]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - drivers/crypto/chelsio/chtls/chtls_hw.c
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 500
[thirdparty/kernel/stable.git] / drivers / crypto / chelsio / chtls / chtls_hw.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2018 Chelsio Communications, Inc.
4 *
5 * Written by: Atul Gupta (atul.gupta@chelsio.com)
6 */
7
8 #include <linux/module.h>
9 #include <linux/list.h>
10 #include <linux/workqueue.h>
11 #include <linux/skbuff.h>
12 #include <linux/timer.h>
13 #include <linux/notifier.h>
14 #include <linux/inetdevice.h>
15 #include <linux/ip.h>
16 #include <linux/tcp.h>
17 #include <linux/tls.h>
18 #include <net/tls.h>
19
20 #include "chtls.h"
21 #include "chtls_cm.h"
22
23 static void __set_tcb_field_direct(struct chtls_sock *csk,
24 struct cpl_set_tcb_field *req, u16 word,
25 u64 mask, u64 val, u8 cookie, int no_reply)
26 {
27 struct ulptx_idata *sc;
28
29 INIT_TP_WR_CPL(req, CPL_SET_TCB_FIELD, csk->tid);
30 req->wr.wr_mid |= htonl(FW_WR_FLOWID_V(csk->tid));
31 req->reply_ctrl = htons(NO_REPLY_V(no_reply) |
32 QUEUENO_V(csk->rss_qid));
33 req->word_cookie = htons(TCB_WORD_V(word) | TCB_COOKIE_V(cookie));
34 req->mask = cpu_to_be64(mask);
35 req->val = cpu_to_be64(val);
36 sc = (struct ulptx_idata *)(req + 1);
37 sc->cmd_more = htonl(ULPTX_CMD_V(ULP_TX_SC_NOOP));
38 sc->len = htonl(0);
39 }
40
41 static void __set_tcb_field(struct sock *sk, struct sk_buff *skb, u16 word,
42 u64 mask, u64 val, u8 cookie, int no_reply)
43 {
44 struct cpl_set_tcb_field *req;
45 struct chtls_sock *csk;
46 struct ulptx_idata *sc;
47 unsigned int wrlen;
48
49 wrlen = roundup(sizeof(*req) + sizeof(*sc), 16);
50 csk = rcu_dereference_sk_user_data(sk);
51
52 req = (struct cpl_set_tcb_field *)__skb_put(skb, wrlen);
53 __set_tcb_field_direct(csk, req, word, mask, val, cookie, no_reply);
54 set_wr_txq(skb, CPL_PRIORITY_CONTROL, csk->port_id);
55 }
56
57 /*
58 * Send control message to HW, message go as immediate data and packet
59 * is freed immediately.
60 */
61 static int chtls_set_tcb_field(struct sock *sk, u16 word, u64 mask, u64 val)
62 {
63 struct cpl_set_tcb_field *req;
64 unsigned int credits_needed;
65 struct chtls_sock *csk;
66 struct ulptx_idata *sc;
67 struct sk_buff *skb;
68 unsigned int wrlen;
69 int ret;
70
71 wrlen = roundup(sizeof(*req) + sizeof(*sc), 16);
72
73 skb = alloc_skb(wrlen, GFP_ATOMIC);
74 if (!skb)
75 return -ENOMEM;
76
77 credits_needed = DIV_ROUND_UP(wrlen, 16);
78 csk = rcu_dereference_sk_user_data(sk);
79
80 __set_tcb_field(sk, skb, word, mask, val, 0, 1);
81 skb_set_queue_mapping(skb, (csk->txq_idx << 1) | CPL_PRIORITY_DATA);
82 csk->wr_credits -= credits_needed;
83 csk->wr_unacked += credits_needed;
84 enqueue_wr(csk, skb);
85 ret = cxgb4_ofld_send(csk->egress_dev, skb);
86 if (ret < 0)
87 kfree_skb(skb);
88 return ret < 0 ? ret : 0;
89 }
90
91 /*
92 * Set one of the t_flags bits in the TCB.
93 */
94 int chtls_set_tcb_tflag(struct sock *sk, unsigned int bit_pos, int val)
95 {
96 return chtls_set_tcb_field(sk, 1, 1ULL << bit_pos,
97 (u64)val << bit_pos);
98 }
99
100 static int chtls_set_tcb_keyid(struct sock *sk, int keyid)
101 {
102 return chtls_set_tcb_field(sk, 31, 0xFFFFFFFFULL, keyid);
103 }
104
105 static int chtls_set_tcb_seqno(struct sock *sk)
106 {
107 return chtls_set_tcb_field(sk, 28, ~0ULL, 0);
108 }
109
110 static int chtls_set_tcb_quiesce(struct sock *sk, int val)
111 {
112 return chtls_set_tcb_field(sk, 1, (1ULL << TF_RX_QUIESCE_S),
113 TF_RX_QUIESCE_V(val));
114 }
115
116 /* TLS Key bitmap processing */
117 int chtls_init_kmap(struct chtls_dev *cdev, struct cxgb4_lld_info *lldi)
118 {
119 unsigned int num_key_ctx, bsize;
120 int ksize;
121
122 num_key_ctx = (lldi->vr->key.size / TLS_KEY_CONTEXT_SZ);
123 bsize = BITS_TO_LONGS(num_key_ctx);
124
125 cdev->kmap.size = num_key_ctx;
126 cdev->kmap.available = bsize;
127 ksize = sizeof(*cdev->kmap.addr) * bsize;
128 cdev->kmap.addr = kvzalloc(ksize, GFP_KERNEL);
129 if (!cdev->kmap.addr)
130 return -ENOMEM;
131
132 cdev->kmap.start = lldi->vr->key.start;
133 spin_lock_init(&cdev->kmap.lock);
134 return 0;
135 }
136
137 static int get_new_keyid(struct chtls_sock *csk, u32 optname)
138 {
139 struct net_device *dev = csk->egress_dev;
140 struct chtls_dev *cdev = csk->cdev;
141 struct chtls_hws *hws;
142 struct adapter *adap;
143 int keyid;
144
145 adap = netdev2adap(dev);
146 hws = &csk->tlshws;
147
148 spin_lock_bh(&cdev->kmap.lock);
149 keyid = find_first_zero_bit(cdev->kmap.addr, cdev->kmap.size);
150 if (keyid < cdev->kmap.size) {
151 __set_bit(keyid, cdev->kmap.addr);
152 if (optname == TLS_RX)
153 hws->rxkey = keyid;
154 else
155 hws->txkey = keyid;
156 atomic_inc(&adap->chcr_stats.tls_key);
157 } else {
158 keyid = -1;
159 }
160 spin_unlock_bh(&cdev->kmap.lock);
161 return keyid;
162 }
163
164 void free_tls_keyid(struct sock *sk)
165 {
166 struct chtls_sock *csk = rcu_dereference_sk_user_data(sk);
167 struct net_device *dev = csk->egress_dev;
168 struct chtls_dev *cdev = csk->cdev;
169 struct chtls_hws *hws;
170 struct adapter *adap;
171
172 if (!cdev->kmap.addr)
173 return;
174
175 adap = netdev2adap(dev);
176 hws = &csk->tlshws;
177
178 spin_lock_bh(&cdev->kmap.lock);
179 if (hws->rxkey >= 0) {
180 __clear_bit(hws->rxkey, cdev->kmap.addr);
181 atomic_dec(&adap->chcr_stats.tls_key);
182 hws->rxkey = -1;
183 }
184 if (hws->txkey >= 0) {
185 __clear_bit(hws->txkey, cdev->kmap.addr);
186 atomic_dec(&adap->chcr_stats.tls_key);
187 hws->txkey = -1;
188 }
189 spin_unlock_bh(&cdev->kmap.lock);
190 }
191
192 unsigned int keyid_to_addr(int start_addr, int keyid)
193 {
194 return (start_addr + (keyid * TLS_KEY_CONTEXT_SZ)) >> 5;
195 }
196
197 static void chtls_rxkey_ivauth(struct _key_ctx *kctx)
198 {
199 kctx->iv_to_auth = cpu_to_be64(KEYCTX_TX_WR_IV_V(6ULL) |
200 KEYCTX_TX_WR_AAD_V(1ULL) |
201 KEYCTX_TX_WR_AADST_V(5ULL) |
202 KEYCTX_TX_WR_CIPHER_V(14ULL) |
203 KEYCTX_TX_WR_CIPHERST_V(0ULL) |
204 KEYCTX_TX_WR_AUTH_V(14ULL) |
205 KEYCTX_TX_WR_AUTHST_V(16ULL) |
206 KEYCTX_TX_WR_AUTHIN_V(16ULL));
207 }
208
209 static int chtls_key_info(struct chtls_sock *csk,
210 struct _key_ctx *kctx,
211 u32 keylen, u32 optname)
212 {
213 unsigned char key[AES_KEYSIZE_128];
214 struct tls12_crypto_info_aes_gcm_128 *gcm_ctx;
215 unsigned char ghash_h[AEAD_H_SIZE];
216 struct crypto_cipher *cipher;
217 int ck_size, key_ctx_size;
218 int ret;
219
220 gcm_ctx = (struct tls12_crypto_info_aes_gcm_128 *)
221 &csk->tlshws.crypto_info;
222
223 key_ctx_size = sizeof(struct _key_ctx) +
224 roundup(keylen, 16) + AEAD_H_SIZE;
225
226 if (keylen == AES_KEYSIZE_128) {
227 ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_128;
228 } else {
229 pr_err("GCM: Invalid key length %d\n", keylen);
230 return -EINVAL;
231 }
232 memcpy(key, gcm_ctx->key, keylen);
233
234 /* Calculate the H = CIPH(K, 0 repeated 16 times).
235 * It will go in key context
236 */
237 cipher = crypto_alloc_cipher("aes", 0, 0);
238 if (IS_ERR(cipher)) {
239 ret = -ENOMEM;
240 goto out;
241 }
242
243 ret = crypto_cipher_setkey(cipher, key, keylen);
244 if (ret)
245 goto out1;
246
247 memset(ghash_h, 0, AEAD_H_SIZE);
248 crypto_cipher_encrypt_one(cipher, ghash_h, ghash_h);
249 csk->tlshws.keylen = key_ctx_size;
250
251 /* Copy the Key context */
252 if (optname == TLS_RX) {
253 int key_ctx;
254
255 key_ctx = ((key_ctx_size >> 4) << 3);
256 kctx->ctx_hdr = FILL_KEY_CRX_HDR(ck_size,
257 CHCR_KEYCTX_MAC_KEY_SIZE_128,
258 0, 0, key_ctx);
259 chtls_rxkey_ivauth(kctx);
260 } else {
261 kctx->ctx_hdr = FILL_KEY_CTX_HDR(ck_size,
262 CHCR_KEYCTX_MAC_KEY_SIZE_128,
263 0, 0, key_ctx_size >> 4);
264 }
265
266 memcpy(kctx->salt, gcm_ctx->salt, TLS_CIPHER_AES_GCM_128_SALT_SIZE);
267 memcpy(kctx->key, gcm_ctx->key, keylen);
268 memcpy(kctx->key + keylen, ghash_h, AEAD_H_SIZE);
269 /* erase key info from driver */
270 memset(gcm_ctx->key, 0, keylen);
271
272 out1:
273 crypto_free_cipher(cipher);
274 out:
275 return ret;
276 }
277
278 static void chtls_set_scmd(struct chtls_sock *csk)
279 {
280 struct chtls_hws *hws = &csk->tlshws;
281
282 hws->scmd.seqno_numivs =
283 SCMD_SEQ_NO_CTRL_V(3) |
284 SCMD_PROTO_VERSION_V(0) |
285 SCMD_ENC_DEC_CTRL_V(0) |
286 SCMD_CIPH_AUTH_SEQ_CTRL_V(1) |
287 SCMD_CIPH_MODE_V(2) |
288 SCMD_AUTH_MODE_V(4) |
289 SCMD_HMAC_CTRL_V(0) |
290 SCMD_IV_SIZE_V(4) |
291 SCMD_NUM_IVS_V(1);
292
293 hws->scmd.ivgen_hdrlen =
294 SCMD_IV_GEN_CTRL_V(1) |
295 SCMD_KEY_CTX_INLINE_V(0) |
296 SCMD_TLS_FRAG_ENABLE_V(1);
297 }
298
299 int chtls_setkey(struct chtls_sock *csk, u32 keylen, u32 optname)
300 {
301 struct tls_key_req *kwr;
302 struct chtls_dev *cdev;
303 struct _key_ctx *kctx;
304 int wrlen, klen, len;
305 struct sk_buff *skb;
306 struct sock *sk;
307 int keyid;
308 int kaddr;
309 int ret;
310
311 cdev = csk->cdev;
312 sk = csk->sk;
313
314 klen = roundup((keylen + AEAD_H_SIZE) + sizeof(*kctx), 32);
315 wrlen = roundup(sizeof(*kwr), 16);
316 len = klen + wrlen;
317
318 /* Flush out-standing data before new key takes effect */
319 if (optname == TLS_TX) {
320 lock_sock(sk);
321 if (skb_queue_len(&csk->txq))
322 chtls_push_frames(csk, 0);
323 release_sock(sk);
324 }
325
326 skb = alloc_skb(len, GFP_KERNEL);
327 if (!skb)
328 return -ENOMEM;
329
330 keyid = get_new_keyid(csk, optname);
331 if (keyid < 0) {
332 ret = -ENOSPC;
333 goto out_nokey;
334 }
335
336 kaddr = keyid_to_addr(cdev->kmap.start, keyid);
337 kwr = (struct tls_key_req *)__skb_put_zero(skb, len);
338 kwr->wr.op_to_compl =
339 cpu_to_be32(FW_WR_OP_V(FW_ULPTX_WR) | FW_WR_COMPL_F |
340 FW_WR_ATOMIC_V(1U));
341 kwr->wr.flowid_len16 =
342 cpu_to_be32(FW_WR_LEN16_V(DIV_ROUND_UP(len, 16) |
343 FW_WR_FLOWID_V(csk->tid)));
344 kwr->wr.protocol = 0;
345 kwr->wr.mfs = htons(TLS_MFS);
346 kwr->wr.reneg_to_write_rx = optname;
347
348 /* ulptx command */
349 kwr->req.cmd = cpu_to_be32(ULPTX_CMD_V(ULP_TX_MEM_WRITE) |
350 T5_ULP_MEMIO_ORDER_V(1) |
351 T5_ULP_MEMIO_IMM_V(1));
352 kwr->req.len16 = cpu_to_be32((csk->tid << 8) |
353 DIV_ROUND_UP(len - sizeof(kwr->wr), 16));
354 kwr->req.dlen = cpu_to_be32(ULP_MEMIO_DATA_LEN_V(klen >> 5));
355 kwr->req.lock_addr = cpu_to_be32(ULP_MEMIO_ADDR_V(kaddr));
356
357 /* sub command */
358 kwr->sc_imm.cmd_more = cpu_to_be32(ULPTX_CMD_V(ULP_TX_SC_IMM));
359 kwr->sc_imm.len = cpu_to_be32(klen);
360
361 /* key info */
362 kctx = (struct _key_ctx *)(kwr + 1);
363 ret = chtls_key_info(csk, kctx, keylen, optname);
364 if (ret)
365 goto out_notcb;
366
367 set_wr_txq(skb, CPL_PRIORITY_DATA, csk->tlshws.txqid);
368 csk->wr_credits -= DIV_ROUND_UP(len, 16);
369 csk->wr_unacked += DIV_ROUND_UP(len, 16);
370 enqueue_wr(csk, skb);
371 cxgb4_ofld_send(csk->egress_dev, skb);
372
373 chtls_set_scmd(csk);
374 /* Clear quiesce for Rx key */
375 if (optname == TLS_RX) {
376 ret = chtls_set_tcb_keyid(sk, keyid);
377 if (ret)
378 goto out_notcb;
379 ret = chtls_set_tcb_field(sk, 0,
380 TCB_ULP_RAW_V(TCB_ULP_RAW_M),
381 TCB_ULP_RAW_V((TF_TLS_KEY_SIZE_V(1) |
382 TF_TLS_CONTROL_V(1) |
383 TF_TLS_ACTIVE_V(1) |
384 TF_TLS_ENABLE_V(1))));
385 if (ret)
386 goto out_notcb;
387 ret = chtls_set_tcb_seqno(sk);
388 if (ret)
389 goto out_notcb;
390 ret = chtls_set_tcb_quiesce(sk, 0);
391 if (ret)
392 goto out_notcb;
393 csk->tlshws.rxkey = keyid;
394 } else {
395 csk->tlshws.tx_seq_no = 0;
396 csk->tlshws.txkey = keyid;
397 }
398
399 return ret;
400 out_notcb:
401 free_tls_keyid(sk);
402 out_nokey:
403 kfree_skb(skb);
404 return ret;
405 }