]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/crypto/stm32/stm32-hash.c
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 234
[thirdparty/linux.git] / drivers / crypto / stm32 / stm32-hash.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * This file is part of STM32 Crypto driver for Linux.
4 *
5 * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6 * Author(s): Lionel DEBIEVE <lionel.debieve@st.com> for STMicroelectronics.
7 */
8
9 #include <linux/clk.h>
10 #include <linux/crypto.h>
11 #include <linux/delay.h>
12 #include <linux/dmaengine.h>
13 #include <linux/interrupt.h>
14 #include <linux/io.h>
15 #include <linux/iopoll.h>
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/of_device.h>
19 #include <linux/platform_device.h>
20 #include <linux/pm_runtime.h>
21 #include <linux/reset.h>
22
23 #include <crypto/engine.h>
24 #include <crypto/hash.h>
25 #include <crypto/md5.h>
26 #include <crypto/scatterwalk.h>
27 #include <crypto/sha.h>
28 #include <crypto/internal/hash.h>
29
30 #define HASH_CR 0x00
31 #define HASH_DIN 0x04
32 #define HASH_STR 0x08
33 #define HASH_IMR 0x20
34 #define HASH_SR 0x24
35 #define HASH_CSR(x) (0x0F8 + ((x) * 0x04))
36 #define HASH_HREG(x) (0x310 + ((x) * 0x04))
37 #define HASH_HWCFGR 0x3F0
38 #define HASH_VER 0x3F4
39 #define HASH_ID 0x3F8
40
41 /* Control Register */
42 #define HASH_CR_INIT BIT(2)
43 #define HASH_CR_DMAE BIT(3)
44 #define HASH_CR_DATATYPE_POS 4
45 #define HASH_CR_MODE BIT(6)
46 #define HASH_CR_MDMAT BIT(13)
47 #define HASH_CR_DMAA BIT(14)
48 #define HASH_CR_LKEY BIT(16)
49
50 #define HASH_CR_ALGO_SHA1 0x0
51 #define HASH_CR_ALGO_MD5 0x80
52 #define HASH_CR_ALGO_SHA224 0x40000
53 #define HASH_CR_ALGO_SHA256 0x40080
54
55 /* Interrupt */
56 #define HASH_DINIE BIT(0)
57 #define HASH_DCIE BIT(1)
58
59 /* Interrupt Mask */
60 #define HASH_MASK_CALC_COMPLETION BIT(0)
61 #define HASH_MASK_DATA_INPUT BIT(1)
62
63 /* Context swap register */
64 #define HASH_CSR_REGISTER_NUMBER 53
65
66 /* Status Flags */
67 #define HASH_SR_DATA_INPUT_READY BIT(0)
68 #define HASH_SR_OUTPUT_READY BIT(1)
69 #define HASH_SR_DMA_ACTIVE BIT(2)
70 #define HASH_SR_BUSY BIT(3)
71
72 /* STR Register */
73 #define HASH_STR_NBLW_MASK GENMASK(4, 0)
74 #define HASH_STR_DCAL BIT(8)
75
76 #define HASH_FLAGS_INIT BIT(0)
77 #define HASH_FLAGS_OUTPUT_READY BIT(1)
78 #define HASH_FLAGS_CPU BIT(2)
79 #define HASH_FLAGS_DMA_READY BIT(3)
80 #define HASH_FLAGS_DMA_ACTIVE BIT(4)
81 #define HASH_FLAGS_HMAC_INIT BIT(5)
82 #define HASH_FLAGS_HMAC_FINAL BIT(6)
83 #define HASH_FLAGS_HMAC_KEY BIT(7)
84
85 #define HASH_FLAGS_FINAL BIT(15)
86 #define HASH_FLAGS_FINUP BIT(16)
87 #define HASH_FLAGS_ALGO_MASK GENMASK(21, 18)
88 #define HASH_FLAGS_MD5 BIT(18)
89 #define HASH_FLAGS_SHA1 BIT(19)
90 #define HASH_FLAGS_SHA224 BIT(20)
91 #define HASH_FLAGS_SHA256 BIT(21)
92 #define HASH_FLAGS_ERRORS BIT(22)
93 #define HASH_FLAGS_HMAC BIT(23)
94
95 #define HASH_OP_UPDATE 1
96 #define HASH_OP_FINAL 2
97
98 enum stm32_hash_data_format {
99 HASH_DATA_32_BITS = 0x0,
100 HASH_DATA_16_BITS = 0x1,
101 HASH_DATA_8_BITS = 0x2,
102 HASH_DATA_1_BIT = 0x3
103 };
104
105 #define HASH_BUFLEN 256
106 #define HASH_LONG_KEY 64
107 #define HASH_MAX_KEY_SIZE (SHA256_BLOCK_SIZE * 8)
108 #define HASH_QUEUE_LENGTH 16
109 #define HASH_DMA_THRESHOLD 50
110
111 #define HASH_AUTOSUSPEND_DELAY 50
112
113 struct stm32_hash_ctx {
114 struct crypto_engine_ctx enginectx;
115 struct stm32_hash_dev *hdev;
116 unsigned long flags;
117
118 u8 key[HASH_MAX_KEY_SIZE];
119 int keylen;
120 };
121
122 struct stm32_hash_request_ctx {
123 struct stm32_hash_dev *hdev;
124 unsigned long flags;
125 unsigned long op;
126
127 u8 digest[SHA256_DIGEST_SIZE] __aligned(sizeof(u32));
128 size_t digcnt;
129 size_t bufcnt;
130 size_t buflen;
131
132 /* DMA */
133 struct scatterlist *sg;
134 unsigned int offset;
135 unsigned int total;
136 struct scatterlist sg_key;
137
138 dma_addr_t dma_addr;
139 size_t dma_ct;
140 int nents;
141
142 u8 data_type;
143
144 u8 buffer[HASH_BUFLEN] __aligned(sizeof(u32));
145
146 /* Export Context */
147 u32 *hw_context;
148 };
149
150 struct stm32_hash_algs_info {
151 struct ahash_alg *algs_list;
152 size_t size;
153 };
154
155 struct stm32_hash_pdata {
156 struct stm32_hash_algs_info *algs_info;
157 size_t algs_info_size;
158 };
159
160 struct stm32_hash_dev {
161 struct list_head list;
162 struct device *dev;
163 struct clk *clk;
164 struct reset_control *rst;
165 void __iomem *io_base;
166 phys_addr_t phys_base;
167 u32 dma_mode;
168 u32 dma_maxburst;
169
170 struct ahash_request *req;
171 struct crypto_engine *engine;
172
173 int err;
174 unsigned long flags;
175
176 struct dma_chan *dma_lch;
177 struct completion dma_completion;
178
179 const struct stm32_hash_pdata *pdata;
180 };
181
182 struct stm32_hash_drv {
183 struct list_head dev_list;
184 spinlock_t lock; /* List protection access */
185 };
186
187 static struct stm32_hash_drv stm32_hash = {
188 .dev_list = LIST_HEAD_INIT(stm32_hash.dev_list),
189 .lock = __SPIN_LOCK_UNLOCKED(stm32_hash.lock),
190 };
191
192 static void stm32_hash_dma_callback(void *param);
193
194 static inline u32 stm32_hash_read(struct stm32_hash_dev *hdev, u32 offset)
195 {
196 return readl_relaxed(hdev->io_base + offset);
197 }
198
199 static inline void stm32_hash_write(struct stm32_hash_dev *hdev,
200 u32 offset, u32 value)
201 {
202 writel_relaxed(value, hdev->io_base + offset);
203 }
204
205 static inline int stm32_hash_wait_busy(struct stm32_hash_dev *hdev)
206 {
207 u32 status;
208
209 return readl_relaxed_poll_timeout(hdev->io_base + HASH_SR, status,
210 !(status & HASH_SR_BUSY), 10, 10000);
211 }
212
213 static void stm32_hash_set_nblw(struct stm32_hash_dev *hdev, int length)
214 {
215 u32 reg;
216
217 reg = stm32_hash_read(hdev, HASH_STR);
218 reg &= ~(HASH_STR_NBLW_MASK);
219 reg |= (8U * ((length) % 4U));
220 stm32_hash_write(hdev, HASH_STR, reg);
221 }
222
223 static int stm32_hash_write_key(struct stm32_hash_dev *hdev)
224 {
225 struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
226 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
227 u32 reg;
228 int keylen = ctx->keylen;
229 void *key = ctx->key;
230
231 if (keylen) {
232 stm32_hash_set_nblw(hdev, keylen);
233
234 while (keylen > 0) {
235 stm32_hash_write(hdev, HASH_DIN, *(u32 *)key);
236 keylen -= 4;
237 key += 4;
238 }
239
240 reg = stm32_hash_read(hdev, HASH_STR);
241 reg |= HASH_STR_DCAL;
242 stm32_hash_write(hdev, HASH_STR, reg);
243
244 return -EINPROGRESS;
245 }
246
247 return 0;
248 }
249
250 static void stm32_hash_write_ctrl(struct stm32_hash_dev *hdev)
251 {
252 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
253 struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
254 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
255
256 u32 reg = HASH_CR_INIT;
257
258 if (!(hdev->flags & HASH_FLAGS_INIT)) {
259 switch (rctx->flags & HASH_FLAGS_ALGO_MASK) {
260 case HASH_FLAGS_MD5:
261 reg |= HASH_CR_ALGO_MD5;
262 break;
263 case HASH_FLAGS_SHA1:
264 reg |= HASH_CR_ALGO_SHA1;
265 break;
266 case HASH_FLAGS_SHA224:
267 reg |= HASH_CR_ALGO_SHA224;
268 break;
269 case HASH_FLAGS_SHA256:
270 reg |= HASH_CR_ALGO_SHA256;
271 break;
272 default:
273 reg |= HASH_CR_ALGO_MD5;
274 }
275
276 reg |= (rctx->data_type << HASH_CR_DATATYPE_POS);
277
278 if (rctx->flags & HASH_FLAGS_HMAC) {
279 hdev->flags |= HASH_FLAGS_HMAC;
280 reg |= HASH_CR_MODE;
281 if (ctx->keylen > HASH_LONG_KEY)
282 reg |= HASH_CR_LKEY;
283 }
284
285 stm32_hash_write(hdev, HASH_IMR, HASH_DCIE);
286
287 stm32_hash_write(hdev, HASH_CR, reg);
288
289 hdev->flags |= HASH_FLAGS_INIT;
290
291 dev_dbg(hdev->dev, "Write Control %x\n", reg);
292 }
293 }
294
295 static void stm32_hash_append_sg(struct stm32_hash_request_ctx *rctx)
296 {
297 size_t count;
298
299 while ((rctx->bufcnt < rctx->buflen) && rctx->total) {
300 count = min(rctx->sg->length - rctx->offset, rctx->total);
301 count = min(count, rctx->buflen - rctx->bufcnt);
302
303 if (count <= 0) {
304 if ((rctx->sg->length == 0) && !sg_is_last(rctx->sg)) {
305 rctx->sg = sg_next(rctx->sg);
306 continue;
307 } else {
308 break;
309 }
310 }
311
312 scatterwalk_map_and_copy(rctx->buffer + rctx->bufcnt, rctx->sg,
313 rctx->offset, count, 0);
314
315 rctx->bufcnt += count;
316 rctx->offset += count;
317 rctx->total -= count;
318
319 if (rctx->offset == rctx->sg->length) {
320 rctx->sg = sg_next(rctx->sg);
321 if (rctx->sg)
322 rctx->offset = 0;
323 else
324 rctx->total = 0;
325 }
326 }
327 }
328
329 static int stm32_hash_xmit_cpu(struct stm32_hash_dev *hdev,
330 const u8 *buf, size_t length, int final)
331 {
332 unsigned int count, len32;
333 const u32 *buffer = (const u32 *)buf;
334 u32 reg;
335
336 if (final)
337 hdev->flags |= HASH_FLAGS_FINAL;
338
339 len32 = DIV_ROUND_UP(length, sizeof(u32));
340
341 dev_dbg(hdev->dev, "%s: length: %d, final: %x len32 %i\n",
342 __func__, length, final, len32);
343
344 hdev->flags |= HASH_FLAGS_CPU;
345
346 stm32_hash_write_ctrl(hdev);
347
348 if (stm32_hash_wait_busy(hdev))
349 return -ETIMEDOUT;
350
351 if ((hdev->flags & HASH_FLAGS_HMAC) &&
352 (hdev->flags & ~HASH_FLAGS_HMAC_KEY)) {
353 hdev->flags |= HASH_FLAGS_HMAC_KEY;
354 stm32_hash_write_key(hdev);
355 if (stm32_hash_wait_busy(hdev))
356 return -ETIMEDOUT;
357 }
358
359 for (count = 0; count < len32; count++)
360 stm32_hash_write(hdev, HASH_DIN, buffer[count]);
361
362 if (final) {
363 stm32_hash_set_nblw(hdev, length);
364 reg = stm32_hash_read(hdev, HASH_STR);
365 reg |= HASH_STR_DCAL;
366 stm32_hash_write(hdev, HASH_STR, reg);
367 if (hdev->flags & HASH_FLAGS_HMAC) {
368 if (stm32_hash_wait_busy(hdev))
369 return -ETIMEDOUT;
370 stm32_hash_write_key(hdev);
371 }
372 return -EINPROGRESS;
373 }
374
375 return 0;
376 }
377
378 static int stm32_hash_update_cpu(struct stm32_hash_dev *hdev)
379 {
380 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
381 int bufcnt, err = 0, final;
382
383 dev_dbg(hdev->dev, "%s flags %lx\n", __func__, rctx->flags);
384
385 final = (rctx->flags & HASH_FLAGS_FINUP);
386
387 while ((rctx->total >= rctx->buflen) ||
388 (rctx->bufcnt + rctx->total >= rctx->buflen)) {
389 stm32_hash_append_sg(rctx);
390 bufcnt = rctx->bufcnt;
391 rctx->bufcnt = 0;
392 err = stm32_hash_xmit_cpu(hdev, rctx->buffer, bufcnt, 0);
393 }
394
395 stm32_hash_append_sg(rctx);
396
397 if (final) {
398 bufcnt = rctx->bufcnt;
399 rctx->bufcnt = 0;
400 err = stm32_hash_xmit_cpu(hdev, rctx->buffer, bufcnt,
401 (rctx->flags & HASH_FLAGS_FINUP));
402 }
403
404 return err;
405 }
406
407 static int stm32_hash_xmit_dma(struct stm32_hash_dev *hdev,
408 struct scatterlist *sg, int length, int mdma)
409 {
410 struct dma_async_tx_descriptor *in_desc;
411 dma_cookie_t cookie;
412 u32 reg;
413 int err;
414
415 in_desc = dmaengine_prep_slave_sg(hdev->dma_lch, sg, 1,
416 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT |
417 DMA_CTRL_ACK);
418 if (!in_desc) {
419 dev_err(hdev->dev, "dmaengine_prep_slave error\n");
420 return -ENOMEM;
421 }
422
423 reinit_completion(&hdev->dma_completion);
424 in_desc->callback = stm32_hash_dma_callback;
425 in_desc->callback_param = hdev;
426
427 hdev->flags |= HASH_FLAGS_FINAL;
428 hdev->flags |= HASH_FLAGS_DMA_ACTIVE;
429
430 reg = stm32_hash_read(hdev, HASH_CR);
431
432 if (mdma)
433 reg |= HASH_CR_MDMAT;
434 else
435 reg &= ~HASH_CR_MDMAT;
436
437 reg |= HASH_CR_DMAE;
438
439 stm32_hash_write(hdev, HASH_CR, reg);
440
441 stm32_hash_set_nblw(hdev, length);
442
443 cookie = dmaengine_submit(in_desc);
444 err = dma_submit_error(cookie);
445 if (err)
446 return -ENOMEM;
447
448 dma_async_issue_pending(hdev->dma_lch);
449
450 if (!wait_for_completion_interruptible_timeout(&hdev->dma_completion,
451 msecs_to_jiffies(100)))
452 err = -ETIMEDOUT;
453
454 if (dma_async_is_tx_complete(hdev->dma_lch, cookie,
455 NULL, NULL) != DMA_COMPLETE)
456 err = -ETIMEDOUT;
457
458 if (err) {
459 dev_err(hdev->dev, "DMA Error %i\n", err);
460 dmaengine_terminate_all(hdev->dma_lch);
461 return err;
462 }
463
464 return -EINPROGRESS;
465 }
466
467 static void stm32_hash_dma_callback(void *param)
468 {
469 struct stm32_hash_dev *hdev = param;
470
471 complete(&hdev->dma_completion);
472
473 hdev->flags |= HASH_FLAGS_DMA_READY;
474 }
475
476 static int stm32_hash_hmac_dma_send(struct stm32_hash_dev *hdev)
477 {
478 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
479 struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
480 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
481 int err;
482
483 if (ctx->keylen < HASH_DMA_THRESHOLD || (hdev->dma_mode == 1)) {
484 err = stm32_hash_write_key(hdev);
485 if (stm32_hash_wait_busy(hdev))
486 return -ETIMEDOUT;
487 } else {
488 if (!(hdev->flags & HASH_FLAGS_HMAC_KEY))
489 sg_init_one(&rctx->sg_key, ctx->key,
490 ALIGN(ctx->keylen, sizeof(u32)));
491
492 rctx->dma_ct = dma_map_sg(hdev->dev, &rctx->sg_key, 1,
493 DMA_TO_DEVICE);
494 if (rctx->dma_ct == 0) {
495 dev_err(hdev->dev, "dma_map_sg error\n");
496 return -ENOMEM;
497 }
498
499 err = stm32_hash_xmit_dma(hdev, &rctx->sg_key, ctx->keylen, 0);
500
501 dma_unmap_sg(hdev->dev, &rctx->sg_key, 1, DMA_TO_DEVICE);
502 }
503
504 return err;
505 }
506
507 static int stm32_hash_dma_init(struct stm32_hash_dev *hdev)
508 {
509 struct dma_slave_config dma_conf;
510 int err;
511
512 memset(&dma_conf, 0, sizeof(dma_conf));
513
514 dma_conf.direction = DMA_MEM_TO_DEV;
515 dma_conf.dst_addr = hdev->phys_base + HASH_DIN;
516 dma_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
517 dma_conf.src_maxburst = hdev->dma_maxburst;
518 dma_conf.dst_maxburst = hdev->dma_maxburst;
519 dma_conf.device_fc = false;
520
521 hdev->dma_lch = dma_request_slave_channel(hdev->dev, "in");
522 if (!hdev->dma_lch) {
523 dev_err(hdev->dev, "Couldn't acquire a slave DMA channel.\n");
524 return -EBUSY;
525 }
526
527 err = dmaengine_slave_config(hdev->dma_lch, &dma_conf);
528 if (err) {
529 dma_release_channel(hdev->dma_lch);
530 hdev->dma_lch = NULL;
531 dev_err(hdev->dev, "Couldn't configure DMA slave.\n");
532 return err;
533 }
534
535 init_completion(&hdev->dma_completion);
536
537 return 0;
538 }
539
540 static int stm32_hash_dma_send(struct stm32_hash_dev *hdev)
541 {
542 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
543 struct scatterlist sg[1], *tsg;
544 int err = 0, len = 0, reg, ncp = 0;
545 unsigned int i;
546 u32 *buffer = (void *)rctx->buffer;
547
548 rctx->sg = hdev->req->src;
549 rctx->total = hdev->req->nbytes;
550
551 rctx->nents = sg_nents(rctx->sg);
552
553 if (rctx->nents < 0)
554 return -EINVAL;
555
556 stm32_hash_write_ctrl(hdev);
557
558 if (hdev->flags & HASH_FLAGS_HMAC) {
559 err = stm32_hash_hmac_dma_send(hdev);
560 if (err != -EINPROGRESS)
561 return err;
562 }
563
564 for_each_sg(rctx->sg, tsg, rctx->nents, i) {
565 len = sg->length;
566
567 sg[0] = *tsg;
568 if (sg_is_last(sg)) {
569 if (hdev->dma_mode == 1) {
570 len = (ALIGN(sg->length, 16) - 16);
571
572 ncp = sg_pcopy_to_buffer(
573 rctx->sg, rctx->nents,
574 rctx->buffer, sg->length - len,
575 rctx->total - sg->length + len);
576
577 sg->length = len;
578 } else {
579 if (!(IS_ALIGNED(sg->length, sizeof(u32)))) {
580 len = sg->length;
581 sg->length = ALIGN(sg->length,
582 sizeof(u32));
583 }
584 }
585 }
586
587 rctx->dma_ct = dma_map_sg(hdev->dev, sg, 1,
588 DMA_TO_DEVICE);
589 if (rctx->dma_ct == 0) {
590 dev_err(hdev->dev, "dma_map_sg error\n");
591 return -ENOMEM;
592 }
593
594 err = stm32_hash_xmit_dma(hdev, sg, len,
595 !sg_is_last(sg));
596
597 dma_unmap_sg(hdev->dev, sg, 1, DMA_TO_DEVICE);
598
599 if (err == -ENOMEM)
600 return err;
601 }
602
603 if (hdev->dma_mode == 1) {
604 if (stm32_hash_wait_busy(hdev))
605 return -ETIMEDOUT;
606 reg = stm32_hash_read(hdev, HASH_CR);
607 reg &= ~HASH_CR_DMAE;
608 reg |= HASH_CR_DMAA;
609 stm32_hash_write(hdev, HASH_CR, reg);
610
611 if (ncp) {
612 memset(buffer + ncp, 0,
613 DIV_ROUND_UP(ncp, sizeof(u32)) - ncp);
614 writesl(hdev->io_base + HASH_DIN, buffer,
615 DIV_ROUND_UP(ncp, sizeof(u32)));
616 }
617 stm32_hash_set_nblw(hdev, ncp);
618 reg = stm32_hash_read(hdev, HASH_STR);
619 reg |= HASH_STR_DCAL;
620 stm32_hash_write(hdev, HASH_STR, reg);
621 err = -EINPROGRESS;
622 }
623
624 if (hdev->flags & HASH_FLAGS_HMAC) {
625 if (stm32_hash_wait_busy(hdev))
626 return -ETIMEDOUT;
627 err = stm32_hash_hmac_dma_send(hdev);
628 }
629
630 return err;
631 }
632
633 static struct stm32_hash_dev *stm32_hash_find_dev(struct stm32_hash_ctx *ctx)
634 {
635 struct stm32_hash_dev *hdev = NULL, *tmp;
636
637 spin_lock_bh(&stm32_hash.lock);
638 if (!ctx->hdev) {
639 list_for_each_entry(tmp, &stm32_hash.dev_list, list) {
640 hdev = tmp;
641 break;
642 }
643 ctx->hdev = hdev;
644 } else {
645 hdev = ctx->hdev;
646 }
647
648 spin_unlock_bh(&stm32_hash.lock);
649
650 return hdev;
651 }
652
653 static bool stm32_hash_dma_aligned_data(struct ahash_request *req)
654 {
655 struct scatterlist *sg;
656 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
657 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
658 int i;
659
660 if (req->nbytes <= HASH_DMA_THRESHOLD)
661 return false;
662
663 if (sg_nents(req->src) > 1) {
664 if (hdev->dma_mode == 1)
665 return false;
666 for_each_sg(req->src, sg, sg_nents(req->src), i) {
667 if ((!IS_ALIGNED(sg->length, sizeof(u32))) &&
668 (!sg_is_last(sg)))
669 return false;
670 }
671 }
672
673 if (req->src->offset % 4)
674 return false;
675
676 return true;
677 }
678
679 static int stm32_hash_init(struct ahash_request *req)
680 {
681 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
682 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
683 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
684 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
685
686 rctx->hdev = hdev;
687
688 rctx->flags = HASH_FLAGS_CPU;
689
690 rctx->digcnt = crypto_ahash_digestsize(tfm);
691 switch (rctx->digcnt) {
692 case MD5_DIGEST_SIZE:
693 rctx->flags |= HASH_FLAGS_MD5;
694 break;
695 case SHA1_DIGEST_SIZE:
696 rctx->flags |= HASH_FLAGS_SHA1;
697 break;
698 case SHA224_DIGEST_SIZE:
699 rctx->flags |= HASH_FLAGS_SHA224;
700 break;
701 case SHA256_DIGEST_SIZE:
702 rctx->flags |= HASH_FLAGS_SHA256;
703 break;
704 default:
705 return -EINVAL;
706 }
707
708 rctx->bufcnt = 0;
709 rctx->buflen = HASH_BUFLEN;
710 rctx->total = 0;
711 rctx->offset = 0;
712 rctx->data_type = HASH_DATA_8_BITS;
713
714 memset(rctx->buffer, 0, HASH_BUFLEN);
715
716 if (ctx->flags & HASH_FLAGS_HMAC)
717 rctx->flags |= HASH_FLAGS_HMAC;
718
719 dev_dbg(hdev->dev, "%s Flags %lx\n", __func__, rctx->flags);
720
721 return 0;
722 }
723
724 static int stm32_hash_update_req(struct stm32_hash_dev *hdev)
725 {
726 return stm32_hash_update_cpu(hdev);
727 }
728
729 static int stm32_hash_final_req(struct stm32_hash_dev *hdev)
730 {
731 struct ahash_request *req = hdev->req;
732 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
733 int err;
734 int buflen = rctx->bufcnt;
735
736 rctx->bufcnt = 0;
737
738 if (!(rctx->flags & HASH_FLAGS_CPU))
739 err = stm32_hash_dma_send(hdev);
740 else
741 err = stm32_hash_xmit_cpu(hdev, rctx->buffer, buflen, 1);
742
743
744 return err;
745 }
746
747 static void stm32_hash_copy_hash(struct ahash_request *req)
748 {
749 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
750 u32 *hash = (u32 *)rctx->digest;
751 unsigned int i, hashsize;
752
753 switch (rctx->flags & HASH_FLAGS_ALGO_MASK) {
754 case HASH_FLAGS_MD5:
755 hashsize = MD5_DIGEST_SIZE;
756 break;
757 case HASH_FLAGS_SHA1:
758 hashsize = SHA1_DIGEST_SIZE;
759 break;
760 case HASH_FLAGS_SHA224:
761 hashsize = SHA224_DIGEST_SIZE;
762 break;
763 case HASH_FLAGS_SHA256:
764 hashsize = SHA256_DIGEST_SIZE;
765 break;
766 default:
767 return;
768 }
769
770 for (i = 0; i < hashsize / sizeof(u32); i++)
771 hash[i] = be32_to_cpu(stm32_hash_read(rctx->hdev,
772 HASH_HREG(i)));
773 }
774
775 static int stm32_hash_finish(struct ahash_request *req)
776 {
777 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
778
779 if (!req->result)
780 return -EINVAL;
781
782 memcpy(req->result, rctx->digest, rctx->digcnt);
783
784 return 0;
785 }
786
787 static void stm32_hash_finish_req(struct ahash_request *req, int err)
788 {
789 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
790 struct stm32_hash_dev *hdev = rctx->hdev;
791
792 if (!err && (HASH_FLAGS_FINAL & hdev->flags)) {
793 stm32_hash_copy_hash(req);
794 err = stm32_hash_finish(req);
795 hdev->flags &= ~(HASH_FLAGS_FINAL | HASH_FLAGS_CPU |
796 HASH_FLAGS_INIT | HASH_FLAGS_DMA_READY |
797 HASH_FLAGS_OUTPUT_READY | HASH_FLAGS_HMAC |
798 HASH_FLAGS_HMAC_INIT | HASH_FLAGS_HMAC_FINAL |
799 HASH_FLAGS_HMAC_KEY);
800 } else {
801 rctx->flags |= HASH_FLAGS_ERRORS;
802 }
803
804 pm_runtime_mark_last_busy(hdev->dev);
805 pm_runtime_put_autosuspend(hdev->dev);
806
807 crypto_finalize_hash_request(hdev->engine, req, err);
808 }
809
810 static int stm32_hash_hw_init(struct stm32_hash_dev *hdev,
811 struct stm32_hash_request_ctx *rctx)
812 {
813 pm_runtime_get_sync(hdev->dev);
814
815 if (!(HASH_FLAGS_INIT & hdev->flags)) {
816 stm32_hash_write(hdev, HASH_CR, HASH_CR_INIT);
817 stm32_hash_write(hdev, HASH_STR, 0);
818 stm32_hash_write(hdev, HASH_DIN, 0);
819 stm32_hash_write(hdev, HASH_IMR, 0);
820 hdev->err = 0;
821 }
822
823 return 0;
824 }
825
826 static int stm32_hash_one_request(struct crypto_engine *engine, void *areq);
827 static int stm32_hash_prepare_req(struct crypto_engine *engine, void *areq);
828
829 static int stm32_hash_handle_queue(struct stm32_hash_dev *hdev,
830 struct ahash_request *req)
831 {
832 return crypto_transfer_hash_request_to_engine(hdev->engine, req);
833 }
834
835 static int stm32_hash_prepare_req(struct crypto_engine *engine, void *areq)
836 {
837 struct ahash_request *req = container_of(areq, struct ahash_request,
838 base);
839 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
840 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
841 struct stm32_hash_request_ctx *rctx;
842
843 if (!hdev)
844 return -ENODEV;
845
846 hdev->req = req;
847
848 rctx = ahash_request_ctx(req);
849
850 dev_dbg(hdev->dev, "processing new req, op: %lu, nbytes %d\n",
851 rctx->op, req->nbytes);
852
853 return stm32_hash_hw_init(hdev, rctx);
854 }
855
856 static int stm32_hash_one_request(struct crypto_engine *engine, void *areq)
857 {
858 struct ahash_request *req = container_of(areq, struct ahash_request,
859 base);
860 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
861 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
862 struct stm32_hash_request_ctx *rctx;
863 int err = 0;
864
865 if (!hdev)
866 return -ENODEV;
867
868 hdev->req = req;
869
870 rctx = ahash_request_ctx(req);
871
872 if (rctx->op == HASH_OP_UPDATE)
873 err = stm32_hash_update_req(hdev);
874 else if (rctx->op == HASH_OP_FINAL)
875 err = stm32_hash_final_req(hdev);
876
877 if (err != -EINPROGRESS)
878 /* done task will not finish it, so do it here */
879 stm32_hash_finish_req(req, err);
880
881 return 0;
882 }
883
884 static int stm32_hash_enqueue(struct ahash_request *req, unsigned int op)
885 {
886 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
887 struct stm32_hash_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
888 struct stm32_hash_dev *hdev = ctx->hdev;
889
890 rctx->op = op;
891
892 return stm32_hash_handle_queue(hdev, req);
893 }
894
895 static int stm32_hash_update(struct ahash_request *req)
896 {
897 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
898
899 if (!req->nbytes || !(rctx->flags & HASH_FLAGS_CPU))
900 return 0;
901
902 rctx->total = req->nbytes;
903 rctx->sg = req->src;
904 rctx->offset = 0;
905
906 if ((rctx->bufcnt + rctx->total < rctx->buflen)) {
907 stm32_hash_append_sg(rctx);
908 return 0;
909 }
910
911 return stm32_hash_enqueue(req, HASH_OP_UPDATE);
912 }
913
914 static int stm32_hash_final(struct ahash_request *req)
915 {
916 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
917
918 rctx->flags |= HASH_FLAGS_FINUP;
919
920 return stm32_hash_enqueue(req, HASH_OP_FINAL);
921 }
922
923 static int stm32_hash_finup(struct ahash_request *req)
924 {
925 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
926 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
927 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
928 int err1, err2;
929
930 rctx->flags |= HASH_FLAGS_FINUP;
931
932 if (hdev->dma_lch && stm32_hash_dma_aligned_data(req))
933 rctx->flags &= ~HASH_FLAGS_CPU;
934
935 err1 = stm32_hash_update(req);
936
937 if (err1 == -EINPROGRESS || err1 == -EBUSY)
938 return err1;
939
940 /*
941 * final() has to be always called to cleanup resources
942 * even if update() failed, except EINPROGRESS
943 */
944 err2 = stm32_hash_final(req);
945
946 return err1 ?: err2;
947 }
948
949 static int stm32_hash_digest(struct ahash_request *req)
950 {
951 return stm32_hash_init(req) ?: stm32_hash_finup(req);
952 }
953
954 static int stm32_hash_export(struct ahash_request *req, void *out)
955 {
956 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
957 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
958 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
959 u32 *preg;
960 unsigned int i;
961
962 pm_runtime_get_sync(hdev->dev);
963
964 while ((stm32_hash_read(hdev, HASH_SR) & HASH_SR_BUSY))
965 cpu_relax();
966
967 rctx->hw_context = kmalloc_array(3 + HASH_CSR_REGISTER_NUMBER,
968 sizeof(u32),
969 GFP_KERNEL);
970
971 preg = rctx->hw_context;
972
973 *preg++ = stm32_hash_read(hdev, HASH_IMR);
974 *preg++ = stm32_hash_read(hdev, HASH_STR);
975 *preg++ = stm32_hash_read(hdev, HASH_CR);
976 for (i = 0; i < HASH_CSR_REGISTER_NUMBER; i++)
977 *preg++ = stm32_hash_read(hdev, HASH_CSR(i));
978
979 pm_runtime_mark_last_busy(hdev->dev);
980 pm_runtime_put_autosuspend(hdev->dev);
981
982 memcpy(out, rctx, sizeof(*rctx));
983
984 return 0;
985 }
986
987 static int stm32_hash_import(struct ahash_request *req, const void *in)
988 {
989 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
990 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
991 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
992 const u32 *preg = in;
993 u32 reg;
994 unsigned int i;
995
996 memcpy(rctx, in, sizeof(*rctx));
997
998 preg = rctx->hw_context;
999
1000 pm_runtime_get_sync(hdev->dev);
1001
1002 stm32_hash_write(hdev, HASH_IMR, *preg++);
1003 stm32_hash_write(hdev, HASH_STR, *preg++);
1004 stm32_hash_write(hdev, HASH_CR, *preg);
1005 reg = *preg++ | HASH_CR_INIT;
1006 stm32_hash_write(hdev, HASH_CR, reg);
1007
1008 for (i = 0; i < HASH_CSR_REGISTER_NUMBER; i++)
1009 stm32_hash_write(hdev, HASH_CSR(i), *preg++);
1010
1011 pm_runtime_mark_last_busy(hdev->dev);
1012 pm_runtime_put_autosuspend(hdev->dev);
1013
1014 kfree(rctx->hw_context);
1015
1016 return 0;
1017 }
1018
1019 static int stm32_hash_setkey(struct crypto_ahash *tfm,
1020 const u8 *key, unsigned int keylen)
1021 {
1022 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
1023
1024 if (keylen <= HASH_MAX_KEY_SIZE) {
1025 memcpy(ctx->key, key, keylen);
1026 ctx->keylen = keylen;
1027 } else {
1028 return -ENOMEM;
1029 }
1030
1031 return 0;
1032 }
1033
1034 static int stm32_hash_cra_init_algs(struct crypto_tfm *tfm,
1035 const char *algs_hmac_name)
1036 {
1037 struct stm32_hash_ctx *ctx = crypto_tfm_ctx(tfm);
1038
1039 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1040 sizeof(struct stm32_hash_request_ctx));
1041
1042 ctx->keylen = 0;
1043
1044 if (algs_hmac_name)
1045 ctx->flags |= HASH_FLAGS_HMAC;
1046
1047 ctx->enginectx.op.do_one_request = stm32_hash_one_request;
1048 ctx->enginectx.op.prepare_request = stm32_hash_prepare_req;
1049 ctx->enginectx.op.unprepare_request = NULL;
1050 return 0;
1051 }
1052
1053 static int stm32_hash_cra_init(struct crypto_tfm *tfm)
1054 {
1055 return stm32_hash_cra_init_algs(tfm, NULL);
1056 }
1057
1058 static int stm32_hash_cra_md5_init(struct crypto_tfm *tfm)
1059 {
1060 return stm32_hash_cra_init_algs(tfm, "md5");
1061 }
1062
1063 static int stm32_hash_cra_sha1_init(struct crypto_tfm *tfm)
1064 {
1065 return stm32_hash_cra_init_algs(tfm, "sha1");
1066 }
1067
1068 static int stm32_hash_cra_sha224_init(struct crypto_tfm *tfm)
1069 {
1070 return stm32_hash_cra_init_algs(tfm, "sha224");
1071 }
1072
1073 static int stm32_hash_cra_sha256_init(struct crypto_tfm *tfm)
1074 {
1075 return stm32_hash_cra_init_algs(tfm, "sha256");
1076 }
1077
1078 static irqreturn_t stm32_hash_irq_thread(int irq, void *dev_id)
1079 {
1080 struct stm32_hash_dev *hdev = dev_id;
1081
1082 if (HASH_FLAGS_CPU & hdev->flags) {
1083 if (HASH_FLAGS_OUTPUT_READY & hdev->flags) {
1084 hdev->flags &= ~HASH_FLAGS_OUTPUT_READY;
1085 goto finish;
1086 }
1087 } else if (HASH_FLAGS_DMA_READY & hdev->flags) {
1088 if (HASH_FLAGS_DMA_ACTIVE & hdev->flags) {
1089 hdev->flags &= ~HASH_FLAGS_DMA_ACTIVE;
1090 goto finish;
1091 }
1092 }
1093
1094 return IRQ_HANDLED;
1095
1096 finish:
1097 /* Finish current request */
1098 stm32_hash_finish_req(hdev->req, 0);
1099
1100 return IRQ_HANDLED;
1101 }
1102
1103 static irqreturn_t stm32_hash_irq_handler(int irq, void *dev_id)
1104 {
1105 struct stm32_hash_dev *hdev = dev_id;
1106 u32 reg;
1107
1108 reg = stm32_hash_read(hdev, HASH_SR);
1109 if (reg & HASH_SR_OUTPUT_READY) {
1110 reg &= ~HASH_SR_OUTPUT_READY;
1111 stm32_hash_write(hdev, HASH_SR, reg);
1112 hdev->flags |= HASH_FLAGS_OUTPUT_READY;
1113 /* Disable IT*/
1114 stm32_hash_write(hdev, HASH_IMR, 0);
1115 return IRQ_WAKE_THREAD;
1116 }
1117
1118 return IRQ_NONE;
1119 }
1120
1121 static struct ahash_alg algs_md5_sha1[] = {
1122 {
1123 .init = stm32_hash_init,
1124 .update = stm32_hash_update,
1125 .final = stm32_hash_final,
1126 .finup = stm32_hash_finup,
1127 .digest = stm32_hash_digest,
1128 .export = stm32_hash_export,
1129 .import = stm32_hash_import,
1130 .halg = {
1131 .digestsize = MD5_DIGEST_SIZE,
1132 .statesize = sizeof(struct stm32_hash_request_ctx),
1133 .base = {
1134 .cra_name = "md5",
1135 .cra_driver_name = "stm32-md5",
1136 .cra_priority = 200,
1137 .cra_flags = CRYPTO_ALG_ASYNC |
1138 CRYPTO_ALG_KERN_DRIVER_ONLY,
1139 .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
1140 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1141 .cra_alignmask = 3,
1142 .cra_init = stm32_hash_cra_init,
1143 .cra_module = THIS_MODULE,
1144 }
1145 }
1146 },
1147 {
1148 .init = stm32_hash_init,
1149 .update = stm32_hash_update,
1150 .final = stm32_hash_final,
1151 .finup = stm32_hash_finup,
1152 .digest = stm32_hash_digest,
1153 .export = stm32_hash_export,
1154 .import = stm32_hash_import,
1155 .setkey = stm32_hash_setkey,
1156 .halg = {
1157 .digestsize = MD5_DIGEST_SIZE,
1158 .statesize = sizeof(struct stm32_hash_request_ctx),
1159 .base = {
1160 .cra_name = "hmac(md5)",
1161 .cra_driver_name = "stm32-hmac-md5",
1162 .cra_priority = 200,
1163 .cra_flags = CRYPTO_ALG_ASYNC |
1164 CRYPTO_ALG_KERN_DRIVER_ONLY,
1165 .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
1166 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1167 .cra_alignmask = 3,
1168 .cra_init = stm32_hash_cra_md5_init,
1169 .cra_module = THIS_MODULE,
1170 }
1171 }
1172 },
1173 {
1174 .init = stm32_hash_init,
1175 .update = stm32_hash_update,
1176 .final = stm32_hash_final,
1177 .finup = stm32_hash_finup,
1178 .digest = stm32_hash_digest,
1179 .export = stm32_hash_export,
1180 .import = stm32_hash_import,
1181 .halg = {
1182 .digestsize = SHA1_DIGEST_SIZE,
1183 .statesize = sizeof(struct stm32_hash_request_ctx),
1184 .base = {
1185 .cra_name = "sha1",
1186 .cra_driver_name = "stm32-sha1",
1187 .cra_priority = 200,
1188 .cra_flags = CRYPTO_ALG_ASYNC |
1189 CRYPTO_ALG_KERN_DRIVER_ONLY,
1190 .cra_blocksize = SHA1_BLOCK_SIZE,
1191 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1192 .cra_alignmask = 3,
1193 .cra_init = stm32_hash_cra_init,
1194 .cra_module = THIS_MODULE,
1195 }
1196 }
1197 },
1198 {
1199 .init = stm32_hash_init,
1200 .update = stm32_hash_update,
1201 .final = stm32_hash_final,
1202 .finup = stm32_hash_finup,
1203 .digest = stm32_hash_digest,
1204 .export = stm32_hash_export,
1205 .import = stm32_hash_import,
1206 .setkey = stm32_hash_setkey,
1207 .halg = {
1208 .digestsize = SHA1_DIGEST_SIZE,
1209 .statesize = sizeof(struct stm32_hash_request_ctx),
1210 .base = {
1211 .cra_name = "hmac(sha1)",
1212 .cra_driver_name = "stm32-hmac-sha1",
1213 .cra_priority = 200,
1214 .cra_flags = CRYPTO_ALG_ASYNC |
1215 CRYPTO_ALG_KERN_DRIVER_ONLY,
1216 .cra_blocksize = SHA1_BLOCK_SIZE,
1217 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1218 .cra_alignmask = 3,
1219 .cra_init = stm32_hash_cra_sha1_init,
1220 .cra_module = THIS_MODULE,
1221 }
1222 }
1223 },
1224 };
1225
1226 static struct ahash_alg algs_sha224_sha256[] = {
1227 {
1228 .init = stm32_hash_init,
1229 .update = stm32_hash_update,
1230 .final = stm32_hash_final,
1231 .finup = stm32_hash_finup,
1232 .digest = stm32_hash_digest,
1233 .export = stm32_hash_export,
1234 .import = stm32_hash_import,
1235 .halg = {
1236 .digestsize = SHA224_DIGEST_SIZE,
1237 .statesize = sizeof(struct stm32_hash_request_ctx),
1238 .base = {
1239 .cra_name = "sha224",
1240 .cra_driver_name = "stm32-sha224",
1241 .cra_priority = 200,
1242 .cra_flags = CRYPTO_ALG_ASYNC |
1243 CRYPTO_ALG_KERN_DRIVER_ONLY,
1244 .cra_blocksize = SHA224_BLOCK_SIZE,
1245 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1246 .cra_alignmask = 3,
1247 .cra_init = stm32_hash_cra_init,
1248 .cra_module = THIS_MODULE,
1249 }
1250 }
1251 },
1252 {
1253 .init = stm32_hash_init,
1254 .update = stm32_hash_update,
1255 .final = stm32_hash_final,
1256 .finup = stm32_hash_finup,
1257 .digest = stm32_hash_digest,
1258 .setkey = stm32_hash_setkey,
1259 .export = stm32_hash_export,
1260 .import = stm32_hash_import,
1261 .halg = {
1262 .digestsize = SHA224_DIGEST_SIZE,
1263 .statesize = sizeof(struct stm32_hash_request_ctx),
1264 .base = {
1265 .cra_name = "hmac(sha224)",
1266 .cra_driver_name = "stm32-hmac-sha224",
1267 .cra_priority = 200,
1268 .cra_flags = CRYPTO_ALG_ASYNC |
1269 CRYPTO_ALG_KERN_DRIVER_ONLY,
1270 .cra_blocksize = SHA224_BLOCK_SIZE,
1271 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1272 .cra_alignmask = 3,
1273 .cra_init = stm32_hash_cra_sha224_init,
1274 .cra_module = THIS_MODULE,
1275 }
1276 }
1277 },
1278 {
1279 .init = stm32_hash_init,
1280 .update = stm32_hash_update,
1281 .final = stm32_hash_final,
1282 .finup = stm32_hash_finup,
1283 .digest = stm32_hash_digest,
1284 .export = stm32_hash_export,
1285 .import = stm32_hash_import,
1286 .halg = {
1287 .digestsize = SHA256_DIGEST_SIZE,
1288 .statesize = sizeof(struct stm32_hash_request_ctx),
1289 .base = {
1290 .cra_name = "sha256",
1291 .cra_driver_name = "stm32-sha256",
1292 .cra_priority = 200,
1293 .cra_flags = CRYPTO_ALG_ASYNC |
1294 CRYPTO_ALG_KERN_DRIVER_ONLY,
1295 .cra_blocksize = SHA256_BLOCK_SIZE,
1296 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1297 .cra_alignmask = 3,
1298 .cra_init = stm32_hash_cra_init,
1299 .cra_module = THIS_MODULE,
1300 }
1301 }
1302 },
1303 {
1304 .init = stm32_hash_init,
1305 .update = stm32_hash_update,
1306 .final = stm32_hash_final,
1307 .finup = stm32_hash_finup,
1308 .digest = stm32_hash_digest,
1309 .export = stm32_hash_export,
1310 .import = stm32_hash_import,
1311 .setkey = stm32_hash_setkey,
1312 .halg = {
1313 .digestsize = SHA256_DIGEST_SIZE,
1314 .statesize = sizeof(struct stm32_hash_request_ctx),
1315 .base = {
1316 .cra_name = "hmac(sha256)",
1317 .cra_driver_name = "stm32-hmac-sha256",
1318 .cra_priority = 200,
1319 .cra_flags = CRYPTO_ALG_ASYNC |
1320 CRYPTO_ALG_KERN_DRIVER_ONLY,
1321 .cra_blocksize = SHA256_BLOCK_SIZE,
1322 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1323 .cra_alignmask = 3,
1324 .cra_init = stm32_hash_cra_sha256_init,
1325 .cra_module = THIS_MODULE,
1326 }
1327 }
1328 },
1329 };
1330
1331 static int stm32_hash_register_algs(struct stm32_hash_dev *hdev)
1332 {
1333 unsigned int i, j;
1334 int err;
1335
1336 for (i = 0; i < hdev->pdata->algs_info_size; i++) {
1337 for (j = 0; j < hdev->pdata->algs_info[i].size; j++) {
1338 err = crypto_register_ahash(
1339 &hdev->pdata->algs_info[i].algs_list[j]);
1340 if (err)
1341 goto err_algs;
1342 }
1343 }
1344
1345 return 0;
1346 err_algs:
1347 dev_err(hdev->dev, "Algo %d : %d failed\n", i, j);
1348 for (; i--; ) {
1349 for (; j--;)
1350 crypto_unregister_ahash(
1351 &hdev->pdata->algs_info[i].algs_list[j]);
1352 }
1353
1354 return err;
1355 }
1356
1357 static int stm32_hash_unregister_algs(struct stm32_hash_dev *hdev)
1358 {
1359 unsigned int i, j;
1360
1361 for (i = 0; i < hdev->pdata->algs_info_size; i++) {
1362 for (j = 0; j < hdev->pdata->algs_info[i].size; j++)
1363 crypto_unregister_ahash(
1364 &hdev->pdata->algs_info[i].algs_list[j]);
1365 }
1366
1367 return 0;
1368 }
1369
1370 static struct stm32_hash_algs_info stm32_hash_algs_info_stm32f4[] = {
1371 {
1372 .algs_list = algs_md5_sha1,
1373 .size = ARRAY_SIZE(algs_md5_sha1),
1374 },
1375 };
1376
1377 static const struct stm32_hash_pdata stm32_hash_pdata_stm32f4 = {
1378 .algs_info = stm32_hash_algs_info_stm32f4,
1379 .algs_info_size = ARRAY_SIZE(stm32_hash_algs_info_stm32f4),
1380 };
1381
1382 static struct stm32_hash_algs_info stm32_hash_algs_info_stm32f7[] = {
1383 {
1384 .algs_list = algs_md5_sha1,
1385 .size = ARRAY_SIZE(algs_md5_sha1),
1386 },
1387 {
1388 .algs_list = algs_sha224_sha256,
1389 .size = ARRAY_SIZE(algs_sha224_sha256),
1390 },
1391 };
1392
1393 static const struct stm32_hash_pdata stm32_hash_pdata_stm32f7 = {
1394 .algs_info = stm32_hash_algs_info_stm32f7,
1395 .algs_info_size = ARRAY_SIZE(stm32_hash_algs_info_stm32f7),
1396 };
1397
1398 static const struct of_device_id stm32_hash_of_match[] = {
1399 {
1400 .compatible = "st,stm32f456-hash",
1401 .data = &stm32_hash_pdata_stm32f4,
1402 },
1403 {
1404 .compatible = "st,stm32f756-hash",
1405 .data = &stm32_hash_pdata_stm32f7,
1406 },
1407 {},
1408 };
1409
1410 MODULE_DEVICE_TABLE(of, stm32_hash_of_match);
1411
1412 static int stm32_hash_get_of_match(struct stm32_hash_dev *hdev,
1413 struct device *dev)
1414 {
1415 hdev->pdata = of_device_get_match_data(dev);
1416 if (!hdev->pdata) {
1417 dev_err(dev, "no compatible OF match\n");
1418 return -EINVAL;
1419 }
1420
1421 if (of_property_read_u32(dev->of_node, "dma-maxburst",
1422 &hdev->dma_maxburst)) {
1423 dev_info(dev, "dma-maxburst not specified, using 0\n");
1424 hdev->dma_maxburst = 0;
1425 }
1426
1427 return 0;
1428 }
1429
1430 static int stm32_hash_probe(struct platform_device *pdev)
1431 {
1432 struct stm32_hash_dev *hdev;
1433 struct device *dev = &pdev->dev;
1434 struct resource *res;
1435 int ret, irq;
1436
1437 hdev = devm_kzalloc(dev, sizeof(*hdev), GFP_KERNEL);
1438 if (!hdev)
1439 return -ENOMEM;
1440
1441 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1442 hdev->io_base = devm_ioremap_resource(dev, res);
1443 if (IS_ERR(hdev->io_base))
1444 return PTR_ERR(hdev->io_base);
1445
1446 hdev->phys_base = res->start;
1447
1448 ret = stm32_hash_get_of_match(hdev, dev);
1449 if (ret)
1450 return ret;
1451
1452 irq = platform_get_irq(pdev, 0);
1453 if (irq < 0) {
1454 dev_err(dev, "Cannot get IRQ resource\n");
1455 return irq;
1456 }
1457
1458 ret = devm_request_threaded_irq(dev, irq, stm32_hash_irq_handler,
1459 stm32_hash_irq_thread, IRQF_ONESHOT,
1460 dev_name(dev), hdev);
1461 if (ret) {
1462 dev_err(dev, "Cannot grab IRQ\n");
1463 return ret;
1464 }
1465
1466 hdev->clk = devm_clk_get(&pdev->dev, NULL);
1467 if (IS_ERR(hdev->clk)) {
1468 dev_err(dev, "failed to get clock for hash (%lu)\n",
1469 PTR_ERR(hdev->clk));
1470 return PTR_ERR(hdev->clk);
1471 }
1472
1473 ret = clk_prepare_enable(hdev->clk);
1474 if (ret) {
1475 dev_err(dev, "failed to enable hash clock (%d)\n", ret);
1476 return ret;
1477 }
1478
1479 pm_runtime_set_autosuspend_delay(dev, HASH_AUTOSUSPEND_DELAY);
1480 pm_runtime_use_autosuspend(dev);
1481
1482 pm_runtime_get_noresume(dev);
1483 pm_runtime_set_active(dev);
1484 pm_runtime_enable(dev);
1485
1486 hdev->rst = devm_reset_control_get(&pdev->dev, NULL);
1487 if (!IS_ERR(hdev->rst)) {
1488 reset_control_assert(hdev->rst);
1489 udelay(2);
1490 reset_control_deassert(hdev->rst);
1491 }
1492
1493 hdev->dev = dev;
1494
1495 platform_set_drvdata(pdev, hdev);
1496
1497 ret = stm32_hash_dma_init(hdev);
1498 if (ret)
1499 dev_dbg(dev, "DMA mode not available\n");
1500
1501 spin_lock(&stm32_hash.lock);
1502 list_add_tail(&hdev->list, &stm32_hash.dev_list);
1503 spin_unlock(&stm32_hash.lock);
1504
1505 /* Initialize crypto engine */
1506 hdev->engine = crypto_engine_alloc_init(dev, 1);
1507 if (!hdev->engine) {
1508 ret = -ENOMEM;
1509 goto err_engine;
1510 }
1511
1512 ret = crypto_engine_start(hdev->engine);
1513 if (ret)
1514 goto err_engine_start;
1515
1516 hdev->dma_mode = stm32_hash_read(hdev, HASH_HWCFGR);
1517
1518 /* Register algos */
1519 ret = stm32_hash_register_algs(hdev);
1520 if (ret)
1521 goto err_algs;
1522
1523 dev_info(dev, "Init HASH done HW ver %x DMA mode %u\n",
1524 stm32_hash_read(hdev, HASH_VER), hdev->dma_mode);
1525
1526 pm_runtime_put_sync(dev);
1527
1528 return 0;
1529
1530 err_algs:
1531 err_engine_start:
1532 crypto_engine_exit(hdev->engine);
1533 err_engine:
1534 spin_lock(&stm32_hash.lock);
1535 list_del(&hdev->list);
1536 spin_unlock(&stm32_hash.lock);
1537
1538 if (hdev->dma_lch)
1539 dma_release_channel(hdev->dma_lch);
1540
1541 pm_runtime_disable(dev);
1542 pm_runtime_put_noidle(dev);
1543
1544 clk_disable_unprepare(hdev->clk);
1545
1546 return ret;
1547 }
1548
1549 static int stm32_hash_remove(struct platform_device *pdev)
1550 {
1551 struct stm32_hash_dev *hdev;
1552 int ret;
1553
1554 hdev = platform_get_drvdata(pdev);
1555 if (!hdev)
1556 return -ENODEV;
1557
1558 ret = pm_runtime_get_sync(hdev->dev);
1559 if (ret < 0)
1560 return ret;
1561
1562 stm32_hash_unregister_algs(hdev);
1563
1564 crypto_engine_exit(hdev->engine);
1565
1566 spin_lock(&stm32_hash.lock);
1567 list_del(&hdev->list);
1568 spin_unlock(&stm32_hash.lock);
1569
1570 if (hdev->dma_lch)
1571 dma_release_channel(hdev->dma_lch);
1572
1573 pm_runtime_disable(hdev->dev);
1574 pm_runtime_put_noidle(hdev->dev);
1575
1576 clk_disable_unprepare(hdev->clk);
1577
1578 return 0;
1579 }
1580
1581 #ifdef CONFIG_PM
1582 static int stm32_hash_runtime_suspend(struct device *dev)
1583 {
1584 struct stm32_hash_dev *hdev = dev_get_drvdata(dev);
1585
1586 clk_disable_unprepare(hdev->clk);
1587
1588 return 0;
1589 }
1590
1591 static int stm32_hash_runtime_resume(struct device *dev)
1592 {
1593 struct stm32_hash_dev *hdev = dev_get_drvdata(dev);
1594 int ret;
1595
1596 ret = clk_prepare_enable(hdev->clk);
1597 if (ret) {
1598 dev_err(hdev->dev, "Failed to prepare_enable clock\n");
1599 return ret;
1600 }
1601
1602 return 0;
1603 }
1604 #endif
1605
1606 static const struct dev_pm_ops stm32_hash_pm_ops = {
1607 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1608 pm_runtime_force_resume)
1609 SET_RUNTIME_PM_OPS(stm32_hash_runtime_suspend,
1610 stm32_hash_runtime_resume, NULL)
1611 };
1612
1613 static struct platform_driver stm32_hash_driver = {
1614 .probe = stm32_hash_probe,
1615 .remove = stm32_hash_remove,
1616 .driver = {
1617 .name = "stm32-hash",
1618 .pm = &stm32_hash_pm_ops,
1619 .of_match_table = stm32_hash_of_match,
1620 }
1621 };
1622
1623 module_platform_driver(stm32_hash_driver);
1624
1625 MODULE_DESCRIPTION("STM32 SHA1/224/256 & MD5 (HMAC) hw accelerator driver");
1626 MODULE_AUTHOR("Lionel Debieve <lionel.debieve@st.com>");
1627 MODULE_LICENSE("GPL v2");