeof(*req), GFP_KERNEL);
2397 if (!req) {
2398 ret = -ENOMEM;
2399 goto pstate_exit;
2400 }
2401
2402 cpu = all_cpu_data[policy->cpu];
2403
2404 if (hwp_active)
2405 intel_pstate_get_hwp_max(policy->cpu, &turbo_max, &max_state);
2406 else
2407 turbo_max = cpu->pstate.turbo_pstate;
2408
2409 min_freq = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2410 min_freq *= cpu->pstate.scaling;
2411 max_freq = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2412 max_freq *= cpu->pstate.scaling;
2413
2414 ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
2415 min_freq);
2416 if (ret < 0) {
2417 dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
2418 goto free_req;
2419 }
2420
2421 ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
2422 max_freq);
2423 if (ret < 0) {
2424 dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
2425 goto remove_min_req;
2426 }
2427
2428 policy->driver_data = req;
2429
2430 return 0;
2431
2432 remove_min_req:
2433 freq_qos_remove_request(req);
2434 free_req:
2435 kfree(req);
2436 pstate_exit:
2437 intel_pstate_exit_perf_limits(policy);
2438
2439 return ret;
2440 }
2441
2442 static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
2443 {
2444 struct freq_qos_request *req;
2445
2446 req = policy->driver_data;
2447
2448 freq_qos_remove_request(req + 1);
2449 freq_qos_remove_request(req);
2450 kfree(req);
2451
2452 return intel_pstate_cpu_exit(policy);
2453 }
2454
2455 static struct cpufreq_driver intel_cpufreq = {
2456 .flags = CPUFREQ_CONST_LOOPS,
2457 .verify = intel_cpufreq_verify_policy,
2458 .target = intel_cpufreq_target,
2459 .fast_switch = intel_cpufreq_fast_switch,
2460 .init = intel_cpufreq_cpu_init,
2461 .exit = intel_cpufreq_cpu_exit,
2462 .stop_cpu = intel_cpufreq_stop_cpu,
2463 .update_limits = intel_pstate_update_limits,
2464 .name = "intel_cpufreq",
2465 };
2466
2467 static struct cpufreq_driver *default_driver = &intel_pstate;
2468
2469 static void intel_pstate_driver_cleanup(void)
2470 {
2471 unsigned int cpu;
2472
2473 get_online_cpus();
2474 for_each_online_cpu(cpu) {
2475 if (all_cpu_data[cpu]) {
2476 if (intel_pstate_driver == &intel_pstate)
2477 intel_pstate_clear_update_util_hook(cpu);
2478
2479 kfree(all_cpu_data[cpu]);
2480 all_cpu_data[cpu] = NULL;
2481 }
2482 }
2483 put_online_cpus();
2484 intel_pstate_driver = NULL;
2485 }
2486
2487 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2488 {
2489 int ret;
2490
2491 memset(&global, 0, sizeof(global));
2492 global.max_perf_pct = 100;
2493
2494 intel_pstate_driver = driver;
2495 ret = cpufreq_register_driver(intel_pstate_driver);
2496 if (ret) {
2497 intel_pstate_driver_cleanup();
2498 return ret;
2499 }
2500
2501 global.min_perf_pct = min_perf_pct_min();
2502
2503 return 0;
2504 }
2505
2506 static int intel_pstate_unregister_driver(void)
2507 {
2508 if (hwp_active)
2509 return -EBUSY;
2510
2511 cpufreq_unregister_driver(intel_pstate_driver);
2512 intel_pstate_driver_cleanup();
2513
2514 return 0;
2515 }
2516
2517 static ssize_t intel_pstate_show_status(char *buf)
2518 {
2519 if (!intel_pstate_driver)
2520 return sprintf(buf, "off\n");
2521
2522 return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2523 "active" : "passive");
2524 }
2525
2526 static int intel_pstate_update_status(const char *buf, size_t size)
2527 {
2528 int ret;
2529
2530 if (size == 3 && !strncmp(buf, "off", size))
2531 return intel_pstate_driver ?
2532 intel_pstate_unregister_driver() : -EINVAL;
2533
2534 if (size == 6 && !strncmp(buf, "active", size)) {
2535 if (intel_pstate_driver) {
2536 if (intel_pstate_driver == &intel_pstate)
2537 return 0;
2538
2539 ret = intel_pstate_unregister_driver();
2540 if (ret)
2541 return ret;
2542 }
2543
2544 return intel_pstate_register_driver(&intel_pstate);
2545 }
2546
2547 if (size == 7 && !strncmp(buf, "passive", size)) {
2548 if (intel_pstate_driver) {
2549 if (intel_pstate_driver == &intel_cpufreq)
2550 return 0;
2551
2552 ret = intel_pstate_unregister_driver();
2553 if (ret)
2554 return ret;
2555 }
2556
2557 return intel_pstate_register_driver(&intel_cpufreq);
2558 }
2559
2560 return -EINVAL;
2561 }
2562
2563 static int no_load __initdata;
2564 static int no_hwp __initdata;
2565 static int hwp_only __initdata;
2566 static unsigned int force_load __initdata;
2567
2568 static int __init intel_pstate_msrs_not_valid(void)
2569 {
2570 if (!pstate_funcs.get_max() ||
2571 !pstate_funcs.get_min() ||
2572 !pstate_funcs.get_turbo())
2573 return -ENODEV;
2574
2575 return 0;
2576 }
2577
2578 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2579 {
2580 pstate_funcs.get_max = funcs->get_max;
2581 pstate_funcs.get_max_physical = funcs->get_max_physical;
2582 pstate_funcs.get_min = funcs->get_min;
2583 pstate_funcs.get_turbo = funcs->get_turbo;
2584 pstate_funcs.get_scaling = funcs->get_scaling;
2585 pstate_funcs.get_val = funcs->get_val;
2586 pstate_funcs.get_vid = funcs->get_vid;
2587 pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2588 }
2589
2590 #ifdef CONFIG_ACPI
2591
2592 static bool __init intel_pstate_no_acpi_pss(void)
2593 {
2594 int i;
2595
2596 for_each_possible_cpu(i) {
2597 acpi_status status;
2598 union acpi_object *pss;
2599 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2600 struct acpi_processor *pr = per_cpu(processors, i);
2601
2602 if (!pr)
2603 continue;
2604
2605 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2606 if (ACPI_FAILURE(status))
2607 continue;
2608
2609 pss = buffer.pointer;
2610 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2611 kfree(pss);
2612 return false;
2613 }
2614
2615 kfree(pss);
2616 }
2617
2618 pr_debug("ACPI _PSS not found\n");
2619 return true;
2620 }
2621
2622 static bool __init intel_pstate_no_acpi_pcch(void)
2623 {
2624 acpi_status status;
2625 acpi_handle handle;
2626
2627 status = acpi_get_handle(NULL, "\\_SB", &handle);
2628 if (ACPI_FAILURE(status))
2629 goto not_found;
2630
2631 if (acpi_has_method(handle, "PCCH"))
2632 return false;
2633
2634 not_found:
2635 pr_debug("ACPI PCCH not found\n");
2636 return true;
2637 }
2638
2639 static bool __init intel_pstate_has_acpi_ppc(void)
2640 {
2641 int i;
2642
2643 for_each_possible_cpu(i) {
2644 struct acpi_processor *pr = per_cpu(processors, i);
2645
2646 if (!pr)
2647 continue;
2648 if (acpi_has_method(pr->handle, "_PPC"))
2649 return true;
2650 }
2651 pr_debug("ACPI _PPC not found\n");
2652 return false;
2653 }
2654
2655 enum {
2656 PSS,
2657 PPC,
2658 };
2659
2660 /* Hardware vendor-specific info that has its own power management modes */
2661 static struct acpi_platform_list plat_info[] __initdata = {
2662 {"HP ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS},
2663 {"ORACLE", "X4-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2664 {"ORACLE", "X4-2L ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2665 {"ORACLE", "X4-2B ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2666 {"ORACLE", "X3-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2667 {"ORACLE", "X3-2L ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2668 {"ORACLE", "X3-2B ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2669 {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2670 {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2671 {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2672 {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2673 {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2674 {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2675 {"ORACLE", "X6-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2676 {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2677 { } /* End */
2678 };
2679
2680 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2681 {
2682 const struct x86_cpu_id *id;
2683 u64 misc_pwr;
2684 int idx;
2685
2686 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2687 if (id) {
2688 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2689 if (misc_pwr & (1 << 8)) {
2690 pr_debug("Bit 8 in the MISC_PWR_MGMT MSR set\n");
2691 return true;
2692 }
2693 }
2694
2695 idx = acpi_match_platform_list(plat_info);
2696 if (idx < 0)
2697 return false;
2698
2699 switch (plat_info[idx].data) {
2700 case PSS:
2701 if (!intel_pstate_no_acpi_pss())
2702 return false;
2703
2704 return intel_pstate_no_acpi_pcch();
2705 case PPC:
2706 return intel_pstate_has_acpi_ppc() && !force_load;
2707 }
2708
2709 return false;
2710 }
2711
2712 static void intel_pstate_request_control_from_smm(void)
2713 {
2714 /*
2715 * It may be unsafe to request P-states control from SMM if _PPC support
2716 * has not been enabled.
2717 */
2718 if (acpi_ppc)
2719 acpi_processor_pstate_control();
2720 }
2721 #else /* CONFIG_ACPI not enabled */
2722 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2723 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2724 static inline void intel_pstate_request_control_from_smm(void) {}
2725 #endif /* CONFIG_ACPI */
2726
2727 #define INTEL_PSTATE_HWP_BROADWELL 0x01
2728
2729 #define X86_MATCH_HWP(model, hwp_mode) \
2730 X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
2731 X86_FEATURE_HWP, hwp_mode)
2732
2733 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2734 X86_MATCH_HWP(BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL),
2735 X86_MATCH_HWP(BROADWELL_D, INTEL_PSTATE_HWP_BROADWELL),
2736 X86_MATCH_HWP(ANY, 0),
2737 {}
2738 };
2739
2740 static int __init intel_pstate_init(void)
2741 {
2742 const struct x86_cpu_id *id;
2743 int rc;
2744
2745 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2746 return -ENODEV;
2747
2748 if (no_load)
2749 return -ENODEV;
2750
2751 id = x86_match_cpu(hwp_support_ids);
2752 if (id) {
2753 copy_cpu_funcs(&core_funcs);
2754 if (!no_hwp) {
2755 hwp_active++;
2756 hwp_mode_bdw = id->driver_data;
2757 intel_pstate.attr = hwp_cpufreq_attrs;
2758 goto hwp_cpu_matched;
2759 }
2760 } else {
2761 id = x86_match_cpu(intel_pstate_cpu_ids);
2762 if (!id) {
2763 pr_info("CPU model not supported\n");
2764 return -ENODEV;
2765 }
2766
2767 copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2768 }
2769
2770 if (intel_pstate_msrs_not_valid()) {
2771 pr_info("Invalid MSRs\n");
2772 return -ENODEV;
2773 }
2774
2775 hwp_cpu_matched:
2776 /*
2777 * The Intel pstate driver will be ignored if the platform
2778 * firmware has its own power management modes.
2779 */
2780 if (intel_pstate_platform_pwr_mgmt_exists()) {
2781 pr_info("P-states controlled by the platform\n");
2782 return -ENODEV;
2783 }
2784
2785 if (!hwp_active && hwp_only)
2786 return -ENOTSUPP;
2787
2788 pr_info("Intel P-state driver initializing\n");
2789
2790 all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
2791 if (!all_cpu_data)
2792 return -ENOMEM;
2793
2794 intel_pstate_request_control_from_smm();
2795
2796 intel_pstate_sysfs_expose_params();
2797
2798 mutex_lock(&intel_pstate_driver_lock);
2799 rc = intel_pstate_register_driver(default_driver);
2800 mutex_unlock(&intel_pstate_driver_lock);
2801 if (rc)
2802 return rc;
2803
2804 if (hwp_active)
2805 pr_info("HWP enabled\n");
2806
2807 return 0;
2808 }
2809 device_initcall(intel_pstate_init);
2810
2811 static int __init intel_pstate_setup(char *str)
2812 {
2813 if (!str)
2814 return -EINVAL;
2815
2816 if (!strcmp(str, "disable")) {
2817 no_load = 1;
2818 } else if (!strcmp(str, "passive")) {
2819 pr_info("Passive mode enabled\n");
2820 default_driver = &intel_cpufreq;
2821 no_hwp = 1;
2822 }
2823 if (!strcmp(str, "no_hwp")) {
2824 pr_info("HWP disabled\n");
2825 no_hwp = 1;
2826 }
2827 if (!strcmp(str, "force"))
2828 force_load = 1;
2829 if (!strcmp(str, "hwp_only"))
2830 hwp_only = 1;
2831 if (!strcmp(str, "per_cpu_perf_limits"))
2832 per_cpu_limits = true;
2833
2834 #ifdef CONFIG_ACPI
2835 if (!strcmp(str, "support_acpi_ppc"))
2836 acpi_ppc = true;
2837 #endif
2838
2839 return 0;
2840 }
2841 early_param("intel_pstate", intel_pstate_setup);
2842
2843 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2844 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2845 MODULE_LICENSE("GPL");