]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - drivers/crypto/omap-sham.c
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
[thirdparty/kernel/linux.git] / drivers / crypto / omap-sham.c
1 /*
2 * Cryptographic API.
3 *
4 * Support for OMAP SHA1/MD5 HW acceleration.
5 *
6 * Copyright (c) 2010 Nokia Corporation
7 * Author: Dmitry Kasatkin <dmitry.kasatkin@nokia.com>
8 * Copyright (c) 2011 Texas Instruments Incorporated
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as published
12 * by the Free Software Foundation.
13 *
14 * Some ideas are from old omap-sha1-md5.c driver.
15 */
16
17 #define pr_fmt(fmt) "%s: " fmt, __func__
18
19 #include <linux/err.h>
20 #include <linux/device.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
23 #include <linux/errno.h>
24 #include <linux/interrupt.h>
25 #include <linux/kernel.h>
26 #include <linux/irq.h>
27 #include <linux/io.h>
28 #include <linux/platform_device.h>
29 #include <linux/scatterlist.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/dmaengine.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/of.h>
34 #include <linux/of_device.h>
35 #include <linux/of_address.h>
36 #include <linux/of_irq.h>
37 #include <linux/delay.h>
38 #include <linux/crypto.h>
39 #include <linux/cryptohash.h>
40 #include <crypto/scatterwalk.h>
41 #include <crypto/algapi.h>
42 #include <crypto/sha.h>
43 #include <crypto/hash.h>
44 #include <crypto/hmac.h>
45 #include <crypto/internal/hash.h>
46
47 #define MD5_DIGEST_SIZE 16
48
49 #define SHA_REG_IDIGEST(dd, x) ((dd)->pdata->idigest_ofs + ((x)*0x04))
50 #define SHA_REG_DIN(dd, x) ((dd)->pdata->din_ofs + ((x) * 0x04))
51 #define SHA_REG_DIGCNT(dd) ((dd)->pdata->digcnt_ofs)
52
53 #define SHA_REG_ODIGEST(dd, x) ((dd)->pdata->odigest_ofs + (x * 0x04))
54
55 #define SHA_REG_CTRL 0x18
56 #define SHA_REG_CTRL_LENGTH (0xFFFFFFFF << 5)
57 #define SHA_REG_CTRL_CLOSE_HASH (1 << 4)
58 #define SHA_REG_CTRL_ALGO_CONST (1 << 3)
59 #define SHA_REG_CTRL_ALGO (1 << 2)
60 #define SHA_REG_CTRL_INPUT_READY (1 << 1)
61 #define SHA_REG_CTRL_OUTPUT_READY (1 << 0)
62
63 #define SHA_REG_REV(dd) ((dd)->pdata->rev_ofs)
64
65 #define SHA_REG_MASK(dd) ((dd)->pdata->mask_ofs)
66 #define SHA_REG_MASK_DMA_EN (1 << 3)
67 #define SHA_REG_MASK_IT_EN (1 << 2)
68 #define SHA_REG_MASK_SOFTRESET (1 << 1)
69 #define SHA_REG_AUTOIDLE (1 << 0)
70
71 #define SHA_REG_SYSSTATUS(dd) ((dd)->pdata->sysstatus_ofs)
72 #define SHA_REG_SYSSTATUS_RESETDONE (1 << 0)
73
74 #define SHA_REG_MODE(dd) ((dd)->pdata->mode_ofs)
75 #define SHA_REG_MODE_HMAC_OUTER_HASH (1 << 7)
76 #define SHA_REG_MODE_HMAC_KEY_PROC (1 << 5)
77 #define SHA_REG_MODE_CLOSE_HASH (1 << 4)
78 #define SHA_REG_MODE_ALGO_CONSTANT (1 << 3)
79
80 #define SHA_REG_MODE_ALGO_MASK (7 << 0)
81 #define SHA_REG_MODE_ALGO_MD5_128 (0 << 1)
82 #define SHA_REG_MODE_ALGO_SHA1_160 (1 << 1)
83 #define SHA_REG_MODE_ALGO_SHA2_224 (2 << 1)
84 #define SHA_REG_MODE_ALGO_SHA2_256 (3 << 1)
85 #define SHA_REG_MODE_ALGO_SHA2_384 (1 << 0)
86 #define SHA_REG_MODE_ALGO_SHA2_512 (3 << 0)
87
88 #define SHA_REG_LENGTH(dd) ((dd)->pdata->length_ofs)
89
90 #define SHA_REG_IRQSTATUS 0x118
91 #define SHA_REG_IRQSTATUS_CTX_RDY (1 << 3)
92 #define SHA_REG_IRQSTATUS_PARTHASH_RDY (1 << 2)
93 #define SHA_REG_IRQSTATUS_INPUT_RDY (1 << 1)
94 #define SHA_REG_IRQSTATUS_OUTPUT_RDY (1 << 0)
95
96 #define SHA_REG_IRQENA 0x11C
97 #define SHA_REG_IRQENA_CTX_RDY (1 << 3)
98 #define SHA_REG_IRQENA_PARTHASH_RDY (1 << 2)
99 #define SHA_REG_IRQENA_INPUT_RDY (1 << 1)
100 #define SHA_REG_IRQENA_OUTPUT_RDY (1 << 0)
101
102 #define DEFAULT_TIMEOUT_INTERVAL HZ
103
104 #define DEFAULT_AUTOSUSPEND_DELAY 1000
105
106 /* mostly device flags */
107 #define FLAGS_BUSY 0
108 #define FLAGS_FINAL 1
109 #define FLAGS_DMA_ACTIVE 2
110 #define FLAGS_OUTPUT_READY 3
111 #define FLAGS_INIT 4
112 #define FLAGS_CPU 5
113 #define FLAGS_DMA_READY 6
114 #define FLAGS_AUTO_XOR 7
115 #define FLAGS_BE32_SHA1 8
116 #define FLAGS_SGS_COPIED 9
117 #define FLAGS_SGS_ALLOCED 10
118 /* context flags */
119 #define FLAGS_FINUP 16
120
121 #define FLAGS_MODE_SHIFT 18
122 #define FLAGS_MODE_MASK (SHA_REG_MODE_ALGO_MASK << FLAGS_MODE_SHIFT)
123 #define FLAGS_MODE_MD5 (SHA_REG_MODE_ALGO_MD5_128 << FLAGS_MODE_SHIFT)
124 #define FLAGS_MODE_SHA1 (SHA_REG_MODE_ALGO_SHA1_160 << FLAGS_MODE_SHIFT)
125 #define FLAGS_MODE_SHA224 (SHA_REG_MODE_ALGO_SHA2_224 << FLAGS_MODE_SHIFT)
126 #define FLAGS_MODE_SHA256 (SHA_REG_MODE_ALGO_SHA2_256 << FLAGS_MODE_SHIFT)
127 #define FLAGS_MODE_SHA384 (SHA_REG_MODE_ALGO_SHA2_384 << FLAGS_MODE_SHIFT)
128 #define FLAGS_MODE_SHA512 (SHA_REG_MODE_ALGO_SHA2_512 << FLAGS_MODE_SHIFT)
129
130 #define FLAGS_HMAC 21
131 #define FLAGS_ERROR 22
132
133 #define OP_UPDATE 1
134 #define OP_FINAL 2
135
136 #define OMAP_ALIGN_MASK (sizeof(u32)-1)
137 #define OMAP_ALIGNED __attribute__((aligned(sizeof(u32))))
138
139 #define BUFLEN SHA512_BLOCK_SIZE
140 #define OMAP_SHA_DMA_THRESHOLD 256
141
142 struct omap_sham_dev;
143
144 struct omap_sham_reqctx {
145 struct omap_sham_dev *dd;
146 unsigned long flags;
147 unsigned long op;
148
149 u8 digest[SHA512_DIGEST_SIZE] OMAP_ALIGNED;
150 size_t digcnt;
151 size_t bufcnt;
152 size_t buflen;
153
154 /* walk state */
155 struct scatterlist *sg;
156 struct scatterlist sgl[2];
157 int offset; /* offset in current sg */
158 int sg_len;
159 unsigned int total; /* total request */
160
161 u8 buffer[0] OMAP_ALIGNED;
162 };
163
164 struct omap_sham_hmac_ctx {
165 struct crypto_shash *shash;
166 u8 ipad[SHA512_BLOCK_SIZE] OMAP_ALIGNED;
167 u8 opad[SHA512_BLOCK_SIZE] OMAP_ALIGNED;
168 };
169
170 struct omap_sham_ctx {
171 struct omap_sham_dev *dd;
172
173 unsigned long flags;
174
175 /* fallback stuff */
176 struct crypto_shash *fallback;
177
178 struct omap_sham_hmac_ctx base[0];
179 };
180
181 #define OMAP_SHAM_QUEUE_LENGTH 10
182
183 struct omap_sham_algs_info {
184 struct ahash_alg *algs_list;
185 unsigned int size;
186 unsigned int registered;
187 };
188
189 struct omap_sham_pdata {
190 struct omap_sham_algs_info *algs_info;
191 unsigned int algs_info_size;
192 unsigned long flags;
193 int digest_size;
194
195 void (*copy_hash)(struct ahash_request *req, int out);
196 void (*write_ctrl)(struct omap_sham_dev *dd, size_t length,
197 int final, int dma);
198 void (*trigger)(struct omap_sham_dev *dd, size_t length);
199 int (*poll_irq)(struct omap_sham_dev *dd);
200 irqreturn_t (*intr_hdlr)(int irq, void *dev_id);
201
202 u32 odigest_ofs;
203 u32 idigest_ofs;
204 u32 din_ofs;
205 u32 digcnt_ofs;
206 u32 rev_ofs;
207 u32 mask_ofs;
208 u32 sysstatus_ofs;
209 u32 mode_ofs;
210 u32 length_ofs;
211
212 u32 major_mask;
213 u32 major_shift;
214 u32 minor_mask;
215 u32 minor_shift;
216 };
217
218 struct omap_sham_dev {
219 struct list_head list;
220 unsigned long phys_base;
221 struct device *dev;
222 void __iomem *io_base;
223 int irq;
224 spinlock_t lock;
225 int err;
226 struct dma_chan *dma_lch;
227 struct tasklet_struct done_task;
228 u8 polling_mode;
229 u8 xmit_buf[BUFLEN] OMAP_ALIGNED;
230
231 unsigned long flags;
232 struct crypto_queue queue;
233 struct ahash_request *req;
234
235 const struct omap_sham_pdata *pdata;
236 };
237
238 struct omap_sham_drv {
239 struct list_head dev_list;
240 spinlock_t lock;
241 unsigned long flags;
242 };
243
244 static struct omap_sham_drv sham = {
245 .dev_list = LIST_HEAD_INIT(sham.dev_list),
246 .lock = __SPIN_LOCK_UNLOCKED(sham.lock),
247 };
248
249 static inline u32 omap_sham_read(struct omap_sham_dev *dd, u32 offset)
250 {
251 return __raw_readl(dd->io_base + offset);
252 }
253
254 static inline void omap_sham_write(struct omap_sham_dev *dd,
255 u32 offset, u32 value)
256 {
257 __raw_writel(value, dd->io_base + offset);
258 }
259
260 static inline void omap_sham_write_mask(struct omap_sham_dev *dd, u32 address,
261 u32 value, u32 mask)
262 {
263 u32 val;
264
265 val = omap_sham_read(dd, address);
266 val &= ~mask;
267 val |= value;
268 omap_sham_write(dd, address, val);
269 }
270
271 static inline int omap_sham_wait(struct omap_sham_dev *dd, u32 offset, u32 bit)
272 {
273 unsigned long timeout = jiffies + DEFAULT_TIMEOUT_INTERVAL;
274
275 while (!(omap_sham_read(dd, offset) & bit)) {
276 if (time_is_before_jiffies(timeout))
277 return -ETIMEDOUT;
278 }
279
280 return 0;
281 }
282
283 static void omap_sham_copy_hash_omap2(struct ahash_request *req, int out)
284 {
285 struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
286 struct omap_sham_dev *dd = ctx->dd;
287 u32 *hash = (u32 *)ctx->digest;
288 int i;
289
290 for (i = 0; i < dd->pdata->digest_size / sizeof(u32); i++) {
291 if (out)
292 hash[i] = omap_sham_read(dd, SHA_REG_IDIGEST(dd, i));
293 else
294 omap_sham_write(dd, SHA_REG_IDIGEST(dd, i), hash[i]);
295 }
296 }
297
298 static void omap_sham_copy_hash_omap4(struct ahash_request *req, int out)
299 {
300 struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
301 struct omap_sham_dev *dd = ctx->dd;
302 int i;
303
304 if (ctx->flags & BIT(FLAGS_HMAC)) {
305 struct crypto_ahash *tfm = crypto_ahash_reqtfm(dd->req);
306 struct omap_sham_ctx *tctx = crypto_ahash_ctx(tfm);
307 struct omap_sham_hmac_ctx *bctx = tctx->base;
308 u32 *opad = (u32 *)bctx->opad;
309
310 for (i = 0; i < dd->pdata->digest_size / sizeof(u32); i++) {
311 if (out)
312 opad[i] = omap_sham_read(dd,
313 SHA_REG_ODIGEST(dd, i));
314 else
315 omap_sham_write(dd, SHA_REG_ODIGEST(dd, i),
316 opad[i]);
317 }
318 }
319
320 omap_sham_copy_hash_omap2(req, out);
321 }
322
323 static void omap_sham_copy_ready_hash(struct ahash_request *req)
324 {
325 struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
326 u32 *in = (u32 *)ctx->digest;
327 u32 *hash = (u32 *)req->result;
328 int i, d, big_endian = 0;
329
330 if (!hash)
331 return;
332
333 switch (ctx->flags & FLAGS_MODE_MASK) {
334 case FLAGS_MODE_MD5:
335 d = MD5_DIGEST_SIZE / sizeof(u32);
336 break;
337 case FLAGS_MODE_SHA1:
338 /* OMAP2 SHA1 is big endian */
339 if (test_bit(FLAGS_BE32_SHA1, &ctx->dd->flags))
340 big_endian = 1;
341 d = SHA1_DIGEST_SIZE / sizeof(u32);
342 break;
343 case FLAGS_MODE_SHA224:
344 d = SHA224_DIGEST_SIZE / sizeof(u32);
345 break;
346 case FLAGS_MODE_SHA256:
347 d = SHA256_DIGEST_SIZE / sizeof(u32);
348 break;
349 case FLAGS_MODE_SHA384:
350 d = SHA384_DIGEST_SIZE / sizeof(u32);
351 break;
352 case FLAGS_MODE_SHA512:
353 d = SHA512_DIGEST_SIZE / sizeof(u32);
354 break;
355 default:
356 d = 0;
357 }
358
359 if (big_endian)
360 for (i = 0; i < d; i++)
361 hash[i] = be32_to_cpu(in[i]);
362 else
363 for (i = 0; i < d; i++)
364 hash[i] = le32_to_cpu(in[i]);
365 }
366
367 static int omap_sham_hw_init(struct omap_sham_dev *dd)
368 {
369 int err;
370
371 err = pm_runtime_get_sync(dd->dev);
372 if (err < 0) {
373 dev_err(dd->dev, "failed to get sync: %d\n", err);
374 return err;
375 }
376
377 if (!test_bit(FLAGS_INIT, &dd->flags)) {
378 set_bit(FLAGS_INIT, &dd->flags);
379 dd->err = 0;
380 }
381
382 return 0;
383 }
384
385 static void omap_sham_write_ctrl_omap2(struct omap_sham_dev *dd, size_t length,
386 int final, int dma)
387 {
388 struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req);
389 u32 val = length << 5, mask;
390
391 if (likely(ctx->digcnt))
392 omap_sham_write(dd, SHA_REG_DIGCNT(dd), ctx->digcnt);
393
394 omap_sham_write_mask(dd, SHA_REG_MASK(dd),
395 SHA_REG_MASK_IT_EN | (dma ? SHA_REG_MASK_DMA_EN : 0),
396 SHA_REG_MASK_IT_EN | SHA_REG_MASK_DMA_EN);
397 /*
398 * Setting ALGO_CONST only for the first iteration
399 * and CLOSE_HASH only for the last one.
400 */
401 if ((ctx->flags & FLAGS_MODE_MASK) == FLAGS_MODE_SHA1)
402 val |= SHA_REG_CTRL_ALGO;
403 if (!ctx->digcnt)
404 val |= SHA_REG_CTRL_ALGO_CONST;
405 if (final)
406 val |= SHA_REG_CTRL_CLOSE_HASH;
407
408 mask = SHA_REG_CTRL_ALGO_CONST | SHA_REG_CTRL_CLOSE_HASH |
409 SHA_REG_CTRL_ALGO | SHA_REG_CTRL_LENGTH;
410
411 omap_sham_write_mask(dd, SHA_REG_CTRL, val, mask);
412 }
413
414 static void omap_sham_trigger_omap2(struct omap_sham_dev *dd, size_t length)
415 {
416 }
417
418 static int omap_sham_poll_irq_omap2(struct omap_sham_dev *dd)
419 {
420 return omap_sham_wait(dd, SHA_REG_CTRL, SHA_REG_CTRL_INPUT_READY);
421 }
422
423 static int get_block_size(struct omap_sham_reqctx *ctx)
424 {
425 int d;
426
427 switch (ctx->flags & FLAGS_MODE_MASK) {
428 case FLAGS_MODE_MD5:
429 case FLAGS_MODE_SHA1:
430 d = SHA1_BLOCK_SIZE;
431 break;
432 case FLAGS_MODE_SHA224:
433 case FLAGS_MODE_SHA256:
434 d = SHA256_BLOCK_SIZE;
435 break;
436 case FLAGS_MODE_SHA384:
437 case FLAGS_MODE_SHA512:
438 d = SHA512_BLOCK_SIZE;
439 break;
440 default:
441 d = 0;
442 }
443
444 return d;
445 }
446
447 static void omap_sham_write_n(struct omap_sham_dev *dd, u32 offset,
448 u32 *value, int count)
449 {
450 for (; count--; value++, offset += 4)
451 omap_sham_write(dd, offset, *value);
452 }
453
454 static void omap_sham_write_ctrl_omap4(struct omap_sham_dev *dd, size_t length,
455 int final, int dma)
456 {
457 struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req);
458 u32 val, mask;
459
460 /*
461 * Setting ALGO_CONST only for the first iteration and
462 * CLOSE_HASH only for the last one. Note that flags mode bits
463 * correspond to algorithm encoding in mode register.
464 */
465 val = (ctx->flags & FLAGS_MODE_MASK) >> (FLAGS_MODE_SHIFT);
466 if (!ctx->digcnt) {
467 struct crypto_ahash *tfm = crypto_ahash_reqtfm(dd->req);
468 struct omap_sham_ctx *tctx = crypto_ahash_ctx(tfm);
469 struct omap_sham_hmac_ctx *bctx = tctx->base;
470 int bs, nr_dr;
471
472 val |= SHA_REG_MODE_ALGO_CONSTANT;
473
474 if (ctx->flags & BIT(FLAGS_HMAC)) {
475 bs = get_block_size(ctx);
476 nr_dr = bs / (2 * sizeof(u32));
477 val |= SHA_REG_MODE_HMAC_KEY_PROC;
478 omap_sham_write_n(dd, SHA_REG_ODIGEST(dd, 0),
479 (u32 *)bctx->ipad, nr_dr);
480 omap_sham_write_n(dd, SHA_REG_IDIGEST(dd, 0),
481 (u32 *)bctx->ipad + nr_dr, nr_dr);
482 ctx->digcnt += bs;
483 }
484 }
485
486 if (final) {
487 val |= SHA_REG_MODE_CLOSE_HASH;
488
489 if (ctx->flags & BIT(FLAGS_HMAC))
490 val |= SHA_REG_MODE_HMAC_OUTER_HASH;
491 }
492
493 mask = SHA_REG_MODE_ALGO_CONSTANT | SHA_REG_MODE_CLOSE_HASH |
494 SHA_REG_MODE_ALGO_MASK | SHA_REG_MODE_HMAC_OUTER_HASH |
495 SHA_REG_MODE_HMAC_KEY_PROC;
496
497 dev_dbg(dd->dev, "ctrl: %08x, flags: %08lx\n", val, ctx->flags);
498 omap_sham_write_mask(dd, SHA_REG_MODE(dd), val, mask);
499 omap_sham_write(dd, SHA_REG_IRQENA, SHA_REG_IRQENA_OUTPUT_RDY);
500 omap_sham_write_mask(dd, SHA_REG_MASK(dd),
501 SHA_REG_MASK_IT_EN |
502 (dma ? SHA_REG_MASK_DMA_EN : 0),
503 SHA_REG_MASK_IT_EN | SHA_REG_MASK_DMA_EN);
504 }
505
506 static void omap_sham_trigger_omap4(struct omap_sham_dev *dd, size_t length)
507 {
508 omap_sham_write(dd, SHA_REG_LENGTH(dd), length);
509 }
510
511 static int omap_sham_poll_irq_omap4(struct omap_sham_dev *dd)
512 {
513 return omap_sham_wait(dd, SHA_REG_IRQSTATUS,
514 SHA_REG_IRQSTATUS_INPUT_RDY);
515 }
516
517 static int omap_sham_xmit_cpu(struct omap_sham_dev *dd, size_t length,
518 int final)
519 {
520 struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req);
521 int count, len32, bs32, offset = 0;
522 const u32 *buffer;
523 int mlen;
524 struct sg_mapping_iter mi;
525
526 dev_dbg(dd->dev, "xmit_cpu: digcnt: %d, length: %d, final: %d\n",
527 ctx->digcnt, length, final);
528
529 dd->pdata->write_ctrl(dd, length, final, 0);
530 dd->pdata->trigger(dd, length);
531
532 /* should be non-zero before next lines to disable clocks later */
533 ctx->digcnt += length;
534 ctx->total -= length;
535
536 if (final)
537 set_bit(FLAGS_FINAL, &dd->flags); /* catch last interrupt */
538
539 set_bit(FLAGS_CPU, &dd->flags);
540
541 len32 = DIV_ROUND_UP(length, sizeof(u32));
542 bs32 = get_block_size(ctx) / sizeof(u32);
543
544 sg_miter_start(&mi, ctx->sg, ctx->sg_len,
545 SG_MITER_FROM_SG | SG_MITER_ATOMIC);
546
547 mlen = 0;
548
549 while (len32) {
550 if (dd->pdata->poll_irq(dd))
551 return -ETIMEDOUT;
552
553 for (count = 0; count < min(len32, bs32); count++, offset++) {
554 if (!mlen) {
555 sg_miter_next(&mi);
556 mlen = mi.length;
557 if (!mlen) {
558 pr_err("sg miter failure.\n");
559 return -EINVAL;
560 }
561 offset = 0;
562 buffer = mi.addr;
563 }
564 omap_sham_write(dd, SHA_REG_DIN(dd, count),
565 buffer[offset]);
566 mlen -= 4;
567 }
568 len32 -= min(len32, bs32);
569 }
570
571 sg_miter_stop(&mi);
572
573 return -EINPROGRESS;
574 }
575
576 static void omap_sham_dma_callback(void *param)
577 {
578 struct omap_sham_dev *dd = param;
579
580 set_bit(FLAGS_DMA_READY, &dd->flags);
581 tasklet_schedule(&dd->done_task);
582 }
583
584 static int omap_sham_xmit_dma(struct omap_sham_dev *dd, size_t length,
585 int final)
586 {
587 struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req);
588 struct dma_async_tx_descriptor *tx;
589 struct dma_slave_config cfg;
590 int ret;
591
592 dev_dbg(dd->dev, "xmit_dma: digcnt: %d, length: %d, final: %d\n",
593 ctx->digcnt, length, final);
594
595 if (!dma_map_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE)) {
596 dev_err(dd->dev, "dma_map_sg error\n");
597 return -EINVAL;
598 }
599
600 memset(&cfg, 0, sizeof(cfg));
601
602 cfg.dst_addr = dd->phys_base + SHA_REG_DIN(dd, 0);
603 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
604 cfg.dst_maxburst = get_block_size(ctx) / DMA_SLAVE_BUSWIDTH_4_BYTES;
605
606 ret = dmaengine_slave_config(dd->dma_lch, &cfg);
607 if (ret) {
608 pr_err("omap-sham: can't configure dmaengine slave: %d\n", ret);
609 return ret;
610 }
611
612 tx = dmaengine_prep_slave_sg(dd->dma_lch, ctx->sg, ctx->sg_len,
613 DMA_MEM_TO_DEV,
614 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
615
616 if (!tx) {
617 dev_err(dd->dev, "prep_slave_sg failed\n");
618 return -EINVAL;
619 }
620
621 tx->callback = omap_sham_dma_callback;
622 tx->callback_param = dd;
623
624 dd->pdata->write_ctrl(dd, length, final, 1);
625
626 ctx->digcnt += length;
627 ctx->total -= length;
628
629 if (final)
630 set_bit(FLAGS_FINAL, &dd->flags); /* catch last interrupt */
631
632 set_bit(FLAGS_DMA_ACTIVE, &dd->flags);
633
634 dmaengine_submit(tx);
635 dma_async_issue_pending(dd->dma_lch);
636
637 dd->pdata->trigger(dd, length);
638
639 return -EINPROGRESS;
640 }
641
642 static int omap_sham_copy_sg_lists(struct omap_sham_reqctx *ctx,
643 struct scatterlist *sg, int bs, int new_len)
644 {
645 int n = sg_nents(sg);
646 struct scatterlist *tmp;
647 int offset = ctx->offset;
648
649 if (ctx->bufcnt)
650 n++;
651
652 ctx->sg = kmalloc_array(n, sizeof(*sg), GFP_KERNEL);
653 if (!ctx->sg)
654 return -ENOMEM;
655
656 sg_init_table(ctx->sg, n);
657
658 tmp = ctx->sg;
659
660 ctx->sg_len = 0;
661
662 if (ctx->bufcnt) {
663 sg_set_buf(tmp, ctx->dd->xmit_buf, ctx->bufcnt);
664 tmp = sg_next(tmp);
665 ctx->sg_len++;
666 }
667
668 while (sg && new_len) {
669 int len = sg->length - offset;
670
671 if (offset) {
672 offset -= sg->length;
673 if (offset < 0)
674 offset = 0;
675 }
676
677 if (new_len < len)
678 len = new_len;
679
680 if (len > 0) {
681 new_len -= len;
682 sg_set_page(tmp, sg_page(sg), len, sg->offset);
683 if (new_len <= 0)
684 sg_mark_end(tmp);
685 tmp = sg_next(tmp);
686 ctx->sg_len++;
687 }
688
689 sg = sg_next(sg);
690 }
691
692 set_bit(FLAGS_SGS_ALLOCED, &ctx->dd->flags);
693
694 ctx->bufcnt = 0;
695
696 return 0;
697 }
698
699 static int omap_sham_copy_sgs(struct omap_sham_reqctx *ctx,
700 struct scatterlist *sg, int bs, int new_len)
701 {
702 int pages;
703 void *buf;
704 int len;
705
706 len = new_len + ctx->bufcnt;
707
708 pages = get_order(ctx->total);
709
710 buf = (void *)__get_free_pages(GFP_ATOMIC, pages);
711 if (!buf) {
712 pr_err("Couldn't allocate pages for unaligned cases.\n");
713 return -ENOMEM;
714 }
715
716 if (ctx->bufcnt)
717 memcpy(buf, ctx->dd->xmit_buf, ctx->bufcnt);
718
719 scatterwalk_map_and_copy(buf + ctx->bufcnt, sg, ctx->offset,
720 ctx->total - ctx->bufcnt, 0);
721 sg_init_table(ctx->sgl, 1);
722 sg_set_buf(ctx->sgl, buf, len);
723 ctx->sg = ctx->sgl;
724 set_bit(FLAGS_SGS_COPIED, &ctx->dd->flags);
725 ctx->sg_len = 1;
726 ctx->bufcnt = 0;
727 ctx->offset = 0;
728
729 return 0;
730 }
731
732 static int omap_sham_align_sgs(struct scatterlist *sg,
733 int nbytes, int bs, bool final,
734 struct omap_sham_reqctx *rctx)
735 {
736 int n = 0;
737 bool aligned = true;
738 bool list_ok = true;
739 struct scatterlist *sg_tmp = sg;
740 int new_len;
741 int offset = rctx->offset;
742
743 if (!sg || !sg->length || !nbytes)
744 return 0;
745
746 new_len = nbytes;
747
748 if (offset)
749 list_ok = false;
750
751 if (final)
752 new_len = DIV_ROUND_UP(new_len, bs) * bs;
753 else
754 new_len = (new_len - 1) / bs * bs;
755
756 if (nbytes != new_len)
757 list_ok = false;
758
759 while (nbytes > 0 && sg_tmp) {
760 n++;
761
762 if (offset < sg_tmp->length) {
763 if (!IS_ALIGNED(offset + sg_tmp->offset, 4)) {
764 aligned = false;
765 break;
766 }
767
768 if (!IS_ALIGNED(sg_tmp->length - offset, bs)) {
769 aligned = false;
770 break;
771 }
772 }
773
774 if (offset) {
775 offset -= sg_tmp->length;
776 if (offset < 0) {
777 nbytes += offset;
778 offset = 0;
779 }
780 } else {
781 nbytes -= sg_tmp->length;
782 }
783
784 sg_tmp = sg_next(sg_tmp);
785
786 if (nbytes < 0) {
787 list_ok = false;
788 break;
789 }
790 }
791
792 if (!aligned)
793 return omap_sham_copy_sgs(rctx, sg, bs, new_len);
794 else if (!list_ok)
795 return omap_sham_copy_sg_lists(rctx, sg, bs, new_len);
796
797 rctx->sg_len = n;
798 rctx->sg = sg;
799
800 return 0;
801 }
802
803 static int omap_sham_prepare_request(struct ahash_request *req, bool update)
804 {
805 struct omap_sham_reqctx *rctx = ahash_request_ctx(req);
806 int bs;
807 int ret;
808 int nbytes;
809 bool final = rctx->flags & BIT(FLAGS_FINUP);
810 int xmit_len, hash_later;
811
812 if (!req)
813 return 0;
814
815 bs = get_block_size(rctx);
816
817 if (update)
818 nbytes = req->nbytes;
819 else
820 nbytes = 0;
821
822 rctx->total = nbytes + rctx->bufcnt;
823
824 if (!rctx->total)
825 return 0;
826
827 if (nbytes && (!IS_ALIGNED(rctx->bufcnt, bs))) {
828 int len = bs - rctx->bufcnt % bs;
829
830 if (len > nbytes)
831 len = nbytes;
832 scatterwalk_map_and_copy(rctx->buffer + rctx->bufcnt, req->src,
833 0, len, 0);
834 rctx->bufcnt += len;
835 nbytes -= len;
836 rctx->offset = len;
837 }
838
839 if (rctx->bufcnt)
840 memcpy(rctx->dd->xmit_buf, rctx->buffer, rctx->bufcnt);
841
842 ret = omap_sham_align_sgs(req->src, nbytes, bs, final, rctx);
843 if (ret)
844 return ret;
845
846 xmit_len = rctx->total;
847
848 if (!IS_ALIGNED(xmit_len, bs)) {
849 if (final)
850 xmit_len = DIV_ROUND_UP(xmit_len, bs) * bs;
851 else
852 xmit_len = xmit_len / bs * bs;
853 } else if (!final) {
854 xmit_len -= bs;
855 }
856
857 hash_later = rctx->total - xmit_len;
858 if (hash_later < 0)
859 hash_later = 0;
860
861 if (rctx->bufcnt && nbytes) {
862 /* have data from previous operation and current */
863 sg_init_table(rctx->sgl, 2);
864 sg_set_buf(rctx->sgl, rctx->dd->xmit_buf, rctx->bufcnt);
865
866 sg_chain(rctx->sgl, 2, req->src);
867
868 rctx->sg = rctx->sgl;
869
870 rctx->sg_len++;
871 } else if (rctx->bufcnt) {
872 /* have buffered data only */
873 sg_init_table(rctx->sgl, 1);
874 sg_set_buf(rctx->sgl, rctx->dd->xmit_buf, xmit_len);
875
876 rctx->sg = rctx->sgl;
877
878 rctx->sg_len = 1;
879 }
880
881 if (hash_later) {
882 int offset = 0;
883
884 if (hash_later > req->nbytes) {
885 memcpy(rctx->buffer, rctx->buffer + xmit_len,
886 hash_later - req->nbytes);
887 offset = hash_later - req->nbytes;
888 }
889
890 if (req->nbytes) {
891 scatterwalk_map_and_copy(rctx->buffer + offset,
892 req->src,
893 offset + req->nbytes -
894 hash_later, hash_later, 0);
895 }
896
897 rctx->bufcnt = hash_later;
898 } else {
899 rctx->bufcnt = 0;
900 }
901
902 if (!final)
903 rctx->total = xmit_len;
904
905 return 0;
906 }
907
908 static int omap_sham_update_dma_stop(struct omap_sham_dev *dd)
909 {
910 struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req);
911
912 dma_unmap_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
913
914 clear_bit(FLAGS_DMA_ACTIVE, &dd->flags);
915
916 return 0;
917 }
918
919 static int omap_sham_init(struct ahash_request *req)
920 {
921 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
922 struct omap_sham_ctx *tctx = crypto_ahash_ctx(tfm);
923 struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
924 struct omap_sham_dev *dd = NULL, *tmp;
925 int bs = 0;
926
927 spin_lock_bh(&sham.lock);
928 if (!tctx->dd) {
929 list_for_each_entry(tmp, &sham.dev_list, list) {
930 dd = tmp;
931 break;
932 }
933 tctx->dd = dd;
934 } else {
935 dd = tctx->dd;
936 }
937 spin_unlock_bh(&sham.lock);
938
939 ctx->dd = dd;
940
941 ctx->flags = 0;
942
943 dev_dbg(dd->dev, "init: digest size: %d\n",
944 crypto_ahash_digestsize(tfm));
945
946 switch (crypto_ahash_digestsize(tfm)) {
947 case MD5_DIGEST_SIZE:
948 ctx->flags |= FLAGS_MODE_MD5;
949 bs = SHA1_BLOCK_SIZE;
950 break;
951 case SHA1_DIGEST_SIZE:
952 ctx->flags |= FLAGS_MODE_SHA1;
953 bs = SHA1_BLOCK_SIZE;
954 break;
955 case SHA224_DIGEST_SIZE:
956 ctx->flags |= FLAGS_MODE_SHA224;
957 bs = SHA224_BLOCK_SIZE;
958 break;
959 case SHA256_DIGEST_SIZE:
960 ctx->flags |= FLAGS_MODE_SHA256;
961 bs = SHA256_BLOCK_SIZE;
962 break;
963 case SHA384_DIGEST_SIZE:
964 ctx->flags |= FLAGS_MODE_SHA384;
965 bs = SHA384_BLOCK_SIZE;
966 break;
967 case SHA512_DIGEST_SIZE:
968 ctx->flags |= FLAGS_MODE_SHA512;
969 bs = SHA512_BLOCK_SIZE;
970 break;
971 }
972
973 ctx->bufcnt = 0;
974 ctx->digcnt = 0;
975 ctx->total = 0;
976 ctx->offset = 0;
977 ctx->buflen = BUFLEN;
978
979 if (tctx->flags & BIT(FLAGS_HMAC)) {
980 if (!test_bit(FLAGS_AUTO_XOR, &dd->flags)) {
981 struct omap_sham_hmac_ctx *bctx = tctx->base;
982
983 memcpy(ctx->buffer, bctx->ipad, bs);
984 ctx->bufcnt = bs;
985 }
986
987 ctx->flags |= BIT(FLAGS_HMAC);
988 }
989
990 return 0;
991
992 }
993
994 static int omap_sham_update_req(struct omap_sham_dev *dd)
995 {
996 struct ahash_request *req = dd->req;
997 struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
998 int err;
999 bool final = ctx->flags & BIT(FLAGS_FINUP);
1000
1001 dev_dbg(dd->dev, "update_req: total: %u, digcnt: %d, finup: %d\n",
1002 ctx->total, ctx->digcnt, (ctx->flags & BIT(FLAGS_FINUP)) != 0);
1003
1004 if (ctx->total < get_block_size(ctx) ||
1005 ctx->total < OMAP_SHA_DMA_THRESHOLD)
1006 ctx->flags |= BIT(FLAGS_CPU);
1007
1008 if (ctx->flags & BIT(FLAGS_CPU))
1009 err = omap_sham_xmit_cpu(dd, ctx->total, final);
1010 else
1011 err = omap_sham_xmit_dma(dd, ctx->total, final);
1012
1013 /* wait for dma completion before can take more data */
1014 dev_dbg(dd->dev, "update: err: %d, digcnt: %d\n", err, ctx->digcnt);
1015
1016 return err;
1017 }
1018
1019 static int omap_sham_final_req(struct omap_sham_dev *dd)
1020 {
1021 struct ahash_request *req = dd->req;
1022 struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1023 int err = 0, use_dma = 1;
1024
1025 if ((ctx->total <= get_block_size(ctx)) || dd->polling_mode)
1026 /*
1027 * faster to handle last block with cpu or
1028 * use cpu when dma is not present.
1029 */
1030 use_dma = 0;
1031
1032 if (use_dma)
1033 err = omap_sham_xmit_dma(dd, ctx->total, 1);
1034 else
1035 err = omap_sham_xmit_cpu(dd, ctx->total, 1);
1036
1037 ctx->bufcnt = 0;
1038
1039 dev_dbg(dd->dev, "final_req: err: %d\n", err);
1040
1041 return err;
1042 }
1043
1044 static int omap_sham_finish_hmac(struct ahash_request *req)
1045 {
1046 struct omap_sham_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1047 struct omap_sham_hmac_ctx *bctx = tctx->base;
1048 int bs = crypto_shash_blocksize(bctx->shash);
1049 int ds = crypto_shash_digestsize(bctx->shash);
1050 SHASH_DESC_ON_STACK(shash, bctx->shash);
1051
1052 shash->tfm = bctx->shash;
1053 shash->flags = 0; /* not CRYPTO_TFM_REQ_MAY_SLEEP */
1054
1055 return crypto_shash_init(shash) ?:
1056 crypto_shash_update(shash, bctx->opad, bs) ?:
1057 crypto_shash_finup(shash, req->result, ds, req->result);
1058 }
1059
1060 static int omap_sham_finish(struct ahash_request *req)
1061 {
1062 struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1063 struct omap_sham_dev *dd = ctx->dd;
1064 int err = 0;
1065
1066 if (ctx->digcnt) {
1067 omap_sham_copy_ready_hash(req);
1068 if ((ctx->flags & BIT(FLAGS_HMAC)) &&
1069 !test_bit(FLAGS_AUTO_XOR, &dd->flags))
1070 err = omap_sham_finish_hmac(req);
1071 }
1072
1073 dev_dbg(dd->dev, "digcnt: %d, bufcnt: %d\n", ctx->digcnt, ctx->bufcnt);
1074
1075 return err;
1076 }
1077
1078 static void omap_sham_finish_req(struct ahash_request *req, int err)
1079 {
1080 struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1081 struct omap_sham_dev *dd = ctx->dd;
1082
1083 if (test_bit(FLAGS_SGS_COPIED, &dd->flags))
1084 free_pages((unsigned long)sg_virt(ctx->sg),
1085 get_order(ctx->sg->length));
1086
1087 if (test_bit(FLAGS_SGS_ALLOCED, &dd->flags))
1088 kfree(ctx->sg);
1089
1090 ctx->sg = NULL;
1091
1092 dd->flags &= ~(BIT(FLAGS_SGS_ALLOCED) | BIT(FLAGS_SGS_COPIED));
1093
1094 if (!err) {
1095 dd->pdata->copy_hash(req, 1);
1096 if (test_bit(FLAGS_FINAL, &dd->flags))
1097 err = omap_sham_finish(req);
1098 } else {
1099 ctx->flags |= BIT(FLAGS_ERROR);
1100 }
1101
1102 /* atomic operation is not needed here */
1103 dd->flags &= ~(BIT(FLAGS_BUSY) | BIT(FLAGS_FINAL) | BIT(FLAGS_CPU) |
1104 BIT(FLAGS_DMA_READY) | BIT(FLAGS_OUTPUT_READY));
1105
1106 pm_runtime_mark_last_busy(dd->dev);
1107 pm_runtime_put_autosuspend(dd->dev);
1108
1109 if (req->base.complete)
1110 req->base.complete(&req->base, err);
1111 }
1112
1113 static int omap_sham_handle_queue(struct omap_sham_dev *dd,
1114 struct ahash_request *req)
1115 {
1116 struct crypto_async_request *async_req, *backlog;
1117 struct omap_sham_reqctx *ctx;
1118 unsigned long flags;
1119 int err = 0, ret = 0;
1120
1121 retry:
1122 spin_lock_irqsave(&dd->lock, flags);
1123 if (req)
1124 ret = ahash_enqueue_request(&dd->queue, req);
1125 if (test_bit(FLAGS_BUSY, &dd->flags)) {
1126 spin_unlock_irqrestore(&dd->lock, flags);
1127 return ret;
1128 }
1129 backlog = crypto_get_backlog(&dd->queue);
1130 async_req = crypto_dequeue_request(&dd->queue);
1131 if (async_req)
1132 set_bit(FLAGS_BUSY, &dd->flags);
1133 spin_unlock_irqrestore(&dd->lock, flags);
1134
1135 if (!async_req)
1136 return ret;
1137
1138 if (backlog)
1139 backlog->complete(backlog, -EINPROGRESS);
1140
1141 req = ahash_request_cast(async_req);
1142 dd->req = req;
1143 ctx = ahash_request_ctx(req);
1144
1145 err = omap_sham_prepare_request(req, ctx->op == OP_UPDATE);
1146 if (err || !ctx->total)
1147 goto err1;
1148
1149 dev_dbg(dd->dev, "handling new req, op: %lu, nbytes: %d\n",
1150 ctx->op, req->nbytes);
1151
1152 err = omap_sham_hw_init(dd);
1153 if (err)
1154 goto err1;
1155
1156 if (ctx->digcnt)
1157 /* request has changed - restore hash */
1158 dd->pdata->copy_hash(req, 0);
1159
1160 if (ctx->op == OP_UPDATE) {
1161 err = omap_sham_update_req(dd);
1162 if (err != -EINPROGRESS && (ctx->flags & BIT(FLAGS_FINUP)))
1163 /* no final() after finup() */
1164 err = omap_sham_final_req(dd);
1165 } else if (ctx->op == OP_FINAL) {
1166 err = omap_sham_final_req(dd);
1167 }
1168 err1:
1169 dev_dbg(dd->dev, "exit, err: %d\n", err);
1170
1171 if (err != -EINPROGRESS) {
1172 /* done_task will not finish it, so do it here */
1173 omap_sham_finish_req(req, err);
1174 req = NULL;
1175
1176 /*
1177 * Execute next request immediately if there is anything
1178 * in queue.
1179 */
1180 goto retry;
1181 }
1182
1183 return ret;
1184 }
1185
1186 static int omap_sham_enqueue(struct ahash_request *req, unsigned int op)
1187 {
1188 struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1189 struct omap_sham_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1190 struct omap_sham_dev *dd = tctx->dd;
1191
1192 ctx->op = op;
1193
1194 return omap_sham_handle_queue(dd, req);
1195 }
1196
1197 static int omap_sham_update(struct ahash_request *req)
1198 {
1199 struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1200 struct omap_sham_dev *dd = ctx->dd;
1201
1202 if (!req->nbytes)
1203 return 0;
1204
1205 if (ctx->bufcnt + req->nbytes <= ctx->buflen) {
1206 scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src,
1207 0, req->nbytes, 0);
1208 ctx->bufcnt += req->nbytes;
1209 return 0;
1210 }
1211
1212 if (dd->polling_mode)
1213 ctx->flags |= BIT(FLAGS_CPU);
1214
1215 return omap_sham_enqueue(req, OP_UPDATE);
1216 }
1217
1218 static int omap_sham_shash_digest(struct crypto_shash *tfm, u32 flags,
1219 const u8 *data, unsigned int len, u8 *out)
1220 {
1221 SHASH_DESC_ON_STACK(shash, tfm);
1222
1223 shash->tfm = tfm;
1224 shash->flags = flags & CRYPTO_TFM_REQ_MAY_SLEEP;
1225
1226 return crypto_shash_digest(shash, data, len, out);
1227 }
1228
1229 static int omap_sham_final_shash(struct ahash_request *req)
1230 {
1231 struct omap_sham_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1232 struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1233 int offset = 0;
1234
1235 /*
1236 * If we are running HMAC on limited hardware support, skip
1237 * the ipad in the beginning of the buffer if we are going for
1238 * software fallback algorithm.
1239 */
1240 if (test_bit(FLAGS_HMAC, &ctx->flags) &&
1241 !test_bit(FLAGS_AUTO_XOR, &ctx->dd->flags))
1242 offset = get_block_size(ctx);
1243
1244 return omap_sham_shash_digest(tctx->fallback, req->base.flags,
1245 ctx->buffer + offset,
1246 ctx->bufcnt - offset, req->result);
1247 }
1248
1249 static int omap_sham_final(struct ahash_request *req)
1250 {
1251 struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1252
1253 ctx->flags |= BIT(FLAGS_FINUP);
1254
1255 if (ctx->flags & BIT(FLAGS_ERROR))
1256 return 0; /* uncompleted hash is not needed */
1257
1258 /*
1259 * OMAP HW accel works only with buffers >= 9.
1260 * HMAC is always >= 9 because ipad == block size.
1261 * If buffersize is less than DMA_THRESHOLD, we use fallback
1262 * SW encoding, as using DMA + HW in this case doesn't provide
1263 * any benefit.
1264 */
1265 if (!ctx->digcnt && ctx->bufcnt < OMAP_SHA_DMA_THRESHOLD)
1266 return omap_sham_final_shash(req);
1267 else if (ctx->bufcnt)
1268 return omap_sham_enqueue(req, OP_FINAL);
1269
1270 /* copy ready hash (+ finalize hmac) */
1271 return omap_sham_finish(req);
1272 }
1273
1274 static int omap_sham_finup(struct ahash_request *req)
1275 {
1276 struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1277 int err1, err2;
1278
1279 ctx->flags |= BIT(FLAGS_FINUP);
1280
1281 err1 = omap_sham_update(req);
1282 if (err1 == -EINPROGRESS || err1 == -EBUSY)
1283 return err1;
1284 /*
1285 * final() has to be always called to cleanup resources
1286 * even if udpate() failed, except EINPROGRESS
1287 */
1288 err2 = omap_sham_final(req);
1289
1290 return err1 ?: err2;
1291 }
1292
1293 static int omap_sham_digest(struct ahash_request *req)
1294 {
1295 return omap_sham_init(req) ?: omap_sham_finup(req);
1296 }
1297
1298 static int omap_sham_setkey(struct crypto_ahash *tfm, const u8 *key,
1299 unsigned int keylen)
1300 {
1301 struct omap_sham_ctx *tctx = crypto_ahash_ctx(tfm);
1302 struct omap_sham_hmac_ctx *bctx = tctx->base;
1303 int bs = crypto_shash_blocksize(bctx->shash);
1304 int ds = crypto_shash_digestsize(bctx->shash);
1305 struct omap_sham_dev *dd = NULL, *tmp;
1306 int err, i;
1307
1308 spin_lock_bh(&sham.lock);
1309 if (!tctx->dd) {
1310 list_for_each_entry(tmp, &sham.dev_list, list) {
1311 dd = tmp;
1312 break;
1313 }
1314 tctx->dd = dd;
1315 } else {
1316 dd = tctx->dd;
1317 }
1318 spin_unlock_bh(&sham.lock);
1319
1320 err = crypto_shash_setkey(tctx->fallback, key, keylen);
1321 if (err)
1322 return err;
1323
1324 if (keylen > bs) {
1325 err = omap_sham_shash_digest(bctx->shash,
1326 crypto_shash_get_flags(bctx->shash),
1327 key, keylen, bctx->ipad);
1328 if (err)
1329 return err;
1330 keylen = ds;
1331 } else {
1332 memcpy(bctx->ipad, key, keylen);
1333 }
1334
1335 memset(bctx->ipad + keylen, 0, bs - keylen);
1336
1337 if (!test_bit(FLAGS_AUTO_XOR, &dd->flags)) {
1338 memcpy(bctx->opad, bctx->ipad, bs);
1339
1340 for (i = 0; i < bs; i++) {
1341 bctx->ipad[i] ^= HMAC_IPAD_VALUE;
1342 bctx->opad[i] ^= HMAC_OPAD_VALUE;
1343 }
1344 }
1345
1346 return err;
1347 }
1348
1349 static int omap_sham_cra_init_alg(struct crypto_tfm *tfm, const char *alg_base)
1350 {
1351 struct omap_sham_ctx *tctx = crypto_tfm_ctx(tfm);
1352 const char *alg_name = crypto_tfm_alg_name(tfm);
1353
1354 /* Allocate a fallback and abort if it failed. */
1355 tctx->fallback = crypto_alloc_shash(alg_name, 0,
1356 CRYPTO_ALG_NEED_FALLBACK);
1357 if (IS_ERR(tctx->fallback)) {
1358 pr_err("omap-sham: fallback driver '%s' "
1359 "could not be loaded.\n", alg_name);
1360 return PTR_ERR(tctx->fallback);
1361 }
1362
1363 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1364 sizeof(struct omap_sham_reqctx) + BUFLEN);
1365
1366 if (alg_base) {
1367 struct omap_sham_hmac_ctx *bctx = tctx->base;
1368 tctx->flags |= BIT(FLAGS_HMAC);
1369 bctx->shash = crypto_alloc_shash(alg_base, 0,
1370 CRYPTO_ALG_NEED_FALLBACK);
1371 if (IS_ERR(bctx->shash)) {
1372 pr_err("omap-sham: base driver '%s' "
1373 "could not be loaded.\n", alg_base);
1374 crypto_free_shash(tctx->fallback);
1375 return PTR_ERR(bctx->shash);
1376 }
1377
1378 }
1379
1380 return 0;
1381 }
1382
1383 static int omap_sham_cra_init(struct crypto_tfm *tfm)
1384 {
1385 return omap_sham_cra_init_alg(tfm, NULL);
1386 }
1387
1388 static int omap_sham_cra_sha1_init(struct crypto_tfm *tfm)
1389 {
1390 return omap_sham_cra_init_alg(tfm, "sha1");
1391 }
1392
1393 static int omap_sham_cra_sha224_init(struct crypto_tfm *tfm)
1394 {
1395 return omap_sham_cra_init_alg(tfm, "sha224");
1396 }
1397
1398 static int omap_sham_cra_sha256_init(struct crypto_tfm *tfm)
1399 {
1400 return omap_sham_cra_init_alg(tfm, "sha256");
1401 }
1402
1403 static int omap_sham_cra_md5_init(struct crypto_tfm *tfm)
1404 {
1405 return omap_sham_cra_init_alg(tfm, "md5");
1406 }
1407
1408 static int omap_sham_cra_sha384_init(struct crypto_tfm *tfm)
1409 {
1410 return omap_sham_cra_init_alg(tfm, "sha384");
1411 }
1412
1413 static int omap_sham_cra_sha512_init(struct crypto_tfm *tfm)
1414 {
1415 return omap_sham_cra_init_alg(tfm, "sha512");
1416 }
1417
1418 static void omap_sham_cra_exit(struct crypto_tfm *tfm)
1419 {
1420 struct omap_sham_ctx *tctx = crypto_tfm_ctx(tfm);
1421
1422 crypto_free_shash(tctx->fallback);
1423 tctx->fallback = NULL;
1424
1425 if (tctx->flags & BIT(FLAGS_HMAC)) {
1426 struct omap_sham_hmac_ctx *bctx = tctx->base;
1427 crypto_free_shash(bctx->shash);
1428 }
1429 }
1430
1431 static int omap_sham_export(struct ahash_request *req, void *out)
1432 {
1433 struct omap_sham_reqctx *rctx = ahash_request_ctx(req);
1434
1435 memcpy(out, rctx, sizeof(*rctx) + rctx->bufcnt);
1436
1437 return 0;
1438 }
1439
1440 static int omap_sham_import(struct ahash_request *req, const void *in)
1441 {
1442 struct omap_sham_reqctx *rctx = ahash_request_ctx(req);
1443 const struct omap_sham_reqctx *ctx_in = in;
1444
1445 memcpy(rctx, in, sizeof(*rctx) + ctx_in->bufcnt);
1446
1447 return 0;
1448 }
1449
1450 static struct ahash_alg algs_sha1_md5[] = {
1451 {
1452 .init = omap_sham_init,
1453 .update = omap_sham_update,
1454 .final = omap_sham_final,
1455 .finup = omap_sham_finup,
1456 .digest = omap_sham_digest,
1457 .halg.digestsize = SHA1_DIGEST_SIZE,
1458 .halg.base = {
1459 .cra_name = "sha1",
1460 .cra_driver_name = "omap-sha1",
1461 .cra_priority = 400,
1462 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1463 CRYPTO_ALG_KERN_DRIVER_ONLY |
1464 CRYPTO_ALG_ASYNC |
1465 CRYPTO_ALG_NEED_FALLBACK,
1466 .cra_blocksize = SHA1_BLOCK_SIZE,
1467 .cra_ctxsize = sizeof(struct omap_sham_ctx),
1468 .cra_alignmask = OMAP_ALIGN_MASK,
1469 .cra_module = THIS_MODULE,
1470 .cra_init = omap_sham_cra_init,
1471 .cra_exit = omap_sham_cra_exit,
1472 }
1473 },
1474 {
1475 .init = omap_sham_init,
1476 .update = omap_sham_update,
1477 .final = omap_sham_final,
1478 .finup = omap_sham_finup,
1479 .digest = omap_sham_digest,
1480 .halg.digestsize = MD5_DIGEST_SIZE,
1481 .halg.base = {
1482 .cra_name = "md5",
1483 .cra_driver_name = "omap-md5",
1484 .cra_priority = 400,
1485 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1486 CRYPTO_ALG_KERN_DRIVER_ONLY |
1487 CRYPTO_ALG_ASYNC |
1488 CRYPTO_ALG_NEED_FALLBACK,
1489 .cra_blocksize = SHA1_BLOCK_SIZE,
1490 .cra_ctxsize = sizeof(struct omap_sham_ctx),
1491 .cra_alignmask = OMAP_ALIGN_MASK,
1492 .cra_module = THIS_MODULE,
1493 .cra_init = omap_sham_cra_init,
1494 .cra_exit = omap_sham_cra_exit,
1495 }
1496 },
1497 {
1498 .init = omap_sham_init,
1499 .update = omap_sham_update,
1500 .final = omap_sham_final,
1501 .finup = omap_sham_finup,
1502 .digest = omap_sham_digest,
1503 .setkey = omap_sham_setkey,
1504 .halg.digestsize = SHA1_DIGEST_SIZE,
1505 .halg.base = {
1506 .cra_name = "hmac(sha1)",
1507 .cra_driver_name = "omap-hmac-sha1",
1508 .cra_priority = 400,
1509 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1510 CRYPTO_ALG_KERN_DRIVER_ONLY |
1511 CRYPTO_ALG_ASYNC |
1512 CRYPTO_ALG_NEED_FALLBACK,
1513 .cra_blocksize = SHA1_BLOCK_SIZE,
1514 .cra_ctxsize = sizeof(struct omap_sham_ctx) +
1515 sizeof(struct omap_sham_hmac_ctx),
1516 .cra_alignmask = OMAP_ALIGN_MASK,
1517 .cra_module = THIS_MODULE,
1518 .cra_init = omap_sham_cra_sha1_init,
1519 .cra_exit = omap_sham_cra_exit,
1520 }
1521 },
1522 {
1523 .init = omap_sham_init,
1524 .update = omap_sham_update,
1525 .final = omap_sham_final,
1526 .finup = omap_sham_finup,
1527 .digest = omap_sham_digest,
1528 .setkey = omap_sham_setkey,
1529 .halg.digestsize = MD5_DIGEST_SIZE,
1530 .halg.base = {
1531 .cra_name = "hmac(md5)",
1532 .cra_driver_name = "omap-hmac-md5",
1533 .cra_priority = 400,
1534 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1535 CRYPTO_ALG_KERN_DRIVER_ONLY |
1536 CRYPTO_ALG_ASYNC |
1537 CRYPTO_ALG_NEED_FALLBACK,
1538 .cra_blocksize = SHA1_BLOCK_SIZE,
1539 .cra_ctxsize = sizeof(struct omap_sham_ctx) +
1540 sizeof(struct omap_sham_hmac_ctx),
1541 .cra_alignmask = OMAP_ALIGN_MASK,
1542 .cra_module = THIS_MODULE,
1543 .cra_init = omap_sham_cra_md5_init,
1544 .cra_exit = omap_sham_cra_exit,
1545 }
1546 }
1547 };
1548
1549 /* OMAP4 has some algs in addition to what OMAP2 has */
1550 static struct ahash_alg algs_sha224_sha256[] = {
1551 {
1552 .init = omap_sham_init,
1553 .update = omap_sham_update,
1554 .final = omap_sham_final,
1555 .finup = omap_sham_finup,
1556 .digest = omap_sham_digest,
1557 .halg.digestsize = SHA224_DIGEST_SIZE,
1558 .halg.base = {
1559 .cra_name = "sha224",
1560 .cra_driver_name = "omap-sha224",
1561 .cra_priority = 400,
1562 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1563 CRYPTO_ALG_ASYNC |
1564 CRYPTO_ALG_NEED_FALLBACK,
1565 .cra_blocksize = SHA224_BLOCK_SIZE,
1566 .cra_ctxsize = sizeof(struct omap_sham_ctx),
1567 .cra_alignmask = OMAP_ALIGN_MASK,
1568 .cra_module = THIS_MODULE,
1569 .cra_init = omap_sham_cra_init,
1570 .cra_exit = omap_sham_cra_exit,
1571 }
1572 },
1573 {
1574 .init = omap_sham_init,
1575 .update = omap_sham_update,
1576 .final = omap_sham_final,
1577 .finup = omap_sham_finup,
1578 .digest = omap_sham_digest,
1579 .halg.digestsize = SHA256_DIGEST_SIZE,
1580 .halg.base = {
1581 .cra_name = "sha256",
1582 .cra_driver_name = "omap-sha256",
1583 .cra_priority = 400,
1584 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1585 CRYPTO_ALG_ASYNC |
1586 CRYPTO_ALG_NEED_FALLBACK,
1587 .cra_blocksize = SHA256_BLOCK_SIZE,
1588 .cra_ctxsize = sizeof(struct omap_sham_ctx),
1589 .cra_alignmask = OMAP_ALIGN_MASK,
1590 .cra_module = THIS_MODULE,
1591 .cra_init = omap_sham_cra_init,
1592 .cra_exit = omap_sham_cra_exit,
1593 }
1594 },
1595 {
1596 .init = omap_sham_init,
1597 .update = omap_sham_update,
1598 .final = omap_sham_final,
1599 .finup = omap_sham_finup,
1600 .digest = omap_sham_digest,
1601 .setkey = omap_sham_setkey,
1602 .halg.digestsize = SHA224_DIGEST_SIZE,
1603 .halg.base = {
1604 .cra_name = "hmac(sha224)",
1605 .cra_driver_name = "omap-hmac-sha224",
1606 .cra_priority = 400,
1607 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1608 CRYPTO_ALG_ASYNC |
1609 CRYPTO_ALG_NEED_FALLBACK,
1610 .cra_blocksize = SHA224_BLOCK_SIZE,
1611 .cra_ctxsize = sizeof(struct omap_sham_ctx) +
1612 sizeof(struct omap_sham_hmac_ctx),
1613 .cra_alignmask = OMAP_ALIGN_MASK,
1614 .cra_module = THIS_MODULE,
1615 .cra_init = omap_sham_cra_sha224_init,
1616 .cra_exit = omap_sham_cra_exit,
1617 }
1618 },
1619 {
1620 .init = omap_sham_init,
1621 .update = omap_sham_update,
1622 .final = omap_sham_final,
1623 .finup = omap_sham_finup,
1624 .digest = omap_sham_digest,
1625 .setkey = omap_sham_setkey,
1626 .halg.digestsize = SHA256_DIGEST_SIZE,
1627 .halg.base = {
1628 .cra_name = "hmac(sha256)",
1629 .cra_driver_name = "omap-hmac-sha256",
1630 .cra_priority = 400,
1631 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1632 CRYPTO_ALG_ASYNC |
1633 CRYPTO_ALG_NEED_FALLBACK,
1634 .cra_blocksize = SHA256_BLOCK_SIZE,
1635 .cra_ctxsize = sizeof(struct omap_sham_ctx) +
1636 sizeof(struct omap_sham_hmac_ctx),
1637 .cra_alignmask = OMAP_ALIGN_MASK,
1638 .cra_module = THIS_MODULE,
1639 .cra_init = omap_sham_cra_sha256_init,
1640 .cra_exit = omap_sham_cra_exit,
1641 }
1642 },
1643 };
1644
1645 static struct ahash_alg algs_sha384_sha512[] = {
1646 {
1647 .init = omap_sham_init,
1648 .update = omap_sham_update,
1649 .final = omap_sham_final,
1650 .finup = omap_sham_finup,
1651 .digest = omap_sham_digest,
1652 .halg.digestsize = SHA384_DIGEST_SIZE,
1653 .halg.base = {
1654 .cra_name = "sha384",
1655 .cra_driver_name = "omap-sha384",
1656 .cra_priority = 400,
1657 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1658 CRYPTO_ALG_ASYNC |
1659 CRYPTO_ALG_NEED_FALLBACK,
1660 .cra_blocksize = SHA384_BLOCK_SIZE,
1661 .cra_ctxsize = sizeof(struct omap_sham_ctx),
1662 .cra_alignmask = OMAP_ALIGN_MASK,
1663 .cra_module = THIS_MODULE,
1664 .cra_init = omap_sham_cra_init,
1665 .cra_exit = omap_sham_cra_exit,
1666 }
1667 },
1668 {
1669 .init = omap_sham_init,
1670 .update = omap_sham_update,
1671 .final = omap_sham_final,
1672 .finup = omap_sham_finup,
1673 .digest = omap_sham_digest,
1674 .halg.digestsize = SHA512_DIGEST_SIZE,
1675 .halg.base = {
1676 .cra_name = "sha512",
1677 .cra_driver_name = "omap-sha512",
1678 .cra_priority = 400,
1679 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1680 CRYPTO_ALG_ASYNC |
1681 CRYPTO_ALG_NEED_FALLBACK,
1682 .cra_blocksize = SHA512_BLOCK_SIZE,
1683 .cra_ctxsize = sizeof(struct omap_sham_ctx),
1684 .cra_alignmask = OMAP_ALIGN_MASK,
1685 .cra_module = THIS_MODULE,
1686 .cra_init = omap_sham_cra_init,
1687 .cra_exit = omap_sham_cra_exit,
1688 }
1689 },
1690 {
1691 .init = omap_sham_init,
1692 .update = omap_sham_update,
1693 .final = omap_sham_final,
1694 .finup = omap_sham_finup,
1695 .digest = omap_sham_digest,
1696 .setkey = omap_sham_setkey,
1697 .halg.digestsize = SHA384_DIGEST_SIZE,
1698 .halg.base = {
1699 .cra_name = "hmac(sha384)",
1700 .cra_driver_name = "omap-hmac-sha384",
1701 .cra_priority = 400,
1702 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1703 CRYPTO_ALG_ASYNC |
1704 CRYPTO_ALG_NEED_FALLBACK,
1705 .cra_blocksize = SHA384_BLOCK_SIZE,
1706 .cra_ctxsize = sizeof(struct omap_sham_ctx) +
1707 sizeof(struct omap_sham_hmac_ctx),
1708 .cra_alignmask = OMAP_ALIGN_MASK,
1709 .cra_module = THIS_MODULE,
1710 .cra_init = omap_sham_cra_sha384_init,
1711 .cra_exit = omap_sham_cra_exit,
1712 }
1713 },
1714 {
1715 .init = omap_sham_init,
1716 .update = omap_sham_update,
1717 .final = omap_sham_final,
1718 .finup = omap_sham_finup,
1719 .digest = omap_sham_digest,
1720 .setkey = omap_sham_setkey,
1721 .halg.digestsize = SHA512_DIGEST_SIZE,
1722 .halg.base = {
1723 .cra_name = "hmac(sha512)",
1724 .cra_driver_name = "omap-hmac-sha512",
1725 .cra_priority = 400,
1726 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1727 CRYPTO_ALG_ASYNC |
1728 CRYPTO_ALG_NEED_FALLBACK,
1729 .cra_blocksize = SHA512_BLOCK_SIZE,
1730 .cra_ctxsize = sizeof(struct omap_sham_ctx) +
1731 sizeof(struct omap_sham_hmac_ctx),
1732 .cra_alignmask = OMAP_ALIGN_MASK,
1733 .cra_module = THIS_MODULE,
1734 .cra_init = omap_sham_cra_sha512_init,
1735 .cra_exit = omap_sham_cra_exit,
1736 }
1737 },
1738 };
1739
1740 static void omap_sham_done_task(unsigned long data)
1741 {
1742 struct omap_sham_dev *dd = (struct omap_sham_dev *)data;
1743 int err = 0;
1744
1745 if (!test_bit(FLAGS_BUSY, &dd->flags)) {
1746 omap_sham_handle_queue(dd, NULL);
1747 return;
1748 }
1749
1750 if (test_bit(FLAGS_CPU, &dd->flags)) {
1751 if (test_and_clear_bit(FLAGS_OUTPUT_READY, &dd->flags))
1752 goto finish;
1753 } else if (test_bit(FLAGS_DMA_READY, &dd->flags)) {
1754 if (test_and_clear_bit(FLAGS_DMA_ACTIVE, &dd->flags)) {
1755 omap_sham_update_dma_stop(dd);
1756 if (dd->err) {
1757 err = dd->err;
1758 goto finish;
1759 }
1760 }
1761 if (test_and_clear_bit(FLAGS_OUTPUT_READY, &dd->flags)) {
1762 /* hash or semi-hash ready */
1763 clear_bit(FLAGS_DMA_READY, &dd->flags);
1764 goto finish;
1765 }
1766 }
1767
1768 return;
1769
1770 finish:
1771 dev_dbg(dd->dev, "update done: err: %d\n", err);
1772 /* finish curent request */
1773 omap_sham_finish_req(dd->req, err);
1774
1775 /* If we are not busy, process next req */
1776 if (!test_bit(FLAGS_BUSY, &dd->flags))
1777 omap_sham_handle_queue(dd, NULL);
1778 }
1779
1780 static irqreturn_t omap_sham_irq_common(struct omap_sham_dev *dd)
1781 {
1782 if (!test_bit(FLAGS_BUSY, &dd->flags)) {
1783 dev_warn(dd->dev, "Interrupt when no active requests.\n");
1784 } else {
1785 set_bit(FLAGS_OUTPUT_READY, &dd->flags);
1786 tasklet_schedule(&dd->done_task);
1787 }
1788
1789 return IRQ_HANDLED;
1790 }
1791
1792 static irqreturn_t omap_sham_irq_omap2(int irq, void *dev_id)
1793 {
1794 struct omap_sham_dev *dd = dev_id;
1795
1796 if (unlikely(test_bit(FLAGS_FINAL, &dd->flags)))
1797 /* final -> allow device to go to power-saving mode */
1798 omap_sham_write_mask(dd, SHA_REG_CTRL, 0, SHA_REG_CTRL_LENGTH);
1799
1800 omap_sham_write_mask(dd, SHA_REG_CTRL, SHA_REG_CTRL_OUTPUT_READY,
1801 SHA_REG_CTRL_OUTPUT_READY);
1802 omap_sham_read(dd, SHA_REG_CTRL);
1803
1804 return omap_sham_irq_common(dd);
1805 }
1806
1807 static irqreturn_t omap_sham_irq_omap4(int irq, void *dev_id)
1808 {
1809 struct omap_sham_dev *dd = dev_id;
1810
1811 omap_sham_write_mask(dd, SHA_REG_MASK(dd), 0, SHA_REG_MASK_IT_EN);
1812
1813 return omap_sham_irq_common(dd);
1814 }
1815
1816 static struct omap_sham_algs_info omap_sham_algs_info_omap2[] = {
1817 {
1818 .algs_list = algs_sha1_md5,
1819 .size = ARRAY_SIZE(algs_sha1_md5),
1820 },
1821 };
1822
1823 static const struct omap_sham_pdata omap_sham_pdata_omap2 = {
1824 .algs_info = omap_sham_algs_info_omap2,
1825 .algs_info_size = ARRAY_SIZE(omap_sham_algs_info_omap2),
1826 .flags = BIT(FLAGS_BE32_SHA1),
1827 .digest_size = SHA1_DIGEST_SIZE,
1828 .copy_hash = omap_sham_copy_hash_omap2,
1829 .write_ctrl = omap_sham_write_ctrl_omap2,
1830 .trigger = omap_sham_trigger_omap2,
1831 .poll_irq = omap_sham_poll_irq_omap2,
1832 .intr_hdlr = omap_sham_irq_omap2,
1833 .idigest_ofs = 0x00,
1834 .din_ofs = 0x1c,
1835 .digcnt_ofs = 0x14,
1836 .rev_ofs = 0x5c,
1837 .mask_ofs = 0x60,
1838 .sysstatus_ofs = 0x64,
1839 .major_mask = 0xf0,
1840 .major_shift = 4,
1841 .minor_mask = 0x0f,
1842 .minor_shift = 0,
1843 };
1844
1845 #ifdef CONFIG_OF
1846 static struct omap_sham_algs_info omap_sham_algs_info_omap4[] = {
1847 {
1848 .algs_list = algs_sha1_md5,
1849 .size = ARRAY_SIZE(algs_sha1_md5),
1850 },
1851 {
1852 .algs_list = algs_sha224_sha256,
1853 .size = ARRAY_SIZE(algs_sha224_sha256),
1854 },
1855 };
1856
1857 static const struct omap_sham_pdata omap_sham_pdata_omap4 = {
1858 .algs_info = omap_sham_algs_info_omap4,
1859 .algs_info_size = ARRAY_SIZE(omap_sham_algs_info_omap4),
1860 .flags = BIT(FLAGS_AUTO_XOR),
1861 .digest_size = SHA256_DIGEST_SIZE,
1862 .copy_hash = omap_sham_copy_hash_omap4,
1863 .write_ctrl = omap_sham_write_ctrl_omap4,
1864 .trigger = omap_sham_trigger_omap4,
1865 .poll_irq = omap_sham_poll_irq_omap4,
1866 .intr_hdlr = omap_sham_irq_omap4,
1867 .idigest_ofs = 0x020,
1868 .odigest_ofs = 0x0,
1869 .din_ofs = 0x080,
1870 .digcnt_ofs = 0x040,
1871 .rev_ofs = 0x100,
1872 .mask_ofs = 0x110,
1873 .sysstatus_ofs = 0x114,
1874 .mode_ofs = 0x44,
1875 .length_ofs = 0x48,
1876 .major_mask = 0x0700,
1877 .major_shift = 8,
1878 .minor_mask = 0x003f,
1879 .minor_shift = 0,
1880 };
1881
1882 static struct omap_sham_algs_info omap_sham_algs_info_omap5[] = {
1883 {
1884 .algs_list = algs_sha1_md5,
1885 .size = ARRAY_SIZE(algs_sha1_md5),
1886 },
1887 {
1888 .algs_list = algs_sha224_sha256,
1889 .size = ARRAY_SIZE(algs_sha224_sha256),
1890 },
1891 {
1892 .algs_list = algs_sha384_sha512,
1893 .size = ARRAY_SIZE(algs_sha384_sha512),
1894 },
1895 };
1896
1897 static const struct omap_sham_pdata omap_sham_pdata_omap5 = {
1898 .algs_info = omap_sham_algs_info_omap5,
1899 .algs_info_size = ARRAY_SIZE(omap_sham_algs_info_omap5),
1900 .flags = BIT(FLAGS_AUTO_XOR),
1901 .digest_size = SHA512_DIGEST_SIZE,
1902 .copy_hash = omap_sham_copy_hash_omap4,
1903 .write_ctrl = omap_sham_write_ctrl_omap4,
1904 .trigger = omap_sham_trigger_omap4,
1905 .poll_irq = omap_sham_poll_irq_omap4,
1906 .intr_hdlr = omap_sham_irq_omap4,
1907 .idigest_ofs = 0x240,
1908 .odigest_ofs = 0x200,
1909 .din_ofs = 0x080,
1910 .digcnt_ofs = 0x280,
1911 .rev_ofs = 0x100,
1912 .mask_ofs = 0x110,
1913 .sysstatus_ofs = 0x114,
1914 .mode_ofs = 0x284,
1915 .length_ofs = 0x288,
1916 .major_mask = 0x0700,
1917 .major_shift = 8,
1918 .minor_mask = 0x003f,
1919 .minor_shift = 0,
1920 };
1921
1922 static const struct of_device_id omap_sham_of_match[] = {
1923 {
1924 .compatible = "ti,omap2-sham",
1925 .data = &omap_sham_pdata_omap2,
1926 },
1927 {
1928 .compatible = "ti,omap3-sham",
1929 .data = &omap_sham_pdata_omap2,
1930 },
1931 {
1932 .compatible = "ti,omap4-sham",
1933 .data = &omap_sham_pdata_omap4,
1934 },
1935 {
1936 .compatible = "ti,omap5-sham",
1937 .data = &omap_sham_pdata_omap5,
1938 },
1939 {},
1940 };
1941 MODULE_DEVICE_TABLE(of, omap_sham_of_match);
1942
1943 static int omap_sham_get_res_of(struct omap_sham_dev *dd,
1944 struct device *dev, struct resource *res)
1945 {
1946 struct device_node *node = dev->of_node;
1947 const struct of_device_id *match;
1948 int err = 0;
1949
1950 match = of_match_device(of_match_ptr(omap_sham_of_match), dev);
1951 if (!match) {
1952 dev_err(dev, "no compatible OF match\n");
1953 err = -EINVAL;
1954 goto err;
1955 }
1956
1957 err = of_address_to_resource(node, 0, res);
1958 if (err < 0) {
1959 dev_err(dev, "can't translate OF node address\n");
1960 err = -EINVAL;
1961 goto err;
1962 }
1963
1964 dd->irq = irq_of_parse_and_map(node, 0);
1965 if (!dd->irq) {
1966 dev_err(dev, "can't translate OF irq value\n");
1967 err = -EINVAL;
1968 goto err;
1969 }
1970
1971 dd->pdata = match->data;
1972
1973 err:
1974 return err;
1975 }
1976 #else
1977 static const struct of_device_id omap_sham_of_match[] = {
1978 {},
1979 };
1980
1981 static int omap_sham_get_res_of(struct omap_sham_dev *dd,
1982 struct device *dev, struct resource *res)
1983 {
1984 return -EINVAL;
1985 }
1986 #endif
1987
1988 static int omap_sham_get_res_pdev(struct omap_sham_dev *dd,
1989 struct platform_device *pdev, struct resource *res)
1990 {
1991 struct device *dev = &pdev->dev;
1992 struct resource *r;
1993 int err = 0;
1994
1995 /* Get the base address */
1996 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1997 if (!r) {
1998 dev_err(dev, "no MEM resource info\n");
1999 err = -ENODEV;
2000 goto err;
2001 }
2002 memcpy(res, r, sizeof(*res));
2003
2004 /* Get the IRQ */
2005 dd->irq = platform_get_irq(pdev, 0);
2006 if (dd->irq < 0) {
2007 dev_err(dev, "no IRQ resource info\n");
2008 err = dd->irq;
2009 goto err;
2010 }
2011
2012 /* Only OMAP2/3 can be non-DT */
2013 dd->pdata = &omap_sham_pdata_omap2;
2014
2015 err:
2016 return err;
2017 }
2018
2019 static int omap_sham_probe(struct platform_device *pdev)
2020 {
2021 struct omap_sham_dev *dd;
2022 struct device *dev = &pdev->dev;
2023 struct resource res;
2024 dma_cap_mask_t mask;
2025 int err, i, j;
2026 u32 rev;
2027
2028 dd = devm_kzalloc(dev, sizeof(struct omap_sham_dev), GFP_KERNEL);
2029 if (dd == NULL) {
2030 dev_err(dev, "unable to alloc data struct.\n");
2031 err = -ENOMEM;
2032 goto data_err;
2033 }
2034 dd->dev = dev;
2035 platform_set_drvdata(pdev, dd);
2036
2037 INIT_LIST_HEAD(&dd->list);
2038 spin_lock_init(&dd->lock);
2039 tasklet_init(&dd->done_task, omap_sham_done_task, (unsigned long)dd);
2040 crypto_init_queue(&dd->queue, OMAP_SHAM_QUEUE_LENGTH);
2041
2042 err = (dev->of_node) ? omap_sham_get_res_of(dd, dev, &res) :
2043 omap_sham_get_res_pdev(dd, pdev, &res);
2044 if (err)
2045 goto data_err;
2046
2047 dd->io_base = devm_ioremap_resource(dev, &res);
2048 if (IS_ERR(dd->io_base)) {
2049 err = PTR_ERR(dd->io_base);
2050 goto data_err;
2051 }
2052 dd->phys_base = res.start;
2053
2054 err = devm_request_irq(dev, dd->irq, dd->pdata->intr_hdlr,
2055 IRQF_TRIGGER_NONE, dev_name(dev), dd);
2056 if (err) {
2057 dev_err(dev, "unable to request irq %d, err = %d\n",
2058 dd->irq, err);
2059 goto data_err;
2060 }
2061
2062 dma_cap_zero(mask);
2063 dma_cap_set(DMA_SLAVE, mask);
2064
2065 dd->dma_lch = dma_request_chan(dev, "rx");
2066 if (IS_ERR(dd->dma_lch)) {
2067 err = PTR_ERR(dd->dma_lch);
2068 if (err == -EPROBE_DEFER)
2069 goto data_err;
2070
2071 dd->polling_mode = 1;
2072 dev_dbg(dev, "using polling mode instead of dma\n");
2073 }
2074
2075 dd->flags |= dd->pdata->flags;
2076
2077 pm_runtime_use_autosuspend(dev);
2078 pm_runtime_set_autosuspend_delay(dev, DEFAULT_AUTOSUSPEND_DELAY);
2079
2080 pm_runtime_enable(dev);
2081 pm_runtime_irq_safe(dev);
2082
2083 err = pm_runtime_get_sync(dev);
2084 if (err < 0) {
2085 dev_err(dev, "failed to get sync: %d\n", err);
2086 goto err_pm;
2087 }
2088
2089 rev = omap_sham_read(dd, SHA_REG_REV(dd));
2090 pm_runtime_put_sync(&pdev->dev);
2091
2092 dev_info(dev, "hw accel on OMAP rev %u.%u\n",
2093 (rev & dd->pdata->major_mask) >> dd->pdata->major_shift,
2094 (rev & dd->pdata->minor_mask) >> dd->pdata->minor_shift);
2095
2096 spin_lock(&sham.lock);
2097 list_add_tail(&dd->list, &sham.dev_list);
2098 spin_unlock(&sham.lock);
2099
2100 for (i = 0; i < dd->pdata->algs_info_size; i++) {
2101 for (j = 0; j < dd->pdata->algs_info[i].size; j++) {
2102 struct ahash_alg *alg;
2103
2104 alg = &dd->pdata->algs_info[i].algs_list[j];
2105 alg->export = omap_sham_export;
2106 alg->import = omap_sham_import;
2107 alg->halg.statesize = sizeof(struct omap_sham_reqctx) +
2108 BUFLEN;
2109 err = crypto_register_ahash(alg);
2110 if (err)
2111 goto err_algs;
2112
2113 dd->pdata->algs_info[i].registered++;
2114 }
2115 }
2116
2117 return 0;
2118
2119 err_algs:
2120 for (i = dd->pdata->algs_info_size - 1; i >= 0; i--)
2121 for (j = dd->pdata->algs_info[i].registered - 1; j >= 0; j--)
2122 crypto_unregister_ahash(
2123 &dd->pdata->algs_info[i].algs_list[j]);
2124 err_pm:
2125 pm_runtime_disable(dev);
2126 if (!dd->polling_mode)
2127 dma_release_channel(dd->dma_lch);
2128 data_err:
2129 dev_err(dev, "initialization failed.\n");
2130
2131 return err;
2132 }
2133
2134 static int omap_sham_remove(struct platform_device *pdev)
2135 {
2136 struct omap_sham_dev *dd;
2137 int i, j;
2138
2139 dd = platform_get_drvdata(pdev);
2140 if (!dd)
2141 return -ENODEV;
2142 spin_lock(&sham.lock);
2143 list_del(&dd->list);
2144 spin_unlock(&sham.lock);
2145 for (i = dd->pdata->algs_info_size - 1; i >= 0; i--)
2146 for (j = dd->pdata->algs_info[i].registered - 1; j >= 0; j--)
2147 crypto_unregister_ahash(
2148 &dd->pdata->algs_info[i].algs_list[j]);
2149 tasklet_kill(&dd->done_task);
2150 pm_runtime_disable(&pdev->dev);
2151
2152 if (!dd->polling_mode)
2153 dma_release_channel(dd->dma_lch);
2154
2155 return 0;
2156 }
2157
2158 #ifdef CONFIG_PM_SLEEP
2159 static int omap_sham_suspend(struct device *dev)
2160 {
2161 pm_runtime_put_sync(dev);
2162 return 0;
2163 }
2164
2165 static int omap_sham_resume(struct device *dev)
2166 {
2167 int err = pm_runtime_get_sync(dev);
2168 if (err < 0) {
2169 dev_err(dev, "failed to get sync: %d\n", err);
2170 return err;
2171 }
2172 return 0;
2173 }
2174 #endif
2175
2176 static SIMPLE_DEV_PM_OPS(omap_sham_pm_ops, omap_sham_suspend, omap_sham_resume);
2177
2178 static struct platform_driver omap_sham_driver = {
2179 .probe = omap_sham_probe,
2180 .remove = omap_sham_remove,
2181 .driver = {
2182 .name = "omap-sham",
2183 .pm = &omap_sham_pm_ops,
2184 .of_match_table = omap_sham_of_match,
2185 },
2186 };
2187
2188 module_platform_driver(omap_sham_driver);
2189
2190 MODULE_DESCRIPTION("OMAP SHA1/MD5 hw acceleration support.");
2191 MODULE_LICENSE("GPL v2");
2192 MODULE_AUTHOR("Dmitry Kasatkin");
2193 MODULE_ALIAS("platform:omap-sham");