]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/dc2114x.c
Files include/linux/byteorder/{big,little}_endian.h define
[people/ms/u-boot.git] / drivers / dc2114x.c
1 /*
2 * See file CREDITS for list of people who contributed to this
3 * project.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation; either version 2 of
8 * the License, or (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
18 * MA 02111-1307 USA
19 */
20
21 #include <common.h>
22
23 #if (CONFIG_COMMANDS & CFG_CMD_NET) && defined(CONFIG_NET_MULTI) \
24 && defined(CONFIG_TULIP)
25
26 #include <malloc.h>
27 #include <net.h>
28 #include <pci.h>
29
30 #undef DEBUG_SROM
31 #undef DEBUG_SROM2
32
33 #undef UPDATE_SROM
34
35 /* PCI Registers.
36 */
37 #define PCI_CFDA_PSM 0x43
38
39 #define CFRV_RN 0x000000f0 /* Revision Number */
40
41 #define WAKEUP 0x00 /* Power Saving Wakeup */
42 #define SLEEP 0x80 /* Power Saving Sleep Mode */
43
44 #define DC2114x_BRK 0x0020 /* CFRV break between DC21142 & DC21143 */
45
46 /* Ethernet chip registers.
47 */
48 #define DE4X5_BMR 0x000 /* Bus Mode Register */
49 #define DE4X5_TPD 0x008 /* Transmit Poll Demand Reg */
50 #define DE4X5_RRBA 0x018 /* RX Ring Base Address Reg */
51 #define DE4X5_TRBA 0x020 /* TX Ring Base Address Reg */
52 #define DE4X5_STS 0x028 /* Status Register */
53 #define DE4X5_OMR 0x030 /* Operation Mode Register */
54 #define DE4X5_SICR 0x068 /* SIA Connectivity Register */
55 #define DE4X5_APROM 0x048 /* Ethernet Address PROM */
56
57 /* Register bits.
58 */
59 #define BMR_SWR 0x00000001 /* Software Reset */
60 #define STS_TS 0x00700000 /* Transmit Process State */
61 #define STS_RS 0x000e0000 /* Receive Process State */
62 #define OMR_ST 0x00002000 /* Start/Stop Transmission Command */
63 #define OMR_SR 0x00000002 /* Start/Stop Receive */
64 #define OMR_PS 0x00040000 /* Port Select */
65 #define OMR_SDP 0x02000000 /* SD Polarity - MUST BE ASSERTED */
66 #define OMR_PM 0x00000080 /* Pass All Multicast */
67
68 /* Descriptor bits.
69 */
70 #define R_OWN 0x80000000 /* Own Bit */
71 #define RD_RER 0x02000000 /* Receive End Of Ring */
72 #define RD_LS 0x00000100 /* Last Descriptor */
73 #define RD_ES 0x00008000 /* Error Summary */
74 #define TD_TER 0x02000000 /* Transmit End Of Ring */
75 #define T_OWN 0x80000000 /* Own Bit */
76 #define TD_LS 0x40000000 /* Last Segment */
77 #define TD_FS 0x20000000 /* First Segment */
78 #define TD_ES 0x00008000 /* Error Summary */
79 #define TD_SET 0x08000000 /* Setup Packet */
80
81 /* The EEPROM commands include the alway-set leading bit. */
82 #define SROM_WRITE_CMD 5
83 #define SROM_READ_CMD 6
84 #define SROM_ERASE_CMD 7
85
86 #define SROM_HWADD 0x0014 /* Hardware Address offset in SROM */
87 #define SROM_RD 0x00004000 /* Read from Boot ROM */
88 #define EE_DATA_WRITE 0x04 /* EEPROM chip data in. */
89 #define EE_WRITE_0 0x4801
90 #define EE_WRITE_1 0x4805
91 #define EE_DATA_READ 0x08 /* EEPROM chip data out. */
92 #define SROM_SR 0x00000800 /* Select Serial ROM when set */
93
94 #define DT_IN 0x00000004 /* Serial Data In */
95 #define DT_CLK 0x00000002 /* Serial ROM Clock */
96 #define DT_CS 0x00000001 /* Serial ROM Chip Select */
97
98 #define POLL_DEMAND 1
99
100 #ifdef CONFIG_TULIP_FIX_DAVICOM
101 #define RESET_DM9102(dev) {\
102 unsigned long i;\
103 i=INL(dev, 0x0);\
104 udelay(1000);\
105 OUTL(dev, i | BMR_SWR, DE4X5_BMR);\
106 udelay(1000);\
107 }
108 #else
109 #define RESET_DE4X5(dev) {\
110 int i;\
111 i=INL(dev, DE4X5_BMR);\
112 udelay(1000);\
113 OUTL(dev, i | BMR_SWR, DE4X5_BMR);\
114 udelay(1000);\
115 OUTL(dev, i, DE4X5_BMR);\
116 udelay(1000);\
117 for (i=0;i<5;i++) {INL(dev, DE4X5_BMR); udelay(10000);}\
118 udelay(1000);\
119 }
120 #endif
121
122 #define START_DE4X5(dev) {\
123 s32 omr; \
124 omr = INL(dev, DE4X5_OMR);\
125 omr |= OMR_ST | OMR_SR;\
126 OUTL(dev, omr, DE4X5_OMR); /* Enable the TX and/or RX */\
127 }
128
129 #define STOP_DE4X5(dev) {\
130 s32 omr; \
131 omr = INL(dev, DE4X5_OMR);\
132 omr &= ~(OMR_ST|OMR_SR);\
133 OUTL(dev, omr, DE4X5_OMR); /* Disable the TX and/or RX */ \
134 }
135
136 #define NUM_RX_DESC PKTBUFSRX
137 #ifndef CONFIG_TULIP_FIX_DAVICOM
138 #define NUM_TX_DESC 1 /* Number of TX descriptors */
139 #else
140 #define NUM_TX_DESC 4
141 #endif
142 #define RX_BUFF_SZ PKTSIZE_ALIGN
143
144 #define TOUT_LOOP 1000000
145
146 #define SETUP_FRAME_LEN 192
147 #define ETH_ALEN 6
148
149 struct de4x5_desc {
150 volatile s32 status;
151 u32 des1;
152 u32 buf;
153 u32 next;
154 };
155
156 static struct de4x5_desc rx_ring[NUM_RX_DESC] __attribute__ ((aligned(32))); /* RX descriptor ring */
157 static struct de4x5_desc tx_ring[NUM_TX_DESC] __attribute__ ((aligned(32))); /* TX descriptor ring */
158 static int rx_new; /* RX descriptor ring pointer */
159 static int tx_new; /* TX descriptor ring pointer */
160
161 static char rxRingSize;
162 static char txRingSize;
163
164 #if defined(UPDATE_SROM) || !defined(CONFIG_TULIP_FIX_DAVICOM)
165 static void sendto_srom(struct eth_device* dev, u_int command, u_long addr);
166 static int getfrom_srom(struct eth_device* dev, u_long addr);
167 static int do_eeprom_cmd(struct eth_device *dev, u_long ioaddr,int cmd,int cmd_len);
168 static int do_read_eeprom(struct eth_device *dev,u_long ioaddr,int location,int addr_len);
169 #endif /* UPDATE_SROM || !CONFIG_TULIP_FIX_DAVICOM */
170 #ifdef UPDATE_SROM
171 static int write_srom(struct eth_device *dev, u_long ioaddr, int index, int new_value);
172 static void update_srom(struct eth_device *dev, bd_t *bis);
173 #endif
174 #ifndef CONFIG_TULIP_FIX_DAVICOM
175 static int read_srom(struct eth_device *dev, u_long ioaddr, int index);
176 static void read_hw_addr(struct eth_device* dev, bd_t * bis);
177 #endif /* CONFIG_TULIP_FIX_DAVICOM */
178 static void send_setup_frame(struct eth_device* dev, bd_t * bis);
179
180 static int dc21x4x_init(struct eth_device* dev, bd_t* bis);
181 static int dc21x4x_send(struct eth_device* dev, volatile void *packet, int length);
182 static int dc21x4x_recv(struct eth_device* dev);
183 static void dc21x4x_halt(struct eth_device* dev);
184 #ifdef CONFIG_TULIP_SELECT_MEDIA
185 extern void dc21x4x_select_media(struct eth_device* dev);
186 #endif
187
188 #if defined(CONFIG_E500)
189 #define phys_to_bus(a) (a)
190 #else
191 #define phys_to_bus(a) pci_phys_to_mem((pci_dev_t)dev->priv, a)
192 #endif
193
194 static int INL(struct eth_device* dev, u_long addr)
195 {
196 return le32_to_cpu(*(volatile u_long *)(addr + dev->iobase));
197 }
198
199 static void OUTL(struct eth_device* dev, int command, u_long addr)
200 {
201 *(volatile u_long *)(addr + dev->iobase) = cpu_to_le32(command);
202 }
203
204 static struct pci_device_id supported[] = {
205 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_FAST },
206 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_21142 },
207 #ifdef CONFIG_TULIP_FIX_DAVICOM
208 { PCI_VENDOR_ID_DAVICOM, PCI_DEVICE_ID_DAVICOM_DM9102A },
209 #endif
210 { }
211 };
212
213 int dc21x4x_initialize(bd_t *bis)
214 {
215 int idx=0;
216 int card_number = 0;
217 unsigned int cfrv;
218 unsigned char timer;
219 pci_dev_t devbusfn;
220 unsigned int iobase;
221 unsigned short status;
222 struct eth_device* dev;
223
224 while(1) {
225 devbusfn = pci_find_devices(supported, idx++);
226 if (devbusfn == -1) {
227 break;
228 }
229
230 /* Get the chip configuration revision register. */
231 pci_read_config_dword(devbusfn, PCI_REVISION_ID, &cfrv);
232
233 #ifndef CONFIG_TULIP_FIX_DAVICOM
234 if ((cfrv & CFRV_RN) < DC2114x_BRK ) {
235 printf("Error: The chip is not DC21143.\n");
236 continue;
237 }
238 #endif
239
240 pci_read_config_word(devbusfn, PCI_COMMAND, &status);
241 status |=
242 #ifdef CONFIG_TULIP_USE_IO
243 PCI_COMMAND_IO |
244 #else
245 PCI_COMMAND_MEMORY |
246 #endif
247 PCI_COMMAND_MASTER;
248 pci_write_config_word(devbusfn, PCI_COMMAND, status);
249
250 pci_read_config_word(devbusfn, PCI_COMMAND, &status);
251 if (!(status & PCI_COMMAND_IO)) {
252 printf("Error: Can not enable I/O access.\n");
253 continue;
254 }
255
256 if (!(status & PCI_COMMAND_IO)) {
257 printf("Error: Can not enable I/O access.\n");
258 continue;
259 }
260
261 if (!(status & PCI_COMMAND_MASTER)) {
262 printf("Error: Can not enable Bus Mastering.\n");
263 continue;
264 }
265
266 /* Check the latency timer for values >= 0x60. */
267 pci_read_config_byte(devbusfn, PCI_LATENCY_TIMER, &timer);
268
269 if (timer < 0x60) {
270 pci_write_config_byte(devbusfn, PCI_LATENCY_TIMER, 0x60);
271 }
272
273 #ifdef CONFIG_TULIP_USE_IO
274 /* read BAR for memory space access */
275 pci_read_config_dword(devbusfn, PCI_BASE_ADDRESS_0, &iobase);
276 iobase &= PCI_BASE_ADDRESS_IO_MASK;
277 #else
278 /* read BAR for memory space access */
279 pci_read_config_dword(devbusfn, PCI_BASE_ADDRESS_1, &iobase);
280 iobase &= PCI_BASE_ADDRESS_MEM_MASK;
281 #endif
282 debug ("dc21x4x: DEC 21142 PCI Device @0x%x\n", iobase);
283
284 dev = (struct eth_device*) malloc(sizeof *dev);
285
286 #ifdef CONFIG_TULIP_FIX_DAVICOM
287 sprintf(dev->name, "Davicom#%d", card_number);
288 #else
289 sprintf(dev->name, "dc21x4x#%d", card_number);
290 #endif
291
292 #ifdef CONFIG_TULIP_USE_IO
293 dev->iobase = pci_io_to_phys(devbusfn, iobase);
294 #else
295 dev->iobase = pci_mem_to_phys(devbusfn, iobase);
296 #endif
297 dev->priv = (void*) devbusfn;
298 dev->init = dc21x4x_init;
299 dev->halt = dc21x4x_halt;
300 dev->send = dc21x4x_send;
301 dev->recv = dc21x4x_recv;
302
303 /* Ensure we're not sleeping. */
304 pci_write_config_byte(devbusfn, PCI_CFDA_PSM, WAKEUP);
305
306 udelay(10 * 1000);
307
308 #ifndef CONFIG_TULIP_FIX_DAVICOM
309 read_hw_addr(dev, bis);
310 #endif
311 eth_register(dev);
312
313 card_number++;
314 }
315
316 return card_number;
317 }
318
319 static int dc21x4x_init(struct eth_device* dev, bd_t* bis)
320 {
321 int i;
322 int devbusfn = (int) dev->priv;
323
324 /* Ensure we're not sleeping. */
325 pci_write_config_byte(devbusfn, PCI_CFDA_PSM, WAKEUP);
326
327 #ifdef CONFIG_TULIP_FIX_DAVICOM
328 RESET_DM9102(dev);
329 #else
330 RESET_DE4X5(dev);
331 #endif
332
333 if ((INL(dev, DE4X5_STS) & (STS_TS | STS_RS)) != 0) {
334 printf("Error: Cannot reset ethernet controller.\n");
335 return 0;
336 }
337
338 #ifdef CONFIG_TULIP_SELECT_MEDIA
339 dc21x4x_select_media(dev);
340 #else
341 OUTL(dev, OMR_SDP | OMR_PS | OMR_PM, DE4X5_OMR);
342 #endif
343
344 for (i = 0; i < NUM_RX_DESC; i++) {
345 rx_ring[i].status = cpu_to_le32(R_OWN);
346 rx_ring[i].des1 = cpu_to_le32(RX_BUFF_SZ);
347 rx_ring[i].buf = cpu_to_le32(phys_to_bus((u32) NetRxPackets[i]));
348 #ifdef CONFIG_TULIP_FIX_DAVICOM
349 rx_ring[i].next = cpu_to_le32(phys_to_bus((u32) &rx_ring[(i+1) % NUM_RX_DESC]));
350 #else
351 rx_ring[i].next = 0;
352 #endif
353 }
354
355 for (i=0; i < NUM_TX_DESC; i++) {
356 tx_ring[i].status = 0;
357 tx_ring[i].des1 = 0;
358 tx_ring[i].buf = 0;
359
360 #ifdef CONFIG_TULIP_FIX_DAVICOM
361 tx_ring[i].next = cpu_to_le32(phys_to_bus((u32) &tx_ring[(i+1) % NUM_TX_DESC]));
362 #else
363 tx_ring[i].next = 0;
364 #endif
365 }
366
367 rxRingSize = NUM_RX_DESC;
368 txRingSize = NUM_TX_DESC;
369
370 /* Write the end of list marker to the descriptor lists. */
371 rx_ring[rxRingSize - 1].des1 |= cpu_to_le32(RD_RER);
372 tx_ring[txRingSize - 1].des1 |= cpu_to_le32(TD_TER);
373
374 /* Tell the adapter where the TX/RX rings are located. */
375 OUTL(dev, phys_to_bus((u32) &rx_ring), DE4X5_RRBA);
376 OUTL(dev, phys_to_bus((u32) &tx_ring), DE4X5_TRBA);
377
378 START_DE4X5(dev);
379
380 tx_new = 0;
381 rx_new = 0;
382
383 send_setup_frame(dev, bis);
384
385 return 1;
386 }
387
388 static int dc21x4x_send(struct eth_device* dev, volatile void *packet, int length)
389 {
390 int status = -1;
391 int i;
392
393 if (length <= 0) {
394 printf("%s: bad packet size: %d\n", dev->name, length);
395 goto Done;
396 }
397
398 for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
399 if (i >= TOUT_LOOP) {
400 printf("%s: tx error buffer not ready\n", dev->name);
401 goto Done;
402 }
403 }
404
405 tx_ring[tx_new].buf = cpu_to_le32(phys_to_bus((u32) packet));
406 tx_ring[tx_new].des1 = cpu_to_le32(TD_TER | TD_LS | TD_FS | length);
407 tx_ring[tx_new].status = cpu_to_le32(T_OWN);
408
409 OUTL(dev, POLL_DEMAND, DE4X5_TPD);
410
411 for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
412 if (i >= TOUT_LOOP) {
413 printf(".%s: tx buffer not ready\n", dev->name);
414 goto Done;
415 }
416 }
417
418 if (le32_to_cpu(tx_ring[tx_new].status) & TD_ES) {
419 #if 0 /* test-only */
420 printf("TX error status = 0x%08X\n",
421 le32_to_cpu(tx_ring[tx_new].status));
422 #endif
423 tx_ring[tx_new].status = 0x0;
424 goto Done;
425 }
426
427 status = length;
428
429 Done:
430 tx_new = (tx_new+1) % NUM_TX_DESC;
431 return status;
432 }
433
434 static int dc21x4x_recv(struct eth_device* dev)
435 {
436 s32 status;
437 int length = 0;
438
439 for ( ; ; ) {
440 status = (s32)le32_to_cpu(rx_ring[rx_new].status);
441
442 if (status & R_OWN) {
443 break;
444 }
445
446 if (status & RD_LS) {
447 /* Valid frame status.
448 */
449 if (status & RD_ES) {
450
451 /* There was an error.
452 */
453 printf("RX error status = 0x%08X\n", status);
454 } else {
455 /* A valid frame received.
456 */
457 length = (le32_to_cpu(rx_ring[rx_new].status) >> 16);
458
459 /* Pass the packet up to the protocol
460 * layers.
461 */
462 NetReceive(NetRxPackets[rx_new], length - 4);
463 }
464
465 /* Change buffer ownership for this frame, back
466 * to the adapter.
467 */
468 rx_ring[rx_new].status = cpu_to_le32(R_OWN);
469 }
470
471 /* Update entry information.
472 */
473 rx_new = (rx_new + 1) % rxRingSize;
474 }
475
476 return length;
477 }
478
479 static void dc21x4x_halt(struct eth_device* dev)
480 {
481 int devbusfn = (int) dev->priv;
482
483 STOP_DE4X5(dev);
484 OUTL(dev, 0, DE4X5_SICR);
485
486 pci_write_config_byte(devbusfn, PCI_CFDA_PSM, SLEEP);
487 }
488
489 static void send_setup_frame(struct eth_device* dev, bd_t *bis)
490 {
491 int i;
492 char setup_frame[SETUP_FRAME_LEN];
493 char *pa = &setup_frame[0];
494
495 memset(pa, 0xff, SETUP_FRAME_LEN);
496
497 for (i = 0; i < ETH_ALEN; i++) {
498 *(pa + (i & 1)) = dev->enetaddr[i];
499 if (i & 0x01) {
500 pa += 4;
501 }
502 }
503
504 for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
505 if (i >= TOUT_LOOP) {
506 printf("%s: tx error buffer not ready\n", dev->name);
507 goto Done;
508 }
509 }
510
511 tx_ring[tx_new].buf = cpu_to_le32(phys_to_bus((u32) &setup_frame[0]));
512 tx_ring[tx_new].des1 = cpu_to_le32(TD_TER | TD_SET| SETUP_FRAME_LEN);
513 tx_ring[tx_new].status = cpu_to_le32(T_OWN);
514
515 OUTL(dev, POLL_DEMAND, DE4X5_TPD);
516
517 for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
518 if (i >= TOUT_LOOP) {
519 printf("%s: tx buffer not ready\n", dev->name);
520 goto Done;
521 }
522 }
523
524 if (le32_to_cpu(tx_ring[tx_new].status) != 0x7FFFFFFF) {
525 printf("TX error status2 = 0x%08X\n", le32_to_cpu(tx_ring[tx_new].status));
526 }
527 tx_new = (tx_new+1) % NUM_TX_DESC;
528
529 Done:
530 return;
531 }
532
533 #if defined(UPDATE_SROM) || !defined(CONFIG_TULIP_FIX_DAVICOM)
534 /* SROM Read and write routines.
535 */
536 static void
537 sendto_srom(struct eth_device* dev, u_int command, u_long addr)
538 {
539 OUTL(dev, command, addr);
540 udelay(1);
541 }
542
543 static int
544 getfrom_srom(struct eth_device* dev, u_long addr)
545 {
546 s32 tmp;
547
548 tmp = INL(dev, addr);
549 udelay(1);
550
551 return tmp;
552 }
553
554 /* Note: this routine returns extra data bits for size detection. */
555 static int do_read_eeprom(struct eth_device *dev, u_long ioaddr, int location, int addr_len)
556 {
557 int i;
558 unsigned retval = 0;
559 int read_cmd = location | (SROM_READ_CMD << addr_len);
560
561 sendto_srom(dev, SROM_RD | SROM_SR, ioaddr);
562 sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
563
564 #ifdef DEBUG_SROM
565 printf(" EEPROM read at %d ", location);
566 #endif
567
568 /* Shift the read command bits out. */
569 for (i = 4 + addr_len; i >= 0; i--) {
570 short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
571 sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | dataval, ioaddr);
572 udelay(10);
573 sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | dataval | DT_CLK, ioaddr);
574 udelay(10);
575 #ifdef DEBUG_SROM2
576 printf("%X", getfrom_srom(dev, ioaddr) & 15);
577 #endif
578 retval = (retval << 1) | ((getfrom_srom(dev, ioaddr) & EE_DATA_READ) ? 1 : 0);
579 }
580
581 sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
582
583 #ifdef DEBUG_SROM2
584 printf(" :%X:", getfrom_srom(dev, ioaddr) & 15);
585 #endif
586
587 for (i = 16; i > 0; i--) {
588 sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | DT_CLK, ioaddr);
589 udelay(10);
590 #ifdef DEBUG_SROM2
591 printf("%X", getfrom_srom(dev, ioaddr) & 15);
592 #endif
593 retval = (retval << 1) | ((getfrom_srom(dev, ioaddr) & EE_DATA_READ) ? 1 : 0);
594 sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
595 udelay(10);
596 }
597
598 /* Terminate the EEPROM access. */
599 sendto_srom(dev, SROM_RD | SROM_SR, ioaddr);
600
601 #ifdef DEBUG_SROM2
602 printf(" EEPROM value at %d is %5.5x.\n", location, retval);
603 #endif
604
605 return retval;
606 }
607 #endif /* UPDATE_SROM || !CONFIG_TULIP_FIX_DAVICOM */
608
609 /* This executes a generic EEPROM command, typically a write or write
610 * enable. It returns the data output from the EEPROM, and thus may
611 * also be used for reads.
612 */
613 #if defined(UPDATE_SROM) || !defined(CONFIG_TULIP_FIX_DAVICOM)
614 static int do_eeprom_cmd(struct eth_device *dev, u_long ioaddr, int cmd, int cmd_len)
615 {
616 unsigned retval = 0;
617
618 #ifdef DEBUG_SROM
619 printf(" EEPROM op 0x%x: ", cmd);
620 #endif
621
622 sendto_srom(dev,SROM_RD | SROM_SR | DT_CS | DT_CLK, ioaddr);
623
624 /* Shift the command bits out. */
625 do {
626 short dataval = (cmd & (1 << cmd_len)) ? EE_WRITE_1 : EE_WRITE_0;
627 sendto_srom(dev,dataval, ioaddr);
628 udelay(10);
629
630 #ifdef DEBUG_SROM2
631 printf("%X", getfrom_srom(dev,ioaddr) & 15);
632 #endif
633
634 sendto_srom(dev,dataval | DT_CLK, ioaddr);
635 udelay(10);
636 retval = (retval << 1) | ((getfrom_srom(dev,ioaddr) & EE_DATA_READ) ? 1 : 0);
637 } while (--cmd_len >= 0);
638 sendto_srom(dev,SROM_RD | SROM_SR | DT_CS, ioaddr);
639
640 /* Terminate the EEPROM access. */
641 sendto_srom(dev,SROM_RD | SROM_SR, ioaddr);
642
643 #ifdef DEBUG_SROM
644 printf(" EEPROM result is 0x%5.5x.\n", retval);
645 #endif
646
647 return retval;
648 }
649 #endif /* UPDATE_SROM || !CONFIG_TULIP_FIX_DAVICOM */
650
651 #ifndef CONFIG_TULIP_FIX_DAVICOM
652 static int read_srom(struct eth_device *dev, u_long ioaddr, int index)
653 {
654 int ee_addr_size = do_read_eeprom(dev, ioaddr, 0xff, 8) & 0x40000 ? 8 : 6;
655
656 return do_eeprom_cmd(dev, ioaddr,
657 (((SROM_READ_CMD << ee_addr_size) | index) << 16)
658 | 0xffff, 3 + ee_addr_size + 16);
659 }
660 #endif /* CONFIG_TULIP_FIX_DAVICOM */
661
662 #ifdef UPDATE_SROM
663 static int write_srom(struct eth_device *dev, u_long ioaddr, int index, int new_value)
664 {
665 int ee_addr_size = do_read_eeprom(dev, ioaddr, 0xff, 8) & 0x40000 ? 8 : 6;
666 int i;
667 unsigned short newval;
668
669 udelay(10*1000); /* test-only */
670
671 #ifdef DEBUG_SROM
672 printf("ee_addr_size=%d.\n", ee_addr_size);
673 printf("Writing new entry 0x%4.4x to offset %d.\n", new_value, index);
674 #endif
675
676 /* Enable programming modes. */
677 do_eeprom_cmd(dev, ioaddr, (0x4f << (ee_addr_size-4)), 3+ee_addr_size);
678
679 /* Do the actual write. */
680 do_eeprom_cmd(dev, ioaddr,
681 (((SROM_WRITE_CMD<<ee_addr_size)|index) << 16) | new_value,
682 3 + ee_addr_size + 16);
683
684 /* Poll for write finished. */
685 sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
686 for (i = 0; i < 10000; i++) /* Typical 2000 ticks */
687 if (getfrom_srom(dev, ioaddr) & EE_DATA_READ)
688 break;
689
690 #ifdef DEBUG_SROM
691 printf(" Write finished after %d ticks.\n", i);
692 #endif
693
694 /* Disable programming. */
695 do_eeprom_cmd(dev, ioaddr, (0x40 << (ee_addr_size-4)), 3 + ee_addr_size);
696
697 /* And read the result. */
698 newval = do_eeprom_cmd(dev, ioaddr,
699 (((SROM_READ_CMD<<ee_addr_size)|index) << 16)
700 | 0xffff, 3 + ee_addr_size + 16);
701 #ifdef DEBUG_SROM
702 printf(" New value at offset %d is %4.4x.\n", index, newval);
703 #endif
704 return 1;
705 }
706 #endif
707
708 #ifndef CONFIG_TULIP_FIX_DAVICOM
709 static void read_hw_addr(struct eth_device *dev, bd_t *bis)
710 {
711 u_short tmp, *p = (u_short *)(&dev->enetaddr[0]);
712 int i, j = 0;
713
714 for (i = 0; i < (ETH_ALEN >> 1); i++) {
715 tmp = read_srom(dev, DE4X5_APROM, ((SROM_HWADD >> 1) + i));
716 *p = le16_to_cpu(tmp);
717 j += *p++;
718 }
719
720 if ((j == 0) || (j == 0x2fffd)) {
721 memset (dev->enetaddr, 0, ETH_ALEN);
722 debug ("Warning: can't read HW address from SROM.\n");
723 goto Done;
724 }
725
726 return;
727
728 Done:
729 #ifdef UPDATE_SROM
730 update_srom(dev, bis);
731 #endif
732 return;
733 }
734 #endif /* CONFIG_TULIP_FIX_DAVICOM */
735
736 #ifdef UPDATE_SROM
737 static void update_srom(struct eth_device *dev, bd_t *bis)
738 {
739 int i;
740 static unsigned short eeprom[0x40] = {
741 0x140b, 0x6610, 0x0000, 0x0000, /* 00 */
742 0x0000, 0x0000, 0x0000, 0x0000, /* 04 */
743 0x00a3, 0x0103, 0x0000, 0x0000, /* 08 */
744 0x0000, 0x1f00, 0x0000, 0x0000, /* 0c */
745 0x0108, 0x038d, 0x0000, 0x0000, /* 10 */
746 0xe078, 0x0001, 0x0040, 0x0018, /* 14 */
747 0x0000, 0x0000, 0x0000, 0x0000, /* 18 */
748 0x0000, 0x0000, 0x0000, 0x0000, /* 1c */
749 0x0000, 0x0000, 0x0000, 0x0000, /* 20 */
750 0x0000, 0x0000, 0x0000, 0x0000, /* 24 */
751 0x0000, 0x0000, 0x0000, 0x0000, /* 28 */
752 0x0000, 0x0000, 0x0000, 0x0000, /* 2c */
753 0x0000, 0x0000, 0x0000, 0x0000, /* 30 */
754 0x0000, 0x0000, 0x0000, 0x0000, /* 34 */
755 0x0000, 0x0000, 0x0000, 0x0000, /* 38 */
756 0x0000, 0x0000, 0x0000, 0x4e07, /* 3c */
757 };
758
759 /* Ethernet Addr... */
760 eeprom[0x0a] = ((bis->bi_enetaddr[1] & 0xff) << 8) | (bis->bi_enetaddr[0] & 0xff);
761 eeprom[0x0b] = ((bis->bi_enetaddr[3] & 0xff) << 8) | (bis->bi_enetaddr[2] & 0xff);
762 eeprom[0x0c] = ((bis->bi_enetaddr[5] & 0xff) << 8) | (bis->bi_enetaddr[4] & 0xff);
763
764 for (i=0; i<0x40; i++)
765 {
766 write_srom(dev, DE4X5_APROM, i, eeprom[i]);
767 }
768 }
769 #endif /* UPDATE_SROM */
770
771 #endif /* CFG_CMD_NET && CONFIG_NET_MULTI && CONFIG_TULIP */