]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/crypto/axis/artpec6_crypto.c
x86/fpu/xstate: Restore supervisor states for signal return
[thirdparty/linux.git] / drivers / crypto / axis / artpec6_crypto.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Driver for ARTPEC-6 crypto block using the kernel asynchronous crypto api.
4 *
5 * Copyright (C) 2014-2017 Axis Communications AB
6 */
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8
9 #include <linux/bitfield.h>
10 #include <linux/crypto.h>
11 #include <linux/debugfs.h>
12 #include <linux/delay.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/fault-inject.h>
15 #include <linux/init.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel.h>
18 #include <linux/list.h>
19 #include <linux/module.h>
20 #include <linux/of.h>
21 #include <linux/platform_device.h>
22 #include <linux/scatterlist.h>
23 #include <linux/slab.h>
24
25 #include <crypto/aes.h>
26 #include <crypto/gcm.h>
27 #include <crypto/internal/aead.h>
28 #include <crypto/internal/hash.h>
29 #include <crypto/internal/skcipher.h>
30 #include <crypto/scatterwalk.h>
31 #include <crypto/sha.h>
32 #include <crypto/xts.h>
33
34 /* Max length of a line in all cache levels for Artpec SoCs. */
35 #define ARTPEC_CACHE_LINE_MAX 32
36
37 #define PDMA_OUT_CFG 0x0000
38 #define PDMA_OUT_BUF_CFG 0x0004
39 #define PDMA_OUT_CMD 0x0008
40 #define PDMA_OUT_DESCRQ_PUSH 0x0010
41 #define PDMA_OUT_DESCRQ_STAT 0x0014
42
43 #define A6_PDMA_IN_CFG 0x0028
44 #define A6_PDMA_IN_BUF_CFG 0x002c
45 #define A6_PDMA_IN_CMD 0x0030
46 #define A6_PDMA_IN_STATQ_PUSH 0x0038
47 #define A6_PDMA_IN_DESCRQ_PUSH 0x0044
48 #define A6_PDMA_IN_DESCRQ_STAT 0x0048
49 #define A6_PDMA_INTR_MASK 0x0068
50 #define A6_PDMA_ACK_INTR 0x006c
51 #define A6_PDMA_MASKED_INTR 0x0074
52
53 #define A7_PDMA_IN_CFG 0x002c
54 #define A7_PDMA_IN_BUF_CFG 0x0030
55 #define A7_PDMA_IN_CMD 0x0034
56 #define A7_PDMA_IN_STATQ_PUSH 0x003c
57 #define A7_PDMA_IN_DESCRQ_PUSH 0x0048
58 #define A7_PDMA_IN_DESCRQ_STAT 0x004C
59 #define A7_PDMA_INTR_MASK 0x006c
60 #define A7_PDMA_ACK_INTR 0x0070
61 #define A7_PDMA_MASKED_INTR 0x0078
62
63 #define PDMA_OUT_CFG_EN BIT(0)
64
65 #define PDMA_OUT_BUF_CFG_DATA_BUF_SIZE GENMASK(4, 0)
66 #define PDMA_OUT_BUF_CFG_DESCR_BUF_SIZE GENMASK(9, 5)
67
68 #define PDMA_OUT_CMD_START BIT(0)
69 #define A6_PDMA_OUT_CMD_STOP BIT(3)
70 #define A7_PDMA_OUT_CMD_STOP BIT(2)
71
72 #define PDMA_OUT_DESCRQ_PUSH_LEN GENMASK(5, 0)
73 #define PDMA_OUT_DESCRQ_PUSH_ADDR GENMASK(31, 6)
74
75 #define PDMA_OUT_DESCRQ_STAT_LEVEL GENMASK(3, 0)
76 #define PDMA_OUT_DESCRQ_STAT_SIZE GENMASK(7, 4)
77
78 #define PDMA_IN_CFG_EN BIT(0)
79
80 #define PDMA_IN_BUF_CFG_DATA_BUF_SIZE GENMASK(4, 0)
81 #define PDMA_IN_BUF_CFG_DESCR_BUF_SIZE GENMASK(9, 5)
82 #define PDMA_IN_BUF_CFG_STAT_BUF_SIZE GENMASK(14, 10)
83
84 #define PDMA_IN_CMD_START BIT(0)
85 #define A6_PDMA_IN_CMD_FLUSH_STAT BIT(2)
86 #define A6_PDMA_IN_CMD_STOP BIT(3)
87 #define A7_PDMA_IN_CMD_FLUSH_STAT BIT(1)
88 #define A7_PDMA_IN_CMD_STOP BIT(2)
89
90 #define PDMA_IN_STATQ_PUSH_LEN GENMASK(5, 0)
91 #define PDMA_IN_STATQ_PUSH_ADDR GENMASK(31, 6)
92
93 #define PDMA_IN_DESCRQ_PUSH_LEN GENMASK(5, 0)
94 #define PDMA_IN_DESCRQ_PUSH_ADDR GENMASK(31, 6)
95
96 #define PDMA_IN_DESCRQ_STAT_LEVEL GENMASK(3, 0)
97 #define PDMA_IN_DESCRQ_STAT_SIZE GENMASK(7, 4)
98
99 #define A6_PDMA_INTR_MASK_IN_DATA BIT(2)
100 #define A6_PDMA_INTR_MASK_IN_EOP BIT(3)
101 #define A6_PDMA_INTR_MASK_IN_EOP_FLUSH BIT(4)
102
103 #define A7_PDMA_INTR_MASK_IN_DATA BIT(3)
104 #define A7_PDMA_INTR_MASK_IN_EOP BIT(4)
105 #define A7_PDMA_INTR_MASK_IN_EOP_FLUSH BIT(5)
106
107 #define A6_CRY_MD_OPER GENMASK(19, 16)
108
109 #define A6_CRY_MD_HASH_SEL_CTX GENMASK(21, 20)
110 #define A6_CRY_MD_HASH_HMAC_FIN BIT(23)
111
112 #define A6_CRY_MD_CIPHER_LEN GENMASK(21, 20)
113 #define A6_CRY_MD_CIPHER_DECR BIT(22)
114 #define A6_CRY_MD_CIPHER_TWEAK BIT(23)
115 #define A6_CRY_MD_CIPHER_DSEQ BIT(24)
116
117 #define A7_CRY_MD_OPER GENMASK(11, 8)
118
119 #define A7_CRY_MD_HASH_SEL_CTX GENMASK(13, 12)
120 #define A7_CRY_MD_HASH_HMAC_FIN BIT(15)
121
122 #define A7_CRY_MD_CIPHER_LEN GENMASK(13, 12)
123 #define A7_CRY_MD_CIPHER_DECR BIT(14)
124 #define A7_CRY_MD_CIPHER_TWEAK BIT(15)
125 #define A7_CRY_MD_CIPHER_DSEQ BIT(16)
126
127 /* DMA metadata constants */
128 #define regk_crypto_aes_cbc 0x00000002
129 #define regk_crypto_aes_ctr 0x00000003
130 #define regk_crypto_aes_ecb 0x00000001
131 #define regk_crypto_aes_gcm 0x00000004
132 #define regk_crypto_aes_xts 0x00000005
133 #define regk_crypto_cache 0x00000002
134 #define a6_regk_crypto_dlkey 0x0000000a
135 #define a7_regk_crypto_dlkey 0x0000000e
136 #define regk_crypto_ext 0x00000001
137 #define regk_crypto_hmac_sha1 0x00000007
138 #define regk_crypto_hmac_sha256 0x00000009
139 #define regk_crypto_init 0x00000000
140 #define regk_crypto_key_128 0x00000000
141 #define regk_crypto_key_192 0x00000001
142 #define regk_crypto_key_256 0x00000002
143 #define regk_crypto_null 0x00000000
144 #define regk_crypto_sha1 0x00000006
145 #define regk_crypto_sha256 0x00000008
146
147 /* DMA descriptor structures */
148 struct pdma_descr_ctrl {
149 unsigned char short_descr : 1;
150 unsigned char pad1 : 1;
151 unsigned char eop : 1;
152 unsigned char intr : 1;
153 unsigned char short_len : 3;
154 unsigned char pad2 : 1;
155 } __packed;
156
157 struct pdma_data_descr {
158 unsigned int len : 24;
159 unsigned int buf : 32;
160 } __packed;
161
162 struct pdma_short_descr {
163 unsigned char data[7];
164 } __packed;
165
166 struct pdma_descr {
167 struct pdma_descr_ctrl ctrl;
168 union {
169 struct pdma_data_descr data;
170 struct pdma_short_descr shrt;
171 };
172 };
173
174 struct pdma_stat_descr {
175 unsigned char pad1 : 1;
176 unsigned char pad2 : 1;
177 unsigned char eop : 1;
178 unsigned char pad3 : 5;
179 unsigned int len : 24;
180 };
181
182 /* Each descriptor array can hold max 64 entries */
183 #define PDMA_DESCR_COUNT 64
184
185 #define MODULE_NAME "Artpec-6 CA"
186
187 /* Hash modes (including HMAC variants) */
188 #define ARTPEC6_CRYPTO_HASH_SHA1 1
189 #define ARTPEC6_CRYPTO_HASH_SHA256 2
190
191 /* Crypto modes */
192 #define ARTPEC6_CRYPTO_CIPHER_AES_ECB 1
193 #define ARTPEC6_CRYPTO_CIPHER_AES_CBC 2
194 #define ARTPEC6_CRYPTO_CIPHER_AES_CTR 3
195 #define ARTPEC6_CRYPTO_CIPHER_AES_XTS 5
196
197 /* The PDMA is a DMA-engine tightly coupled with a ciphering engine.
198 * It operates on a descriptor array with up to 64 descriptor entries.
199 * The arrays must be 64 byte aligned in memory.
200 *
201 * The ciphering unit has no registers and is completely controlled by
202 * a 4-byte metadata that is inserted at the beginning of each dma packet.
203 *
204 * A dma packet is a sequence of descriptors terminated by setting the .eop
205 * field in the final descriptor of the packet.
206 *
207 * Multiple packets are used for providing context data, key data and
208 * the plain/ciphertext.
209 *
210 * PDMA Descriptors (Array)
211 * +------+------+------+~~+-------+------+----
212 * | 0 | 1 | 2 |~~| 11 EOP| 12 | ....
213 * +--+---+--+---+----+-+~~+-------+----+-+----
214 * | | | | |
215 * | | | | |
216 * __|__ +-------++-------++-------+ +----+
217 * | MD | |Payload||Payload||Payload| | MD |
218 * +-----+ +-------++-------++-------+ +----+
219 */
220
221 struct artpec6_crypto_bounce_buffer {
222 struct list_head list;
223 size_t length;
224 struct scatterlist *sg;
225 size_t offset;
226 /* buf is aligned to ARTPEC_CACHE_LINE_MAX and
227 * holds up to ARTPEC_CACHE_LINE_MAX bytes data.
228 */
229 void *buf;
230 };
231
232 struct artpec6_crypto_dma_map {
233 dma_addr_t dma_addr;
234 size_t size;
235 enum dma_data_direction dir;
236 };
237
238 struct artpec6_crypto_dma_descriptors {
239 struct pdma_descr out[PDMA_DESCR_COUNT] __aligned(64);
240 struct pdma_descr in[PDMA_DESCR_COUNT] __aligned(64);
241 u32 stat[PDMA_DESCR_COUNT] __aligned(64);
242 struct list_head bounce_buffers;
243 /* Enough maps for all out/in buffers, and all three descr. arrays */
244 struct artpec6_crypto_dma_map maps[PDMA_DESCR_COUNT * 2 + 2];
245 dma_addr_t out_dma_addr;
246 dma_addr_t in_dma_addr;
247 dma_addr_t stat_dma_addr;
248 size_t out_cnt;
249 size_t in_cnt;
250 size_t map_count;
251 };
252
253 enum artpec6_crypto_variant {
254 ARTPEC6_CRYPTO,
255 ARTPEC7_CRYPTO,
256 };
257
258 struct artpec6_crypto {
259 void __iomem *base;
260 spinlock_t queue_lock;
261 struct list_head queue; /* waiting for pdma fifo space */
262 struct list_head pending; /* submitted to pdma fifo */
263 struct tasklet_struct task;
264 struct kmem_cache *dma_cache;
265 int pending_count;
266 struct timer_list timer;
267 enum artpec6_crypto_variant variant;
268 void *pad_buffer; /* cache-aligned block padding buffer */
269 void *zero_buffer;
270 };
271
272 enum artpec6_crypto_hash_flags {
273 HASH_FLAG_INIT_CTX = 2,
274 HASH_FLAG_UPDATE = 4,
275 HASH_FLAG_FINALIZE = 8,
276 HASH_FLAG_HMAC = 16,
277 HASH_FLAG_UPDATE_KEY = 32,
278 };
279
280 struct artpec6_crypto_req_common {
281 struct list_head list;
282 struct list_head complete_in_progress;
283 struct artpec6_crypto_dma_descriptors *dma;
284 struct crypto_async_request *req;
285 void (*complete)(struct crypto_async_request *req);
286 gfp_t gfp_flags;
287 };
288
289 struct artpec6_hash_request_context {
290 char partial_buffer[SHA256_BLOCK_SIZE];
291 char partial_buffer_out[SHA256_BLOCK_SIZE];
292 char key_buffer[SHA256_BLOCK_SIZE];
293 char pad_buffer[SHA256_BLOCK_SIZE + 32];
294 unsigned char digeststate[SHA256_DIGEST_SIZE];
295 size_t partial_bytes;
296 u64 digcnt;
297 u32 key_md;
298 u32 hash_md;
299 enum artpec6_crypto_hash_flags hash_flags;
300 struct artpec6_crypto_req_common common;
301 };
302
303 struct artpec6_hash_export_state {
304 char partial_buffer[SHA256_BLOCK_SIZE];
305 unsigned char digeststate[SHA256_DIGEST_SIZE];
306 size_t partial_bytes;
307 u64 digcnt;
308 int oper;
309 unsigned int hash_flags;
310 };
311
312 struct artpec6_hashalg_context {
313 char hmac_key[SHA256_BLOCK_SIZE];
314 size_t hmac_key_length;
315 struct crypto_shash *child_hash;
316 };
317
318 struct artpec6_crypto_request_context {
319 u32 cipher_md;
320 bool decrypt;
321 struct artpec6_crypto_req_common common;
322 };
323
324 struct artpec6_cryptotfm_context {
325 unsigned char aes_key[2*AES_MAX_KEY_SIZE];
326 size_t key_length;
327 u32 key_md;
328 int crypto_type;
329 struct crypto_sync_skcipher *fallback;
330 };
331
332 struct artpec6_crypto_aead_hw_ctx {
333 __be64 aad_length_bits;
334 __be64 text_length_bits;
335 __u8 J0[AES_BLOCK_SIZE];
336 };
337
338 struct artpec6_crypto_aead_req_ctx {
339 struct artpec6_crypto_aead_hw_ctx hw_ctx;
340 u32 cipher_md;
341 bool decrypt;
342 struct artpec6_crypto_req_common common;
343 __u8 decryption_tag[AES_BLOCK_SIZE] ____cacheline_aligned;
344 };
345
346 /* The crypto framework makes it hard to avoid this global. */
347 static struct device *artpec6_crypto_dev;
348
349 #ifdef CONFIG_FAULT_INJECTION
350 static DECLARE_FAULT_ATTR(artpec6_crypto_fail_status_read);
351 static DECLARE_FAULT_ATTR(artpec6_crypto_fail_dma_array_full);
352 #endif
353
354 enum {
355 ARTPEC6_CRYPTO_PREPARE_HASH_NO_START,
356 ARTPEC6_CRYPTO_PREPARE_HASH_START,
357 };
358
359 static int artpec6_crypto_prepare_aead(struct aead_request *areq);
360 static int artpec6_crypto_prepare_crypto(struct skcipher_request *areq);
361 static int artpec6_crypto_prepare_hash(struct ahash_request *areq);
362
363 static void
364 artpec6_crypto_complete_crypto(struct crypto_async_request *req);
365 static void
366 artpec6_crypto_complete_cbc_encrypt(struct crypto_async_request *req);
367 static void
368 artpec6_crypto_complete_cbc_decrypt(struct crypto_async_request *req);
369 static void
370 artpec6_crypto_complete_aead(struct crypto_async_request *req);
371 static void
372 artpec6_crypto_complete_hash(struct crypto_async_request *req);
373
374 static int
375 artpec6_crypto_common_destroy(struct artpec6_crypto_req_common *common);
376
377 static void
378 artpec6_crypto_start_dma(struct artpec6_crypto_req_common *common);
379
380 struct artpec6_crypto_walk {
381 struct scatterlist *sg;
382 size_t offset;
383 };
384
385 static void artpec6_crypto_walk_init(struct artpec6_crypto_walk *awalk,
386 struct scatterlist *sg)
387 {
388 awalk->sg = sg;
389 awalk->offset = 0;
390 }
391
392 static size_t artpec6_crypto_walk_advance(struct artpec6_crypto_walk *awalk,
393 size_t nbytes)
394 {
395 while (nbytes && awalk->sg) {
396 size_t piece;
397
398 WARN_ON(awalk->offset > awalk->sg->length);
399
400 piece = min(nbytes, (size_t)awalk->sg->length - awalk->offset);
401 nbytes -= piece;
402 awalk->offset += piece;
403 if (awalk->offset == awalk->sg->length) {
404 awalk->sg = sg_next(awalk->sg);
405 awalk->offset = 0;
406 }
407
408 }
409
410 return nbytes;
411 }
412
413 static size_t
414 artpec6_crypto_walk_chunklen(const struct artpec6_crypto_walk *awalk)
415 {
416 WARN_ON(awalk->sg->length == awalk->offset);
417
418 return awalk->sg->length - awalk->offset;
419 }
420
421 static dma_addr_t
422 artpec6_crypto_walk_chunk_phys(const struct artpec6_crypto_walk *awalk)
423 {
424 return sg_phys(awalk->sg) + awalk->offset;
425 }
426
427 static void
428 artpec6_crypto_copy_bounce_buffers(struct artpec6_crypto_req_common *common)
429 {
430 struct artpec6_crypto_dma_descriptors *dma = common->dma;
431 struct artpec6_crypto_bounce_buffer *b;
432 struct artpec6_crypto_bounce_buffer *next;
433
434 list_for_each_entry_safe(b, next, &dma->bounce_buffers, list) {
435 pr_debug("bounce entry %p: %zu bytes @ %zu from %p\n",
436 b, b->length, b->offset, b->buf);
437 sg_pcopy_from_buffer(b->sg,
438 1,
439 b->buf,
440 b->length,
441 b->offset);
442
443 list_del(&b->list);
444 kfree(b);
445 }
446 }
447
448 static inline bool artpec6_crypto_busy(void)
449 {
450 struct artpec6_crypto *ac = dev_get_drvdata(artpec6_crypto_dev);
451 int fifo_count = ac->pending_count;
452
453 return fifo_count > 6;
454 }
455
456 static int artpec6_crypto_submit(struct artpec6_crypto_req_common *req)
457 {
458 struct artpec6_crypto *ac = dev_get_drvdata(artpec6_crypto_dev);
459 int ret = -EBUSY;
460
461 spin_lock_bh(&ac->queue_lock);
462
463 if (!artpec6_crypto_busy()) {
464 list_add_tail(&req->list, &ac->pending);
465 artpec6_crypto_start_dma(req);
466 ret = -EINPROGRESS;
467 } else if (req->req->flags & CRYPTO_TFM_REQ_MAY_BACKLOG) {
468 list_add_tail(&req->list, &ac->queue);
469 } else {
470 artpec6_crypto_common_destroy(req);
471 }
472
473 spin_unlock_bh(&ac->queue_lock);
474
475 return ret;
476 }
477
478 static void artpec6_crypto_start_dma(struct artpec6_crypto_req_common *common)
479 {
480 struct artpec6_crypto *ac = dev_get_drvdata(artpec6_crypto_dev);
481 enum artpec6_crypto_variant variant = ac->variant;
482 void __iomem *base = ac->base;
483 struct artpec6_crypto_dma_descriptors *dma = common->dma;
484 u32 ind, statd, outd;
485
486 /* Make descriptor content visible to the DMA before starting it. */
487 wmb();
488
489 ind = FIELD_PREP(PDMA_IN_DESCRQ_PUSH_LEN, dma->in_cnt - 1) |
490 FIELD_PREP(PDMA_IN_DESCRQ_PUSH_ADDR, dma->in_dma_addr >> 6);
491
492 statd = FIELD_PREP(PDMA_IN_STATQ_PUSH_LEN, dma->in_cnt - 1) |
493 FIELD_PREP(PDMA_IN_STATQ_PUSH_ADDR, dma->stat_dma_addr >> 6);
494
495 outd = FIELD_PREP(PDMA_OUT_DESCRQ_PUSH_LEN, dma->out_cnt - 1) |
496 FIELD_PREP(PDMA_OUT_DESCRQ_PUSH_ADDR, dma->out_dma_addr >> 6);
497
498 if (variant == ARTPEC6_CRYPTO) {
499 writel_relaxed(ind, base + A6_PDMA_IN_DESCRQ_PUSH);
500 writel_relaxed(statd, base + A6_PDMA_IN_STATQ_PUSH);
501 writel_relaxed(PDMA_IN_CMD_START, base + A6_PDMA_IN_CMD);
502 } else {
503 writel_relaxed(ind, base + A7_PDMA_IN_DESCRQ_PUSH);
504 writel_relaxed(statd, base + A7_PDMA_IN_STATQ_PUSH);
505 writel_relaxed(PDMA_IN_CMD_START, base + A7_PDMA_IN_CMD);
506 }
507
508 writel_relaxed(outd, base + PDMA_OUT_DESCRQ_PUSH);
509 writel_relaxed(PDMA_OUT_CMD_START, base + PDMA_OUT_CMD);
510
511 ac->pending_count++;
512 }
513
514 static void
515 artpec6_crypto_init_dma_operation(struct artpec6_crypto_req_common *common)
516 {
517 struct artpec6_crypto_dma_descriptors *dma = common->dma;
518
519 dma->out_cnt = 0;
520 dma->in_cnt = 0;
521 dma->map_count = 0;
522 INIT_LIST_HEAD(&dma->bounce_buffers);
523 }
524
525 static bool fault_inject_dma_descr(void)
526 {
527 #ifdef CONFIG_FAULT_INJECTION
528 return should_fail(&artpec6_crypto_fail_dma_array_full, 1);
529 #else
530 return false;
531 #endif
532 }
533
534 /** artpec6_crypto_setup_out_descr_phys - Setup an out channel with a
535 * physical address
536 *
537 * @addr: The physical address of the data buffer
538 * @len: The length of the data buffer
539 * @eop: True if this is the last buffer in the packet
540 *
541 * @return 0 on success or -ENOSPC if there are no more descriptors available
542 */
543 static int
544 artpec6_crypto_setup_out_descr_phys(struct artpec6_crypto_req_common *common,
545 dma_addr_t addr, size_t len, bool eop)
546 {
547 struct artpec6_crypto_dma_descriptors *dma = common->dma;
548 struct pdma_descr *d;
549
550 if (dma->out_cnt >= PDMA_DESCR_COUNT ||
551 fault_inject_dma_descr()) {
552 pr_err("No free OUT DMA descriptors available!\n");
553 return -ENOSPC;
554 }
555
556 d = &dma->out[dma->out_cnt++];
557 memset(d, 0, sizeof(*d));
558
559 d->ctrl.short_descr = 0;
560 d->ctrl.eop = eop;
561 d->data.len = len;
562 d->data.buf = addr;
563 return 0;
564 }
565
566 /** artpec6_crypto_setup_out_descr_short - Setup a short out descriptor
567 *
568 * @dst: The virtual address of the data
569 * @len: The length of the data, must be between 1 to 7 bytes
570 * @eop: True if this is the last buffer in the packet
571 *
572 * @return 0 on success
573 * -ENOSPC if no more descriptors are available
574 * -EINVAL if the data length exceeds 7 bytes
575 */
576 static int
577 artpec6_crypto_setup_out_descr_short(struct artpec6_crypto_req_common *common,
578 void *dst, unsigned int len, bool eop)
579 {
580 struct artpec6_crypto_dma_descriptors *dma = common->dma;
581 struct pdma_descr *d;
582
583 if (dma->out_cnt >= PDMA_DESCR_COUNT ||
584 fault_inject_dma_descr()) {
585 pr_err("No free OUT DMA descriptors available!\n");
586 return -ENOSPC;
587 } else if (len > 7 || len < 1) {
588 return -EINVAL;
589 }
590 d = &dma->out[dma->out_cnt++];
591 memset(d, 0, sizeof(*d));
592
593 d->ctrl.short_descr = 1;
594 d->ctrl.short_len = len;
595 d->ctrl.eop = eop;
596 memcpy(d->shrt.data, dst, len);
597 return 0;
598 }
599
600 static int artpec6_crypto_dma_map_page(struct artpec6_crypto_req_common *common,
601 struct page *page, size_t offset,
602 size_t size,
603 enum dma_data_direction dir,
604 dma_addr_t *dma_addr_out)
605 {
606 struct artpec6_crypto_dma_descriptors *dma = common->dma;
607 struct device *dev = artpec6_crypto_dev;
608 struct artpec6_crypto_dma_map *map;
609 dma_addr_t dma_addr;
610
611 *dma_addr_out = 0;
612
613 if (dma->map_count >= ARRAY_SIZE(dma->maps))
614 return -ENOMEM;
615
616 dma_addr = dma_map_page(dev, page, offset, size, dir);
617 if (dma_mapping_error(dev, dma_addr))
618 return -ENOMEM;
619
620 map = &dma->maps[dma->map_count++];
621 map->size = size;
622 map->dma_addr = dma_addr;
623 map->dir = dir;
624
625 *dma_addr_out = dma_addr;
626
627 return 0;
628 }
629
630 static int
631 artpec6_crypto_dma_map_single(struct artpec6_crypto_req_common *common,
632 void *ptr, size_t size,
633 enum dma_data_direction dir,
634 dma_addr_t *dma_addr_out)
635 {
636 struct page *page = virt_to_page(ptr);
637 size_t offset = (uintptr_t)ptr & ~PAGE_MASK;
638
639 return artpec6_crypto_dma_map_page(common, page, offset, size, dir,
640 dma_addr_out);
641 }
642
643 static int
644 artpec6_crypto_dma_map_descs(struct artpec6_crypto_req_common *common)
645 {
646 struct artpec6_crypto_dma_descriptors *dma = common->dma;
647 int ret;
648
649 ret = artpec6_crypto_dma_map_single(common, dma->in,
650 sizeof(dma->in[0]) * dma->in_cnt,
651 DMA_TO_DEVICE, &dma->in_dma_addr);
652 if (ret)
653 return ret;
654
655 ret = artpec6_crypto_dma_map_single(common, dma->out,
656 sizeof(dma->out[0]) * dma->out_cnt,
657 DMA_TO_DEVICE, &dma->out_dma_addr);
658 if (ret)
659 return ret;
660
661 /* We only read one stat descriptor */
662 dma->stat[dma->in_cnt - 1] = 0;
663
664 /*
665 * DMA_BIDIRECTIONAL since we need our zeroing of the stat descriptor
666 * to be written.
667 */
668 return artpec6_crypto_dma_map_single(common,
669 dma->stat,
670 sizeof(dma->stat[0]) * dma->in_cnt,
671 DMA_BIDIRECTIONAL,
672 &dma->stat_dma_addr);
673 }
674
675 static void
676 artpec6_crypto_dma_unmap_all(struct artpec6_crypto_req_common *common)
677 {
678 struct artpec6_crypto_dma_descriptors *dma = common->dma;
679 struct device *dev = artpec6_crypto_dev;
680 int i;
681
682 for (i = 0; i < dma->map_count; i++) {
683 struct artpec6_crypto_dma_map *map = &dma->maps[i];
684
685 dma_unmap_page(dev, map->dma_addr, map->size, map->dir);
686 }
687
688 dma->map_count = 0;
689 }
690
691 /** artpec6_crypto_setup_out_descr - Setup an out descriptor
692 *
693 * @dst: The virtual address of the data
694 * @len: The length of the data
695 * @eop: True if this is the last buffer in the packet
696 * @use_short: If this is true and the data length is 7 bytes or less then
697 * a short descriptor will be used
698 *
699 * @return 0 on success
700 * Any errors from artpec6_crypto_setup_out_descr_short() or
701 * setup_out_descr_phys()
702 */
703 static int
704 artpec6_crypto_setup_out_descr(struct artpec6_crypto_req_common *common,
705 void *dst, unsigned int len, bool eop,
706 bool use_short)
707 {
708 if (use_short && len < 7) {
709 return artpec6_crypto_setup_out_descr_short(common, dst, len,
710 eop);
711 } else {
712 int ret;
713 dma_addr_t dma_addr;
714
715 ret = artpec6_crypto_dma_map_single(common, dst, len,
716 DMA_TO_DEVICE,
717 &dma_addr);
718 if (ret)
719 return ret;
720
721 return artpec6_crypto_setup_out_descr_phys(common, dma_addr,
722 len, eop);
723 }
724 }
725
726 /** artpec6_crypto_setup_in_descr_phys - Setup an in channel with a
727 * physical address
728 *
729 * @addr: The physical address of the data buffer
730 * @len: The length of the data buffer
731 * @intr: True if an interrupt should be fired after HW processing of this
732 * descriptor
733 *
734 */
735 static int
736 artpec6_crypto_setup_in_descr_phys(struct artpec6_crypto_req_common *common,
737 dma_addr_t addr, unsigned int len, bool intr)
738 {
739 struct artpec6_crypto_dma_descriptors *dma = common->dma;
740 struct pdma_descr *d;
741
742 if (dma->in_cnt >= PDMA_DESCR_COUNT ||
743 fault_inject_dma_descr()) {
744 pr_err("No free IN DMA descriptors available!\n");
745 return -ENOSPC;
746 }
747 d = &dma->in[dma->in_cnt++];
748 memset(d, 0, sizeof(*d));
749
750 d->ctrl.intr = intr;
751 d->data.len = len;
752 d->data.buf = addr;
753 return 0;
754 }
755
756 /** artpec6_crypto_setup_in_descr - Setup an in channel descriptor
757 *
758 * @buffer: The virtual address to of the data buffer
759 * @len: The length of the data buffer
760 * @last: If this is the last data buffer in the request (i.e. an interrupt
761 * is needed
762 *
763 * Short descriptors are not used for the in channel
764 */
765 static int
766 artpec6_crypto_setup_in_descr(struct artpec6_crypto_req_common *common,
767 void *buffer, unsigned int len, bool last)
768 {
769 dma_addr_t dma_addr;
770 int ret;
771
772 ret = artpec6_crypto_dma_map_single(common, buffer, len,
773 DMA_FROM_DEVICE, &dma_addr);
774 if (ret)
775 return ret;
776
777 return artpec6_crypto_setup_in_descr_phys(common, dma_addr, len, last);
778 }
779
780 static struct artpec6_crypto_bounce_buffer *
781 artpec6_crypto_alloc_bounce(gfp_t flags)
782 {
783 void *base;
784 size_t alloc_size = sizeof(struct artpec6_crypto_bounce_buffer) +
785 2 * ARTPEC_CACHE_LINE_MAX;
786 struct artpec6_crypto_bounce_buffer *bbuf = kzalloc(alloc_size, flags);
787
788 if (!bbuf)
789 return NULL;
790
791 base = bbuf + 1;
792 bbuf->buf = PTR_ALIGN(base, ARTPEC_CACHE_LINE_MAX);
793 return bbuf;
794 }
795
796 static int setup_bounce_buffer_in(struct artpec6_crypto_req_common *common,
797 struct artpec6_crypto_walk *walk, size_t size)
798 {
799 struct artpec6_crypto_bounce_buffer *bbuf;
800 int ret;
801
802 bbuf = artpec6_crypto_alloc_bounce(common->gfp_flags);
803 if (!bbuf)
804 return -ENOMEM;
805
806 bbuf->length = size;
807 bbuf->sg = walk->sg;
808 bbuf->offset = walk->offset;
809
810 ret = artpec6_crypto_setup_in_descr(common, bbuf->buf, size, false);
811 if (ret) {
812 kfree(bbuf);
813 return ret;
814 }
815
816 pr_debug("BOUNCE %zu offset %zu\n", size, walk->offset);
817 list_add_tail(&bbuf->list, &common->dma->bounce_buffers);
818 return 0;
819 }
820
821 static int
822 artpec6_crypto_setup_sg_descrs_in(struct artpec6_crypto_req_common *common,
823 struct artpec6_crypto_walk *walk,
824 size_t count)
825 {
826 size_t chunk;
827 int ret;
828 dma_addr_t addr;
829
830 while (walk->sg && count) {
831 chunk = min(count, artpec6_crypto_walk_chunklen(walk));
832 addr = artpec6_crypto_walk_chunk_phys(walk);
833
834 /* When destination buffers are not aligned to the cache line
835 * size we need bounce buffers. The DMA-API requires that the
836 * entire line is owned by the DMA buffer and this holds also
837 * for the case when coherent DMA is used.
838 */
839 if (!IS_ALIGNED(addr, ARTPEC_CACHE_LINE_MAX)) {
840 chunk = min_t(dma_addr_t, chunk,
841 ALIGN(addr, ARTPEC_CACHE_LINE_MAX) -
842 addr);
843
844 pr_debug("CHUNK-b %pad:%zu\n", &addr, chunk);
845 ret = setup_bounce_buffer_in(common, walk, chunk);
846 } else if (chunk < ARTPEC_CACHE_LINE_MAX) {
847 pr_debug("CHUNK-b %pad:%zu\n", &addr, chunk);
848 ret = setup_bounce_buffer_in(common, walk, chunk);
849 } else {
850 dma_addr_t dma_addr;
851
852 chunk = chunk & ~(ARTPEC_CACHE_LINE_MAX-1);
853
854 pr_debug("CHUNK %pad:%zu\n", &addr, chunk);
855
856 ret = artpec6_crypto_dma_map_page(common,
857 sg_page(walk->sg),
858 walk->sg->offset +
859 walk->offset,
860 chunk,
861 DMA_FROM_DEVICE,
862 &dma_addr);
863 if (ret)
864 return ret;
865
866 ret = artpec6_crypto_setup_in_descr_phys(common,
867 dma_addr,
868 chunk, false);
869 }
870
871 if (ret)
872 return ret;
873
874 count = count - chunk;
875 artpec6_crypto_walk_advance(walk, chunk);
876 }
877
878 if (count)
879 pr_err("EOL unexpected %zu bytes left\n", count);
880
881 return count ? -EINVAL : 0;
882 }
883
884 static int
885 artpec6_crypto_setup_sg_descrs_out(struct artpec6_crypto_req_common *common,
886 struct artpec6_crypto_walk *walk,
887 size_t count)
888 {
889 size_t chunk;
890 int ret;
891 dma_addr_t addr;
892
893 while (walk->sg && count) {
894 chunk = min(count, artpec6_crypto_walk_chunklen(walk));
895 addr = artpec6_crypto_walk_chunk_phys(walk);
896
897 pr_debug("OUT-CHUNK %pad:%zu\n", &addr, chunk);
898
899 if (addr & 3) {
900 char buf[3];
901
902 chunk = min_t(size_t, chunk, (4-(addr&3)));
903
904 sg_pcopy_to_buffer(walk->sg, 1, buf, chunk,
905 walk->offset);
906
907 ret = artpec6_crypto_setup_out_descr_short(common, buf,
908 chunk,
909 false);
910 } else {
911 dma_addr_t dma_addr;
912
913 ret = artpec6_crypto_dma_map_page(common,
914 sg_page(walk->sg),
915 walk->sg->offset +
916 walk->offset,
917 chunk,
918 DMA_TO_DEVICE,
919 &dma_addr);
920 if (ret)
921 return ret;
922
923 ret = artpec6_crypto_setup_out_descr_phys(common,
924 dma_addr,
925 chunk, false);
926 }
927
928 if (ret)
929 return ret;
930
931 count = count - chunk;
932 artpec6_crypto_walk_advance(walk, chunk);
933 }
934
935 if (count)
936 pr_err("EOL unexpected %zu bytes left\n", count);
937
938 return count ? -EINVAL : 0;
939 }
940
941
942 /** artpec6_crypto_terminate_out_descrs - Set the EOP on the last out descriptor
943 *
944 * If the out descriptor list is non-empty, then the eop flag on the
945 * last used out descriptor will be set.
946 *
947 * @return 0 on success
948 * -EINVAL if the out descriptor is empty or has overflown
949 */
950 static int
951 artpec6_crypto_terminate_out_descrs(struct artpec6_crypto_req_common *common)
952 {
953 struct artpec6_crypto_dma_descriptors *dma = common->dma;
954 struct pdma_descr *d;
955
956 if (!dma->out_cnt || dma->out_cnt > PDMA_DESCR_COUNT) {
957 pr_err("%s: OUT descriptor list is %s\n",
958 MODULE_NAME, dma->out_cnt ? "empty" : "full");
959 return -EINVAL;
960
961 }
962
963 d = &dma->out[dma->out_cnt-1];
964 d->ctrl.eop = 1;
965
966 return 0;
967 }
968
969 /** artpec6_crypto_terminate_in_descrs - Set the interrupt flag on the last
970 * in descriptor
971 *
972 * See artpec6_crypto_terminate_out_descrs() for return values
973 */
974 static int
975 artpec6_crypto_terminate_in_descrs(struct artpec6_crypto_req_common *common)
976 {
977 struct artpec6_crypto_dma_descriptors *dma = common->dma;
978 struct pdma_descr *d;
979
980 if (!dma->in_cnt || dma->in_cnt > PDMA_DESCR_COUNT) {
981 pr_err("%s: IN descriptor list is %s\n",
982 MODULE_NAME, dma->in_cnt ? "empty" : "full");
983 return -EINVAL;
984 }
985
986 d = &dma->in[dma->in_cnt-1];
987 d->ctrl.intr = 1;
988 return 0;
989 }
990
991 /** create_hash_pad - Create a Secure Hash conformant pad
992 *
993 * @dst: The destination buffer to write the pad. Must be at least 64 bytes
994 * @dgstlen: The total length of the hash digest in bytes
995 * @bitcount: The total length of the digest in bits
996 *
997 * @return The total number of padding bytes written to @dst
998 */
999 static size_t
1000 create_hash_pad(int oper, unsigned char *dst, u64 dgstlen, u64 bitcount)
1001 {
1002 unsigned int mod, target, diff, pad_bytes, size_bytes;
1003 __be64 bits = __cpu_to_be64(bitcount);
1004
1005 switch (oper) {
1006 case regk_crypto_sha1:
1007 case regk_crypto_sha256:
1008 case regk_crypto_hmac_sha1:
1009 case regk_crypto_hmac_sha256:
1010 target = 448 / 8;
1011 mod = 512 / 8;
1012 size_bytes = 8;
1013 break;
1014 default:
1015 target = 896 / 8;
1016 mod = 1024 / 8;
1017 size_bytes = 16;
1018 break;
1019 }
1020
1021 target -= 1;
1022 diff = dgstlen & (mod - 1);
1023 pad_bytes = diff > target ? target + mod - diff : target - diff;
1024
1025 memset(dst + 1, 0, pad_bytes);
1026 dst[0] = 0x80;
1027
1028 if (size_bytes == 16) {
1029 memset(dst + 1 + pad_bytes, 0, 8);
1030 memcpy(dst + 1 + pad_bytes + 8, &bits, 8);
1031 } else {
1032 memcpy(dst + 1 + pad_bytes, &bits, 8);
1033 }
1034
1035 return pad_bytes + size_bytes + 1;
1036 }
1037
1038 static int artpec6_crypto_common_init(struct artpec6_crypto_req_common *common,
1039 struct crypto_async_request *parent,
1040 void (*complete)(struct crypto_async_request *req),
1041 struct scatterlist *dstsg, unsigned int nbytes)
1042 {
1043 gfp_t flags;
1044 struct artpec6_crypto *ac = dev_get_drvdata(artpec6_crypto_dev);
1045
1046 flags = (parent->flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
1047 GFP_KERNEL : GFP_ATOMIC;
1048
1049 common->gfp_flags = flags;
1050 common->dma = kmem_cache_alloc(ac->dma_cache, flags);
1051 if (!common->dma)
1052 return -ENOMEM;
1053
1054 common->req = parent;
1055 common->complete = complete;
1056 return 0;
1057 }
1058
1059 static void
1060 artpec6_crypto_bounce_destroy(struct artpec6_crypto_dma_descriptors *dma)
1061 {
1062 struct artpec6_crypto_bounce_buffer *b;
1063 struct artpec6_crypto_bounce_buffer *next;
1064
1065 list_for_each_entry_safe(b, next, &dma->bounce_buffers, list) {
1066 kfree(b);
1067 }
1068 }
1069
1070 static int
1071 artpec6_crypto_common_destroy(struct artpec6_crypto_req_common *common)
1072 {
1073 struct artpec6_crypto *ac = dev_get_drvdata(artpec6_crypto_dev);
1074
1075 artpec6_crypto_dma_unmap_all(common);
1076 artpec6_crypto_bounce_destroy(common->dma);
1077 kmem_cache_free(ac->dma_cache, common->dma);
1078 common->dma = NULL;
1079 return 0;
1080 }
1081
1082 /*
1083 * Ciphering functions.
1084 */
1085 static int artpec6_crypto_encrypt(struct skcipher_request *req)
1086 {
1087 struct crypto_skcipher *cipher = crypto_skcipher_reqtfm(req);
1088 struct artpec6_cryptotfm_context *ctx = crypto_skcipher_ctx(cipher);
1089 struct artpec6_crypto_request_context *req_ctx = NULL;
1090 void (*complete)(struct crypto_async_request *req);
1091 int ret;
1092
1093 req_ctx = skcipher_request_ctx(req);
1094
1095 switch (ctx->crypto_type) {
1096 case ARTPEC6_CRYPTO_CIPHER_AES_CBC:
1097 case ARTPEC6_CRYPTO_CIPHER_AES_ECB:
1098 case ARTPEC6_CRYPTO_CIPHER_AES_XTS:
1099 req_ctx->decrypt = 0;
1100 break;
1101 default:
1102 break;
1103 }
1104
1105 switch (ctx->crypto_type) {
1106 case ARTPEC6_CRYPTO_CIPHER_AES_CBC:
1107 complete = artpec6_crypto_complete_cbc_encrypt;
1108 break;
1109 default:
1110 complete = artpec6_crypto_complete_crypto;
1111 break;
1112 }
1113
1114 ret = artpec6_crypto_common_init(&req_ctx->common,
1115 &req->base,
1116 complete,
1117 req->dst, req->cryptlen);
1118 if (ret)
1119 return ret;
1120
1121 ret = artpec6_crypto_prepare_crypto(req);
1122 if (ret) {
1123 artpec6_crypto_common_destroy(&req_ctx->common);
1124 return ret;
1125 }
1126
1127 return artpec6_crypto_submit(&req_ctx->common);
1128 }
1129
1130 static int artpec6_crypto_decrypt(struct skcipher_request *req)
1131 {
1132 int ret;
1133 struct crypto_skcipher *cipher = crypto_skcipher_reqtfm(req);
1134 struct artpec6_cryptotfm_context *ctx = crypto_skcipher_ctx(cipher);
1135 struct artpec6_crypto_request_context *req_ctx = NULL;
1136 void (*complete)(struct crypto_async_request *req);
1137
1138 req_ctx = skcipher_request_ctx(req);
1139
1140 switch (ctx->crypto_type) {
1141 case ARTPEC6_CRYPTO_CIPHER_AES_CBC:
1142 case ARTPEC6_CRYPTO_CIPHER_AES_ECB:
1143 case ARTPEC6_CRYPTO_CIPHER_AES_XTS:
1144 req_ctx->decrypt = 1;
1145 break;
1146 default:
1147 break;
1148 }
1149
1150
1151 switch (ctx->crypto_type) {
1152 case ARTPEC6_CRYPTO_CIPHER_AES_CBC:
1153 complete = artpec6_crypto_complete_cbc_decrypt;
1154 break;
1155 default:
1156 complete = artpec6_crypto_complete_crypto;
1157 break;
1158 }
1159
1160 ret = artpec6_crypto_common_init(&req_ctx->common, &req->base,
1161 complete,
1162 req->dst, req->cryptlen);
1163 if (ret)
1164 return ret;
1165
1166 ret = artpec6_crypto_prepare_crypto(req);
1167 if (ret) {
1168 artpec6_crypto_common_destroy(&req_ctx->common);
1169 return ret;
1170 }
1171
1172 return artpec6_crypto_submit(&req_ctx->common);
1173 }
1174
1175 static int
1176 artpec6_crypto_ctr_crypt(struct skcipher_request *req, bool encrypt)
1177 {
1178 struct crypto_skcipher *cipher = crypto_skcipher_reqtfm(req);
1179 struct artpec6_cryptotfm_context *ctx = crypto_skcipher_ctx(cipher);
1180 size_t iv_len = crypto_skcipher_ivsize(cipher);
1181 unsigned int counter = be32_to_cpup((__be32 *)
1182 (req->iv + iv_len - 4));
1183 unsigned int nblks = ALIGN(req->cryptlen, AES_BLOCK_SIZE) /
1184 AES_BLOCK_SIZE;
1185
1186 /*
1187 * The hardware uses only the last 32-bits as the counter while the
1188 * kernel tests (aes_ctr_enc_tv_template[4] for example) expect that
1189 * the whole IV is a counter. So fallback if the counter is going to
1190 * overlow.
1191 */
1192 if (counter + nblks < counter) {
1193 int ret;
1194
1195 pr_debug("counter %x will overflow (nblks %u), falling back\n",
1196 counter, counter + nblks);
1197
1198 ret = crypto_sync_skcipher_setkey(ctx->fallback, ctx->aes_key,
1199 ctx->key_length);
1200 if (ret)
1201 return ret;
1202
1203 {
1204 SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, ctx->fallback);
1205
1206 skcipher_request_set_sync_tfm(subreq, ctx->fallback);
1207 skcipher_request_set_callback(subreq, req->base.flags,
1208 NULL, NULL);
1209 skcipher_request_set_crypt(subreq, req->src, req->dst,
1210 req->cryptlen, req->iv);
1211 ret = encrypt ? crypto_skcipher_encrypt(subreq)
1212 : crypto_skcipher_decrypt(subreq);
1213 skcipher_request_zero(subreq);
1214 }
1215 return ret;
1216 }
1217
1218 return encrypt ? artpec6_crypto_encrypt(req)
1219 : artpec6_crypto_decrypt(req);
1220 }
1221
1222 static int artpec6_crypto_ctr_encrypt(struct skcipher_request *req)
1223 {
1224 return artpec6_crypto_ctr_crypt(req, true);
1225 }
1226
1227 static int artpec6_crypto_ctr_decrypt(struct skcipher_request *req)
1228 {
1229 return artpec6_crypto_ctr_crypt(req, false);
1230 }
1231
1232 /*
1233 * AEAD functions
1234 */
1235 static int artpec6_crypto_aead_init(struct crypto_aead *tfm)
1236 {
1237 struct artpec6_cryptotfm_context *tfm_ctx = crypto_aead_ctx(tfm);
1238
1239 memset(tfm_ctx, 0, sizeof(*tfm_ctx));
1240
1241 crypto_aead_set_reqsize(tfm,
1242 sizeof(struct artpec6_crypto_aead_req_ctx));
1243
1244 return 0;
1245 }
1246
1247 static int artpec6_crypto_aead_set_key(struct crypto_aead *tfm, const u8 *key,
1248 unsigned int len)
1249 {
1250 struct artpec6_cryptotfm_context *ctx = crypto_tfm_ctx(&tfm->base);
1251
1252 if (len != 16 && len != 24 && len != 32)
1253 return -EINVAL;
1254
1255 ctx->key_length = len;
1256
1257 memcpy(ctx->aes_key, key, len);
1258 return 0;
1259 }
1260
1261 static int artpec6_crypto_aead_encrypt(struct aead_request *req)
1262 {
1263 int ret;
1264 struct artpec6_crypto_aead_req_ctx *req_ctx = aead_request_ctx(req);
1265
1266 req_ctx->decrypt = false;
1267 ret = artpec6_crypto_common_init(&req_ctx->common, &req->base,
1268 artpec6_crypto_complete_aead,
1269 NULL, 0);
1270 if (ret)
1271 return ret;
1272
1273 ret = artpec6_crypto_prepare_aead(req);
1274 if (ret) {
1275 artpec6_crypto_common_destroy(&req_ctx->common);
1276 return ret;
1277 }
1278
1279 return artpec6_crypto_submit(&req_ctx->common);
1280 }
1281
1282 static int artpec6_crypto_aead_decrypt(struct aead_request *req)
1283 {
1284 int ret;
1285 struct artpec6_crypto_aead_req_ctx *req_ctx = aead_request_ctx(req);
1286
1287 req_ctx->decrypt = true;
1288 if (req->cryptlen < AES_BLOCK_SIZE)
1289 return -EINVAL;
1290
1291 ret = artpec6_crypto_common_init(&req_ctx->common,
1292 &req->base,
1293 artpec6_crypto_complete_aead,
1294 NULL, 0);
1295 if (ret)
1296 return ret;
1297
1298 ret = artpec6_crypto_prepare_aead(req);
1299 if (ret) {
1300 artpec6_crypto_common_destroy(&req_ctx->common);
1301 return ret;
1302 }
1303
1304 return artpec6_crypto_submit(&req_ctx->common);
1305 }
1306
1307 static int artpec6_crypto_prepare_hash(struct ahash_request *areq)
1308 {
1309 struct artpec6_hashalg_context *ctx = crypto_tfm_ctx(areq->base.tfm);
1310 struct artpec6_hash_request_context *req_ctx = ahash_request_ctx(areq);
1311 size_t digestsize = crypto_ahash_digestsize(crypto_ahash_reqtfm(areq));
1312 size_t contextsize = digestsize;
1313 size_t blocksize = crypto_tfm_alg_blocksize(
1314 crypto_ahash_tfm(crypto_ahash_reqtfm(areq)));
1315 struct artpec6_crypto_req_common *common = &req_ctx->common;
1316 struct artpec6_crypto *ac = dev_get_drvdata(artpec6_crypto_dev);
1317 enum artpec6_crypto_variant variant = ac->variant;
1318 u32 sel_ctx;
1319 bool ext_ctx = false;
1320 bool run_hw = false;
1321 int error = 0;
1322
1323 artpec6_crypto_init_dma_operation(common);
1324
1325 /* Upload HMAC key, must be first the first packet */
1326 if (req_ctx->hash_flags & HASH_FLAG_HMAC) {
1327 if (variant == ARTPEC6_CRYPTO) {
1328 req_ctx->key_md = FIELD_PREP(A6_CRY_MD_OPER,
1329 a6_regk_crypto_dlkey);
1330 } else {
1331 req_ctx->key_md = FIELD_PREP(A7_CRY_MD_OPER,
1332 a7_regk_crypto_dlkey);
1333 }
1334
1335 /* Copy and pad up the key */
1336 memcpy(req_ctx->key_buffer, ctx->hmac_key,
1337 ctx->hmac_key_length);
1338 memset(req_ctx->key_buffer + ctx->hmac_key_length, 0,
1339 blocksize - ctx->hmac_key_length);
1340
1341 error = artpec6_crypto_setup_out_descr(common,
1342 (void *)&req_ctx->key_md,
1343 sizeof(req_ctx->key_md), false, false);
1344 if (error)
1345 return error;
1346
1347 error = artpec6_crypto_setup_out_descr(common,
1348 req_ctx->key_buffer, blocksize,
1349 true, false);
1350 if (error)
1351 return error;
1352 }
1353
1354 if (!(req_ctx->hash_flags & HASH_FLAG_INIT_CTX)) {
1355 /* Restore context */
1356 sel_ctx = regk_crypto_ext;
1357 ext_ctx = true;
1358 } else {
1359 sel_ctx = regk_crypto_init;
1360 }
1361
1362 if (variant == ARTPEC6_CRYPTO) {
1363 req_ctx->hash_md &= ~A6_CRY_MD_HASH_SEL_CTX;
1364 req_ctx->hash_md |= FIELD_PREP(A6_CRY_MD_HASH_SEL_CTX, sel_ctx);
1365
1366 /* If this is the final round, set the final flag */
1367 if (req_ctx->hash_flags & HASH_FLAG_FINALIZE)
1368 req_ctx->hash_md |= A6_CRY_MD_HASH_HMAC_FIN;
1369 } else {
1370 req_ctx->hash_md &= ~A7_CRY_MD_HASH_SEL_CTX;
1371 req_ctx->hash_md |= FIELD_PREP(A7_CRY_MD_HASH_SEL_CTX, sel_ctx);
1372
1373 /* If this is the final round, set the final flag */
1374 if (req_ctx->hash_flags & HASH_FLAG_FINALIZE)
1375 req_ctx->hash_md |= A7_CRY_MD_HASH_HMAC_FIN;
1376 }
1377
1378 /* Setup up metadata descriptors */
1379 error = artpec6_crypto_setup_out_descr(common,
1380 (void *)&req_ctx->hash_md,
1381 sizeof(req_ctx->hash_md), false, false);
1382 if (error)
1383 return error;
1384
1385 error = artpec6_crypto_setup_in_descr(common, ac->pad_buffer, 4, false);
1386 if (error)
1387 return error;
1388
1389 if (ext_ctx) {
1390 error = artpec6_crypto_setup_out_descr(common,
1391 req_ctx->digeststate,
1392 contextsize, false, false);
1393
1394 if (error)
1395 return error;
1396 }
1397
1398 if (req_ctx->hash_flags & HASH_FLAG_UPDATE) {
1399 size_t done_bytes = 0;
1400 size_t total_bytes = areq->nbytes + req_ctx->partial_bytes;
1401 size_t ready_bytes = round_down(total_bytes, blocksize);
1402 struct artpec6_crypto_walk walk;
1403
1404 run_hw = ready_bytes > 0;
1405 if (req_ctx->partial_bytes && ready_bytes) {
1406 /* We have a partial buffer and will at least some bytes
1407 * to the HW. Empty this partial buffer before tackling
1408 * the SG lists
1409 */
1410 memcpy(req_ctx->partial_buffer_out,
1411 req_ctx->partial_buffer,
1412 req_ctx->partial_bytes);
1413
1414 error = artpec6_crypto_setup_out_descr(common,
1415 req_ctx->partial_buffer_out,
1416 req_ctx->partial_bytes,
1417 false, true);
1418 if (error)
1419 return error;
1420
1421 /* Reset partial buffer */
1422 done_bytes += req_ctx->partial_bytes;
1423 req_ctx->partial_bytes = 0;
1424 }
1425
1426 artpec6_crypto_walk_init(&walk, areq->src);
1427
1428 error = artpec6_crypto_setup_sg_descrs_out(common, &walk,
1429 ready_bytes -
1430 done_bytes);
1431 if (error)
1432 return error;
1433
1434 if (walk.sg) {
1435 size_t sg_skip = ready_bytes - done_bytes;
1436 size_t sg_rem = areq->nbytes - sg_skip;
1437
1438 sg_pcopy_to_buffer(areq->src, sg_nents(areq->src),
1439 req_ctx->partial_buffer +
1440 req_ctx->partial_bytes,
1441 sg_rem, sg_skip);
1442
1443 req_ctx->partial_bytes += sg_rem;
1444 }
1445
1446 req_ctx->digcnt += ready_bytes;
1447 req_ctx->hash_flags &= ~(HASH_FLAG_UPDATE);
1448 }
1449
1450 /* Finalize */
1451 if (req_ctx->hash_flags & HASH_FLAG_FINALIZE) {
1452 size_t hash_pad_len;
1453 u64 digest_bits;
1454 u32 oper;
1455
1456 if (variant == ARTPEC6_CRYPTO)
1457 oper = FIELD_GET(A6_CRY_MD_OPER, req_ctx->hash_md);
1458 else
1459 oper = FIELD_GET(A7_CRY_MD_OPER, req_ctx->hash_md);
1460
1461 /* Write out the partial buffer if present */
1462 if (req_ctx->partial_bytes) {
1463 memcpy(req_ctx->partial_buffer_out,
1464 req_ctx->partial_buffer,
1465 req_ctx->partial_bytes);
1466 error = artpec6_crypto_setup_out_descr(common,
1467 req_ctx->partial_buffer_out,
1468 req_ctx->partial_bytes,
1469 false, true);
1470 if (error)
1471 return error;
1472
1473 req_ctx->digcnt += req_ctx->partial_bytes;
1474 req_ctx->partial_bytes = 0;
1475 }
1476
1477 if (req_ctx->hash_flags & HASH_FLAG_HMAC)
1478 digest_bits = 8 * (req_ctx->digcnt + blocksize);
1479 else
1480 digest_bits = 8 * req_ctx->digcnt;
1481
1482 /* Add the hash pad */
1483 hash_pad_len = create_hash_pad(oper, req_ctx->pad_buffer,
1484 req_ctx->digcnt, digest_bits);
1485 error = artpec6_crypto_setup_out_descr(common,
1486 req_ctx->pad_buffer,
1487 hash_pad_len, false,
1488 true);
1489 req_ctx->digcnt = 0;
1490
1491 if (error)
1492 return error;
1493
1494 /* Descriptor for the final result */
1495 error = artpec6_crypto_setup_in_descr(common, areq->result,
1496 digestsize,
1497 true);
1498 if (error)
1499 return error;
1500
1501 } else { /* This is not the final operation for this request */
1502 if (!run_hw)
1503 return ARTPEC6_CRYPTO_PREPARE_HASH_NO_START;
1504
1505 /* Save the result to the context */
1506 error = artpec6_crypto_setup_in_descr(common,
1507 req_ctx->digeststate,
1508 contextsize, false);
1509 if (error)
1510 return error;
1511 /* fall through */
1512 }
1513
1514 req_ctx->hash_flags &= ~(HASH_FLAG_INIT_CTX | HASH_FLAG_UPDATE |
1515 HASH_FLAG_FINALIZE);
1516
1517 error = artpec6_crypto_terminate_in_descrs(common);
1518 if (error)
1519 return error;
1520
1521 error = artpec6_crypto_terminate_out_descrs(common);
1522 if (error)
1523 return error;
1524
1525 error = artpec6_crypto_dma_map_descs(common);
1526 if (error)
1527 return error;
1528
1529 return ARTPEC6_CRYPTO_PREPARE_HASH_START;
1530 }
1531
1532
1533 static int artpec6_crypto_aes_ecb_init(struct crypto_skcipher *tfm)
1534 {
1535 struct artpec6_cryptotfm_context *ctx = crypto_skcipher_ctx(tfm);
1536
1537 tfm->reqsize = sizeof(struct artpec6_crypto_request_context);
1538 ctx->crypto_type = ARTPEC6_CRYPTO_CIPHER_AES_ECB;
1539
1540 return 0;
1541 }
1542
1543 static int artpec6_crypto_aes_ctr_init(struct crypto_skcipher *tfm)
1544 {
1545 struct artpec6_cryptotfm_context *ctx = crypto_skcipher_ctx(tfm);
1546
1547 ctx->fallback =
1548 crypto_alloc_sync_skcipher(crypto_tfm_alg_name(&tfm->base),
1549 0, CRYPTO_ALG_NEED_FALLBACK);
1550 if (IS_ERR(ctx->fallback))
1551 return PTR_ERR(ctx->fallback);
1552
1553 tfm->reqsize = sizeof(struct artpec6_crypto_request_context);
1554 ctx->crypto_type = ARTPEC6_CRYPTO_CIPHER_AES_CTR;
1555
1556 return 0;
1557 }
1558
1559 static int artpec6_crypto_aes_cbc_init(struct crypto_skcipher *tfm)
1560 {
1561 struct artpec6_cryptotfm_context *ctx = crypto_skcipher_ctx(tfm);
1562
1563 tfm->reqsize = sizeof(struct artpec6_crypto_request_context);
1564 ctx->crypto_type = ARTPEC6_CRYPTO_CIPHER_AES_CBC;
1565
1566 return 0;
1567 }
1568
1569 static int artpec6_crypto_aes_xts_init(struct crypto_skcipher *tfm)
1570 {
1571 struct artpec6_cryptotfm_context *ctx = crypto_skcipher_ctx(tfm);
1572
1573 tfm->reqsize = sizeof(struct artpec6_crypto_request_context);
1574 ctx->crypto_type = ARTPEC6_CRYPTO_CIPHER_AES_XTS;
1575
1576 return 0;
1577 }
1578
1579 static void artpec6_crypto_aes_exit(struct crypto_skcipher *tfm)
1580 {
1581 struct artpec6_cryptotfm_context *ctx = crypto_skcipher_ctx(tfm);
1582
1583 memset(ctx, 0, sizeof(*ctx));
1584 }
1585
1586 static void artpec6_crypto_aes_ctr_exit(struct crypto_skcipher *tfm)
1587 {
1588 struct artpec6_cryptotfm_context *ctx = crypto_skcipher_ctx(tfm);
1589
1590 crypto_free_sync_skcipher(ctx->fallback);
1591 artpec6_crypto_aes_exit(tfm);
1592 }
1593
1594 static int
1595 artpec6_crypto_cipher_set_key(struct crypto_skcipher *cipher, const u8 *key,
1596 unsigned int keylen)
1597 {
1598 struct artpec6_cryptotfm_context *ctx =
1599 crypto_skcipher_ctx(cipher);
1600
1601 switch (keylen) {
1602 case 16:
1603 case 24:
1604 case 32:
1605 break;
1606 default:
1607 return -EINVAL;
1608 }
1609
1610 memcpy(ctx->aes_key, key, keylen);
1611 ctx->key_length = keylen;
1612 return 0;
1613 }
1614
1615 static int
1616 artpec6_crypto_xts_set_key(struct crypto_skcipher *cipher, const u8 *key,
1617 unsigned int keylen)
1618 {
1619 struct artpec6_cryptotfm_context *ctx =
1620 crypto_skcipher_ctx(cipher);
1621 int ret;
1622
1623 ret = xts_check_key(&cipher->base, key, keylen);
1624 if (ret)
1625 return ret;
1626
1627 switch (keylen) {
1628 case 32:
1629 case 48:
1630 case 64:
1631 break;
1632 default:
1633 return -EINVAL;
1634 }
1635
1636 memcpy(ctx->aes_key, key, keylen);
1637 ctx->key_length = keylen;
1638 return 0;
1639 }
1640
1641 /** artpec6_crypto_process_crypto - Prepare an async block cipher crypto request
1642 *
1643 * @req: The asynch request to process
1644 *
1645 * @return 0 if the dma job was successfully prepared
1646 * <0 on error
1647 *
1648 * This function sets up the PDMA descriptors for a block cipher request.
1649 *
1650 * The required padding is added for AES-CTR using a statically defined
1651 * buffer.
1652 *
1653 * The PDMA descriptor list will be as follows:
1654 *
1655 * OUT: [KEY_MD][KEY][EOP]<CIPHER_MD>[IV]<data_0>...[data_n][AES-CTR_pad]<eop>
1656 * IN: <CIPHER_MD><data_0>...[data_n]<intr>
1657 *
1658 */
1659 static int artpec6_crypto_prepare_crypto(struct skcipher_request *areq)
1660 {
1661 int ret;
1662 struct artpec6_crypto_walk walk;
1663 struct crypto_skcipher *cipher = crypto_skcipher_reqtfm(areq);
1664 struct artpec6_cryptotfm_context *ctx = crypto_skcipher_ctx(cipher);
1665 struct artpec6_crypto_request_context *req_ctx = NULL;
1666 size_t iv_len = crypto_skcipher_ivsize(cipher);
1667 struct artpec6_crypto *ac = dev_get_drvdata(artpec6_crypto_dev);
1668 enum artpec6_crypto_variant variant = ac->variant;
1669 struct artpec6_crypto_req_common *common;
1670 bool cipher_decr = false;
1671 size_t cipher_klen;
1672 u32 cipher_len = 0; /* Same as regk_crypto_key_128 for NULL crypto */
1673 u32 oper;
1674
1675 req_ctx = skcipher_request_ctx(areq);
1676 common = &req_ctx->common;
1677
1678 artpec6_crypto_init_dma_operation(common);
1679
1680 if (variant == ARTPEC6_CRYPTO)
1681 ctx->key_md = FIELD_PREP(A6_CRY_MD_OPER, a6_regk_crypto_dlkey);
1682 else
1683 ctx->key_md = FIELD_PREP(A7_CRY_MD_OPER, a7_regk_crypto_dlkey);
1684
1685 ret = artpec6_crypto_setup_out_descr(common, (void *)&ctx->key_md,
1686 sizeof(ctx->key_md), false, false);
1687 if (ret)
1688 return ret;
1689
1690 ret = artpec6_crypto_setup_out_descr(common, ctx->aes_key,
1691 ctx->key_length, true, false);
1692 if (ret)
1693 return ret;
1694
1695 req_ctx->cipher_md = 0;
1696
1697 if (ctx->crypto_type == ARTPEC6_CRYPTO_CIPHER_AES_XTS)
1698 cipher_klen = ctx->key_length/2;
1699 else
1700 cipher_klen = ctx->key_length;
1701
1702 /* Metadata */
1703 switch (cipher_klen) {
1704 case 16:
1705 cipher_len = regk_crypto_key_128;
1706 break;
1707 case 24:
1708 cipher_len = regk_crypto_key_192;
1709 break;
1710 case 32:
1711 cipher_len = regk_crypto_key_256;
1712 break;
1713 default:
1714 pr_err("%s: Invalid key length %d!\n",
1715 MODULE_NAME, ctx->key_length);
1716 return -EINVAL;
1717 }
1718
1719 switch (ctx->crypto_type) {
1720 case ARTPEC6_CRYPTO_CIPHER_AES_ECB:
1721 oper = regk_crypto_aes_ecb;
1722 cipher_decr = req_ctx->decrypt;
1723 break;
1724
1725 case ARTPEC6_CRYPTO_CIPHER_AES_CBC:
1726 oper = regk_crypto_aes_cbc;
1727 cipher_decr = req_ctx->decrypt;
1728 break;
1729
1730 case ARTPEC6_CRYPTO_CIPHER_AES_CTR:
1731 oper = regk_crypto_aes_ctr;
1732 cipher_decr = false;
1733 break;
1734
1735 case ARTPEC6_CRYPTO_CIPHER_AES_XTS:
1736 oper = regk_crypto_aes_xts;
1737 cipher_decr = req_ctx->decrypt;
1738
1739 if (variant == ARTPEC6_CRYPTO)
1740 req_ctx->cipher_md |= A6_CRY_MD_CIPHER_DSEQ;
1741 else
1742 req_ctx->cipher_md |= A7_CRY_MD_CIPHER_DSEQ;
1743 break;
1744
1745 default:
1746 pr_err("%s: Invalid cipher mode %d!\n",
1747 MODULE_NAME, ctx->crypto_type);
1748 return -EINVAL;
1749 }
1750
1751 if (variant == ARTPEC6_CRYPTO) {
1752 req_ctx->cipher_md |= FIELD_PREP(A6_CRY_MD_OPER, oper);
1753 req_ctx->cipher_md |= FIELD_PREP(A6_CRY_MD_CIPHER_LEN,
1754 cipher_len);
1755 if (cipher_decr)
1756 req_ctx->cipher_md |= A6_CRY_MD_CIPHER_DECR;
1757 } else {
1758 req_ctx->cipher_md |= FIELD_PREP(A7_CRY_MD_OPER, oper);
1759 req_ctx->cipher_md |= FIELD_PREP(A7_CRY_MD_CIPHER_LEN,
1760 cipher_len);
1761 if (cipher_decr)
1762 req_ctx->cipher_md |= A7_CRY_MD_CIPHER_DECR;
1763 }
1764
1765 ret = artpec6_crypto_setup_out_descr(common,
1766 &req_ctx->cipher_md,
1767 sizeof(req_ctx->cipher_md),
1768 false, false);
1769 if (ret)
1770 return ret;
1771
1772 ret = artpec6_crypto_setup_in_descr(common, ac->pad_buffer, 4, false);
1773 if (ret)
1774 return ret;
1775
1776 if (iv_len) {
1777 ret = artpec6_crypto_setup_out_descr(common, areq->iv, iv_len,
1778 false, false);
1779 if (ret)
1780 return ret;
1781 }
1782 /* Data out */
1783 artpec6_crypto_walk_init(&walk, areq->src);
1784 ret = artpec6_crypto_setup_sg_descrs_out(common, &walk, areq->cryptlen);
1785 if (ret)
1786 return ret;
1787
1788 /* Data in */
1789 artpec6_crypto_walk_init(&walk, areq->dst);
1790 ret = artpec6_crypto_setup_sg_descrs_in(common, &walk, areq->cryptlen);
1791 if (ret)
1792 return ret;
1793
1794 /* CTR-mode padding required by the HW. */
1795 if (ctx->crypto_type == ARTPEC6_CRYPTO_CIPHER_AES_CTR ||
1796 ctx->crypto_type == ARTPEC6_CRYPTO_CIPHER_AES_XTS) {
1797 size_t pad = ALIGN(areq->cryptlen, AES_BLOCK_SIZE) -
1798 areq->cryptlen;
1799
1800 if (pad) {
1801 ret = artpec6_crypto_setup_out_descr(common,
1802 ac->pad_buffer,
1803 pad, false, false);
1804 if (ret)
1805 return ret;
1806
1807 ret = artpec6_crypto_setup_in_descr(common,
1808 ac->pad_buffer, pad,
1809 false);
1810 if (ret)
1811 return ret;
1812 }
1813 }
1814
1815 ret = artpec6_crypto_terminate_out_descrs(common);
1816 if (ret)
1817 return ret;
1818
1819 ret = artpec6_crypto_terminate_in_descrs(common);
1820 if (ret)
1821 return ret;
1822
1823 return artpec6_crypto_dma_map_descs(common);
1824 }
1825
1826 static int artpec6_crypto_prepare_aead(struct aead_request *areq)
1827 {
1828 size_t count;
1829 int ret;
1830 size_t input_length;
1831 struct artpec6_cryptotfm_context *ctx = crypto_tfm_ctx(areq->base.tfm);
1832 struct artpec6_crypto_aead_req_ctx *req_ctx = aead_request_ctx(areq);
1833 struct crypto_aead *cipher = crypto_aead_reqtfm(areq);
1834 struct artpec6_crypto_req_common *common = &req_ctx->common;
1835 struct artpec6_crypto *ac = dev_get_drvdata(artpec6_crypto_dev);
1836 enum artpec6_crypto_variant variant = ac->variant;
1837 u32 md_cipher_len;
1838
1839 artpec6_crypto_init_dma_operation(common);
1840
1841 /* Key */
1842 if (variant == ARTPEC6_CRYPTO) {
1843 ctx->key_md = FIELD_PREP(A6_CRY_MD_OPER,
1844 a6_regk_crypto_dlkey);
1845 } else {
1846 ctx->key_md = FIELD_PREP(A7_CRY_MD_OPER,
1847 a7_regk_crypto_dlkey);
1848 }
1849 ret = artpec6_crypto_setup_out_descr(common, (void *)&ctx->key_md,
1850 sizeof(ctx->key_md), false, false);
1851 if (ret)
1852 return ret;
1853
1854 ret = artpec6_crypto_setup_out_descr(common, ctx->aes_key,
1855 ctx->key_length, true, false);
1856 if (ret)
1857 return ret;
1858
1859 req_ctx->cipher_md = 0;
1860
1861 switch (ctx->key_length) {
1862 case 16:
1863 md_cipher_len = regk_crypto_key_128;
1864 break;
1865 case 24:
1866 md_cipher_len = regk_crypto_key_192;
1867 break;
1868 case 32:
1869 md_cipher_len = regk_crypto_key_256;
1870 break;
1871 default:
1872 return -EINVAL;
1873 }
1874
1875 if (variant == ARTPEC6_CRYPTO) {
1876 req_ctx->cipher_md |= FIELD_PREP(A6_CRY_MD_OPER,
1877 regk_crypto_aes_gcm);
1878 req_ctx->cipher_md |= FIELD_PREP(A6_CRY_MD_CIPHER_LEN,
1879 md_cipher_len);
1880 if (req_ctx->decrypt)
1881 req_ctx->cipher_md |= A6_CRY_MD_CIPHER_DECR;
1882 } else {
1883 req_ctx->cipher_md |= FIELD_PREP(A7_CRY_MD_OPER,
1884 regk_crypto_aes_gcm);
1885 req_ctx->cipher_md |= FIELD_PREP(A7_CRY_MD_CIPHER_LEN,
1886 md_cipher_len);
1887 if (req_ctx->decrypt)
1888 req_ctx->cipher_md |= A7_CRY_MD_CIPHER_DECR;
1889 }
1890
1891 ret = artpec6_crypto_setup_out_descr(common,
1892 (void *) &req_ctx->cipher_md,
1893 sizeof(req_ctx->cipher_md), false,
1894 false);
1895 if (ret)
1896 return ret;
1897
1898 ret = artpec6_crypto_setup_in_descr(common, ac->pad_buffer, 4, false);
1899 if (ret)
1900 return ret;
1901
1902 /* For the decryption, cryptlen includes the tag. */
1903 input_length = areq->cryptlen;
1904 if (req_ctx->decrypt)
1905 input_length -= crypto_aead_authsize(cipher);
1906
1907 /* Prepare the context buffer */
1908 req_ctx->hw_ctx.aad_length_bits =
1909 __cpu_to_be64(8*areq->assoclen);
1910
1911 req_ctx->hw_ctx.text_length_bits =
1912 __cpu_to_be64(8*input_length);
1913
1914 memcpy(req_ctx->hw_ctx.J0, areq->iv, crypto_aead_ivsize(cipher));
1915 // The HW omits the initial increment of the counter field.
1916 memcpy(req_ctx->hw_ctx.J0 + GCM_AES_IV_SIZE, "\x00\x00\x00\x01", 4);
1917
1918 ret = artpec6_crypto_setup_out_descr(common, &req_ctx->hw_ctx,
1919 sizeof(struct artpec6_crypto_aead_hw_ctx), false, false);
1920 if (ret)
1921 return ret;
1922
1923 {
1924 struct artpec6_crypto_walk walk;
1925
1926 artpec6_crypto_walk_init(&walk, areq->src);
1927
1928 /* Associated data */
1929 count = areq->assoclen;
1930 ret = artpec6_crypto_setup_sg_descrs_out(common, &walk, count);
1931 if (ret)
1932 return ret;
1933
1934 if (!IS_ALIGNED(areq->assoclen, 16)) {
1935 size_t assoc_pad = 16 - (areq->assoclen % 16);
1936 /* The HW mandates zero padding here */
1937 ret = artpec6_crypto_setup_out_descr(common,
1938 ac->zero_buffer,
1939 assoc_pad, false,
1940 false);
1941 if (ret)
1942 return ret;
1943 }
1944
1945 /* Data to crypto */
1946 count = input_length;
1947 ret = artpec6_crypto_setup_sg_descrs_out(common, &walk, count);
1948 if (ret)
1949 return ret;
1950
1951 if (!IS_ALIGNED(input_length, 16)) {
1952 size_t crypto_pad = 16 - (input_length % 16);
1953 /* The HW mandates zero padding here */
1954 ret = artpec6_crypto_setup_out_descr(common,
1955 ac->zero_buffer,
1956 crypto_pad,
1957 false,
1958 false);
1959 if (ret)
1960 return ret;
1961 }
1962 }
1963
1964 /* Data from crypto */
1965 {
1966 struct artpec6_crypto_walk walk;
1967 size_t output_len = areq->cryptlen;
1968
1969 if (req_ctx->decrypt)
1970 output_len -= crypto_aead_authsize(cipher);
1971
1972 artpec6_crypto_walk_init(&walk, areq->dst);
1973
1974 /* skip associated data in the output */
1975 count = artpec6_crypto_walk_advance(&walk, areq->assoclen);
1976 if (count)
1977 return -EINVAL;
1978
1979 count = output_len;
1980 ret = artpec6_crypto_setup_sg_descrs_in(common, &walk, count);
1981 if (ret)
1982 return ret;
1983
1984 /* Put padding between the cryptotext and the auth tag */
1985 if (!IS_ALIGNED(output_len, 16)) {
1986 size_t crypto_pad = 16 - (output_len % 16);
1987
1988 ret = artpec6_crypto_setup_in_descr(common,
1989 ac->pad_buffer,
1990 crypto_pad, false);
1991 if (ret)
1992 return ret;
1993 }
1994
1995 /* The authentication tag shall follow immediately after
1996 * the output ciphertext. For decryption it is put in a context
1997 * buffer for later compare against the input tag.
1998 */
1999
2000 if (req_ctx->decrypt) {
2001 ret = artpec6_crypto_setup_in_descr(common,
2002 req_ctx->decryption_tag, AES_BLOCK_SIZE, false);
2003 if (ret)
2004 return ret;
2005
2006 } else {
2007 /* For encryption the requested tag size may be smaller
2008 * than the hardware's generated tag.
2009 */
2010 size_t authsize = crypto_aead_authsize(cipher);
2011
2012 ret = artpec6_crypto_setup_sg_descrs_in(common, &walk,
2013 authsize);
2014 if (ret)
2015 return ret;
2016
2017 if (authsize < AES_BLOCK_SIZE) {
2018 count = AES_BLOCK_SIZE - authsize;
2019 ret = artpec6_crypto_setup_in_descr(common,
2020 ac->pad_buffer,
2021 count, false);
2022 if (ret)
2023 return ret;
2024 }
2025 }
2026
2027 }
2028
2029 ret = artpec6_crypto_terminate_in_descrs(common);
2030 if (ret)
2031 return ret;
2032
2033 ret = artpec6_crypto_terminate_out_descrs(common);
2034 if (ret)
2035 return ret;
2036
2037 return artpec6_crypto_dma_map_descs(common);
2038 }
2039
2040 static void artpec6_crypto_process_queue(struct artpec6_crypto *ac,
2041 struct list_head *completions)
2042 {
2043 struct artpec6_crypto_req_common *req;
2044
2045 while (!list_empty(&ac->queue) && !artpec6_crypto_busy()) {
2046 req = list_first_entry(&ac->queue,
2047 struct artpec6_crypto_req_common,
2048 list);
2049 list_move_tail(&req->list, &ac->pending);
2050 artpec6_crypto_start_dma(req);
2051
2052 list_add_tail(&req->complete_in_progress, completions);
2053 }
2054
2055 /*
2056 * In some cases, the hardware can raise an in_eop_flush interrupt
2057 * before actually updating the status, so we have an timer which will
2058 * recheck the status on timeout. Since the cases are expected to be
2059 * very rare, we use a relatively large timeout value. There should be
2060 * no noticeable negative effect if we timeout spuriously.
2061 */
2062 if (ac->pending_count)
2063 mod_timer(&ac->timer, jiffies + msecs_to_jiffies(100));
2064 else
2065 del_timer(&ac->timer);
2066 }
2067
2068 static void artpec6_crypto_timeout(struct timer_list *t)
2069 {
2070 struct artpec6_crypto *ac = from_timer(ac, t, timer);
2071
2072 dev_info_ratelimited(artpec6_crypto_dev, "timeout\n");
2073
2074 tasklet_schedule(&ac->task);
2075 }
2076
2077 static void artpec6_crypto_task(unsigned long data)
2078 {
2079 struct artpec6_crypto *ac = (struct artpec6_crypto *)data;
2080 struct artpec6_crypto_req_common *req;
2081 struct artpec6_crypto_req_common *n;
2082 struct list_head complete_done;
2083 struct list_head complete_in_progress;
2084
2085 INIT_LIST_HEAD(&complete_done);
2086 INIT_LIST_HEAD(&complete_in_progress);
2087
2088 if (list_empty(&ac->pending)) {
2089 pr_debug("Spurious IRQ\n");
2090 return;
2091 }
2092
2093 spin_lock_bh(&ac->queue_lock);
2094
2095 list_for_each_entry_safe(req, n, &ac->pending, list) {
2096 struct artpec6_crypto_dma_descriptors *dma = req->dma;
2097 u32 stat;
2098 dma_addr_t stataddr;
2099
2100 stataddr = dma->stat_dma_addr + 4 * (req->dma->in_cnt - 1);
2101 dma_sync_single_for_cpu(artpec6_crypto_dev,
2102 stataddr,
2103 4,
2104 DMA_BIDIRECTIONAL);
2105
2106 stat = req->dma->stat[req->dma->in_cnt-1];
2107
2108 /* A non-zero final status descriptor indicates
2109 * this job has finished.
2110 */
2111 pr_debug("Request %p status is %X\n", req, stat);
2112 if (!stat)
2113 break;
2114
2115 /* Allow testing of timeout handling with fault injection */
2116 #ifdef CONFIG_FAULT_INJECTION
2117 if (should_fail(&artpec6_crypto_fail_status_read, 1))
2118 continue;
2119 #endif
2120
2121 pr_debug("Completing request %p\n", req);
2122
2123 list_move_tail(&req->list, &complete_done);
2124
2125 ac->pending_count--;
2126 }
2127
2128 artpec6_crypto_process_queue(ac, &complete_in_progress);
2129
2130 spin_unlock_bh(&ac->queue_lock);
2131
2132 /* Perform the completion callbacks without holding the queue lock
2133 * to allow new request submissions from the callbacks.
2134 */
2135 list_for_each_entry_safe(req, n, &complete_done, list) {
2136 artpec6_crypto_dma_unmap_all(req);
2137 artpec6_crypto_copy_bounce_buffers(req);
2138 artpec6_crypto_common_destroy(req);
2139
2140 req->complete(req->req);
2141 }
2142
2143 list_for_each_entry_safe(req, n, &complete_in_progress,
2144 complete_in_progress) {
2145 req->req->complete(req->req, -EINPROGRESS);
2146 }
2147 }
2148
2149 static void artpec6_crypto_complete_crypto(struct crypto_async_request *req)
2150 {
2151 req->complete(req, 0);
2152 }
2153
2154 static void
2155 artpec6_crypto_complete_cbc_decrypt(struct crypto_async_request *req)
2156 {
2157 struct skcipher_request *cipher_req = container_of(req,
2158 struct skcipher_request, base);
2159
2160 scatterwalk_map_and_copy(cipher_req->iv, cipher_req->src,
2161 cipher_req->cryptlen - AES_BLOCK_SIZE,
2162 AES_BLOCK_SIZE, 0);
2163 req->complete(req, 0);
2164 }
2165
2166 static void
2167 artpec6_crypto_complete_cbc_encrypt(struct crypto_async_request *req)
2168 {
2169 struct skcipher_request *cipher_req = container_of(req,
2170 struct skcipher_request, base);
2171
2172 scatterwalk_map_and_copy(cipher_req->iv, cipher_req->dst,
2173 cipher_req->cryptlen - AES_BLOCK_SIZE,
2174 AES_BLOCK_SIZE, 0);
2175 req->complete(req, 0);
2176 }
2177
2178 static void artpec6_crypto_complete_aead(struct crypto_async_request *req)
2179 {
2180 int result = 0;
2181
2182 /* Verify GCM hashtag. */
2183 struct aead_request *areq = container_of(req,
2184 struct aead_request, base);
2185 struct crypto_aead *aead = crypto_aead_reqtfm(areq);
2186 struct artpec6_crypto_aead_req_ctx *req_ctx = aead_request_ctx(areq);
2187
2188 if (req_ctx->decrypt) {
2189 u8 input_tag[AES_BLOCK_SIZE];
2190 unsigned int authsize = crypto_aead_authsize(aead);
2191
2192 sg_pcopy_to_buffer(areq->src,
2193 sg_nents(areq->src),
2194 input_tag,
2195 authsize,
2196 areq->assoclen + areq->cryptlen -
2197 authsize);
2198
2199 if (crypto_memneq(req_ctx->decryption_tag,
2200 input_tag,
2201 authsize)) {
2202 pr_debug("***EBADMSG:\n");
2203 print_hex_dump_debug("ref:", DUMP_PREFIX_ADDRESS, 32, 1,
2204 input_tag, authsize, true);
2205 print_hex_dump_debug("out:", DUMP_PREFIX_ADDRESS, 32, 1,
2206 req_ctx->decryption_tag,
2207 authsize, true);
2208
2209 result = -EBADMSG;
2210 }
2211 }
2212
2213 req->complete(req, result);
2214 }
2215
2216 static void artpec6_crypto_complete_hash(struct crypto_async_request *req)
2217 {
2218 req->complete(req, 0);
2219 }
2220
2221
2222 /*------------------- Hash functions -----------------------------------------*/
2223 static int
2224 artpec6_crypto_hash_set_key(struct crypto_ahash *tfm,
2225 const u8 *key, unsigned int keylen)
2226 {
2227 struct artpec6_hashalg_context *tfm_ctx = crypto_tfm_ctx(&tfm->base);
2228 size_t blocksize;
2229 int ret;
2230
2231 if (!keylen) {
2232 pr_err("Invalid length (%d) of HMAC key\n",
2233 keylen);
2234 return -EINVAL;
2235 }
2236
2237 memset(tfm_ctx->hmac_key, 0, sizeof(tfm_ctx->hmac_key));
2238
2239 blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
2240
2241 if (keylen > blocksize) {
2242 SHASH_DESC_ON_STACK(hdesc, tfm_ctx->child_hash);
2243
2244 hdesc->tfm = tfm_ctx->child_hash;
2245
2246 tfm_ctx->hmac_key_length = blocksize;
2247 ret = crypto_shash_digest(hdesc, key, keylen,
2248 tfm_ctx->hmac_key);
2249 if (ret)
2250 return ret;
2251
2252 } else {
2253 memcpy(tfm_ctx->hmac_key, key, keylen);
2254 tfm_ctx->hmac_key_length = keylen;
2255 }
2256
2257 return 0;
2258 }
2259
2260 static int
2261 artpec6_crypto_init_hash(struct ahash_request *req, u8 type, int hmac)
2262 {
2263 struct artpec6_crypto *ac = dev_get_drvdata(artpec6_crypto_dev);
2264 enum artpec6_crypto_variant variant = ac->variant;
2265 struct artpec6_hash_request_context *req_ctx = ahash_request_ctx(req);
2266 u32 oper;
2267
2268 memset(req_ctx, 0, sizeof(*req_ctx));
2269
2270 req_ctx->hash_flags = HASH_FLAG_INIT_CTX;
2271 if (hmac)
2272 req_ctx->hash_flags |= (HASH_FLAG_HMAC | HASH_FLAG_UPDATE_KEY);
2273
2274 switch (type) {
2275 case ARTPEC6_CRYPTO_HASH_SHA1:
2276 oper = hmac ? regk_crypto_hmac_sha1 : regk_crypto_sha1;
2277 break;
2278 case ARTPEC6_CRYPTO_HASH_SHA256:
2279 oper = hmac ? regk_crypto_hmac_sha256 : regk_crypto_sha256;
2280 break;
2281 default:
2282 pr_err("%s: Unsupported hash type 0x%x\n", MODULE_NAME, type);
2283 return -EINVAL;
2284 }
2285
2286 if (variant == ARTPEC6_CRYPTO)
2287 req_ctx->hash_md = FIELD_PREP(A6_CRY_MD_OPER, oper);
2288 else
2289 req_ctx->hash_md = FIELD_PREP(A7_CRY_MD_OPER, oper);
2290
2291 return 0;
2292 }
2293
2294 static int artpec6_crypto_prepare_submit_hash(struct ahash_request *req)
2295 {
2296 struct artpec6_hash_request_context *req_ctx = ahash_request_ctx(req);
2297 int ret;
2298
2299 if (!req_ctx->common.dma) {
2300 ret = artpec6_crypto_common_init(&req_ctx->common,
2301 &req->base,
2302 artpec6_crypto_complete_hash,
2303 NULL, 0);
2304
2305 if (ret)
2306 return ret;
2307 }
2308
2309 ret = artpec6_crypto_prepare_hash(req);
2310 switch (ret) {
2311 case ARTPEC6_CRYPTO_PREPARE_HASH_START:
2312 ret = artpec6_crypto_submit(&req_ctx->common);
2313 break;
2314
2315 case ARTPEC6_CRYPTO_PREPARE_HASH_NO_START:
2316 ret = 0;
2317 /* Fallthrough */
2318
2319 default:
2320 artpec6_crypto_common_destroy(&req_ctx->common);
2321 break;
2322 }
2323
2324 return ret;
2325 }
2326
2327 static int artpec6_crypto_hash_final(struct ahash_request *req)
2328 {
2329 struct artpec6_hash_request_context *req_ctx = ahash_request_ctx(req);
2330
2331 req_ctx->hash_flags |= HASH_FLAG_FINALIZE;
2332
2333 return artpec6_crypto_prepare_submit_hash(req);
2334 }
2335
2336 static int artpec6_crypto_hash_update(struct ahash_request *req)
2337 {
2338 struct artpec6_hash_request_context *req_ctx = ahash_request_ctx(req);
2339
2340 req_ctx->hash_flags |= HASH_FLAG_UPDATE;
2341
2342 return artpec6_crypto_prepare_submit_hash(req);
2343 }
2344
2345 static int artpec6_crypto_sha1_init(struct ahash_request *req)
2346 {
2347 return artpec6_crypto_init_hash(req, ARTPEC6_CRYPTO_HASH_SHA1, 0);
2348 }
2349
2350 static int artpec6_crypto_sha1_digest(struct ahash_request *req)
2351 {
2352 struct artpec6_hash_request_context *req_ctx = ahash_request_ctx(req);
2353
2354 artpec6_crypto_init_hash(req, ARTPEC6_CRYPTO_HASH_SHA1, 0);
2355
2356 req_ctx->hash_flags |= HASH_FLAG_UPDATE | HASH_FLAG_FINALIZE;
2357
2358 return artpec6_crypto_prepare_submit_hash(req);
2359 }
2360
2361 static int artpec6_crypto_sha256_init(struct ahash_request *req)
2362 {
2363 return artpec6_crypto_init_hash(req, ARTPEC6_CRYPTO_HASH_SHA256, 0);
2364 }
2365
2366 static int artpec6_crypto_sha256_digest(struct ahash_request *req)
2367 {
2368 struct artpec6_hash_request_context *req_ctx = ahash_request_ctx(req);
2369
2370 artpec6_crypto_init_hash(req, ARTPEC6_CRYPTO_HASH_SHA256, 0);
2371 req_ctx->hash_flags |= HASH_FLAG_UPDATE | HASH_FLAG_FINALIZE;
2372
2373 return artpec6_crypto_prepare_submit_hash(req);
2374 }
2375
2376 static int artpec6_crypto_hmac_sha256_init(struct ahash_request *req)
2377 {
2378 return artpec6_crypto_init_hash(req, ARTPEC6_CRYPTO_HASH_SHA256, 1);
2379 }
2380
2381 static int artpec6_crypto_hmac_sha256_digest(struct ahash_request *req)
2382 {
2383 struct artpec6_hash_request_context *req_ctx = ahash_request_ctx(req);
2384
2385 artpec6_crypto_init_hash(req, ARTPEC6_CRYPTO_HASH_SHA256, 1);
2386 req_ctx->hash_flags |= HASH_FLAG_UPDATE | HASH_FLAG_FINALIZE;
2387
2388 return artpec6_crypto_prepare_submit_hash(req);
2389 }
2390
2391 static int artpec6_crypto_ahash_init_common(struct crypto_tfm *tfm,
2392 const char *base_hash_name)
2393 {
2394 struct artpec6_hashalg_context *tfm_ctx = crypto_tfm_ctx(tfm);
2395
2396 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
2397 sizeof(struct artpec6_hash_request_context));
2398 memset(tfm_ctx, 0, sizeof(*tfm_ctx));
2399
2400 if (base_hash_name) {
2401 struct crypto_shash *child;
2402
2403 child = crypto_alloc_shash(base_hash_name, 0,
2404 CRYPTO_ALG_NEED_FALLBACK);
2405
2406 if (IS_ERR(child))
2407 return PTR_ERR(child);
2408
2409 tfm_ctx->child_hash = child;
2410 }
2411
2412 return 0;
2413 }
2414
2415 static int artpec6_crypto_ahash_init(struct crypto_tfm *tfm)
2416 {
2417 return artpec6_crypto_ahash_init_common(tfm, NULL);
2418 }
2419
2420 static int artpec6_crypto_ahash_init_hmac_sha256(struct crypto_tfm *tfm)
2421 {
2422 return artpec6_crypto_ahash_init_common(tfm, "sha256");
2423 }
2424
2425 static void artpec6_crypto_ahash_exit(struct crypto_tfm *tfm)
2426 {
2427 struct artpec6_hashalg_context *tfm_ctx = crypto_tfm_ctx(tfm);
2428
2429 if (tfm_ctx->child_hash)
2430 crypto_free_shash(tfm_ctx->child_hash);
2431
2432 memset(tfm_ctx->hmac_key, 0, sizeof(tfm_ctx->hmac_key));
2433 tfm_ctx->hmac_key_length = 0;
2434 }
2435
2436 static int artpec6_crypto_hash_export(struct ahash_request *req, void *out)
2437 {
2438 const struct artpec6_hash_request_context *ctx = ahash_request_ctx(req);
2439 struct artpec6_hash_export_state *state = out;
2440 struct artpec6_crypto *ac = dev_get_drvdata(artpec6_crypto_dev);
2441 enum artpec6_crypto_variant variant = ac->variant;
2442
2443 BUILD_BUG_ON(sizeof(state->partial_buffer) !=
2444 sizeof(ctx->partial_buffer));
2445 BUILD_BUG_ON(sizeof(state->digeststate) != sizeof(ctx->digeststate));
2446
2447 state->digcnt = ctx->digcnt;
2448 state->partial_bytes = ctx->partial_bytes;
2449 state->hash_flags = ctx->hash_flags;
2450
2451 if (variant == ARTPEC6_CRYPTO)
2452 state->oper = FIELD_GET(A6_CRY_MD_OPER, ctx->hash_md);
2453 else
2454 state->oper = FIELD_GET(A7_CRY_MD_OPER, ctx->hash_md);
2455
2456 memcpy(state->partial_buffer, ctx->partial_buffer,
2457 sizeof(state->partial_buffer));
2458 memcpy(state->digeststate, ctx->digeststate,
2459 sizeof(state->digeststate));
2460
2461 return 0;
2462 }
2463
2464 static int artpec6_crypto_hash_import(struct ahash_request *req, const void *in)
2465 {
2466 struct artpec6_hash_request_context *ctx = ahash_request_ctx(req);
2467 const struct artpec6_hash_export_state *state = in;
2468 struct artpec6_crypto *ac = dev_get_drvdata(artpec6_crypto_dev);
2469 enum artpec6_crypto_variant variant = ac->variant;
2470
2471 memset(ctx, 0, sizeof(*ctx));
2472
2473 ctx->digcnt = state->digcnt;
2474 ctx->partial_bytes = state->partial_bytes;
2475 ctx->hash_flags = state->hash_flags;
2476
2477 if (variant == ARTPEC6_CRYPTO)
2478 ctx->hash_md = FIELD_PREP(A6_CRY_MD_OPER, state->oper);
2479 else
2480 ctx->hash_md = FIELD_PREP(A7_CRY_MD_OPER, state->oper);
2481
2482 memcpy(ctx->partial_buffer, state->partial_buffer,
2483 sizeof(state->partial_buffer));
2484 memcpy(ctx->digeststate, state->digeststate,
2485 sizeof(state->digeststate));
2486
2487 return 0;
2488 }
2489
2490 static int init_crypto_hw(struct artpec6_crypto *ac)
2491 {
2492 enum artpec6_crypto_variant variant = ac->variant;
2493 void __iomem *base = ac->base;
2494 u32 out_descr_buf_size;
2495 u32 out_data_buf_size;
2496 u32 in_data_buf_size;
2497 u32 in_descr_buf_size;
2498 u32 in_stat_buf_size;
2499 u32 in, out;
2500
2501 /*
2502 * The PDMA unit contains 1984 bytes of internal memory for the OUT
2503 * channels and 1024 bytes for the IN channel. This is an elastic
2504 * memory used to internally store the descriptors and data. The values
2505 * ares specified in 64 byte incremements. Trustzone buffers are not
2506 * used at this stage.
2507 */
2508 out_data_buf_size = 16; /* 1024 bytes for data */
2509 out_descr_buf_size = 15; /* 960 bytes for descriptors */
2510 in_data_buf_size = 8; /* 512 bytes for data */
2511 in_descr_buf_size = 4; /* 256 bytes for descriptors */
2512 in_stat_buf_size = 4; /* 256 bytes for stat descrs */
2513
2514 BUILD_BUG_ON_MSG((out_data_buf_size
2515 + out_descr_buf_size) * 64 > 1984,
2516 "Invalid OUT configuration");
2517
2518 BUILD_BUG_ON_MSG((in_data_buf_size
2519 + in_descr_buf_size
2520 + in_stat_buf_size) * 64 > 1024,
2521 "Invalid IN configuration");
2522
2523 in = FIELD_PREP(PDMA_IN_BUF_CFG_DATA_BUF_SIZE, in_data_buf_size) |
2524 FIELD_PREP(PDMA_IN_BUF_CFG_DESCR_BUF_SIZE, in_descr_buf_size) |
2525 FIELD_PREP(PDMA_IN_BUF_CFG_STAT_BUF_SIZE, in_stat_buf_size);
2526
2527 out = FIELD_PREP(PDMA_OUT_BUF_CFG_DATA_BUF_SIZE, out_data_buf_size) |
2528 FIELD_PREP(PDMA_OUT_BUF_CFG_DESCR_BUF_SIZE, out_descr_buf_size);
2529
2530 writel_relaxed(out, base + PDMA_OUT_BUF_CFG);
2531 writel_relaxed(PDMA_OUT_CFG_EN, base + PDMA_OUT_CFG);
2532
2533 if (variant == ARTPEC6_CRYPTO) {
2534 writel_relaxed(in, base + A6_PDMA_IN_BUF_CFG);
2535 writel_relaxed(PDMA_IN_CFG_EN, base + A6_PDMA_IN_CFG);
2536 writel_relaxed(A6_PDMA_INTR_MASK_IN_DATA |
2537 A6_PDMA_INTR_MASK_IN_EOP_FLUSH,
2538 base + A6_PDMA_INTR_MASK);
2539 } else {
2540 writel_relaxed(in, base + A7_PDMA_IN_BUF_CFG);
2541 writel_relaxed(PDMA_IN_CFG_EN, base + A7_PDMA_IN_CFG);
2542 writel_relaxed(A7_PDMA_INTR_MASK_IN_DATA |
2543 A7_PDMA_INTR_MASK_IN_EOP_FLUSH,
2544 base + A7_PDMA_INTR_MASK);
2545 }
2546
2547 return 0;
2548 }
2549
2550 static void artpec6_crypto_disable_hw(struct artpec6_crypto *ac)
2551 {
2552 enum artpec6_crypto_variant variant = ac->variant;
2553 void __iomem *base = ac->base;
2554
2555 if (variant == ARTPEC6_CRYPTO) {
2556 writel_relaxed(A6_PDMA_IN_CMD_STOP, base + A6_PDMA_IN_CMD);
2557 writel_relaxed(0, base + A6_PDMA_IN_CFG);
2558 writel_relaxed(A6_PDMA_OUT_CMD_STOP, base + PDMA_OUT_CMD);
2559 } else {
2560 writel_relaxed(A7_PDMA_IN_CMD_STOP, base + A7_PDMA_IN_CMD);
2561 writel_relaxed(0, base + A7_PDMA_IN_CFG);
2562 writel_relaxed(A7_PDMA_OUT_CMD_STOP, base + PDMA_OUT_CMD);
2563 }
2564
2565 writel_relaxed(0, base + PDMA_OUT_CFG);
2566
2567 }
2568
2569 static irqreturn_t artpec6_crypto_irq(int irq, void *dev_id)
2570 {
2571 struct artpec6_crypto *ac = dev_id;
2572 enum artpec6_crypto_variant variant = ac->variant;
2573 void __iomem *base = ac->base;
2574 u32 mask_in_data, mask_in_eop_flush;
2575 u32 in_cmd_flush_stat, in_cmd_reg;
2576 u32 ack_intr_reg;
2577 u32 ack = 0;
2578 u32 intr;
2579
2580 if (variant == ARTPEC6_CRYPTO) {
2581 intr = readl_relaxed(base + A6_PDMA_MASKED_INTR);
2582 mask_in_data = A6_PDMA_INTR_MASK_IN_DATA;
2583 mask_in_eop_flush = A6_PDMA_INTR_MASK_IN_EOP_FLUSH;
2584 in_cmd_flush_stat = A6_PDMA_IN_CMD_FLUSH_STAT;
2585 in_cmd_reg = A6_PDMA_IN_CMD;
2586 ack_intr_reg = A6_PDMA_ACK_INTR;
2587 } else {
2588 intr = readl_relaxed(base + A7_PDMA_MASKED_INTR);
2589 mask_in_data = A7_PDMA_INTR_MASK_IN_DATA;
2590 mask_in_eop_flush = A7_PDMA_INTR_MASK_IN_EOP_FLUSH;
2591 in_cmd_flush_stat = A7_PDMA_IN_CMD_FLUSH_STAT;
2592 in_cmd_reg = A7_PDMA_IN_CMD;
2593 ack_intr_reg = A7_PDMA_ACK_INTR;
2594 }
2595
2596 /* We get two interrupt notifications from each job.
2597 * The in_data means all data was sent to memory and then
2598 * we request a status flush command to write the per-job
2599 * status to its status vector. This ensures that the
2600 * tasklet can detect exactly how many submitted jobs
2601 * that have finished.
2602 */
2603 if (intr & mask_in_data)
2604 ack |= mask_in_data;
2605
2606 if (intr & mask_in_eop_flush)
2607 ack |= mask_in_eop_flush;
2608 else
2609 writel_relaxed(in_cmd_flush_stat, base + in_cmd_reg);
2610
2611 writel_relaxed(ack, base + ack_intr_reg);
2612
2613 if (intr & mask_in_eop_flush)
2614 tasklet_schedule(&ac->task);
2615
2616 return IRQ_HANDLED;
2617 }
2618
2619 /*------------------- Algorithm definitions ----------------------------------*/
2620
2621 /* Hashes */
2622 static struct ahash_alg hash_algos[] = {
2623 /* SHA-1 */
2624 {
2625 .init = artpec6_crypto_sha1_init,
2626 .update = artpec6_crypto_hash_update,
2627 .final = artpec6_crypto_hash_final,
2628 .digest = artpec6_crypto_sha1_digest,
2629 .import = artpec6_crypto_hash_import,
2630 .export = artpec6_crypto_hash_export,
2631 .halg.digestsize = SHA1_DIGEST_SIZE,
2632 .halg.statesize = sizeof(struct artpec6_hash_export_state),
2633 .halg.base = {
2634 .cra_name = "sha1",
2635 .cra_driver_name = "artpec-sha1",
2636 .cra_priority = 300,
2637 .cra_flags = CRYPTO_ALG_ASYNC,
2638 .cra_blocksize = SHA1_BLOCK_SIZE,
2639 .cra_ctxsize = sizeof(struct artpec6_hashalg_context),
2640 .cra_alignmask = 3,
2641 .cra_module = THIS_MODULE,
2642 .cra_init = artpec6_crypto_ahash_init,
2643 .cra_exit = artpec6_crypto_ahash_exit,
2644 }
2645 },
2646 /* SHA-256 */
2647 {
2648 .init = artpec6_crypto_sha256_init,
2649 .update = artpec6_crypto_hash_update,
2650 .final = artpec6_crypto_hash_final,
2651 .digest = artpec6_crypto_sha256_digest,
2652 .import = artpec6_crypto_hash_import,
2653 .export = artpec6_crypto_hash_export,
2654 .halg.digestsize = SHA256_DIGEST_SIZE,
2655 .halg.statesize = sizeof(struct artpec6_hash_export_state),
2656 .halg.base = {
2657 .cra_name = "sha256",
2658 .cra_driver_name = "artpec-sha256",
2659 .cra_priority = 300,
2660 .cra_flags = CRYPTO_ALG_ASYNC,
2661 .cra_blocksize = SHA256_BLOCK_SIZE,
2662 .cra_ctxsize = sizeof(struct artpec6_hashalg_context),
2663 .cra_alignmask = 3,
2664 .cra_module = THIS_MODULE,
2665 .cra_init = artpec6_crypto_ahash_init,
2666 .cra_exit = artpec6_crypto_ahash_exit,
2667 }
2668 },
2669 /* HMAC SHA-256 */
2670 {
2671 .init = artpec6_crypto_hmac_sha256_init,
2672 .update = artpec6_crypto_hash_update,
2673 .final = artpec6_crypto_hash_final,
2674 .digest = artpec6_crypto_hmac_sha256_digest,
2675 .import = artpec6_crypto_hash_import,
2676 .export = artpec6_crypto_hash_export,
2677 .setkey = artpec6_crypto_hash_set_key,
2678 .halg.digestsize = SHA256_DIGEST_SIZE,
2679 .halg.statesize = sizeof(struct artpec6_hash_export_state),
2680 .halg.base = {
2681 .cra_name = "hmac(sha256)",
2682 .cra_driver_name = "artpec-hmac-sha256",
2683 .cra_priority = 300,
2684 .cra_flags = CRYPTO_ALG_ASYNC,
2685 .cra_blocksize = SHA256_BLOCK_SIZE,
2686 .cra_ctxsize = sizeof(struct artpec6_hashalg_context),
2687 .cra_alignmask = 3,
2688 .cra_module = THIS_MODULE,
2689 .cra_init = artpec6_crypto_ahash_init_hmac_sha256,
2690 .cra_exit = artpec6_crypto_ahash_exit,
2691 }
2692 },
2693 };
2694
2695 /* Crypto */
2696 static struct skcipher_alg crypto_algos[] = {
2697 /* AES - ECB */
2698 {
2699 .base = {
2700 .cra_name = "ecb(aes)",
2701 .cra_driver_name = "artpec6-ecb-aes",
2702 .cra_priority = 300,
2703 .cra_flags = CRYPTO_ALG_ASYNC,
2704 .cra_blocksize = AES_BLOCK_SIZE,
2705 .cra_ctxsize = sizeof(struct artpec6_cryptotfm_context),
2706 .cra_alignmask = 3,
2707 .cra_module = THIS_MODULE,
2708 },
2709 .min_keysize = AES_MIN_KEY_SIZE,
2710 .max_keysize = AES_MAX_KEY_SIZE,
2711 .setkey = artpec6_crypto_cipher_set_key,
2712 .encrypt = artpec6_crypto_encrypt,
2713 .decrypt = artpec6_crypto_decrypt,
2714 .init = artpec6_crypto_aes_ecb_init,
2715 .exit = artpec6_crypto_aes_exit,
2716 },
2717 /* AES - CTR */
2718 {
2719 .base = {
2720 .cra_name = "ctr(aes)",
2721 .cra_driver_name = "artpec6-ctr-aes",
2722 .cra_priority = 300,
2723 .cra_flags = CRYPTO_ALG_ASYNC |
2724 CRYPTO_ALG_NEED_FALLBACK,
2725 .cra_blocksize = 1,
2726 .cra_ctxsize = sizeof(struct artpec6_cryptotfm_context),
2727 .cra_alignmask = 3,
2728 .cra_module = THIS_MODULE,
2729 },
2730 .min_keysize = AES_MIN_KEY_SIZE,
2731 .max_keysize = AES_MAX_KEY_SIZE,
2732 .ivsize = AES_BLOCK_SIZE,
2733 .setkey = artpec6_crypto_cipher_set_key,
2734 .encrypt = artpec6_crypto_ctr_encrypt,
2735 .decrypt = artpec6_crypto_ctr_decrypt,
2736 .init = artpec6_crypto_aes_ctr_init,
2737 .exit = artpec6_crypto_aes_ctr_exit,
2738 },
2739 /* AES - CBC */
2740 {
2741 .base = {
2742 .cra_name = "cbc(aes)",
2743 .cra_driver_name = "artpec6-cbc-aes",
2744 .cra_priority = 300,
2745 .cra_flags = CRYPTO_ALG_ASYNC,
2746 .cra_blocksize = AES_BLOCK_SIZE,
2747 .cra_ctxsize = sizeof(struct artpec6_cryptotfm_context),
2748 .cra_alignmask = 3,
2749 .cra_module = THIS_MODULE,
2750 },
2751 .min_keysize = AES_MIN_KEY_SIZE,
2752 .max_keysize = AES_MAX_KEY_SIZE,
2753 .ivsize = AES_BLOCK_SIZE,
2754 .setkey = artpec6_crypto_cipher_set_key,
2755 .encrypt = artpec6_crypto_encrypt,
2756 .decrypt = artpec6_crypto_decrypt,
2757 .init = artpec6_crypto_aes_cbc_init,
2758 .exit = artpec6_crypto_aes_exit
2759 },
2760 /* AES - XTS */
2761 {
2762 .base = {
2763 .cra_name = "xts(aes)",
2764 .cra_driver_name = "artpec6-xts-aes",
2765 .cra_priority = 300,
2766 .cra_flags = CRYPTO_ALG_ASYNC,
2767 .cra_blocksize = 1,
2768 .cra_ctxsize = sizeof(struct artpec6_cryptotfm_context),
2769 .cra_alignmask = 3,
2770 .cra_module = THIS_MODULE,
2771 },
2772 .min_keysize = 2*AES_MIN_KEY_SIZE,
2773 .max_keysize = 2*AES_MAX_KEY_SIZE,
2774 .ivsize = 16,
2775 .setkey = artpec6_crypto_xts_set_key,
2776 .encrypt = artpec6_crypto_encrypt,
2777 .decrypt = artpec6_crypto_decrypt,
2778 .init = artpec6_crypto_aes_xts_init,
2779 .exit = artpec6_crypto_aes_exit,
2780 },
2781 };
2782
2783 static struct aead_alg aead_algos[] = {
2784 {
2785 .init = artpec6_crypto_aead_init,
2786 .setkey = artpec6_crypto_aead_set_key,
2787 .encrypt = artpec6_crypto_aead_encrypt,
2788 .decrypt = artpec6_crypto_aead_decrypt,
2789 .ivsize = GCM_AES_IV_SIZE,
2790 .maxauthsize = AES_BLOCK_SIZE,
2791
2792 .base = {
2793 .cra_name = "gcm(aes)",
2794 .cra_driver_name = "artpec-gcm-aes",
2795 .cra_priority = 300,
2796 .cra_flags = CRYPTO_ALG_ASYNC |
2797 CRYPTO_ALG_KERN_DRIVER_ONLY,
2798 .cra_blocksize = 1,
2799 .cra_ctxsize = sizeof(struct artpec6_cryptotfm_context),
2800 .cra_alignmask = 3,
2801 .cra_module = THIS_MODULE,
2802 },
2803 }
2804 };
2805
2806 #ifdef CONFIG_DEBUG_FS
2807
2808 struct dbgfs_u32 {
2809 char *name;
2810 mode_t mode;
2811 u32 *flag;
2812 char *desc;
2813 };
2814
2815 static struct dentry *dbgfs_root;
2816
2817 static void artpec6_crypto_init_debugfs(void)
2818 {
2819 dbgfs_root = debugfs_create_dir("artpec6_crypto", NULL);
2820
2821 #ifdef CONFIG_FAULT_INJECTION
2822 fault_create_debugfs_attr("fail_status_read", dbgfs_root,
2823 &artpec6_crypto_fail_status_read);
2824
2825 fault_create_debugfs_attr("fail_dma_array_full", dbgfs_root,
2826 &artpec6_crypto_fail_dma_array_full);
2827 #endif
2828 }
2829
2830 static void artpec6_crypto_free_debugfs(void)
2831 {
2832 debugfs_remove_recursive(dbgfs_root);
2833 dbgfs_root = NULL;
2834 }
2835 #endif
2836
2837 static const struct of_device_id artpec6_crypto_of_match[] = {
2838 { .compatible = "axis,artpec6-crypto", .data = (void *)ARTPEC6_CRYPTO },
2839 { .compatible = "axis,artpec7-crypto", .data = (void *)ARTPEC7_CRYPTO },
2840 {}
2841 };
2842 MODULE_DEVICE_TABLE(of, artpec6_crypto_of_match);
2843
2844 static int artpec6_crypto_probe(struct platform_device *pdev)
2845 {
2846 const struct of_device_id *match;
2847 enum artpec6_crypto_variant variant;
2848 struct artpec6_crypto *ac;
2849 struct device *dev = &pdev->dev;
2850 void __iomem *base;
2851 int irq;
2852 int err;
2853
2854 if (artpec6_crypto_dev)
2855 return -ENODEV;
2856
2857 match = of_match_node(artpec6_crypto_of_match, dev->of_node);
2858 if (!match)
2859 return -EINVAL;
2860
2861 variant = (enum artpec6_crypto_variant)match->data;
2862
2863 base = devm_platform_ioremap_resource(pdev, 0);
2864 if (IS_ERR(base))
2865 return PTR_ERR(base);
2866
2867 irq = platform_get_irq(pdev, 0);
2868 if (irq < 0)
2869 return -ENODEV;
2870
2871 ac = devm_kzalloc(&pdev->dev, sizeof(struct artpec6_crypto),
2872 GFP_KERNEL);
2873 if (!ac)
2874 return -ENOMEM;
2875
2876 platform_set_drvdata(pdev, ac);
2877 ac->variant = variant;
2878
2879 spin_lock_init(&ac->queue_lock);
2880 INIT_LIST_HEAD(&ac->queue);
2881 INIT_LIST_HEAD(&ac->pending);
2882 timer_setup(&ac->timer, artpec6_crypto_timeout, 0);
2883
2884 ac->base = base;
2885
2886 ac->dma_cache = kmem_cache_create("artpec6_crypto_dma",
2887 sizeof(struct artpec6_crypto_dma_descriptors),
2888 64,
2889 0,
2890 NULL);
2891 if (!ac->dma_cache)
2892 return -ENOMEM;
2893
2894 #ifdef CONFIG_DEBUG_FS
2895 artpec6_crypto_init_debugfs();
2896 #endif
2897
2898 tasklet_init(&ac->task, artpec6_crypto_task,
2899 (unsigned long)ac);
2900
2901 ac->pad_buffer = devm_kzalloc(&pdev->dev, 2 * ARTPEC_CACHE_LINE_MAX,
2902 GFP_KERNEL);
2903 if (!ac->pad_buffer)
2904 return -ENOMEM;
2905 ac->pad_buffer = PTR_ALIGN(ac->pad_buffer, ARTPEC_CACHE_LINE_MAX);
2906
2907 ac->zero_buffer = devm_kzalloc(&pdev->dev, 2 * ARTPEC_CACHE_LINE_MAX,
2908 GFP_KERNEL);
2909 if (!ac->zero_buffer)
2910 return -ENOMEM;
2911 ac->zero_buffer = PTR_ALIGN(ac->zero_buffer, ARTPEC_CACHE_LINE_MAX);
2912
2913 err = init_crypto_hw(ac);
2914 if (err)
2915 goto free_cache;
2916
2917 err = devm_request_irq(&pdev->dev, irq, artpec6_crypto_irq, 0,
2918 "artpec6-crypto", ac);
2919 if (err)
2920 goto disable_hw;
2921
2922 artpec6_crypto_dev = &pdev->dev;
2923
2924 err = crypto_register_ahashes(hash_algos, ARRAY_SIZE(hash_algos));
2925 if (err) {
2926 dev_err(dev, "Failed to register ahashes\n");
2927 goto disable_hw;
2928 }
2929
2930 err = crypto_register_skciphers(crypto_algos, ARRAY_SIZE(crypto_algos));
2931 if (err) {
2932 dev_err(dev, "Failed to register ciphers\n");
2933 goto unregister_ahashes;
2934 }
2935
2936 err = crypto_register_aeads(aead_algos, ARRAY_SIZE(aead_algos));
2937 if (err) {
2938 dev_err(dev, "Failed to register aeads\n");
2939 goto unregister_algs;
2940 }
2941
2942 return 0;
2943
2944 unregister_algs:
2945 crypto_unregister_skciphers(crypto_algos, ARRAY_SIZE(crypto_algos));
2946 unregister_ahashes:
2947 crypto_unregister_ahashes(hash_algos, ARRAY_SIZE(hash_algos));
2948 disable_hw:
2949 artpec6_crypto_disable_hw(ac);
2950 free_cache:
2951 kmem_cache_destroy(ac->dma_cache);
2952 return err;
2953 }
2954
2955 static int artpec6_crypto_remove(struct platform_device *pdev)
2956 {
2957 struct artpec6_crypto *ac = platform_get_drvdata(pdev);
2958 int irq = platform_get_irq(pdev, 0);
2959
2960 crypto_unregister_ahashes(hash_algos, ARRAY_SIZE(hash_algos));
2961 crypto_unregister_skciphers(crypto_algos, ARRAY_SIZE(crypto_algos));
2962 crypto_unregister_aeads(aead_algos, ARRAY_SIZE(aead_algos));
2963
2964 tasklet_disable(&ac->task);
2965 devm_free_irq(&pdev->dev, irq, ac);
2966 tasklet_kill(&ac->task);
2967 del_timer_sync(&ac->timer);
2968
2969 artpec6_crypto_disable_hw(ac);
2970
2971 kmem_cache_destroy(ac->dma_cache);
2972 #ifdef CONFIG_DEBUG_FS
2973 artpec6_crypto_free_debugfs();
2974 #endif
2975 return 0;
2976 }
2977
2978 static struct platform_driver artpec6_crypto_driver = {
2979 .probe = artpec6_crypto_probe,
2980 .remove = artpec6_crypto_remove,
2981 .driver = {
2982 .name = "artpec6-crypto",
2983 .of_match_table = artpec6_crypto_of_match,
2984 },
2985 };
2986
2987 module_platform_driver(artpec6_crypto_driver);
2988
2989 MODULE_AUTHOR("Axis Communications AB");
2990 MODULE_DESCRIPTION("ARTPEC-6 Crypto driver");
2991 MODULE_LICENSE("GPL");