]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - drivers/cpufreq/intel_pstate.c
cpufreq: intel_pstate: Fix up iowait_boost computation
[thirdparty/kernel/linux.git] / drivers / cpufreq / intel_pstate.c
1 /*
2 * intel_pstate.c: Native P state management for Intel processors
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched/cpufreq.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/acpi.h>
30 #include <linux/vmalloc.h>
31 #include <trace/events/power.h>
32
33 #include <asm/div64.h>
34 #include <asm/msr.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/cpufeature.h>
37 #include <asm/intel-family.h>
38
39 #define INTEL_PSTATE_SAMPLING_INTERVAL (10 * NSEC_PER_MSEC)
40
41 #define INTEL_CPUFREQ_TRANSITION_LATENCY 20000
42 #define INTEL_CPUFREQ_TRANSITION_DELAY 500
43
44 #ifdef CONFIG_ACPI
45 #include <acpi/processor.h>
46 #include <acpi/cppc_acpi.h>
47 #endif
48
49 #define FRAC_BITS 8
50 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
51 #define fp_toint(X) ((X) >> FRAC_BITS)
52
53 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
54
55 #define EXT_BITS 6
56 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
57 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
58 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
59
60 static inline int32_t mul_fp(int32_t x, int32_t y)
61 {
62 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
63 }
64
65 static inline int32_t div_fp(s64 x, s64 y)
66 {
67 return div64_s64((int64_t)x << FRAC_BITS, y);
68 }
69
70 static inline int ceiling_fp(int32_t x)
71 {
72 int mask, ret;
73
74 ret = fp_toint(x);
75 mask = (1 << FRAC_BITS) - 1;
76 if (x & mask)
77 ret += 1;
78 return ret;
79 }
80
81 static inline int32_t percent_fp(int percent)
82 {
83 return div_fp(percent, 100);
84 }
85
86 static inline u64 mul_ext_fp(u64 x, u64 y)
87 {
88 return (x * y) >> EXT_FRAC_BITS;
89 }
90
91 static inline u64 div_ext_fp(u64 x, u64 y)
92 {
93 return div64_u64(x << EXT_FRAC_BITS, y);
94 }
95
96 static inline int32_t percent_ext_fp(int percent)
97 {
98 return div_ext_fp(percent, 100);
99 }
100
101 /**
102 * struct sample - Store performance sample
103 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
104 * performance during last sample period
105 * @busy_scaled: Scaled busy value which is used to calculate next
106 * P state. This can be different than core_avg_perf
107 * to account for cpu idle period
108 * @aperf: Difference of actual performance frequency clock count
109 * read from APERF MSR between last and current sample
110 * @mperf: Difference of maximum performance frequency clock count
111 * read from MPERF MSR between last and current sample
112 * @tsc: Difference of time stamp counter between last and
113 * current sample
114 * @time: Current time from scheduler
115 *
116 * This structure is used in the cpudata structure to store performance sample
117 * data for choosing next P State.
118 */
119 struct sample {
120 int32_t core_avg_perf;
121 int32_t busy_scaled;
122 u64 aperf;
123 u64 mperf;
124 u64 tsc;
125 u64 time;
126 };
127
128 /**
129 * struct pstate_data - Store P state data
130 * @current_pstate: Current requested P state
131 * @min_pstate: Min P state possible for this platform
132 * @max_pstate: Max P state possible for this platform
133 * @max_pstate_physical:This is physical Max P state for a processor
134 * This can be higher than the max_pstate which can
135 * be limited by platform thermal design power limits
136 * @scaling: Scaling factor to convert frequency to cpufreq
137 * frequency units
138 * @turbo_pstate: Max Turbo P state possible for this platform
139 * @max_freq: @max_pstate frequency in cpufreq units
140 * @turbo_freq: @turbo_pstate frequency in cpufreq units
141 *
142 * Stores the per cpu model P state limits and current P state.
143 */
144 struct pstate_data {
145 int current_pstate;
146 int min_pstate;
147 int max_pstate;
148 int max_pstate_physical;
149 int scaling;
150 int turbo_pstate;
151 unsigned int max_freq;
152 unsigned int turbo_freq;
153 };
154
155 /**
156 * struct vid_data - Stores voltage information data
157 * @min: VID data for this platform corresponding to
158 * the lowest P state
159 * @max: VID data corresponding to the highest P State.
160 * @turbo: VID data for turbo P state
161 * @ratio: Ratio of (vid max - vid min) /
162 * (max P state - Min P State)
163 *
164 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
165 * This data is used in Atom platforms, where in addition to target P state,
166 * the voltage data needs to be specified to select next P State.
167 */
168 struct vid_data {
169 int min;
170 int max;
171 int turbo;
172 int32_t ratio;
173 };
174
175 /**
176 * struct global_params - Global parameters, mostly tunable via sysfs.
177 * @no_turbo: Whether or not to use turbo P-states.
178 * @turbo_disabled: Whethet or not turbo P-states are available at all,
179 * based on the MSR_IA32_MISC_ENABLE value and whether or
180 * not the maximum reported turbo P-state is different from
181 * the maximum reported non-turbo one.
182 * @min_perf_pct: Minimum capacity limit in percent of the maximum turbo
183 * P-state capacity.
184 * @max_perf_pct: Maximum capacity limit in percent of the maximum turbo
185 * P-state capacity.
186 */
187 struct global_params {
188 bool no_turbo;
189 bool turbo_disabled;
190 int max_perf_pct;
191 int min_perf_pct;
192 };
193
194 /**
195 * struct cpudata - Per CPU instance data storage
196 * @cpu: CPU number for this instance data
197 * @policy: CPUFreq policy value
198 * @update_util: CPUFreq utility callback information
199 * @update_util_set: CPUFreq utility callback is set
200 * @iowait_boost: iowait-related boost fraction
201 * @last_update: Time of the last update.
202 * @pstate: Stores P state limits for this CPU
203 * @vid: Stores VID limits for this CPU
204 * @last_sample_time: Last Sample time
205 * @aperf_mperf_shift: Number of clock cycles after aperf, merf is incremented
206 * This shift is a multiplier to mperf delta to
207 * calculate CPU busy.
208 * @prev_aperf: Last APERF value read from APERF MSR
209 * @prev_mperf: Last MPERF value read from MPERF MSR
210 * @prev_tsc: Last timestamp counter (TSC) value
211 * @prev_cummulative_iowait: IO Wait time difference from last and
212 * current sample
213 * @sample: Storage for storing last Sample data
214 * @min_perf_ratio: Minimum capacity in terms of PERF or HWP ratios
215 * @max_perf_ratio: Maximum capacity in terms of PERF or HWP ratios
216 * @acpi_perf_data: Stores ACPI perf information read from _PSS
217 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
218 * @epp_powersave: Last saved HWP energy performance preference
219 * (EPP) or energy performance bias (EPB),
220 * when policy switched to performance
221 * @epp_policy: Last saved policy used to set EPP/EPB
222 * @epp_default: Power on default HWP energy performance
223 * preference/bias
224 * @epp_saved: Saved EPP/EPB during system suspend or CPU offline
225 * operation
226 * @hwp_req_cached: Cached value of the last HWP Request MSR
227 * @hwp_cap_cached: Cached value of the last HWP Capabilities MSR
228 * @last_io_update: Last time when IO wake flag was set
229 * @sched_flags: Store scheduler flags for possible cross CPU update
230 * @hwp_boost_min: Last HWP boosted min performance
231 *
232 * This structure stores per CPU instance data for all CPUs.
233 */
234 struct cpudata {
235 int cpu;
236
237 unsigned int policy;
238 struct update_util_data update_util;
239 bool update_util_set;
240
241 struct pstate_data pstate;
242 struct vid_data vid;
243
244 u64 last_update;
245 u64 last_sample_time;
246 u64 aperf_mperf_shift;
247 u64 prev_aperf;
248 u64 prev_mperf;
249 u64 prev_tsc;
250 u64 prev_cummulative_iowait;
251 struct sample sample;
252 int32_t min_perf_ratio;
253 int32_t max_perf_ratio;
254 #ifdef CONFIG_ACPI
255 struct acpi_processor_performance acpi_perf_data;
256 bool valid_pss_table;
257 #endif
258 unsigned int iowait_boost;
259 s16 epp_powersave;
260 s16 epp_policy;
261 s16 epp_default;
262 s16 epp_saved;
263 u64 hwp_req_cached;
264 u64 hwp_cap_cached;
265 u64 last_io_update;
266 unsigned int sched_flags;
267 u32 hwp_boost_min;
268 };
269
270 static struct cpudata **all_cpu_data;
271
272 /**
273 * struct pstate_funcs - Per CPU model specific callbacks
274 * @get_max: Callback to get maximum non turbo effective P state
275 * @get_max_physical: Callback to get maximum non turbo physical P state
276 * @get_min: Callback to get minimum P state
277 * @get_turbo: Callback to get turbo P state
278 * @get_scaling: Callback to get frequency scaling factor
279 * @get_val: Callback to convert P state to actual MSR write value
280 * @get_vid: Callback to get VID data for Atom platforms
281 *
282 * Core and Atom CPU models have different way to get P State limits. This
283 * structure is used to store those callbacks.
284 */
285 struct pstate_funcs {
286 int (*get_max)(void);
287 int (*get_max_physical)(void);
288 int (*get_min)(void);
289 int (*get_turbo)(void);
290 int (*get_scaling)(void);
291 int (*get_aperf_mperf_shift)(void);
292 u64 (*get_val)(struct cpudata*, int pstate);
293 void (*get_vid)(struct cpudata *);
294 };
295
296 static struct pstate_funcs pstate_funcs __read_mostly;
297
298 static int hwp_active __read_mostly;
299 static int hwp_mode_bdw __read_mostly;
300 static bool per_cpu_limits __read_mostly;
301 static bool hwp_boost __read_mostly;
302
303 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
304
305 #ifdef CONFIG_ACPI
306 static bool acpi_ppc;
307 #endif
308
309 static struct global_params global;
310
311 static DEFINE_MUTEX(intel_pstate_driver_lock);
312 static DEFINE_MUTEX(intel_pstate_limits_lock);
313
314 #ifdef CONFIG_ACPI
315
316 static bool intel_pstate_acpi_pm_profile_server(void)
317 {
318 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
319 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
320 return true;
321
322 return false;
323 }
324
325 static bool intel_pstate_get_ppc_enable_status(void)
326 {
327 if (intel_pstate_acpi_pm_profile_server())
328 return true;
329
330 return acpi_ppc;
331 }
332
333 #ifdef CONFIG_ACPI_CPPC_LIB
334
335 /* The work item is needed to avoid CPU hotplug locking issues */
336 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
337 {
338 sched_set_itmt_support();
339 }
340
341 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
342
343 static void intel_pstate_set_itmt_prio(int cpu)
344 {
345 struct cppc_perf_caps cppc_perf;
346 static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
347 int ret;
348
349 ret = cppc_get_perf_caps(cpu, &cppc_perf);
350 if (ret)
351 return;
352
353 /*
354 * The priorities can be set regardless of whether or not
355 * sched_set_itmt_support(true) has been called and it is valid to
356 * update them at any time after it has been called.
357 */
358 sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
359
360 if (max_highest_perf <= min_highest_perf) {
361 if (cppc_perf.highest_perf > max_highest_perf)
362 max_highest_perf = cppc_perf.highest_perf;
363
364 if (cppc_perf.highest_perf < min_highest_perf)
365 min_highest_perf = cppc_perf.highest_perf;
366
367 if (max_highest_perf > min_highest_perf) {
368 /*
369 * This code can be run during CPU online under the
370 * CPU hotplug locks, so sched_set_itmt_support()
371 * cannot be called from here. Queue up a work item
372 * to invoke it.
373 */
374 schedule_work(&sched_itmt_work);
375 }
376 }
377 }
378
379 static int intel_pstate_get_cppc_guranteed(int cpu)
380 {
381 struct cppc_perf_caps cppc_perf;
382 int ret;
383
384 ret = cppc_get_perf_caps(cpu, &cppc_perf);
385 if (ret)
386 return ret;
387
388 return cppc_perf.guaranteed_perf;
389 }
390
391 #else /* CONFIG_ACPI_CPPC_LIB */
392 static void intel_pstate_set_itmt_prio(int cpu)
393 {
394 }
395 #endif /* CONFIG_ACPI_CPPC_LIB */
396
397 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
398 {
399 struct cpudata *cpu;
400 int ret;
401 int i;
402
403 if (hwp_active) {
404 intel_pstate_set_itmt_prio(policy->cpu);
405 return;
406 }
407
408 if (!intel_pstate_get_ppc_enable_status())
409 return;
410
411 cpu = all_cpu_data[policy->cpu];
412
413 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
414 policy->cpu);
415 if (ret)
416 return;
417
418 /*
419 * Check if the control value in _PSS is for PERF_CTL MSR, which should
420 * guarantee that the states returned by it map to the states in our
421 * list directly.
422 */
423 if (cpu->acpi_perf_data.control_register.space_id !=
424 ACPI_ADR_SPACE_FIXED_HARDWARE)
425 goto err;
426
427 /*
428 * If there is only one entry _PSS, simply ignore _PSS and continue as
429 * usual without taking _PSS into account
430 */
431 if (cpu->acpi_perf_data.state_count < 2)
432 goto err;
433
434 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
435 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
436 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
437 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
438 (u32) cpu->acpi_perf_data.states[i].core_frequency,
439 (u32) cpu->acpi_perf_data.states[i].power,
440 (u32) cpu->acpi_perf_data.states[i].control);
441 }
442
443 /*
444 * The _PSS table doesn't contain whole turbo frequency range.
445 * This just contains +1 MHZ above the max non turbo frequency,
446 * with control value corresponding to max turbo ratio. But
447 * when cpufreq set policy is called, it will call with this
448 * max frequency, which will cause a reduced performance as
449 * this driver uses real max turbo frequency as the max
450 * frequency. So correct this frequency in _PSS table to
451 * correct max turbo frequency based on the turbo state.
452 * Also need to convert to MHz as _PSS freq is in MHz.
453 */
454 if (!global.turbo_disabled)
455 cpu->acpi_perf_data.states[0].core_frequency =
456 policy->cpuinfo.max_freq / 1000;
457 cpu->valid_pss_table = true;
458 pr_debug("_PPC limits will be enforced\n");
459
460 return;
461
462 err:
463 cpu->valid_pss_table = false;
464 acpi_processor_unregister_performance(policy->cpu);
465 }
466
467 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
468 {
469 struct cpudata *cpu;
470
471 cpu = all_cpu_data[policy->cpu];
472 if (!cpu->valid_pss_table)
473 return;
474
475 acpi_processor_unregister_performance(policy->cpu);
476 }
477 #else /* CONFIG_ACPI */
478 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
479 {
480 }
481
482 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
483 {
484 }
485
486 static inline bool intel_pstate_acpi_pm_profile_server(void)
487 {
488 return false;
489 }
490 #endif /* CONFIG_ACPI */
491
492 #ifndef CONFIG_ACPI_CPPC_LIB
493 static int intel_pstate_get_cppc_guranteed(int cpu)
494 {
495 return -ENOTSUPP;
496 }
497 #endif /* CONFIG_ACPI_CPPC_LIB */
498
499 static inline void update_turbo_state(void)
500 {
501 u64 misc_en;
502 struct cpudata *cpu;
503
504 cpu = all_cpu_data[0];
505 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
506 global.turbo_disabled =
507 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
508 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
509 }
510
511 static int min_perf_pct_min(void)
512 {
513 struct cpudata *cpu = all_cpu_data[0];
514 int turbo_pstate = cpu->pstate.turbo_pstate;
515
516 return turbo_pstate ?
517 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
518 }
519
520 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
521 {
522 u64 epb;
523 int ret;
524
525 if (!static_cpu_has(X86_FEATURE_EPB))
526 return -ENXIO;
527
528 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
529 if (ret)
530 return (s16)ret;
531
532 return (s16)(epb & 0x0f);
533 }
534
535 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
536 {
537 s16 epp;
538
539 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
540 /*
541 * When hwp_req_data is 0, means that caller didn't read
542 * MSR_HWP_REQUEST, so need to read and get EPP.
543 */
544 if (!hwp_req_data) {
545 epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
546 &hwp_req_data);
547 if (epp)
548 return epp;
549 }
550 epp = (hwp_req_data >> 24) & 0xff;
551 } else {
552 /* When there is no EPP present, HWP uses EPB settings */
553 epp = intel_pstate_get_epb(cpu_data);
554 }
555
556 return epp;
557 }
558
559 static int intel_pstate_set_epb(int cpu, s16 pref)
560 {
561 u64 epb;
562 int ret;
563
564 if (!static_cpu_has(X86_FEATURE_EPB))
565 return -ENXIO;
566
567 ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
568 if (ret)
569 return ret;
570
571 epb = (epb & ~0x0f) | pref;
572 wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
573
574 return 0;
575 }
576
577 /*
578 * EPP/EPB display strings corresponding to EPP index in the
579 * energy_perf_strings[]
580 * index String
581 *-------------------------------------
582 * 0 default
583 * 1 performance
584 * 2 balance_performance
585 * 3 balance_power
586 * 4 power
587 */
588 static const char * const energy_perf_strings[] = {
589 "default",
590 "performance",
591 "balance_performance",
592 "balance_power",
593 "power",
594 NULL
595 };
596 static const unsigned int epp_values[] = {
597 HWP_EPP_PERFORMANCE,
598 HWP_EPP_BALANCE_PERFORMANCE,
599 HWP_EPP_BALANCE_POWERSAVE,
600 HWP_EPP_POWERSAVE
601 };
602
603 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
604 {
605 s16 epp;
606 int index = -EINVAL;
607
608 epp = intel_pstate_get_epp(cpu_data, 0);
609 if (epp < 0)
610 return epp;
611
612 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
613 if (epp == HWP_EPP_PERFORMANCE)
614 return 1;
615 if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
616 return 2;
617 if (epp <= HWP_EPP_BALANCE_POWERSAVE)
618 return 3;
619 else
620 return 4;
621 } else if (static_cpu_has(X86_FEATURE_EPB)) {
622 /*
623 * Range:
624 * 0x00-0x03 : Performance
625 * 0x04-0x07 : Balance performance
626 * 0x08-0x0B : Balance power
627 * 0x0C-0x0F : Power
628 * The EPB is a 4 bit value, but our ranges restrict the
629 * value which can be set. Here only using top two bits
630 * effectively.
631 */
632 index = (epp >> 2) + 1;
633 }
634
635 return index;
636 }
637
638 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
639 int pref_index)
640 {
641 int epp = -EINVAL;
642 int ret;
643
644 if (!pref_index)
645 epp = cpu_data->epp_default;
646
647 mutex_lock(&intel_pstate_limits_lock);
648
649 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
650 u64 value;
651
652 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
653 if (ret)
654 goto return_pref;
655
656 value &= ~GENMASK_ULL(31, 24);
657
658 if (epp == -EINVAL)
659 epp = epp_values[pref_index - 1];
660
661 value |= (u64)epp << 24;
662 ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
663 } else {
664 if (epp == -EINVAL)
665 epp = (pref_index - 1) << 2;
666 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
667 }
668 return_pref:
669 mutex_unlock(&intel_pstate_limits_lock);
670
671 return ret;
672 }
673
674 static ssize_t show_energy_performance_available_preferences(
675 struct cpufreq_policy *policy, char *buf)
676 {
677 int i = 0;
678 int ret = 0;
679
680 while (energy_perf_strings[i] != NULL)
681 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
682
683 ret += sprintf(&buf[ret], "\n");
684
685 return ret;
686 }
687
688 cpufreq_freq_attr_ro(energy_performance_available_preferences);
689
690 static ssize_t store_energy_performance_preference(
691 struct cpufreq_policy *policy, const char *buf, size_t count)
692 {
693 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
694 char str_preference[21];
695 int ret;
696
697 ret = sscanf(buf, "%20s", str_preference);
698 if (ret != 1)
699 return -EINVAL;
700
701 ret = match_string(energy_perf_strings, -1, str_preference);
702 if (ret < 0)
703 return ret;
704
705 intel_pstate_set_energy_pref_index(cpu_data, ret);
706 return count;
707 }
708
709 static ssize_t show_energy_performance_preference(
710 struct cpufreq_policy *policy, char *buf)
711 {
712 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
713 int preference;
714
715 preference = intel_pstate_get_energy_pref_index(cpu_data);
716 if (preference < 0)
717 return preference;
718
719 return sprintf(buf, "%s\n", energy_perf_strings[preference]);
720 }
721
722 cpufreq_freq_attr_rw(energy_performance_preference);
723
724 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
725 {
726 struct cpudata *cpu;
727 u64 cap;
728 int ratio;
729
730 ratio = intel_pstate_get_cppc_guranteed(policy->cpu);
731 if (ratio <= 0) {
732 rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
733 ratio = HWP_GUARANTEED_PERF(cap);
734 }
735
736 cpu = all_cpu_data[policy->cpu];
737
738 return sprintf(buf, "%d\n", ratio * cpu->pstate.scaling);
739 }
740
741 cpufreq_freq_attr_ro(base_frequency);
742
743 static struct freq_attr *hwp_cpufreq_attrs[] = {
744 &energy_performance_preference,
745 &energy_performance_available_preferences,
746 &base_frequency,
747 NULL,
748 };
749
750 static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
751 int *current_max)
752 {
753 u64 cap;
754
755 rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
756 WRITE_ONCE(all_cpu_data[cpu]->hwp_cap_cached, cap);
757 if (global.no_turbo)
758 *current_max = HWP_GUARANTEED_PERF(cap);
759 else
760 *current_max = HWP_HIGHEST_PERF(cap);
761
762 *phy_max = HWP_HIGHEST_PERF(cap);
763 }
764
765 static void intel_pstate_hwp_set(unsigned int cpu)
766 {
767 struct cpudata *cpu_data = all_cpu_data[cpu];
768 int max, min;
769 u64 value;
770 s16 epp;
771
772 max = cpu_data->max_perf_ratio;
773 min = cpu_data->min_perf_ratio;
774
775 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
776 min = max;
777
778 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
779
780 value &= ~HWP_MIN_PERF(~0L);
781 value |= HWP_MIN_PERF(min);
782
783 value &= ~HWP_MAX_PERF(~0L);
784 value |= HWP_MAX_PERF(max);
785
786 if (cpu_data->epp_policy == cpu_data->policy)
787 goto skip_epp;
788
789 cpu_data->epp_policy = cpu_data->policy;
790
791 if (cpu_data->epp_saved >= 0) {
792 epp = cpu_data->epp_saved;
793 cpu_data->epp_saved = -EINVAL;
794 goto update_epp;
795 }
796
797 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
798 epp = intel_pstate_get_epp(cpu_data, value);
799 cpu_data->epp_powersave = epp;
800 /* If EPP read was failed, then don't try to write */
801 if (epp < 0)
802 goto skip_epp;
803
804 epp = 0;
805 } else {
806 /* skip setting EPP, when saved value is invalid */
807 if (cpu_data->epp_powersave < 0)
808 goto skip_epp;
809
810 /*
811 * No need to restore EPP when it is not zero. This
812 * means:
813 * - Policy is not changed
814 * - user has manually changed
815 * - Error reading EPB
816 */
817 epp = intel_pstate_get_epp(cpu_data, value);
818 if (epp)
819 goto skip_epp;
820
821 epp = cpu_data->epp_powersave;
822 }
823 update_epp:
824 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
825 value &= ~GENMASK_ULL(31, 24);
826 value |= (u64)epp << 24;
827 } else {
828 intel_pstate_set_epb(cpu, epp);
829 }
830 skip_epp:
831 WRITE_ONCE(cpu_data->hwp_req_cached, value);
832 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
833 }
834
835 static void intel_pstate_hwp_force_min_perf(int cpu)
836 {
837 u64 value;
838 int min_perf;
839
840 value = all_cpu_data[cpu]->hwp_req_cached;
841 value &= ~GENMASK_ULL(31, 0);
842 min_perf = HWP_LOWEST_PERF(all_cpu_data[cpu]->hwp_cap_cached);
843
844 /* Set hwp_max = hwp_min */
845 value |= HWP_MAX_PERF(min_perf);
846 value |= HWP_MIN_PERF(min_perf);
847
848 /* Set EPP/EPB to min */
849 if (static_cpu_has(X86_FEATURE_HWP_EPP))
850 value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
851 else
852 intel_pstate_set_epb(cpu, HWP_EPP_BALANCE_POWERSAVE);
853
854 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
855 }
856
857 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
858 {
859 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
860
861 if (!hwp_active)
862 return 0;
863
864 cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
865
866 return 0;
867 }
868
869 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
870
871 static int intel_pstate_resume(struct cpufreq_policy *policy)
872 {
873 if (!hwp_active)
874 return 0;
875
876 mutex_lock(&intel_pstate_limits_lock);
877
878 if (policy->cpu == 0)
879 intel_pstate_hwp_enable(all_cpu_data[policy->cpu]);
880
881 all_cpu_data[policy->cpu]->epp_policy = 0;
882 intel_pstate_hwp_set(policy->cpu);
883
884 mutex_unlock(&intel_pstate_limits_lock);
885
886 return 0;
887 }
888
889 static void intel_pstate_update_policies(void)
890 {
891 int cpu;
892
893 for_each_possible_cpu(cpu)
894 cpufreq_update_policy(cpu);
895 }
896
897 /************************** sysfs begin ************************/
898 #define show_one(file_name, object) \
899 static ssize_t show_##file_name \
900 (struct kobject *kobj, struct kobj_attribute *attr, char *buf) \
901 { \
902 return sprintf(buf, "%u\n", global.object); \
903 }
904
905 static ssize_t intel_pstate_show_status(char *buf);
906 static int intel_pstate_update_status(const char *buf, size_t size);
907
908 static ssize_t show_status(struct kobject *kobj,
909 struct kobj_attribute *attr, char *buf)
910 {
911 ssize_t ret;
912
913 mutex_lock(&intel_pstate_driver_lock);
914 ret = intel_pstate_show_status(buf);
915 mutex_unlock(&intel_pstate_driver_lock);
916
917 return ret;
918 }
919
920 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
921 const char *buf, size_t count)
922 {
923 char *p = memchr(buf, '\n', count);
924 int ret;
925
926 mutex_lock(&intel_pstate_driver_lock);
927 ret = intel_pstate_update_status(buf, p ? p - buf : count);
928 mutex_unlock(&intel_pstate_driver_lock);
929
930 return ret < 0 ? ret : count;
931 }
932
933 static ssize_t show_turbo_pct(struct kobject *kobj,
934 struct kobj_attribute *attr, char *buf)
935 {
936 struct cpudata *cpu;
937 int total, no_turbo, turbo_pct;
938 uint32_t turbo_fp;
939
940 mutex_lock(&intel_pstate_driver_lock);
941
942 if (!intel_pstate_driver) {
943 mutex_unlock(&intel_pstate_driver_lock);
944 return -EAGAIN;
945 }
946
947 cpu = all_cpu_data[0];
948
949 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
950 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
951 turbo_fp = div_fp(no_turbo, total);
952 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
953
954 mutex_unlock(&intel_pstate_driver_lock);
955
956 return sprintf(buf, "%u\n", turbo_pct);
957 }
958
959 static ssize_t show_num_pstates(struct kobject *kobj,
960 struct kobj_attribute *attr, char *buf)
961 {
962 struct cpudata *cpu;
963 int total;
964
965 mutex_lock(&intel_pstate_driver_lock);
966
967 if (!intel_pstate_driver) {
968 mutex_unlock(&intel_pstate_driver_lock);
969 return -EAGAIN;
970 }
971
972 cpu = all_cpu_data[0];
973 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
974
975 mutex_unlock(&intel_pstate_driver_lock);
976
977 return sprintf(buf, "%u\n", total);
978 }
979
980 static ssize_t show_no_turbo(struct kobject *kobj,
981 struct kobj_attribute *attr, char *buf)
982 {
983 ssize_t ret;
984
985 mutex_lock(&intel_pstate_driver_lock);
986
987 if (!intel_pstate_driver) {
988 mutex_unlock(&intel_pstate_driver_lock);
989 return -EAGAIN;
990 }
991
992 update_turbo_state();
993 if (global.turbo_disabled)
994 ret = sprintf(buf, "%u\n", global.turbo_disabled);
995 else
996 ret = sprintf(buf, "%u\n", global.no_turbo);
997
998 mutex_unlock(&intel_pstate_driver_lock);
999
1000 return ret;
1001 }
1002
1003 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1004 const char *buf, size_t count)
1005 {
1006 unsigned int input;
1007 int ret;
1008
1009 ret = sscanf(buf, "%u", &input);
1010 if (ret != 1)
1011 return -EINVAL;
1012
1013 mutex_lock(&intel_pstate_driver_lock);
1014
1015 if (!intel_pstate_driver) {
1016 mutex_unlock(&intel_pstate_driver_lock);
1017 return -EAGAIN;
1018 }
1019
1020 mutex_lock(&intel_pstate_limits_lock);
1021
1022 update_turbo_state();
1023 if (global.turbo_disabled) {
1024 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1025 mutex_unlock(&intel_pstate_limits_lock);
1026 mutex_unlock(&intel_pstate_driver_lock);
1027 return -EPERM;
1028 }
1029
1030 global.no_turbo = clamp_t(int, input, 0, 1);
1031
1032 if (global.no_turbo) {
1033 struct cpudata *cpu = all_cpu_data[0];
1034 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1035
1036 /* Squash the global minimum into the permitted range. */
1037 if (global.min_perf_pct > pct)
1038 global.min_perf_pct = pct;
1039 }
1040
1041 mutex_unlock(&intel_pstate_limits_lock);
1042
1043 intel_pstate_update_policies();
1044
1045 mutex_unlock(&intel_pstate_driver_lock);
1046
1047 return count;
1048 }
1049
1050 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1051 const char *buf, size_t count)
1052 {
1053 unsigned int input;
1054 int ret;
1055
1056 ret = sscanf(buf, "%u", &input);
1057 if (ret != 1)
1058 return -EINVAL;
1059
1060 mutex_lock(&intel_pstate_driver_lock);
1061
1062 if (!intel_pstate_driver) {
1063 mutex_unlock(&intel_pstate_driver_lock);
1064 return -EAGAIN;
1065 }
1066
1067 mutex_lock(&intel_pstate_limits_lock);
1068
1069 global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1070
1071 mutex_unlock(&intel_pstate_limits_lock);
1072
1073 intel_pstate_update_policies();
1074
1075 mutex_unlock(&intel_pstate_driver_lock);
1076
1077 return count;
1078 }
1079
1080 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1081 const char *buf, size_t count)
1082 {
1083 unsigned int input;
1084 int ret;
1085
1086 ret = sscanf(buf, "%u", &input);
1087 if (ret != 1)
1088 return -EINVAL;
1089
1090 mutex_lock(&intel_pstate_driver_lock);
1091
1092 if (!intel_pstate_driver) {
1093 mutex_unlock(&intel_pstate_driver_lock);
1094 return -EAGAIN;
1095 }
1096
1097 mutex_lock(&intel_pstate_limits_lock);
1098
1099 global.min_perf_pct = clamp_t(int, input,
1100 min_perf_pct_min(), global.max_perf_pct);
1101
1102 mutex_unlock(&intel_pstate_limits_lock);
1103
1104 intel_pstate_update_policies();
1105
1106 mutex_unlock(&intel_pstate_driver_lock);
1107
1108 return count;
1109 }
1110
1111 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1112 struct kobj_attribute *attr, char *buf)
1113 {
1114 return sprintf(buf, "%u\n", hwp_boost);
1115 }
1116
1117 static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1118 struct kobj_attribute *b,
1119 const char *buf, size_t count)
1120 {
1121 unsigned int input;
1122 int ret;
1123
1124 ret = kstrtouint(buf, 10, &input);
1125 if (ret)
1126 return ret;
1127
1128 mutex_lock(&intel_pstate_driver_lock);
1129 hwp_boost = !!input;
1130 intel_pstate_update_policies();
1131 mutex_unlock(&intel_pstate_driver_lock);
1132
1133 return count;
1134 }
1135
1136 show_one(max_perf_pct, max_perf_pct);
1137 show_one(min_perf_pct, min_perf_pct);
1138
1139 define_one_global_rw(status);
1140 define_one_global_rw(no_turbo);
1141 define_one_global_rw(max_perf_pct);
1142 define_one_global_rw(min_perf_pct);
1143 define_one_global_ro(turbo_pct);
1144 define_one_global_ro(num_pstates);
1145 define_one_global_rw(hwp_dynamic_boost);
1146
1147 static struct attribute *intel_pstate_attributes[] = {
1148 &status.attr,
1149 &no_turbo.attr,
1150 &turbo_pct.attr,
1151 &num_pstates.attr,
1152 NULL
1153 };
1154
1155 static const struct attribute_group intel_pstate_attr_group = {
1156 .attrs = intel_pstate_attributes,
1157 };
1158
1159 static void __init intel_pstate_sysfs_expose_params(void)
1160 {
1161 struct kobject *intel_pstate_kobject;
1162 int rc;
1163
1164 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1165 &cpu_subsys.dev_root->kobj);
1166 if (WARN_ON(!intel_pstate_kobject))
1167 return;
1168
1169 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1170 if (WARN_ON(rc))
1171 return;
1172
1173 /*
1174 * If per cpu limits are enforced there are no global limits, so
1175 * return without creating max/min_perf_pct attributes
1176 */
1177 if (per_cpu_limits)
1178 return;
1179
1180 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1181 WARN_ON(rc);
1182
1183 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1184 WARN_ON(rc);
1185
1186 if (hwp_active) {
1187 rc = sysfs_create_file(intel_pstate_kobject,
1188 &hwp_dynamic_boost.attr);
1189 WARN_ON(rc);
1190 }
1191 }
1192 /************************** sysfs end ************************/
1193
1194 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1195 {
1196 /* First disable HWP notification interrupt as we don't process them */
1197 if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1198 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1199
1200 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1201 cpudata->epp_policy = 0;
1202 if (cpudata->epp_default == -EINVAL)
1203 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1204 }
1205
1206 #define MSR_IA32_POWER_CTL_BIT_EE 19
1207
1208 /* Disable energy efficiency optimization */
1209 static void intel_pstate_disable_ee(int cpu)
1210 {
1211 u64 power_ctl;
1212 int ret;
1213
1214 ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1215 if (ret)
1216 return;
1217
1218 if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1219 pr_info("Disabling energy efficiency optimization\n");
1220 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1221 wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1222 }
1223 }
1224
1225 static int atom_get_min_pstate(void)
1226 {
1227 u64 value;
1228
1229 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1230 return (value >> 8) & 0x7F;
1231 }
1232
1233 static int atom_get_max_pstate(void)
1234 {
1235 u64 value;
1236
1237 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1238 return (value >> 16) & 0x7F;
1239 }
1240
1241 static int atom_get_turbo_pstate(void)
1242 {
1243 u64 value;
1244
1245 rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1246 return value & 0x7F;
1247 }
1248
1249 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1250 {
1251 u64 val;
1252 int32_t vid_fp;
1253 u32 vid;
1254
1255 val = (u64)pstate << 8;
1256 if (global.no_turbo && !global.turbo_disabled)
1257 val |= (u64)1 << 32;
1258
1259 vid_fp = cpudata->vid.min + mul_fp(
1260 int_tofp(pstate - cpudata->pstate.min_pstate),
1261 cpudata->vid.ratio);
1262
1263 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1264 vid = ceiling_fp(vid_fp);
1265
1266 if (pstate > cpudata->pstate.max_pstate)
1267 vid = cpudata->vid.turbo;
1268
1269 return val | vid;
1270 }
1271
1272 static int silvermont_get_scaling(void)
1273 {
1274 u64 value;
1275 int i;
1276 /* Defined in Table 35-6 from SDM (Sept 2015) */
1277 static int silvermont_freq_table[] = {
1278 83300, 100000, 133300, 116700, 80000};
1279
1280 rdmsrl(MSR_FSB_FREQ, value);
1281 i = value & 0x7;
1282 WARN_ON(i > 4);
1283
1284 return silvermont_freq_table[i];
1285 }
1286
1287 static int airmont_get_scaling(void)
1288 {
1289 u64 value;
1290 int i;
1291 /* Defined in Table 35-10 from SDM (Sept 2015) */
1292 static int airmont_freq_table[] = {
1293 83300, 100000, 133300, 116700, 80000,
1294 93300, 90000, 88900, 87500};
1295
1296 rdmsrl(MSR_FSB_FREQ, value);
1297 i = value & 0xF;
1298 WARN_ON(i > 8);
1299
1300 return airmont_freq_table[i];
1301 }
1302
1303 static void atom_get_vid(struct cpudata *cpudata)
1304 {
1305 u64 value;
1306
1307 rdmsrl(MSR_ATOM_CORE_VIDS, value);
1308 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1309 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1310 cpudata->vid.ratio = div_fp(
1311 cpudata->vid.max - cpudata->vid.min,
1312 int_tofp(cpudata->pstate.max_pstate -
1313 cpudata->pstate.min_pstate));
1314
1315 rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1316 cpudata->vid.turbo = value & 0x7f;
1317 }
1318
1319 static int core_get_min_pstate(void)
1320 {
1321 u64 value;
1322
1323 rdmsrl(MSR_PLATFORM_INFO, value);
1324 return (value >> 40) & 0xFF;
1325 }
1326
1327 static int core_get_max_pstate_physical(void)
1328 {
1329 u64 value;
1330
1331 rdmsrl(MSR_PLATFORM_INFO, value);
1332 return (value >> 8) & 0xFF;
1333 }
1334
1335 static int core_get_tdp_ratio(u64 plat_info)
1336 {
1337 /* Check how many TDP levels present */
1338 if (plat_info & 0x600000000) {
1339 u64 tdp_ctrl;
1340 u64 tdp_ratio;
1341 int tdp_msr;
1342 int err;
1343
1344 /* Get the TDP level (0, 1, 2) to get ratios */
1345 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1346 if (err)
1347 return err;
1348
1349 /* TDP MSR are continuous starting at 0x648 */
1350 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1351 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1352 if (err)
1353 return err;
1354
1355 /* For level 1 and 2, bits[23:16] contain the ratio */
1356 if (tdp_ctrl & 0x03)
1357 tdp_ratio >>= 16;
1358
1359 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1360 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1361
1362 return (int)tdp_ratio;
1363 }
1364
1365 return -ENXIO;
1366 }
1367
1368 static int core_get_max_pstate(void)
1369 {
1370 u64 tar;
1371 u64 plat_info;
1372 int max_pstate;
1373 int tdp_ratio;
1374 int err;
1375
1376 rdmsrl(MSR_PLATFORM_INFO, plat_info);
1377 max_pstate = (plat_info >> 8) & 0xFF;
1378
1379 tdp_ratio = core_get_tdp_ratio(plat_info);
1380 if (tdp_ratio <= 0)
1381 return max_pstate;
1382
1383 if (hwp_active) {
1384 /* Turbo activation ratio is not used on HWP platforms */
1385 return tdp_ratio;
1386 }
1387
1388 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1389 if (!err) {
1390 int tar_levels;
1391
1392 /* Do some sanity checking for safety */
1393 tar_levels = tar & 0xff;
1394 if (tdp_ratio - 1 == tar_levels) {
1395 max_pstate = tar_levels;
1396 pr_debug("max_pstate=TAC %x\n", max_pstate);
1397 }
1398 }
1399
1400 return max_pstate;
1401 }
1402
1403 static int core_get_turbo_pstate(void)
1404 {
1405 u64 value;
1406 int nont, ret;
1407
1408 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1409 nont = core_get_max_pstate();
1410 ret = (value) & 255;
1411 if (ret <= nont)
1412 ret = nont;
1413 return ret;
1414 }
1415
1416 static inline int core_get_scaling(void)
1417 {
1418 return 100000;
1419 }
1420
1421 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1422 {
1423 u64 val;
1424
1425 val = (u64)pstate << 8;
1426 if (global.no_turbo && !global.turbo_disabled)
1427 val |= (u64)1 << 32;
1428
1429 return val;
1430 }
1431
1432 static int knl_get_aperf_mperf_shift(void)
1433 {
1434 return 10;
1435 }
1436
1437 static int knl_get_turbo_pstate(void)
1438 {
1439 u64 value;
1440 int nont, ret;
1441
1442 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1443 nont = core_get_max_pstate();
1444 ret = (((value) >> 8) & 0xFF);
1445 if (ret <= nont)
1446 ret = nont;
1447 return ret;
1448 }
1449
1450 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1451 {
1452 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1453 cpu->pstate.current_pstate = pstate;
1454 /*
1455 * Generally, there is no guarantee that this code will always run on
1456 * the CPU being updated, so force the register update to run on the
1457 * right CPU.
1458 */
1459 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1460 pstate_funcs.get_val(cpu, pstate));
1461 }
1462
1463 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1464 {
1465 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1466 }
1467
1468 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1469 {
1470 int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1471
1472 update_turbo_state();
1473 intel_pstate_set_pstate(cpu, pstate);
1474 }
1475
1476 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1477 {
1478 cpu->pstate.min_pstate = pstate_funcs.get_min();
1479 cpu->pstate.max_pstate = pstate_funcs.get_max();
1480 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1481 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1482 cpu->pstate.scaling = pstate_funcs.get_scaling();
1483 cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1484
1485 if (hwp_active && !hwp_mode_bdw) {
1486 unsigned int phy_max, current_max;
1487
1488 intel_pstate_get_hwp_max(cpu->cpu, &phy_max, &current_max);
1489 cpu->pstate.turbo_freq = phy_max * cpu->pstate.scaling;
1490 } else {
1491 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1492 }
1493
1494 if (pstate_funcs.get_aperf_mperf_shift)
1495 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
1496
1497 if (pstate_funcs.get_vid)
1498 pstate_funcs.get_vid(cpu);
1499
1500 intel_pstate_set_min_pstate(cpu);
1501 }
1502
1503 /*
1504 * Long hold time will keep high perf limits for long time,
1505 * which negatively impacts perf/watt for some workloads,
1506 * like specpower. 3ms is based on experiements on some
1507 * workoads.
1508 */
1509 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
1510
1511 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
1512 {
1513 u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
1514 u32 max_limit = (hwp_req & 0xff00) >> 8;
1515 u32 min_limit = (hwp_req & 0xff);
1516 u32 boost_level1;
1517
1518 /*
1519 * Cases to consider (User changes via sysfs or boot time):
1520 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
1521 * No boost, return.
1522 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
1523 * Should result in one level boost only for P0.
1524 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
1525 * Should result in two level boost:
1526 * (min + p1)/2 and P1.
1527 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
1528 * Should result in three level boost:
1529 * (min + p1)/2, P1 and P0.
1530 */
1531
1532 /* If max and min are equal or already at max, nothing to boost */
1533 if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
1534 return;
1535
1536 if (!cpu->hwp_boost_min)
1537 cpu->hwp_boost_min = min_limit;
1538
1539 /* level at half way mark between min and guranteed */
1540 boost_level1 = (HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) + min_limit) >> 1;
1541
1542 if (cpu->hwp_boost_min < boost_level1)
1543 cpu->hwp_boost_min = boost_level1;
1544 else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1545 cpu->hwp_boost_min = HWP_GUARANTEED_PERF(cpu->hwp_cap_cached);
1546 else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) &&
1547 max_limit != HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1548 cpu->hwp_boost_min = max_limit;
1549 else
1550 return;
1551
1552 hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
1553 wrmsrl(MSR_HWP_REQUEST, hwp_req);
1554 cpu->last_update = cpu->sample.time;
1555 }
1556
1557 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
1558 {
1559 if (cpu->hwp_boost_min) {
1560 bool expired;
1561
1562 /* Check if we are idle for hold time to boost down */
1563 expired = time_after64(cpu->sample.time, cpu->last_update +
1564 hwp_boost_hold_time_ns);
1565 if (expired) {
1566 wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
1567 cpu->hwp_boost_min = 0;
1568 }
1569 }
1570 cpu->last_update = cpu->sample.time;
1571 }
1572
1573 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
1574 u64 time)
1575 {
1576 cpu->sample.time = time;
1577
1578 if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
1579 bool do_io = false;
1580
1581 cpu->sched_flags = 0;
1582 /*
1583 * Set iowait_boost flag and update time. Since IO WAIT flag
1584 * is set all the time, we can't just conclude that there is
1585 * some IO bound activity is scheduled on this CPU with just
1586 * one occurrence. If we receive at least two in two
1587 * consecutive ticks, then we treat as boost candidate.
1588 */
1589 if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
1590 do_io = true;
1591
1592 cpu->last_io_update = time;
1593
1594 if (do_io)
1595 intel_pstate_hwp_boost_up(cpu);
1596
1597 } else {
1598 intel_pstate_hwp_boost_down(cpu);
1599 }
1600 }
1601
1602 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
1603 u64 time, unsigned int flags)
1604 {
1605 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1606
1607 cpu->sched_flags |= flags;
1608
1609 if (smp_processor_id() == cpu->cpu)
1610 intel_pstate_update_util_hwp_local(cpu, time);
1611 }
1612
1613 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1614 {
1615 struct sample *sample = &cpu->sample;
1616
1617 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1618 }
1619
1620 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1621 {
1622 u64 aperf, mperf;
1623 unsigned long flags;
1624 u64 tsc;
1625
1626 local_irq_save(flags);
1627 rdmsrl(MSR_IA32_APERF, aperf);
1628 rdmsrl(MSR_IA32_MPERF, mperf);
1629 tsc = rdtsc();
1630 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1631 local_irq_restore(flags);
1632 return false;
1633 }
1634 local_irq_restore(flags);
1635
1636 cpu->last_sample_time = cpu->sample.time;
1637 cpu->sample.time = time;
1638 cpu->sample.aperf = aperf;
1639 cpu->sample.mperf = mperf;
1640 cpu->sample.tsc = tsc;
1641 cpu->sample.aperf -= cpu->prev_aperf;
1642 cpu->sample.mperf -= cpu->prev_mperf;
1643 cpu->sample.tsc -= cpu->prev_tsc;
1644
1645 cpu->prev_aperf = aperf;
1646 cpu->prev_mperf = mperf;
1647 cpu->prev_tsc = tsc;
1648 /*
1649 * First time this function is invoked in a given cycle, all of the
1650 * previous sample data fields are equal to zero or stale and they must
1651 * be populated with meaningful numbers for things to work, so assume
1652 * that sample.time will always be reset before setting the utilization
1653 * update hook and make the caller skip the sample then.
1654 */
1655 if (cpu->last_sample_time) {
1656 intel_pstate_calc_avg_perf(cpu);
1657 return true;
1658 }
1659 return false;
1660 }
1661
1662 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1663 {
1664 return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1665 }
1666
1667 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1668 {
1669 return mul_ext_fp(cpu->pstate.max_pstate_physical,
1670 cpu->sample.core_avg_perf);
1671 }
1672
1673 static inline int32_t get_target_pstate(struct cpudata *cpu)
1674 {
1675 struct sample *sample = &cpu->sample;
1676 int32_t busy_frac;
1677 int target, avg_pstate;
1678
1679 busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
1680 sample->tsc);
1681
1682 if (busy_frac < cpu->iowait_boost)
1683 busy_frac = cpu->iowait_boost;
1684
1685 sample->busy_scaled = busy_frac * 100;
1686
1687 target = global.no_turbo || global.turbo_disabled ?
1688 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1689 target += target >> 2;
1690 target = mul_fp(target, busy_frac);
1691 if (target < cpu->pstate.min_pstate)
1692 target = cpu->pstate.min_pstate;
1693
1694 /*
1695 * If the average P-state during the previous cycle was higher than the
1696 * current target, add 50% of the difference to the target to reduce
1697 * possible performance oscillations and offset possible performance
1698 * loss related to moving the workload from one CPU to another within
1699 * a package/module.
1700 */
1701 avg_pstate = get_avg_pstate(cpu);
1702 if (avg_pstate > target)
1703 target += (avg_pstate - target) >> 1;
1704
1705 return target;
1706 }
1707
1708 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1709 {
1710 int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
1711 int max_pstate = max(min_pstate, cpu->max_perf_ratio);
1712
1713 return clamp_t(int, pstate, min_pstate, max_pstate);
1714 }
1715
1716 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1717 {
1718 if (pstate == cpu->pstate.current_pstate)
1719 return;
1720
1721 cpu->pstate.current_pstate = pstate;
1722 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1723 }
1724
1725 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1726 {
1727 int from = cpu->pstate.current_pstate;
1728 struct sample *sample;
1729 int target_pstate;
1730
1731 update_turbo_state();
1732
1733 target_pstate = get_target_pstate(cpu);
1734 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1735 trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1736 intel_pstate_update_pstate(cpu, target_pstate);
1737
1738 sample = &cpu->sample;
1739 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1740 fp_toint(sample->busy_scaled),
1741 from,
1742 cpu->pstate.current_pstate,
1743 sample->mperf,
1744 sample->aperf,
1745 sample->tsc,
1746 get_avg_frequency(cpu),
1747 fp_toint(cpu->iowait_boost * 100));
1748 }
1749
1750 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1751 unsigned int flags)
1752 {
1753 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1754 u64 delta_ns;
1755
1756 /* Don't allow remote callbacks */
1757 if (smp_processor_id() != cpu->cpu)
1758 return;
1759
1760 delta_ns = time - cpu->last_update;
1761 if (flags & SCHED_CPUFREQ_IOWAIT) {
1762 /* Start over if the CPU may have been idle. */
1763 if (delta_ns > TICK_NSEC) {
1764 cpu->iowait_boost = ONE_EIGHTH_FP;
1765 } else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
1766 cpu->iowait_boost <<= 1;
1767 if (cpu->iowait_boost > int_tofp(1))
1768 cpu->iowait_boost = int_tofp(1);
1769 } else {
1770 cpu->iowait_boost = ONE_EIGHTH_FP;
1771 }
1772 } else if (cpu->iowait_boost) {
1773 /* Clear iowait_boost if the CPU may have been idle. */
1774 if (delta_ns > TICK_NSEC)
1775 cpu->iowait_boost = 0;
1776 else
1777 cpu->iowait_boost >>= 1;
1778 }
1779 cpu->last_update = time;
1780 delta_ns = time - cpu->sample.time;
1781 if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
1782 return;
1783
1784 if (intel_pstate_sample(cpu, time))
1785 intel_pstate_adjust_pstate(cpu);
1786 }
1787
1788 static struct pstate_funcs core_funcs = {
1789 .get_max = core_get_max_pstate,
1790 .get_max_physical = core_get_max_pstate_physical,
1791 .get_min = core_get_min_pstate,
1792 .get_turbo = core_get_turbo_pstate,
1793 .get_scaling = core_get_scaling,
1794 .get_val = core_get_val,
1795 };
1796
1797 static const struct pstate_funcs silvermont_funcs = {
1798 .get_max = atom_get_max_pstate,
1799 .get_max_physical = atom_get_max_pstate,
1800 .get_min = atom_get_min_pstate,
1801 .get_turbo = atom_get_turbo_pstate,
1802 .get_val = atom_get_val,
1803 .get_scaling = silvermont_get_scaling,
1804 .get_vid = atom_get_vid,
1805 };
1806
1807 static const struct pstate_funcs airmont_funcs = {
1808 .get_max = atom_get_max_pstate,
1809 .get_max_physical = atom_get_max_pstate,
1810 .get_min = atom_get_min_pstate,
1811 .get_turbo = atom_get_turbo_pstate,
1812 .get_val = atom_get_val,
1813 .get_scaling = airmont_get_scaling,
1814 .get_vid = atom_get_vid,
1815 };
1816
1817 static const struct pstate_funcs knl_funcs = {
1818 .get_max = core_get_max_pstate,
1819 .get_max_physical = core_get_max_pstate_physical,
1820 .get_min = core_get_min_pstate,
1821 .get_turbo = knl_get_turbo_pstate,
1822 .get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1823 .get_scaling = core_get_scaling,
1824 .get_val = core_get_val,
1825 };
1826
1827 #define ICPU(model, policy) \
1828 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1829 (unsigned long)&policy }
1830
1831 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1832 ICPU(INTEL_FAM6_SANDYBRIDGE, core_funcs),
1833 ICPU(INTEL_FAM6_SANDYBRIDGE_X, core_funcs),
1834 ICPU(INTEL_FAM6_ATOM_SILVERMONT, silvermont_funcs),
1835 ICPU(INTEL_FAM6_IVYBRIDGE, core_funcs),
1836 ICPU(INTEL_FAM6_HASWELL_CORE, core_funcs),
1837 ICPU(INTEL_FAM6_BROADWELL_CORE, core_funcs),
1838 ICPU(INTEL_FAM6_IVYBRIDGE_X, core_funcs),
1839 ICPU(INTEL_FAM6_HASWELL_X, core_funcs),
1840 ICPU(INTEL_FAM6_HASWELL_ULT, core_funcs),
1841 ICPU(INTEL_FAM6_HASWELL_GT3E, core_funcs),
1842 ICPU(INTEL_FAM6_BROADWELL_GT3E, core_funcs),
1843 ICPU(INTEL_FAM6_ATOM_AIRMONT, airmont_funcs),
1844 ICPU(INTEL_FAM6_SKYLAKE_MOBILE, core_funcs),
1845 ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1846 ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_funcs),
1847 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
1848 ICPU(INTEL_FAM6_XEON_PHI_KNL, knl_funcs),
1849 ICPU(INTEL_FAM6_XEON_PHI_KNM, knl_funcs),
1850 ICPU(INTEL_FAM6_ATOM_GOLDMONT, core_funcs),
1851 ICPU(INTEL_FAM6_ATOM_GOLDMONT_PLUS, core_funcs),
1852 ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1853 {}
1854 };
1855 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1856
1857 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1858 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
1859 ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1860 ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1861 {}
1862 };
1863
1864 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1865 ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs),
1866 {}
1867 };
1868
1869 static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
1870 ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1871 ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_funcs),
1872 {}
1873 };
1874
1875 static int intel_pstate_init_cpu(unsigned int cpunum)
1876 {
1877 struct cpudata *cpu;
1878
1879 cpu = all_cpu_data[cpunum];
1880
1881 if (!cpu) {
1882 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1883 if (!cpu)
1884 return -ENOMEM;
1885
1886 all_cpu_data[cpunum] = cpu;
1887
1888 cpu->epp_default = -EINVAL;
1889 cpu->epp_powersave = -EINVAL;
1890 cpu->epp_saved = -EINVAL;
1891 }
1892
1893 cpu = all_cpu_data[cpunum];
1894
1895 cpu->cpu = cpunum;
1896
1897 if (hwp_active) {
1898 const struct x86_cpu_id *id;
1899
1900 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1901 if (id)
1902 intel_pstate_disable_ee(cpunum);
1903
1904 intel_pstate_hwp_enable(cpu);
1905
1906 id = x86_match_cpu(intel_pstate_hwp_boost_ids);
1907 if (id && intel_pstate_acpi_pm_profile_server())
1908 hwp_boost = true;
1909 }
1910
1911 intel_pstate_get_cpu_pstates(cpu);
1912
1913 pr_debug("controlling: cpu %d\n", cpunum);
1914
1915 return 0;
1916 }
1917
1918 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1919 {
1920 struct cpudata *cpu = all_cpu_data[cpu_num];
1921
1922 if (hwp_active && !hwp_boost)
1923 return;
1924
1925 if (cpu->update_util_set)
1926 return;
1927
1928 /* Prevent intel_pstate_update_util() from using stale data. */
1929 cpu->sample.time = 0;
1930 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1931 (hwp_active ?
1932 intel_pstate_update_util_hwp :
1933 intel_pstate_update_util));
1934 cpu->update_util_set = true;
1935 }
1936
1937 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1938 {
1939 struct cpudata *cpu_data = all_cpu_data[cpu];
1940
1941 if (!cpu_data->update_util_set)
1942 return;
1943
1944 cpufreq_remove_update_util_hook(cpu);
1945 cpu_data->update_util_set = false;
1946 synchronize_rcu();
1947 }
1948
1949 static int intel_pstate_get_max_freq(struct cpudata *cpu)
1950 {
1951 return global.turbo_disabled || global.no_turbo ?
1952 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
1953 }
1954
1955 static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1956 struct cpudata *cpu)
1957 {
1958 int max_freq = intel_pstate_get_max_freq(cpu);
1959 int32_t max_policy_perf, min_policy_perf;
1960 int max_state, turbo_max;
1961
1962 /*
1963 * HWP needs some special consideration, because on BDX the
1964 * HWP_REQUEST uses abstract value to represent performance
1965 * rather than pure ratios.
1966 */
1967 if (hwp_active) {
1968 intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
1969 } else {
1970 max_state = global.no_turbo || global.turbo_disabled ?
1971 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1972 turbo_max = cpu->pstate.turbo_pstate;
1973 }
1974
1975 max_policy_perf = max_state * policy->max / max_freq;
1976 if (policy->max == policy->min) {
1977 min_policy_perf = max_policy_perf;
1978 } else {
1979 min_policy_perf = max_state * policy->min / max_freq;
1980 min_policy_perf = clamp_t(int32_t, min_policy_perf,
1981 0, max_policy_perf);
1982 }
1983
1984 pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
1985 policy->cpu, max_state,
1986 min_policy_perf, max_policy_perf);
1987
1988 /* Normalize user input to [min_perf, max_perf] */
1989 if (per_cpu_limits) {
1990 cpu->min_perf_ratio = min_policy_perf;
1991 cpu->max_perf_ratio = max_policy_perf;
1992 } else {
1993 int32_t global_min, global_max;
1994
1995 /* Global limits are in percent of the maximum turbo P-state. */
1996 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
1997 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
1998 global_min = clamp_t(int32_t, global_min, 0, global_max);
1999
2000 pr_debug("cpu:%d global_min:%d global_max:%d\n", policy->cpu,
2001 global_min, global_max);
2002
2003 cpu->min_perf_ratio = max(min_policy_perf, global_min);
2004 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2005 cpu->max_perf_ratio = min(max_policy_perf, global_max);
2006 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2007
2008 /* Make sure min_perf <= max_perf */
2009 cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2010 cpu->max_perf_ratio);
2011
2012 }
2013 pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy->cpu,
2014 cpu->max_perf_ratio,
2015 cpu->min_perf_ratio);
2016 }
2017
2018 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2019 {
2020 struct cpudata *cpu;
2021
2022 if (!policy->cpuinfo.max_freq)
2023 return -ENODEV;
2024
2025 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2026 policy->cpuinfo.max_freq, policy->max);
2027
2028 cpu = all_cpu_data[policy->cpu];
2029 cpu->policy = policy->policy;
2030
2031 mutex_lock(&intel_pstate_limits_lock);
2032
2033 intel_pstate_update_perf_limits(policy, cpu);
2034
2035 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2036 /*
2037 * NOHZ_FULL CPUs need this as the governor callback may not
2038 * be invoked on them.
2039 */
2040 intel_pstate_clear_update_util_hook(policy->cpu);
2041 intel_pstate_max_within_limits(cpu);
2042 } else {
2043 intel_pstate_set_update_util_hook(policy->cpu);
2044 }
2045
2046 if (hwp_active) {
2047 /*
2048 * When hwp_boost was active before and dynamically it
2049 * was turned off, in that case we need to clear the
2050 * update util hook.
2051 */
2052 if (!hwp_boost)
2053 intel_pstate_clear_update_util_hook(policy->cpu);
2054 intel_pstate_hwp_set(policy->cpu);
2055 }
2056
2057 mutex_unlock(&intel_pstate_limits_lock);
2058
2059 return 0;
2060 }
2061
2062 static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
2063 struct cpudata *cpu)
2064 {
2065 if (!hwp_active &&
2066 cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2067 policy->max < policy->cpuinfo.max_freq &&
2068 policy->max > cpu->pstate.max_freq) {
2069 pr_debug("policy->max > max non turbo frequency\n");
2070 policy->max = policy->cpuinfo.max_freq;
2071 }
2072 }
2073
2074 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2075 {
2076 struct cpudata *cpu = all_cpu_data[policy->cpu];
2077
2078 update_turbo_state();
2079 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2080 intel_pstate_get_max_freq(cpu));
2081
2082 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2083 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2084 return -EINVAL;
2085
2086 intel_pstate_adjust_policy_max(policy, cpu);
2087
2088 return 0;
2089 }
2090
2091 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2092 {
2093 intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2094 }
2095
2096 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2097 {
2098 pr_debug("CPU %d exiting\n", policy->cpu);
2099
2100 intel_pstate_clear_update_util_hook(policy->cpu);
2101 if (hwp_active) {
2102 intel_pstate_hwp_save_state(policy);
2103 intel_pstate_hwp_force_min_perf(policy->cpu);
2104 } else {
2105 intel_cpufreq_stop_cpu(policy);
2106 }
2107 }
2108
2109 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2110 {
2111 intel_pstate_exit_perf_limits(policy);
2112
2113 policy->fast_switch_possible = false;
2114
2115 return 0;
2116 }
2117
2118 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2119 {
2120 struct cpudata *cpu;
2121 int rc;
2122
2123 rc = intel_pstate_init_cpu(policy->cpu);
2124 if (rc)
2125 return rc;
2126
2127 cpu = all_cpu_data[policy->cpu];
2128
2129 cpu->max_perf_ratio = 0xFF;
2130 cpu->min_perf_ratio = 0;
2131
2132 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2133 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2134
2135 /* cpuinfo and default policy values */
2136 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2137 update_turbo_state();
2138 policy->cpuinfo.max_freq = global.turbo_disabled ?
2139 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2140 policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2141
2142 if (hwp_active) {
2143 unsigned int max_freq;
2144
2145 max_freq = global.turbo_disabled ?
2146 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2147 if (max_freq < policy->cpuinfo.max_freq)
2148 policy->cpuinfo.max_freq = max_freq;
2149 }
2150
2151 intel_pstate_init_acpi_perf_limits(policy);
2152
2153 policy->fast_switch_possible = true;
2154
2155 return 0;
2156 }
2157
2158 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2159 {
2160 int ret = __intel_pstate_cpu_init(policy);
2161
2162 if (ret)
2163 return ret;
2164
2165 if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2166 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2167 else
2168 policy->policy = CPUFREQ_POLICY_POWERSAVE;
2169
2170 return 0;
2171 }
2172
2173 static struct cpufreq_driver intel_pstate = {
2174 .flags = CPUFREQ_CONST_LOOPS,
2175 .verify = intel_pstate_verify_policy,
2176 .setpolicy = intel_pstate_set_policy,
2177 .suspend = intel_pstate_hwp_save_state,
2178 .resume = intel_pstate_resume,
2179 .init = intel_pstate_cpu_init,
2180 .exit = intel_pstate_cpu_exit,
2181 .stop_cpu = intel_pstate_stop_cpu,
2182 .name = "intel_pstate",
2183 };
2184
2185 static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2186 {
2187 struct cpudata *cpu = all_cpu_data[policy->cpu];
2188
2189 update_turbo_state();
2190 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2191 intel_pstate_get_max_freq(cpu));
2192
2193 intel_pstate_adjust_policy_max(policy, cpu);
2194
2195 intel_pstate_update_perf_limits(policy, cpu);
2196
2197 return 0;
2198 }
2199
2200 /* Use of trace in passive mode:
2201 *
2202 * In passive mode the trace core_busy field (also known as the
2203 * performance field, and lablelled as such on the graphs; also known as
2204 * core_avg_perf) is not needed and so is re-assigned to indicate if the
2205 * driver call was via the normal or fast switch path. Various graphs
2206 * output from the intel_pstate_tracer.py utility that include core_busy
2207 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2208 * so we use 10 to indicate the the normal path through the driver, and
2209 * 90 to indicate the fast switch path through the driver.
2210 * The scaled_busy field is not used, and is set to 0.
2211 */
2212
2213 #define INTEL_PSTATE_TRACE_TARGET 10
2214 #define INTEL_PSTATE_TRACE_FAST_SWITCH 90
2215
2216 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2217 {
2218 struct sample *sample;
2219
2220 if (!trace_pstate_sample_enabled())
2221 return;
2222
2223 if (!intel_pstate_sample(cpu, ktime_get()))
2224 return;
2225
2226 sample = &cpu->sample;
2227 trace_pstate_sample(trace_type,
2228 0,
2229 old_pstate,
2230 cpu->pstate.current_pstate,
2231 sample->mperf,
2232 sample->aperf,
2233 sample->tsc,
2234 get_avg_frequency(cpu),
2235 fp_toint(cpu->iowait_boost * 100));
2236 }
2237
2238 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2239 unsigned int target_freq,
2240 unsigned int relation)
2241 {
2242 struct cpudata *cpu = all_cpu_data[policy->cpu];
2243 struct cpufreq_freqs freqs;
2244 int target_pstate, old_pstate;
2245
2246 update_turbo_state();
2247
2248 freqs.old = policy->cur;
2249 freqs.new = target_freq;
2250
2251 cpufreq_freq_transition_begin(policy, &freqs);
2252 switch (relation) {
2253 case CPUFREQ_RELATION_L:
2254 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2255 break;
2256 case CPUFREQ_RELATION_H:
2257 target_pstate = freqs.new / cpu->pstate.scaling;
2258 break;
2259 default:
2260 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2261 break;
2262 }
2263 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2264 old_pstate = cpu->pstate.current_pstate;
2265 if (target_pstate != cpu->pstate.current_pstate) {
2266 cpu->pstate.current_pstate = target_pstate;
2267 wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2268 pstate_funcs.get_val(cpu, target_pstate));
2269 }
2270 freqs.new = target_pstate * cpu->pstate.scaling;
2271 intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_TARGET, old_pstate);
2272 cpufreq_freq_transition_end(policy, &freqs, false);
2273
2274 return 0;
2275 }
2276
2277 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2278 unsigned int target_freq)
2279 {
2280 struct cpudata *cpu = all_cpu_data[policy->cpu];
2281 int target_pstate, old_pstate;
2282
2283 update_turbo_state();
2284
2285 target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2286 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2287 old_pstate = cpu->pstate.current_pstate;
2288 intel_pstate_update_pstate(cpu, target_pstate);
2289 intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2290 return target_pstate * cpu->pstate.scaling;
2291 }
2292
2293 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2294 {
2295 int ret = __intel_pstate_cpu_init(policy);
2296
2297 if (ret)
2298 return ret;
2299
2300 policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2301 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2302 /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2303 policy->cur = policy->cpuinfo.min_freq;
2304
2305 return 0;
2306 }
2307
2308 static struct cpufreq_driver intel_cpufreq = {
2309 .flags = CPUFREQ_CONST_LOOPS,
2310 .verify = intel_cpufreq_verify_policy,
2311 .target = intel_cpufreq_target,
2312 .fast_switch = intel_cpufreq_fast_switch,
2313 .init = intel_cpufreq_cpu_init,
2314 .exit = intel_pstate_cpu_exit,
2315 .stop_cpu = intel_cpufreq_stop_cpu,
2316 .name = "intel_cpufreq",
2317 };
2318
2319 static struct cpufreq_driver *default_driver = &intel_pstate;
2320
2321 static void intel_pstate_driver_cleanup(void)
2322 {
2323 unsigned int cpu;
2324
2325 get_online_cpus();
2326 for_each_online_cpu(cpu) {
2327 if (all_cpu_data[cpu]) {
2328 if (intel_pstate_driver == &intel_pstate)
2329 intel_pstate_clear_update_util_hook(cpu);
2330
2331 kfree(all_cpu_data[cpu]);
2332 all_cpu_data[cpu] = NULL;
2333 }
2334 }
2335 put_online_cpus();
2336 intel_pstate_driver = NULL;
2337 }
2338
2339 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2340 {
2341 int ret;
2342
2343 memset(&global, 0, sizeof(global));
2344 global.max_perf_pct = 100;
2345
2346 intel_pstate_driver = driver;
2347 ret = cpufreq_register_driver(intel_pstate_driver);
2348 if (ret) {
2349 intel_pstate_driver_cleanup();
2350 return ret;
2351 }
2352
2353 global.min_perf_pct = min_perf_pct_min();
2354
2355 return 0;
2356 }
2357
2358 static int intel_pstate_unregister_driver(void)
2359 {
2360 if (hwp_active)
2361 return -EBUSY;
2362
2363 cpufreq_unregister_driver(intel_pstate_driver);
2364 intel_pstate_driver_cleanup();
2365
2366 return 0;
2367 }
2368
2369 static ssize_t intel_pstate_show_status(char *buf)
2370 {
2371 if (!intel_pstate_driver)
2372 return sprintf(buf, "off\n");
2373
2374 return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2375 "active" : "passive");
2376 }
2377
2378 static int intel_pstate_update_status(const char *buf, size_t size)
2379 {
2380 int ret;
2381
2382 if (size == 3 && !strncmp(buf, "off", size))
2383 return intel_pstate_driver ?
2384 intel_pstate_unregister_driver() : -EINVAL;
2385
2386 if (size == 6 && !strncmp(buf, "active", size)) {
2387 if (intel_pstate_driver) {
2388 if (intel_pstate_driver == &intel_pstate)
2389 return 0;
2390
2391 ret = intel_pstate_unregister_driver();
2392 if (ret)
2393 return ret;
2394 }
2395
2396 return intel_pstate_register_driver(&intel_pstate);
2397 }
2398
2399 if (size == 7 && !strncmp(buf, "passive", size)) {
2400 if (intel_pstate_driver) {
2401 if (intel_pstate_driver == &intel_cpufreq)
2402 return 0;
2403
2404 ret = intel_pstate_unregister_driver();
2405 if (ret)
2406 return ret;
2407 }
2408
2409 return intel_pstate_register_driver(&intel_cpufreq);
2410 }
2411
2412 return -EINVAL;
2413 }
2414
2415 static int no_load __initdata;
2416 static int no_hwp __initdata;
2417 static int hwp_only __initdata;
2418 static unsigned int force_load __initdata;
2419
2420 static int __init intel_pstate_msrs_not_valid(void)
2421 {
2422 if (!pstate_funcs.get_max() ||
2423 !pstate_funcs.get_min() ||
2424 !pstate_funcs.get_turbo())
2425 return -ENODEV;
2426
2427 return 0;
2428 }
2429
2430 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2431 {
2432 pstate_funcs.get_max = funcs->get_max;
2433 pstate_funcs.get_max_physical = funcs->get_max_physical;
2434 pstate_funcs.get_min = funcs->get_min;
2435 pstate_funcs.get_turbo = funcs->get_turbo;
2436 pstate_funcs.get_scaling = funcs->get_scaling;
2437 pstate_funcs.get_val = funcs->get_val;
2438 pstate_funcs.get_vid = funcs->get_vid;
2439 pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2440 }
2441
2442 #ifdef CONFIG_ACPI
2443
2444 static bool __init intel_pstate_no_acpi_pss(void)
2445 {
2446 int i;
2447
2448 for_each_possible_cpu(i) {
2449 acpi_status status;
2450 union acpi_object *pss;
2451 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2452 struct acpi_processor *pr = per_cpu(processors, i);
2453
2454 if (!pr)
2455 continue;
2456
2457 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2458 if (ACPI_FAILURE(status))
2459 continue;
2460
2461 pss = buffer.pointer;
2462 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2463 kfree(pss);
2464 return false;
2465 }
2466
2467 kfree(pss);
2468 }
2469
2470 pr_debug("ACPI _PSS not found\n");
2471 return true;
2472 }
2473
2474 static bool __init intel_pstate_no_acpi_pcch(void)
2475 {
2476 acpi_status status;
2477 acpi_handle handle;
2478
2479 status = acpi_get_handle(NULL, "\\_SB", &handle);
2480 if (ACPI_FAILURE(status))
2481 goto not_found;
2482
2483 if (acpi_has_method(handle, "PCCH"))
2484 return false;
2485
2486 not_found:
2487 pr_debug("ACPI PCCH not found\n");
2488 return true;
2489 }
2490
2491 static bool __init intel_pstate_has_acpi_ppc(void)
2492 {
2493 int i;
2494
2495 for_each_possible_cpu(i) {
2496 struct acpi_processor *pr = per_cpu(processors, i);
2497
2498 if (!pr)
2499 continue;
2500 if (acpi_has_method(pr->handle, "_PPC"))
2501 return true;
2502 }
2503 pr_debug("ACPI _PPC not found\n");
2504 return false;
2505 }
2506
2507 enum {
2508 PSS,
2509 PPC,
2510 };
2511
2512 /* Hardware vendor-specific info that has its own power management modes */
2513 static struct acpi_platform_list plat_info[] __initdata = {
2514 {"HP ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, 0, PSS},
2515 {"ORACLE", "X4-2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2516 {"ORACLE", "X4-2L ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2517 {"ORACLE", "X4-2B ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2518 {"ORACLE", "X3-2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2519 {"ORACLE", "X3-2L ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2520 {"ORACLE", "X3-2B ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2521 {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2522 {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2523 {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2524 {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2525 {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2526 {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2527 {"ORACLE", "X6-2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2528 {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2529 { } /* End */
2530 };
2531
2532 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2533 {
2534 const struct x86_cpu_id *id;
2535 u64 misc_pwr;
2536 int idx;
2537
2538 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2539 if (id) {
2540 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2541 if (misc_pwr & (1 << 8)) {
2542 pr_debug("Bit 8 in the MISC_PWR_MGMT MSR set\n");
2543 return true;
2544 }
2545 }
2546
2547 idx = acpi_match_platform_list(plat_info);
2548 if (idx < 0)
2549 return false;
2550
2551 switch (plat_info[idx].data) {
2552 case PSS:
2553 if (!intel_pstate_no_acpi_pss())
2554 return false;
2555
2556 return intel_pstate_no_acpi_pcch();
2557 case PPC:
2558 return intel_pstate_has_acpi_ppc() && !force_load;
2559 }
2560
2561 return false;
2562 }
2563
2564 static void intel_pstate_request_control_from_smm(void)
2565 {
2566 /*
2567 * It may be unsafe to request P-states control from SMM if _PPC support
2568 * has not been enabled.
2569 */
2570 if (acpi_ppc)
2571 acpi_processor_pstate_control();
2572 }
2573 #else /* CONFIG_ACPI not enabled */
2574 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2575 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2576 static inline void intel_pstate_request_control_from_smm(void) {}
2577 #endif /* CONFIG_ACPI */
2578
2579 #define INTEL_PSTATE_HWP_BROADWELL 0x01
2580
2581 #define ICPU_HWP(model, hwp_mode) \
2582 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_HWP, hwp_mode }
2583
2584 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2585 ICPU_HWP(INTEL_FAM6_BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL),
2586 ICPU_HWP(INTEL_FAM6_BROADWELL_XEON_D, INTEL_PSTATE_HWP_BROADWELL),
2587 ICPU_HWP(X86_MODEL_ANY, 0),
2588 {}
2589 };
2590
2591 static int __init intel_pstate_init(void)
2592 {
2593 const struct x86_cpu_id *id;
2594 int rc;
2595
2596 if (no_load)
2597 return -ENODEV;
2598
2599 id = x86_match_cpu(hwp_support_ids);
2600 if (id) {
2601 copy_cpu_funcs(&core_funcs);
2602 if (!no_hwp) {
2603 hwp_active++;
2604 hwp_mode_bdw = id->driver_data;
2605 intel_pstate.attr = hwp_cpufreq_attrs;
2606 goto hwp_cpu_matched;
2607 }
2608 } else {
2609 id = x86_match_cpu(intel_pstate_cpu_ids);
2610 if (!id) {
2611 pr_info("CPU ID not supported\n");
2612 return -ENODEV;
2613 }
2614
2615 copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2616 }
2617
2618 if (intel_pstate_msrs_not_valid()) {
2619 pr_info("Invalid MSRs\n");
2620 return -ENODEV;
2621 }
2622
2623 hwp_cpu_matched:
2624 /*
2625 * The Intel pstate driver will be ignored if the platform
2626 * firmware has its own power management modes.
2627 */
2628 if (intel_pstate_platform_pwr_mgmt_exists()) {
2629 pr_info("P-states controlled by the platform\n");
2630 return -ENODEV;
2631 }
2632
2633 if (!hwp_active && hwp_only)
2634 return -ENOTSUPP;
2635
2636 pr_info("Intel P-state driver initializing\n");
2637
2638 all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
2639 if (!all_cpu_data)
2640 return -ENOMEM;
2641
2642 intel_pstate_request_control_from_smm();
2643
2644 intel_pstate_sysfs_expose_params();
2645
2646 mutex_lock(&intel_pstate_driver_lock);
2647 rc = intel_pstate_register_driver(default_driver);
2648 mutex_unlock(&intel_pstate_driver_lock);
2649 if (rc)
2650 return rc;
2651
2652 if (hwp_active)
2653 pr_info("HWP enabled\n");
2654
2655 return 0;
2656 }
2657 device_initcall(intel_pstate_init);
2658
2659 static int __init intel_pstate_setup(char *str)
2660 {
2661 if (!str)
2662 return -EINVAL;
2663
2664 if (!strcmp(str, "disable")) {
2665 no_load = 1;
2666 } else if (!strcmp(str, "passive")) {
2667 pr_info("Passive mode enabled\n");
2668 default_driver = &intel_cpufreq;
2669 no_hwp = 1;
2670 }
2671 if (!strcmp(str, "no_hwp")) {
2672 pr_info("HWP disabled\n");
2673 no_hwp = 1;
2674 }
2675 if (!strcmp(str, "force"))
2676 force_load = 1;
2677 if (!strcmp(str, "hwp_only"))
2678 hwp_only = 1;
2679 if (!strcmp(str, "per_cpu_perf_limits"))
2680 per_cpu_limits = true;
2681
2682 #ifdef CONFIG_ACPI
2683 if (!strcmp(str, "support_acpi_ppc"))
2684 acpi_ppc = true;
2685 #endif
2686
2687 return 0;
2688 }
2689 early_param("intel_pstate", intel_pstate_setup);
2690
2691 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2692 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2693 MODULE_LICENSE("GPL");