]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/ddr/altera/sequencer.c
11f96a5790879f235b5d88e75ff8ba7de200f011
[people/ms/u-boot.git] / drivers / ddr / altera / sequencer.c
1 /*
2 * Copyright Altera Corporation (C) 2012-2015
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include <errno.h>
11 #include "sequencer.h"
12
13 /*
14 * FIXME: This path is temporary until the SDRAM driver gets
15 * a proper thorough cleanup.
16 */
17 #include "../../../board/altera/socfpga/qts/sequencer_auto.h"
18 #include "../../../board/altera/socfpga/qts/sequencer_defines.h"
19
20 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
21 (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
22
23 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
24 (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
25
26 static struct socfpga_sdr_reg_file *sdr_reg_file =
27 (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
28
29 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
30 (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
31
32 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
33 (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
34
35 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
36 (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
37
38 static struct socfpga_data_mgr *data_mgr =
39 (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
40
41 static struct socfpga_sdr_ctrl *sdr_ctrl =
42 (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
43
44 const struct socfpga_sdram_rw_mgr_config *rwcfg;
45
46 #define DELTA_D 1
47
48 /*
49 * In order to reduce ROM size, most of the selectable calibration steps are
50 * decided at compile time based on the user's calibration mode selection,
51 * as captured by the STATIC_CALIB_STEPS selection below.
52 *
53 * However, to support simulation-time selection of fast simulation mode, where
54 * we skip everything except the bare minimum, we need a few of the steps to
55 * be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the
56 * check, which is based on the rtl-supplied value, or we dynamically compute
57 * the value to use based on the dynamically-chosen calibration mode
58 */
59
60 #define DLEVEL 0
61 #define STATIC_IN_RTL_SIM 0
62 #define STATIC_SKIP_DELAY_LOOPS 0
63
64 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
65 STATIC_SKIP_DELAY_LOOPS)
66
67 /* calibration steps requested by the rtl */
68 uint16_t dyn_calib_steps;
69
70 /*
71 * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
72 * instead of static, we use boolean logic to select between
73 * non-skip and skip values
74 *
75 * The mask is set to include all bits when not-skipping, but is
76 * zero when skipping
77 */
78
79 uint16_t skip_delay_mask; /* mask off bits when skipping/not-skipping */
80
81 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
82 ((non_skip_value) & skip_delay_mask)
83
84 struct gbl_type *gbl;
85 struct param_type *param;
86
87 static void set_failing_group_stage(uint32_t group, uint32_t stage,
88 uint32_t substage)
89 {
90 /*
91 * Only set the global stage if there was not been any other
92 * failing group
93 */
94 if (gbl->error_stage == CAL_STAGE_NIL) {
95 gbl->error_substage = substage;
96 gbl->error_stage = stage;
97 gbl->error_group = group;
98 }
99 }
100
101 static void reg_file_set_group(u16 set_group)
102 {
103 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
104 }
105
106 static void reg_file_set_stage(u8 set_stage)
107 {
108 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
109 }
110
111 static void reg_file_set_sub_stage(u8 set_sub_stage)
112 {
113 set_sub_stage &= 0xff;
114 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
115 }
116
117 /**
118 * phy_mgr_initialize() - Initialize PHY Manager
119 *
120 * Initialize PHY Manager.
121 */
122 static void phy_mgr_initialize(void)
123 {
124 u32 ratio;
125
126 debug("%s:%d\n", __func__, __LINE__);
127 /* Calibration has control over path to memory */
128 /*
129 * In Hard PHY this is a 2-bit control:
130 * 0: AFI Mux Select
131 * 1: DDIO Mux Select
132 */
133 writel(0x3, &phy_mgr_cfg->mux_sel);
134
135 /* USER memory clock is not stable we begin initialization */
136 writel(0, &phy_mgr_cfg->reset_mem_stbl);
137
138 /* USER calibration status all set to zero */
139 writel(0, &phy_mgr_cfg->cal_status);
140
141 writel(0, &phy_mgr_cfg->cal_debug_info);
142
143 /* Init params only if we do NOT skip calibration. */
144 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
145 return;
146
147 ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
148 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
149 param->read_correct_mask_vg = (1 << ratio) - 1;
150 param->write_correct_mask_vg = (1 << ratio) - 1;
151 param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
152 param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
153 }
154
155 /**
156 * set_rank_and_odt_mask() - Set Rank and ODT mask
157 * @rank: Rank mask
158 * @odt_mode: ODT mode, OFF or READ_WRITE
159 *
160 * Set Rank and ODT mask (On-Die Termination).
161 */
162 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode)
163 {
164 u32 odt_mask_0 = 0;
165 u32 odt_mask_1 = 0;
166 u32 cs_and_odt_mask;
167
168 if (odt_mode == RW_MGR_ODT_MODE_OFF) {
169 odt_mask_0 = 0x0;
170 odt_mask_1 = 0x0;
171 } else { /* RW_MGR_ODT_MODE_READ_WRITE */
172 switch (RW_MGR_MEM_NUMBER_OF_RANKS) {
173 case 1: /* 1 Rank */
174 /* Read: ODT = 0 ; Write: ODT = 1 */
175 odt_mask_0 = 0x0;
176 odt_mask_1 = 0x1;
177 break;
178 case 2: /* 2 Ranks */
179 if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
180 /*
181 * - Dual-Slot , Single-Rank (1 CS per DIMM)
182 * OR
183 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
184 *
185 * Since MEM_NUMBER_OF_RANKS is 2, they
186 * are both single rank with 2 CS each
187 * (special for RDIMM).
188 *
189 * Read: Turn on ODT on the opposite rank
190 * Write: Turn on ODT on all ranks
191 */
192 odt_mask_0 = 0x3 & ~(1 << rank);
193 odt_mask_1 = 0x3;
194 } else {
195 /*
196 * - Single-Slot , Dual-Rank (2 CS per DIMM)
197 *
198 * Read: Turn on ODT off on all ranks
199 * Write: Turn on ODT on active rank
200 */
201 odt_mask_0 = 0x0;
202 odt_mask_1 = 0x3 & (1 << rank);
203 }
204 break;
205 case 4: /* 4 Ranks */
206 /* Read:
207 * ----------+-----------------------+
208 * | ODT |
209 * Read From +-----------------------+
210 * Rank | 3 | 2 | 1 | 0 |
211 * ----------+-----+-----+-----+-----+
212 * 0 | 0 | 1 | 0 | 0 |
213 * 1 | 1 | 0 | 0 | 0 |
214 * 2 | 0 | 0 | 0 | 1 |
215 * 3 | 0 | 0 | 1 | 0 |
216 * ----------+-----+-----+-----+-----+
217 *
218 * Write:
219 * ----------+-----------------------+
220 * | ODT |
221 * Write To +-----------------------+
222 * Rank | 3 | 2 | 1 | 0 |
223 * ----------+-----+-----+-----+-----+
224 * 0 | 0 | 1 | 0 | 1 |
225 * 1 | 1 | 0 | 1 | 0 |
226 * 2 | 0 | 1 | 0 | 1 |
227 * 3 | 1 | 0 | 1 | 0 |
228 * ----------+-----+-----+-----+-----+
229 */
230 switch (rank) {
231 case 0:
232 odt_mask_0 = 0x4;
233 odt_mask_1 = 0x5;
234 break;
235 case 1:
236 odt_mask_0 = 0x8;
237 odt_mask_1 = 0xA;
238 break;
239 case 2:
240 odt_mask_0 = 0x1;
241 odt_mask_1 = 0x5;
242 break;
243 case 3:
244 odt_mask_0 = 0x2;
245 odt_mask_1 = 0xA;
246 break;
247 }
248 break;
249 }
250 }
251
252 cs_and_odt_mask = (0xFF & ~(1 << rank)) |
253 ((0xFF & odt_mask_0) << 8) |
254 ((0xFF & odt_mask_1) << 16);
255 writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
256 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
257 }
258
259 /**
260 * scc_mgr_set() - Set SCC Manager register
261 * @off: Base offset in SCC Manager space
262 * @grp: Read/Write group
263 * @val: Value to be set
264 *
265 * This function sets the SCC Manager (Scan Chain Control Manager) register.
266 */
267 static void scc_mgr_set(u32 off, u32 grp, u32 val)
268 {
269 writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
270 }
271
272 /**
273 * scc_mgr_initialize() - Initialize SCC Manager registers
274 *
275 * Initialize SCC Manager registers.
276 */
277 static void scc_mgr_initialize(void)
278 {
279 /*
280 * Clear register file for HPS. 16 (2^4) is the size of the
281 * full register file in the scc mgr:
282 * RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
283 * MEM_IF_READ_DQS_WIDTH - 1);
284 */
285 int i;
286
287 for (i = 0; i < 16; i++) {
288 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
289 __func__, __LINE__, i);
290 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
291 }
292 }
293
294 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
295 {
296 scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
297 }
298
299 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
300 {
301 scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
302 }
303
304 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
305 {
306 scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
307 }
308
309 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
310 {
311 scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
312 }
313
314 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
315 {
316 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
317 delay);
318 }
319
320 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
321 {
322 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
323 }
324
325 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
326 {
327 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
328 }
329
330 static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
331 {
332 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
333 delay);
334 }
335
336 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
337 {
338 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
339 RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm,
340 delay);
341 }
342
343 /* load up dqs config settings */
344 static void scc_mgr_load_dqs(uint32_t dqs)
345 {
346 writel(dqs, &sdr_scc_mgr->dqs_ena);
347 }
348
349 /* load up dqs io config settings */
350 static void scc_mgr_load_dqs_io(void)
351 {
352 writel(0, &sdr_scc_mgr->dqs_io_ena);
353 }
354
355 /* load up dq config settings */
356 static void scc_mgr_load_dq(uint32_t dq_in_group)
357 {
358 writel(dq_in_group, &sdr_scc_mgr->dq_ena);
359 }
360
361 /* load up dm config settings */
362 static void scc_mgr_load_dm(uint32_t dm)
363 {
364 writel(dm, &sdr_scc_mgr->dm_ena);
365 }
366
367 /**
368 * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
369 * @off: Base offset in SCC Manager space
370 * @grp: Read/Write group
371 * @val: Value to be set
372 * @update: If non-zero, trigger SCC Manager update for all ranks
373 *
374 * This function sets the SCC Manager (Scan Chain Control Manager) register
375 * and optionally triggers the SCC update for all ranks.
376 */
377 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
378 const int update)
379 {
380 u32 r;
381
382 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
383 r += NUM_RANKS_PER_SHADOW_REG) {
384 scc_mgr_set(off, grp, val);
385
386 if (update || (r == 0)) {
387 writel(grp, &sdr_scc_mgr->dqs_ena);
388 writel(0, &sdr_scc_mgr->update);
389 }
390 }
391 }
392
393 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
394 {
395 /*
396 * USER although the h/w doesn't support different phases per
397 * shadow register, for simplicity our scc manager modeling
398 * keeps different phase settings per shadow reg, and it's
399 * important for us to keep them in sync to match h/w.
400 * for efficiency, the scan chain update should occur only
401 * once to sr0.
402 */
403 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
404 read_group, phase, 0);
405 }
406
407 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
408 uint32_t phase)
409 {
410 /*
411 * USER although the h/w doesn't support different phases per
412 * shadow register, for simplicity our scc manager modeling
413 * keeps different phase settings per shadow reg, and it's
414 * important for us to keep them in sync to match h/w.
415 * for efficiency, the scan chain update should occur only
416 * once to sr0.
417 */
418 scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
419 write_group, phase, 0);
420 }
421
422 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
423 uint32_t delay)
424 {
425 /*
426 * In shadow register mode, the T11 settings are stored in
427 * registers in the core, which are updated by the DQS_ENA
428 * signals. Not issuing the SCC_MGR_UPD command allows us to
429 * save lots of rank switching overhead, by calling
430 * select_shadow_regs_for_update with update_scan_chains
431 * set to 0.
432 */
433 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
434 read_group, delay, 1);
435 writel(0, &sdr_scc_mgr->update);
436 }
437
438 /**
439 * scc_mgr_set_oct_out1_delay() - Set OCT output delay
440 * @write_group: Write group
441 * @delay: Delay value
442 *
443 * This function sets the OCT output delay in SCC manager.
444 */
445 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
446 {
447 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
448 RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
449 const int base = write_group * ratio;
450 int i;
451 /*
452 * Load the setting in the SCC manager
453 * Although OCT affects only write data, the OCT delay is controlled
454 * by the DQS logic block which is instantiated once per read group.
455 * For protocols where a write group consists of multiple read groups,
456 * the setting must be set multiple times.
457 */
458 for (i = 0; i < ratio; i++)
459 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
460 }
461
462 /**
463 * scc_mgr_set_hhp_extras() - Set HHP extras.
464 *
465 * Load the fixed setting in the SCC manager HHP extras.
466 */
467 static void scc_mgr_set_hhp_extras(void)
468 {
469 /*
470 * Load the fixed setting in the SCC manager
471 * bits: 0:0 = 1'b1 - DQS bypass
472 * bits: 1:1 = 1'b1 - DQ bypass
473 * bits: 4:2 = 3'b001 - rfifo_mode
474 * bits: 6:5 = 2'b01 - rfifo clock_select
475 * bits: 7:7 = 1'b0 - separate gating from ungating setting
476 * bits: 8:8 = 1'b0 - separate OE from Output delay setting
477 */
478 const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
479 (1 << 2) | (1 << 1) | (1 << 0);
480 const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
481 SCC_MGR_HHP_GLOBALS_OFFSET |
482 SCC_MGR_HHP_EXTRAS_OFFSET;
483
484 debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
485 __func__, __LINE__);
486 writel(value, addr);
487 debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
488 __func__, __LINE__);
489 }
490
491 /**
492 * scc_mgr_zero_all() - Zero all DQS config
493 *
494 * Zero all DQS config.
495 */
496 static void scc_mgr_zero_all(void)
497 {
498 int i, r;
499
500 /*
501 * USER Zero all DQS config settings, across all groups and all
502 * shadow registers
503 */
504 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
505 r += NUM_RANKS_PER_SHADOW_REG) {
506 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
507 /*
508 * The phases actually don't exist on a per-rank basis,
509 * but there's no harm updating them several times, so
510 * let's keep the code simple.
511 */
512 scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
513 scc_mgr_set_dqs_en_phase(i, 0);
514 scc_mgr_set_dqs_en_delay(i, 0);
515 }
516
517 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
518 scc_mgr_set_dqdqs_output_phase(i, 0);
519 /* Arria V/Cyclone V don't have out2. */
520 scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
521 }
522 }
523
524 /* Multicast to all DQS group enables. */
525 writel(0xff, &sdr_scc_mgr->dqs_ena);
526 writel(0, &sdr_scc_mgr->update);
527 }
528
529 /**
530 * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
531 * @write_group: Write group
532 *
533 * Set bypass mode and trigger SCC update.
534 */
535 static void scc_set_bypass_mode(const u32 write_group)
536 {
537 /* Multicast to all DQ enables. */
538 writel(0xff, &sdr_scc_mgr->dq_ena);
539 writel(0xff, &sdr_scc_mgr->dm_ena);
540
541 /* Update current DQS IO enable. */
542 writel(0, &sdr_scc_mgr->dqs_io_ena);
543
544 /* Update the DQS logic. */
545 writel(write_group, &sdr_scc_mgr->dqs_ena);
546
547 /* Hit update. */
548 writel(0, &sdr_scc_mgr->update);
549 }
550
551 /**
552 * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
553 * @write_group: Write group
554 *
555 * Load DQS settings for Write Group, do not trigger SCC update.
556 */
557 static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
558 {
559 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
560 RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
561 const int base = write_group * ratio;
562 int i;
563 /*
564 * Load the setting in the SCC manager
565 * Although OCT affects only write data, the OCT delay is controlled
566 * by the DQS logic block which is instantiated once per read group.
567 * For protocols where a write group consists of multiple read groups,
568 * the setting must be set multiple times.
569 */
570 for (i = 0; i < ratio; i++)
571 writel(base + i, &sdr_scc_mgr->dqs_ena);
572 }
573
574 /**
575 * scc_mgr_zero_group() - Zero all configs for a group
576 *
577 * Zero DQ, DM, DQS and OCT configs for a group.
578 */
579 static void scc_mgr_zero_group(const u32 write_group, const int out_only)
580 {
581 int i, r;
582
583 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
584 r += NUM_RANKS_PER_SHADOW_REG) {
585 /* Zero all DQ config settings. */
586 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
587 scc_mgr_set_dq_out1_delay(i, 0);
588 if (!out_only)
589 scc_mgr_set_dq_in_delay(i, 0);
590 }
591
592 /* Multicast to all DQ enables. */
593 writel(0xff, &sdr_scc_mgr->dq_ena);
594
595 /* Zero all DM config settings. */
596 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
597 scc_mgr_set_dm_out1_delay(i, 0);
598
599 /* Multicast to all DM enables. */
600 writel(0xff, &sdr_scc_mgr->dm_ena);
601
602 /* Zero all DQS IO settings. */
603 if (!out_only)
604 scc_mgr_set_dqs_io_in_delay(0);
605
606 /* Arria V/Cyclone V don't have out2. */
607 scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE);
608 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
609 scc_mgr_load_dqs_for_write_group(write_group);
610
611 /* Multicast to all DQS IO enables (only 1 in total). */
612 writel(0, &sdr_scc_mgr->dqs_io_ena);
613
614 /* Hit update to zero everything. */
615 writel(0, &sdr_scc_mgr->update);
616 }
617 }
618
619 /*
620 * apply and load a particular input delay for the DQ pins in a group
621 * group_bgn is the index of the first dq pin (in the write group)
622 */
623 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
624 {
625 uint32_t i, p;
626
627 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
628 scc_mgr_set_dq_in_delay(p, delay);
629 scc_mgr_load_dq(p);
630 }
631 }
632
633 /**
634 * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
635 * @delay: Delay value
636 *
637 * Apply and load a particular output delay for the DQ pins in a group.
638 */
639 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
640 {
641 int i;
642
643 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
644 scc_mgr_set_dq_out1_delay(i, delay);
645 scc_mgr_load_dq(i);
646 }
647 }
648
649 /* apply and load a particular output delay for the DM pins in a group */
650 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
651 {
652 uint32_t i;
653
654 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
655 scc_mgr_set_dm_out1_delay(i, delay1);
656 scc_mgr_load_dm(i);
657 }
658 }
659
660
661 /* apply and load delay on both DQS and OCT out1 */
662 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
663 uint32_t delay)
664 {
665 scc_mgr_set_dqs_out1_delay(delay);
666 scc_mgr_load_dqs_io();
667
668 scc_mgr_set_oct_out1_delay(write_group, delay);
669 scc_mgr_load_dqs_for_write_group(write_group);
670 }
671
672 /**
673 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
674 * @write_group: Write group
675 * @delay: Delay value
676 *
677 * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
678 */
679 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
680 const u32 delay)
681 {
682 u32 i, new_delay;
683
684 /* DQ shift */
685 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++)
686 scc_mgr_load_dq(i);
687
688 /* DM shift */
689 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
690 scc_mgr_load_dm(i);
691
692 /* DQS shift */
693 new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
694 if (new_delay > IO_IO_OUT2_DELAY_MAX) {
695 debug_cond(DLEVEL == 1,
696 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
697 __func__, __LINE__, write_group, delay, new_delay,
698 IO_IO_OUT2_DELAY_MAX,
699 new_delay - IO_IO_OUT2_DELAY_MAX);
700 new_delay -= IO_IO_OUT2_DELAY_MAX;
701 scc_mgr_set_dqs_out1_delay(new_delay);
702 }
703
704 scc_mgr_load_dqs_io();
705
706 /* OCT shift */
707 new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
708 if (new_delay > IO_IO_OUT2_DELAY_MAX) {
709 debug_cond(DLEVEL == 1,
710 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
711 __func__, __LINE__, write_group, delay,
712 new_delay, IO_IO_OUT2_DELAY_MAX,
713 new_delay - IO_IO_OUT2_DELAY_MAX);
714 new_delay -= IO_IO_OUT2_DELAY_MAX;
715 scc_mgr_set_oct_out1_delay(write_group, new_delay);
716 }
717
718 scc_mgr_load_dqs_for_write_group(write_group);
719 }
720
721 /**
722 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
723 * @write_group: Write group
724 * @delay: Delay value
725 *
726 * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
727 */
728 static void
729 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
730 const u32 delay)
731 {
732 int r;
733
734 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
735 r += NUM_RANKS_PER_SHADOW_REG) {
736 scc_mgr_apply_group_all_out_delay_add(write_group, delay);
737 writel(0, &sdr_scc_mgr->update);
738 }
739 }
740
741 /**
742 * set_jump_as_return() - Return instruction optimization
743 *
744 * Optimization used to recover some slots in ddr3 inst_rom could be
745 * applied to other protocols if we wanted to
746 */
747 static void set_jump_as_return(void)
748 {
749 /*
750 * To save space, we replace return with jump to special shared
751 * RETURN instruction so we set the counter to large value so that
752 * we always jump.
753 */
754 writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
755 writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
756 }
757
758 /**
759 * delay_for_n_mem_clocks() - Delay for N memory clocks
760 * @clocks: Length of the delay
761 *
762 * Delay for N memory clocks.
763 */
764 static void delay_for_n_mem_clocks(const u32 clocks)
765 {
766 u32 afi_clocks;
767 u16 c_loop;
768 u8 inner;
769 u8 outer;
770
771 debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
772
773 /* Scale (rounding up) to get afi clocks. */
774 afi_clocks = DIV_ROUND_UP(clocks, AFI_RATE_RATIO);
775 if (afi_clocks) /* Temporary underflow protection */
776 afi_clocks--;
777
778 /*
779 * Note, we don't bother accounting for being off a little
780 * bit because of a few extra instructions in outer loops.
781 * Note, the loops have a test at the end, and do the test
782 * before the decrement, and so always perform the loop
783 * 1 time more than the counter value
784 */
785 c_loop = afi_clocks >> 16;
786 outer = c_loop ? 0xff : (afi_clocks >> 8);
787 inner = outer ? 0xff : afi_clocks;
788
789 /*
790 * rom instructions are structured as follows:
791 *
792 * IDLE_LOOP2: jnz cntr0, TARGET_A
793 * IDLE_LOOP1: jnz cntr1, TARGET_B
794 * return
795 *
796 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
797 * TARGET_B is set to IDLE_LOOP2 as well
798 *
799 * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
800 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
801 *
802 * a little confusing, but it helps save precious space in the inst_rom
803 * and sequencer rom and keeps the delays more accurate and reduces
804 * overhead
805 */
806 if (afi_clocks < 0x100) {
807 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
808 &sdr_rw_load_mgr_regs->load_cntr1);
809
810 writel(RW_MGR_IDLE_LOOP1,
811 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
812
813 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
814 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
815 } else {
816 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
817 &sdr_rw_load_mgr_regs->load_cntr0);
818
819 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
820 &sdr_rw_load_mgr_regs->load_cntr1);
821
822 writel(RW_MGR_IDLE_LOOP2,
823 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
824
825 writel(RW_MGR_IDLE_LOOP2,
826 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
827
828 do {
829 writel(RW_MGR_IDLE_LOOP2,
830 SDR_PHYGRP_RWMGRGRP_ADDRESS |
831 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
832 } while (c_loop-- != 0);
833 }
834 debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
835 }
836
837 /**
838 * rw_mgr_mem_init_load_regs() - Load instruction registers
839 * @cntr0: Counter 0 value
840 * @cntr1: Counter 1 value
841 * @cntr2: Counter 2 value
842 * @jump: Jump instruction value
843 *
844 * Load instruction registers.
845 */
846 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
847 {
848 uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
849 RW_MGR_RUN_SINGLE_GROUP_OFFSET;
850
851 /* Load counters */
852 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
853 &sdr_rw_load_mgr_regs->load_cntr0);
854 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
855 &sdr_rw_load_mgr_regs->load_cntr1);
856 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
857 &sdr_rw_load_mgr_regs->load_cntr2);
858
859 /* Load jump address */
860 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
861 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
862 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
863
864 /* Execute count instruction */
865 writel(jump, grpaddr);
866 }
867
868 /**
869 * rw_mgr_mem_load_user() - Load user calibration values
870 * @fin1: Final instruction 1
871 * @fin2: Final instruction 2
872 * @precharge: If 1, precharge the banks at the end
873 *
874 * Load user calibration values and optionally precharge the banks.
875 */
876 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
877 const int precharge)
878 {
879 u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
880 RW_MGR_RUN_SINGLE_GROUP_OFFSET;
881 u32 r;
882
883 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
884 /* set rank */
885 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
886
887 /* precharge all banks ... */
888 if (precharge)
889 writel(RW_MGR_PRECHARGE_ALL, grpaddr);
890
891 /*
892 * USER Use Mirror-ed commands for odd ranks if address
893 * mirrorring is on
894 */
895 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
896 set_jump_as_return();
897 writel(RW_MGR_MRS2_MIRR, grpaddr);
898 delay_for_n_mem_clocks(4);
899 set_jump_as_return();
900 writel(RW_MGR_MRS3_MIRR, grpaddr);
901 delay_for_n_mem_clocks(4);
902 set_jump_as_return();
903 writel(RW_MGR_MRS1_MIRR, grpaddr);
904 delay_for_n_mem_clocks(4);
905 set_jump_as_return();
906 writel(fin1, grpaddr);
907 } else {
908 set_jump_as_return();
909 writel(RW_MGR_MRS2, grpaddr);
910 delay_for_n_mem_clocks(4);
911 set_jump_as_return();
912 writel(RW_MGR_MRS3, grpaddr);
913 delay_for_n_mem_clocks(4);
914 set_jump_as_return();
915 writel(RW_MGR_MRS1, grpaddr);
916 set_jump_as_return();
917 writel(fin2, grpaddr);
918 }
919
920 if (precharge)
921 continue;
922
923 set_jump_as_return();
924 writel(RW_MGR_ZQCL, grpaddr);
925
926 /* tZQinit = tDLLK = 512 ck cycles */
927 delay_for_n_mem_clocks(512);
928 }
929 }
930
931 /**
932 * rw_mgr_mem_initialize() - Initialize RW Manager
933 *
934 * Initialize RW Manager.
935 */
936 static void rw_mgr_mem_initialize(void)
937 {
938 debug("%s:%d\n", __func__, __LINE__);
939
940 /* The reset / cke part of initialization is broadcasted to all ranks */
941 writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
942 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
943
944 /*
945 * Here's how you load register for a loop
946 * Counters are located @ 0x800
947 * Jump address are located @ 0xC00
948 * For both, registers 0 to 3 are selected using bits 3 and 2, like
949 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
950 * I know this ain't pretty, but Avalon bus throws away the 2 least
951 * significant bits
952 */
953
954 /* Start with memory RESET activated */
955
956 /* tINIT = 200us */
957
958 /*
959 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
960 * If a and b are the number of iteration in 2 nested loops
961 * it takes the following number of cycles to complete the operation:
962 * number_of_cycles = ((2 + n) * a + 2) * b
963 * where n is the number of instruction in the inner loop
964 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
965 * b = 6A
966 */
967 rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL,
968 SEQ_TINIT_CNTR2_VAL,
969 RW_MGR_INIT_RESET_0_CKE_0);
970
971 /* Indicate that memory is stable. */
972 writel(1, &phy_mgr_cfg->reset_mem_stbl);
973
974 /*
975 * transition the RESET to high
976 * Wait for 500us
977 */
978
979 /*
980 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
981 * If a and b are the number of iteration in 2 nested loops
982 * it takes the following number of cycles to complete the operation
983 * number_of_cycles = ((2 + n) * a + 2) * b
984 * where n is the number of instruction in the inner loop
985 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
986 * b = FF
987 */
988 rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL,
989 SEQ_TRESET_CNTR2_VAL,
990 RW_MGR_INIT_RESET_1_CKE_0);
991
992 /* Bring up clock enable. */
993
994 /* tXRP < 250 ck cycles */
995 delay_for_n_mem_clocks(250);
996
997 rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET,
998 0);
999 }
1000
1001 /**
1002 * rw_mgr_mem_handoff() - Hand off the memory to user
1003 *
1004 * At the end of calibration we have to program the user settings in
1005 * and hand off the memory to the user.
1006 */
1007 static void rw_mgr_mem_handoff(void)
1008 {
1009 rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1);
1010 /*
1011 * Need to wait tMOD (12CK or 15ns) time before issuing other
1012 * commands, but we will have plenty of NIOS cycles before actual
1013 * handoff so its okay.
1014 */
1015 }
1016
1017 /**
1018 * rw_mgr_mem_calibrate_write_test_issue() - Issue write test command
1019 * @group: Write Group
1020 * @use_dm: Use DM
1021 *
1022 * Issue write test command. Two variants are provided, one that just tests
1023 * a write pattern and another that tests datamask functionality.
1024 */
1025 static void rw_mgr_mem_calibrate_write_test_issue(u32 group,
1026 u32 test_dm)
1027 {
1028 const u32 quick_write_mode =
1029 (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) &&
1030 ENABLE_SUPER_QUICK_CALIBRATION;
1031 u32 mcc_instruction;
1032 u32 rw_wl_nop_cycles;
1033
1034 /*
1035 * Set counter and jump addresses for the right
1036 * number of NOP cycles.
1037 * The number of supported NOP cycles can range from -1 to infinity
1038 * Three different cases are handled:
1039 *
1040 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
1041 * mechanism will be used to insert the right number of NOPs
1042 *
1043 * 2. For a number of NOP cycles equals to 0, the micro-instruction
1044 * issuing the write command will jump straight to the
1045 * micro-instruction that turns on DQS (for DDRx), or outputs write
1046 * data (for RLD), skipping
1047 * the NOP micro-instruction all together
1048 *
1049 * 3. A number of NOP cycles equal to -1 indicates that DQS must be
1050 * turned on in the same micro-instruction that issues the write
1051 * command. Then we need
1052 * to directly jump to the micro-instruction that sends out the data
1053 *
1054 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
1055 * (2 and 3). One jump-counter (0) is used to perform multiple
1056 * write-read operations.
1057 * one counter left to issue this command in "multiple-group" mode
1058 */
1059
1060 rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
1061
1062 if (rw_wl_nop_cycles == -1) {
1063 /*
1064 * CNTR 2 - We want to execute the special write operation that
1065 * turns on DQS right away and then skip directly to the
1066 * instruction that sends out the data. We set the counter to a
1067 * large number so that the jump is always taken.
1068 */
1069 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
1070
1071 /* CNTR 3 - Not used */
1072 if (test_dm) {
1073 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
1074 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
1075 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1076 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
1077 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1078 } else {
1079 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
1080 writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
1081 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1082 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
1083 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1084 }
1085 } else if (rw_wl_nop_cycles == 0) {
1086 /*
1087 * CNTR 2 - We want to skip the NOP operation and go straight
1088 * to the DQS enable instruction. We set the counter to a large
1089 * number so that the jump is always taken.
1090 */
1091 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
1092
1093 /* CNTR 3 - Not used */
1094 if (test_dm) {
1095 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
1096 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
1097 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1098 } else {
1099 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
1100 writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
1101 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1102 }
1103 } else {
1104 /*
1105 * CNTR 2 - In this case we want to execute the next instruction
1106 * and NOT take the jump. So we set the counter to 0. The jump
1107 * address doesn't count.
1108 */
1109 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
1110 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1111
1112 /*
1113 * CNTR 3 - Set the nop counter to the number of cycles we
1114 * need to loop for, minus 1.
1115 */
1116 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
1117 if (test_dm) {
1118 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
1119 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
1120 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1121 } else {
1122 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
1123 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
1124 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1125 }
1126 }
1127
1128 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1129 RW_MGR_RESET_READ_DATAPATH_OFFSET);
1130
1131 if (quick_write_mode)
1132 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
1133 else
1134 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
1135
1136 writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1137
1138 /*
1139 * CNTR 1 - This is used to ensure enough time elapses
1140 * for read data to come back.
1141 */
1142 writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
1143
1144 if (test_dm) {
1145 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
1146 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1147 } else {
1148 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
1149 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1150 }
1151
1152 writel(mcc_instruction, (SDR_PHYGRP_RWMGRGRP_ADDRESS |
1153 RW_MGR_RUN_SINGLE_GROUP_OFFSET) +
1154 (group << 2));
1155 }
1156
1157 /**
1158 * rw_mgr_mem_calibrate_write_test() - Test writes, check for single/multiple pass
1159 * @rank_bgn: Rank number
1160 * @write_group: Write Group
1161 * @use_dm: Use DM
1162 * @all_correct: All bits must be correct in the mask
1163 * @bit_chk: Resulting bit mask after the test
1164 * @all_ranks: Test all ranks
1165 *
1166 * Test writes, can check for a single bit pass or multiple bit pass.
1167 */
1168 static int
1169 rw_mgr_mem_calibrate_write_test(const u32 rank_bgn, const u32 write_group,
1170 const u32 use_dm, const u32 all_correct,
1171 u32 *bit_chk, const u32 all_ranks)
1172 {
1173 const u32 rank_end = all_ranks ?
1174 RW_MGR_MEM_NUMBER_OF_RANKS :
1175 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1176 const u32 shift_ratio = RW_MGR_MEM_DQ_PER_WRITE_DQS /
1177 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS;
1178 const u32 correct_mask_vg = param->write_correct_mask_vg;
1179
1180 u32 tmp_bit_chk, base_rw_mgr;
1181 int vg, r;
1182
1183 *bit_chk = param->write_correct_mask;
1184
1185 for (r = rank_bgn; r < rank_end; r++) {
1186 /* Set rank */
1187 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1188
1189 tmp_bit_chk = 0;
1190 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS - 1;
1191 vg >= 0; vg--) {
1192 /* Reset the FIFOs to get pointers to known state. */
1193 writel(0, &phy_mgr_cmd->fifo_reset);
1194
1195 rw_mgr_mem_calibrate_write_test_issue(
1196 write_group *
1197 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS + vg,
1198 use_dm);
1199
1200 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1201 tmp_bit_chk <<= shift_ratio;
1202 tmp_bit_chk |= (correct_mask_vg & ~(base_rw_mgr));
1203 }
1204
1205 *bit_chk &= tmp_bit_chk;
1206 }
1207
1208 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1209 if (all_correct) {
1210 debug_cond(DLEVEL == 2,
1211 "write_test(%u,%u,ALL) : %u == %u => %i\n",
1212 write_group, use_dm, *bit_chk,
1213 param->write_correct_mask,
1214 *bit_chk == param->write_correct_mask);
1215 return *bit_chk == param->write_correct_mask;
1216 } else {
1217 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1218 debug_cond(DLEVEL == 2,
1219 "write_test(%u,%u,ONE) : %u != %i => %i\n",
1220 write_group, use_dm, *bit_chk, 0, *bit_chk != 0);
1221 return *bit_chk != 0x00;
1222 }
1223 }
1224
1225 /**
1226 * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns
1227 * @rank_bgn: Rank number
1228 * @group: Read/Write Group
1229 * @all_ranks: Test all ranks
1230 *
1231 * Performs a guaranteed read on the patterns we are going to use during a
1232 * read test to ensure memory works.
1233 */
1234 static int
1235 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group,
1236 const u32 all_ranks)
1237 {
1238 const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1239 RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1240 const u32 addr_offset =
1241 (group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS) << 2;
1242 const u32 rank_end = all_ranks ?
1243 RW_MGR_MEM_NUMBER_OF_RANKS :
1244 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1245 const u32 shift_ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
1246 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
1247 const u32 correct_mask_vg = param->read_correct_mask_vg;
1248
1249 u32 tmp_bit_chk, base_rw_mgr, bit_chk;
1250 int vg, r;
1251 int ret = 0;
1252
1253 bit_chk = param->read_correct_mask;
1254
1255 for (r = rank_bgn; r < rank_end; r++) {
1256 /* Set rank */
1257 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1258
1259 /* Load up a constant bursts of read commands */
1260 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1261 writel(RW_MGR_GUARANTEED_READ,
1262 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1263
1264 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1265 writel(RW_MGR_GUARANTEED_READ_CONT,
1266 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1267
1268 tmp_bit_chk = 0;
1269 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1;
1270 vg >= 0; vg--) {
1271 /* Reset the FIFOs to get pointers to known state. */
1272 writel(0, &phy_mgr_cmd->fifo_reset);
1273 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1274 RW_MGR_RESET_READ_DATAPATH_OFFSET);
1275 writel(RW_MGR_GUARANTEED_READ,
1276 addr + addr_offset + (vg << 2));
1277
1278 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1279 tmp_bit_chk <<= shift_ratio;
1280 tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr;
1281 }
1282
1283 bit_chk &= tmp_bit_chk;
1284 }
1285
1286 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1287
1288 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1289
1290 if (bit_chk != param->read_correct_mask)
1291 ret = -EIO;
1292
1293 debug_cond(DLEVEL == 1,
1294 "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n",
1295 __func__, __LINE__, group, bit_chk,
1296 param->read_correct_mask, ret);
1297
1298 return ret;
1299 }
1300
1301 /**
1302 * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test
1303 * @rank_bgn: Rank number
1304 * @all_ranks: Test all ranks
1305 *
1306 * Load up the patterns we are going to use during a read test.
1307 */
1308 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn,
1309 const int all_ranks)
1310 {
1311 const u32 rank_end = all_ranks ?
1312 RW_MGR_MEM_NUMBER_OF_RANKS :
1313 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1314 u32 r;
1315
1316 debug("%s:%d\n", __func__, __LINE__);
1317
1318 for (r = rank_bgn; r < rank_end; r++) {
1319 /* set rank */
1320 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1321
1322 /* Load up a constant bursts */
1323 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1324
1325 writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
1326 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1327
1328 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1329
1330 writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
1331 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1332
1333 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1334
1335 writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
1336 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1337
1338 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1339
1340 writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
1341 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1342
1343 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1344 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1345 }
1346
1347 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1348 }
1349
1350 /**
1351 * rw_mgr_mem_calibrate_read_test() - Perform READ test on single rank
1352 * @rank_bgn: Rank number
1353 * @group: Read/Write group
1354 * @num_tries: Number of retries of the test
1355 * @all_correct: All bits must be correct in the mask
1356 * @bit_chk: Resulting bit mask after the test
1357 * @all_groups: Test all R/W groups
1358 * @all_ranks: Test all ranks
1359 *
1360 * Try a read and see if it returns correct data back. Test has dummy reads
1361 * inserted into the mix used to align DQS enable. Test has more thorough
1362 * checks than the regular read test.
1363 */
1364 static int
1365 rw_mgr_mem_calibrate_read_test(const u32 rank_bgn, const u32 group,
1366 const u32 num_tries, const u32 all_correct,
1367 u32 *bit_chk,
1368 const u32 all_groups, const u32 all_ranks)
1369 {
1370 const u32 rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1371 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1372 const u32 quick_read_mode =
1373 ((STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) &&
1374 ENABLE_SUPER_QUICK_CALIBRATION);
1375 u32 correct_mask_vg = param->read_correct_mask_vg;
1376 u32 tmp_bit_chk;
1377 u32 base_rw_mgr;
1378 u32 addr;
1379
1380 int r, vg, ret;
1381
1382 *bit_chk = param->read_correct_mask;
1383
1384 for (r = rank_bgn; r < rank_end; r++) {
1385 /* set rank */
1386 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1387
1388 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1389
1390 writel(RW_MGR_READ_B2B_WAIT1,
1391 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1392
1393 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1394 writel(RW_MGR_READ_B2B_WAIT2,
1395 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1396
1397 if (quick_read_mode)
1398 writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1399 /* need at least two (1+1) reads to capture failures */
1400 else if (all_groups)
1401 writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1402 else
1403 writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1404
1405 writel(RW_MGR_READ_B2B,
1406 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1407 if (all_groups)
1408 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1409 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1410 &sdr_rw_load_mgr_regs->load_cntr3);
1411 else
1412 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1413
1414 writel(RW_MGR_READ_B2B,
1415 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1416
1417 tmp_bit_chk = 0;
1418 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1; vg >= 0;
1419 vg--) {
1420 /* Reset the FIFOs to get pointers to known state. */
1421 writel(0, &phy_mgr_cmd->fifo_reset);
1422 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1423 RW_MGR_RESET_READ_DATAPATH_OFFSET);
1424
1425 if (all_groups) {
1426 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1427 RW_MGR_RUN_ALL_GROUPS_OFFSET;
1428 } else {
1429 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1430 RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1431 }
1432
1433 writel(RW_MGR_READ_B2B, addr +
1434 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1435 vg) << 2));
1436
1437 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1438 tmp_bit_chk <<= RW_MGR_MEM_DQ_PER_READ_DQS /
1439 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
1440 tmp_bit_chk |= correct_mask_vg & ~(base_rw_mgr);
1441 }
1442
1443 *bit_chk &= tmp_bit_chk;
1444 }
1445
1446 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1447 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1448
1449 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1450
1451 if (all_correct) {
1452 ret = (*bit_chk == param->read_correct_mask);
1453 debug_cond(DLEVEL == 2,
1454 "%s:%d read_test(%u,ALL,%u) => (%u == %u) => %i\n",
1455 __func__, __LINE__, group, all_groups, *bit_chk,
1456 param->read_correct_mask, ret);
1457 } else {
1458 ret = (*bit_chk != 0x00);
1459 debug_cond(DLEVEL == 2,
1460 "%s:%d read_test(%u,ONE,%u) => (%u != %u) => %i\n",
1461 __func__, __LINE__, group, all_groups, *bit_chk,
1462 0, ret);
1463 }
1464
1465 return ret;
1466 }
1467
1468 /**
1469 * rw_mgr_mem_calibrate_read_test_all_ranks() - Perform READ test on all ranks
1470 * @grp: Read/Write group
1471 * @num_tries: Number of retries of the test
1472 * @all_correct: All bits must be correct in the mask
1473 * @all_groups: Test all R/W groups
1474 *
1475 * Perform a READ test across all memory ranks.
1476 */
1477 static int
1478 rw_mgr_mem_calibrate_read_test_all_ranks(const u32 grp, const u32 num_tries,
1479 const u32 all_correct,
1480 const u32 all_groups)
1481 {
1482 u32 bit_chk;
1483 return rw_mgr_mem_calibrate_read_test(0, grp, num_tries, all_correct,
1484 &bit_chk, all_groups, 1);
1485 }
1486
1487 /**
1488 * rw_mgr_incr_vfifo() - Increase VFIFO value
1489 * @grp: Read/Write group
1490 *
1491 * Increase VFIFO value.
1492 */
1493 static void rw_mgr_incr_vfifo(const u32 grp)
1494 {
1495 writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1496 }
1497
1498 /**
1499 * rw_mgr_decr_vfifo() - Decrease VFIFO value
1500 * @grp: Read/Write group
1501 *
1502 * Decrease VFIFO value.
1503 */
1504 static void rw_mgr_decr_vfifo(const u32 grp)
1505 {
1506 u32 i;
1507
1508 for (i = 0; i < VFIFO_SIZE - 1; i++)
1509 rw_mgr_incr_vfifo(grp);
1510 }
1511
1512 /**
1513 * find_vfifo_failing_read() - Push VFIFO to get a failing read
1514 * @grp: Read/Write group
1515 *
1516 * Push VFIFO until a failing read happens.
1517 */
1518 static int find_vfifo_failing_read(const u32 grp)
1519 {
1520 u32 v, ret, fail_cnt = 0;
1521
1522 for (v = 0; v < VFIFO_SIZE; v++) {
1523 debug_cond(DLEVEL == 2, "%s:%d: vfifo %u\n",
1524 __func__, __LINE__, v);
1525 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1526 PASS_ONE_BIT, 0);
1527 if (!ret) {
1528 fail_cnt++;
1529
1530 if (fail_cnt == 2)
1531 return v;
1532 }
1533
1534 /* Fiddle with FIFO. */
1535 rw_mgr_incr_vfifo(grp);
1536 }
1537
1538 /* No failing read found! Something must have gone wrong. */
1539 debug_cond(DLEVEL == 2, "%s:%d: vfifo failed\n", __func__, __LINE__);
1540 return 0;
1541 }
1542
1543 /**
1544 * sdr_find_phase_delay() - Find DQS enable phase or delay
1545 * @working: If 1, look for working phase/delay, if 0, look for non-working
1546 * @delay: If 1, look for delay, if 0, look for phase
1547 * @grp: Read/Write group
1548 * @work: Working window position
1549 * @work_inc: Working window increment
1550 * @pd: DQS Phase/Delay Iterator
1551 *
1552 * Find working or non-working DQS enable phase setting.
1553 */
1554 static int sdr_find_phase_delay(int working, int delay, const u32 grp,
1555 u32 *work, const u32 work_inc, u32 *pd)
1556 {
1557 const u32 max = delay ? IO_DQS_EN_DELAY_MAX : IO_DQS_EN_PHASE_MAX;
1558 u32 ret;
1559
1560 for (; *pd <= max; (*pd)++) {
1561 if (delay)
1562 scc_mgr_set_dqs_en_delay_all_ranks(grp, *pd);
1563 else
1564 scc_mgr_set_dqs_en_phase_all_ranks(grp, *pd);
1565
1566 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1567 PASS_ONE_BIT, 0);
1568 if (!working)
1569 ret = !ret;
1570
1571 if (ret)
1572 return 0;
1573
1574 if (work)
1575 *work += work_inc;
1576 }
1577
1578 return -EINVAL;
1579 }
1580 /**
1581 * sdr_find_phase() - Find DQS enable phase
1582 * @working: If 1, look for working phase, if 0, look for non-working phase
1583 * @grp: Read/Write group
1584 * @work: Working window position
1585 * @i: Iterator
1586 * @p: DQS Phase Iterator
1587 *
1588 * Find working or non-working DQS enable phase setting.
1589 */
1590 static int sdr_find_phase(int working, const u32 grp, u32 *work,
1591 u32 *i, u32 *p)
1592 {
1593 const u32 end = VFIFO_SIZE + (working ? 0 : 1);
1594 int ret;
1595
1596 for (; *i < end; (*i)++) {
1597 if (working)
1598 *p = 0;
1599
1600 ret = sdr_find_phase_delay(working, 0, grp, work,
1601 IO_DELAY_PER_OPA_TAP, p);
1602 if (!ret)
1603 return 0;
1604
1605 if (*p > IO_DQS_EN_PHASE_MAX) {
1606 /* Fiddle with FIFO. */
1607 rw_mgr_incr_vfifo(grp);
1608 if (!working)
1609 *p = 0;
1610 }
1611 }
1612
1613 return -EINVAL;
1614 }
1615
1616 /**
1617 * sdr_working_phase() - Find working DQS enable phase
1618 * @grp: Read/Write group
1619 * @work_bgn: Working window start position
1620 * @d: dtaps output value
1621 * @p: DQS Phase Iterator
1622 * @i: Iterator
1623 *
1624 * Find working DQS enable phase setting.
1625 */
1626 static int sdr_working_phase(const u32 grp, u32 *work_bgn, u32 *d,
1627 u32 *p, u32 *i)
1628 {
1629 const u32 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP /
1630 IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1631 int ret;
1632
1633 *work_bgn = 0;
1634
1635 for (*d = 0; *d <= dtaps_per_ptap; (*d)++) {
1636 *i = 0;
1637 scc_mgr_set_dqs_en_delay_all_ranks(grp, *d);
1638 ret = sdr_find_phase(1, grp, work_bgn, i, p);
1639 if (!ret)
1640 return 0;
1641 *work_bgn += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1642 }
1643
1644 /* Cannot find working solution */
1645 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n",
1646 __func__, __LINE__);
1647 return -EINVAL;
1648 }
1649
1650 /**
1651 * sdr_backup_phase() - Find DQS enable backup phase
1652 * @grp: Read/Write group
1653 * @work_bgn: Working window start position
1654 * @p: DQS Phase Iterator
1655 *
1656 * Find DQS enable backup phase setting.
1657 */
1658 static void sdr_backup_phase(const u32 grp, u32 *work_bgn, u32 *p)
1659 {
1660 u32 tmp_delay, d;
1661 int ret;
1662
1663 /* Special case code for backing up a phase */
1664 if (*p == 0) {
1665 *p = IO_DQS_EN_PHASE_MAX;
1666 rw_mgr_decr_vfifo(grp);
1667 } else {
1668 (*p)--;
1669 }
1670 tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
1671 scc_mgr_set_dqs_en_phase_all_ranks(grp, *p);
1672
1673 for (d = 0; d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; d++) {
1674 scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1675
1676 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1677 PASS_ONE_BIT, 0);
1678 if (ret) {
1679 *work_bgn = tmp_delay;
1680 break;
1681 }
1682
1683 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1684 }
1685
1686 /* Restore VFIFO to old state before we decremented it (if needed). */
1687 (*p)++;
1688 if (*p > IO_DQS_EN_PHASE_MAX) {
1689 *p = 0;
1690 rw_mgr_incr_vfifo(grp);
1691 }
1692
1693 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1694 }
1695
1696 /**
1697 * sdr_nonworking_phase() - Find non-working DQS enable phase
1698 * @grp: Read/Write group
1699 * @work_end: Working window end position
1700 * @p: DQS Phase Iterator
1701 * @i: Iterator
1702 *
1703 * Find non-working DQS enable phase setting.
1704 */
1705 static int sdr_nonworking_phase(const u32 grp, u32 *work_end, u32 *p, u32 *i)
1706 {
1707 int ret;
1708
1709 (*p)++;
1710 *work_end += IO_DELAY_PER_OPA_TAP;
1711 if (*p > IO_DQS_EN_PHASE_MAX) {
1712 /* Fiddle with FIFO. */
1713 *p = 0;
1714 rw_mgr_incr_vfifo(grp);
1715 }
1716
1717 ret = sdr_find_phase(0, grp, work_end, i, p);
1718 if (ret) {
1719 /* Cannot see edge of failing read. */
1720 debug_cond(DLEVEL == 2, "%s:%d: end: failed\n",
1721 __func__, __LINE__);
1722 }
1723
1724 return ret;
1725 }
1726
1727 /**
1728 * sdr_find_window_center() - Find center of the working DQS window.
1729 * @grp: Read/Write group
1730 * @work_bgn: First working settings
1731 * @work_end: Last working settings
1732 *
1733 * Find center of the working DQS enable window.
1734 */
1735 static int sdr_find_window_center(const u32 grp, const u32 work_bgn,
1736 const u32 work_end)
1737 {
1738 u32 work_mid;
1739 int tmp_delay = 0;
1740 int i, p, d;
1741
1742 work_mid = (work_bgn + work_end) / 2;
1743
1744 debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1745 work_bgn, work_end, work_mid);
1746 /* Get the middle delay to be less than a VFIFO delay */
1747 tmp_delay = (IO_DQS_EN_PHASE_MAX + 1) * IO_DELAY_PER_OPA_TAP;
1748
1749 debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1750 work_mid %= tmp_delay;
1751 debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid);
1752
1753 tmp_delay = rounddown(work_mid, IO_DELAY_PER_OPA_TAP);
1754 if (tmp_delay > IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP)
1755 tmp_delay = IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP;
1756 p = tmp_delay / IO_DELAY_PER_OPA_TAP;
1757
1758 debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay);
1759
1760 d = DIV_ROUND_UP(work_mid - tmp_delay, IO_DELAY_PER_DQS_EN_DCHAIN_TAP);
1761 if (d > IO_DQS_EN_DELAY_MAX)
1762 d = IO_DQS_EN_DELAY_MAX;
1763 tmp_delay += d * IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1764
1765 debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay);
1766
1767 scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1768 scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1769
1770 /*
1771 * push vfifo until we can successfully calibrate. We can do this
1772 * because the largest possible margin in 1 VFIFO cycle.
1773 */
1774 for (i = 0; i < VFIFO_SIZE; i++) {
1775 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center\n");
1776 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1777 PASS_ONE_BIT,
1778 0)) {
1779 debug_cond(DLEVEL == 2,
1780 "%s:%d center: found: ptap=%u dtap=%u\n",
1781 __func__, __LINE__, p, d);
1782 return 0;
1783 }
1784
1785 /* Fiddle with FIFO. */
1786 rw_mgr_incr_vfifo(grp);
1787 }
1788
1789 debug_cond(DLEVEL == 2, "%s:%d center: failed.\n",
1790 __func__, __LINE__);
1791 return -EINVAL;
1792 }
1793
1794 /**
1795 * rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase() - Find a good DQS enable to use
1796 * @grp: Read/Write Group
1797 *
1798 * Find a good DQS enable to use.
1799 */
1800 static int rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(const u32 grp)
1801 {
1802 u32 d, p, i;
1803 u32 dtaps_per_ptap;
1804 u32 work_bgn, work_end;
1805 u32 found_passing_read, found_failing_read, initial_failing_dtap;
1806 int ret;
1807
1808 debug("%s:%d %u\n", __func__, __LINE__, grp);
1809
1810 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1811
1812 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1813 scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1814
1815 /* Step 0: Determine number of delay taps for each phase tap. */
1816 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP / IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1817
1818 /* Step 1: First push vfifo until we get a failing read. */
1819 find_vfifo_failing_read(grp);
1820
1821 /* Step 2: Find first working phase, increment in ptaps. */
1822 work_bgn = 0;
1823 ret = sdr_working_phase(grp, &work_bgn, &d, &p, &i);
1824 if (ret)
1825 return ret;
1826
1827 work_end = work_bgn;
1828
1829 /*
1830 * If d is 0 then the working window covers a phase tap and we can
1831 * follow the old procedure. Otherwise, we've found the beginning
1832 * and we need to increment the dtaps until we find the end.
1833 */
1834 if (d == 0) {
1835 /*
1836 * Step 3a: If we have room, back off by one and
1837 * increment in dtaps.
1838 */
1839 sdr_backup_phase(grp, &work_bgn, &p);
1840
1841 /*
1842 * Step 4a: go forward from working phase to non working
1843 * phase, increment in ptaps.
1844 */
1845 ret = sdr_nonworking_phase(grp, &work_end, &p, &i);
1846 if (ret)
1847 return ret;
1848
1849 /* Step 5a: Back off one from last, increment in dtaps. */
1850
1851 /* Special case code for backing up a phase */
1852 if (p == 0) {
1853 p = IO_DQS_EN_PHASE_MAX;
1854 rw_mgr_decr_vfifo(grp);
1855 } else {
1856 p = p - 1;
1857 }
1858
1859 work_end -= IO_DELAY_PER_OPA_TAP;
1860 scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1861
1862 d = 0;
1863
1864 debug_cond(DLEVEL == 2, "%s:%d p: ptap=%u\n",
1865 __func__, __LINE__, p);
1866 }
1867
1868 /* The dtap increment to find the failing edge is done here. */
1869 sdr_find_phase_delay(0, 1, grp, &work_end,
1870 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, &d);
1871
1872 /* Go back to working dtap */
1873 if (d != 0)
1874 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1875
1876 debug_cond(DLEVEL == 2,
1877 "%s:%d p/d: ptap=%u dtap=%u end=%u\n",
1878 __func__, __LINE__, p, d - 1, work_end);
1879
1880 if (work_end < work_bgn) {
1881 /* nil range */
1882 debug_cond(DLEVEL == 2, "%s:%d end-2: failed\n",
1883 __func__, __LINE__);
1884 return -EINVAL;
1885 }
1886
1887 debug_cond(DLEVEL == 2, "%s:%d found range [%u,%u]\n",
1888 __func__, __LINE__, work_bgn, work_end);
1889
1890 /*
1891 * We need to calculate the number of dtaps that equal a ptap.
1892 * To do that we'll back up a ptap and re-find the edge of the
1893 * window using dtaps
1894 */
1895 debug_cond(DLEVEL == 2, "%s:%d calculate dtaps_per_ptap for tracking\n",
1896 __func__, __LINE__);
1897
1898 /* Special case code for backing up a phase */
1899 if (p == 0) {
1900 p = IO_DQS_EN_PHASE_MAX;
1901 rw_mgr_decr_vfifo(grp);
1902 debug_cond(DLEVEL == 2, "%s:%d backedup cycle/phase: p=%u\n",
1903 __func__, __LINE__, p);
1904 } else {
1905 p = p - 1;
1906 debug_cond(DLEVEL == 2, "%s:%d backedup phase only: p=%u",
1907 __func__, __LINE__, p);
1908 }
1909
1910 scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1911
1912 /*
1913 * Increase dtap until we first see a passing read (in case the
1914 * window is smaller than a ptap), and then a failing read to
1915 * mark the edge of the window again.
1916 */
1917
1918 /* Find a passing read. */
1919 debug_cond(DLEVEL == 2, "%s:%d find passing read\n",
1920 __func__, __LINE__);
1921
1922 initial_failing_dtap = d;
1923
1924 found_passing_read = !sdr_find_phase_delay(1, 1, grp, NULL, 0, &d);
1925 if (found_passing_read) {
1926 /* Find a failing read. */
1927 debug_cond(DLEVEL == 2, "%s:%d find failing read\n",
1928 __func__, __LINE__);
1929 d++;
1930 found_failing_read = !sdr_find_phase_delay(0, 1, grp, NULL, 0,
1931 &d);
1932 } else {
1933 debug_cond(DLEVEL == 1,
1934 "%s:%d failed to calculate dtaps per ptap. Fall back on static value\n",
1935 __func__, __LINE__);
1936 }
1937
1938 /*
1939 * The dynamically calculated dtaps_per_ptap is only valid if we
1940 * found a passing/failing read. If we didn't, it means d hit the max
1941 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1942 * statically calculated value.
1943 */
1944 if (found_passing_read && found_failing_read)
1945 dtaps_per_ptap = d - initial_failing_dtap;
1946
1947 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1948 debug_cond(DLEVEL == 2, "%s:%d dtaps_per_ptap=%u - %u = %u",
1949 __func__, __LINE__, d, initial_failing_dtap, dtaps_per_ptap);
1950
1951 /* Step 6: Find the centre of the window. */
1952 ret = sdr_find_window_center(grp, work_bgn, work_end);
1953
1954 return ret;
1955 }
1956
1957 /**
1958 * search_stop_check() - Check if the detected edge is valid
1959 * @write: Perform read (Stage 2) or write (Stage 3) calibration
1960 * @d: DQS delay
1961 * @rank_bgn: Rank number
1962 * @write_group: Write Group
1963 * @read_group: Read Group
1964 * @bit_chk: Resulting bit mask after the test
1965 * @sticky_bit_chk: Resulting sticky bit mask after the test
1966 * @use_read_test: Perform read test
1967 *
1968 * Test if the found edge is valid.
1969 */
1970 static u32 search_stop_check(const int write, const int d, const int rank_bgn,
1971 const u32 write_group, const u32 read_group,
1972 u32 *bit_chk, u32 *sticky_bit_chk,
1973 const u32 use_read_test)
1974 {
1975 const u32 ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
1976 RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
1977 const u32 correct_mask = write ? param->write_correct_mask :
1978 param->read_correct_mask;
1979 const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
1980 RW_MGR_MEM_DQ_PER_READ_DQS;
1981 u32 ret;
1982 /*
1983 * Stop searching when the read test doesn't pass AND when
1984 * we've seen a passing read on every bit.
1985 */
1986 if (write) { /* WRITE-ONLY */
1987 ret = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1988 0, PASS_ONE_BIT,
1989 bit_chk, 0);
1990 } else if (use_read_test) { /* READ-ONLY */
1991 ret = !rw_mgr_mem_calibrate_read_test(rank_bgn, read_group,
1992 NUM_READ_PB_TESTS,
1993 PASS_ONE_BIT, bit_chk,
1994 0, 0);
1995 } else { /* READ-ONLY */
1996 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 0,
1997 PASS_ONE_BIT, bit_chk, 0);
1998 *bit_chk = *bit_chk >> (per_dqs *
1999 (read_group - (write_group * ratio)));
2000 ret = (*bit_chk == 0);
2001 }
2002 *sticky_bit_chk = *sticky_bit_chk | *bit_chk;
2003 ret = ret && (*sticky_bit_chk == correct_mask);
2004 debug_cond(DLEVEL == 2,
2005 "%s:%d center(left): dtap=%u => %u == %u && %u",
2006 __func__, __LINE__, d,
2007 *sticky_bit_chk, correct_mask, ret);
2008 return ret;
2009 }
2010
2011 /**
2012 * search_left_edge() - Find left edge of DQ/DQS working phase
2013 * @write: Perform read (Stage 2) or write (Stage 3) calibration
2014 * @rank_bgn: Rank number
2015 * @write_group: Write Group
2016 * @read_group: Read Group
2017 * @test_bgn: Rank number to begin the test
2018 * @sticky_bit_chk: Resulting sticky bit mask after the test
2019 * @left_edge: Left edge of the DQ/DQS phase
2020 * @right_edge: Right edge of the DQ/DQS phase
2021 * @use_read_test: Perform read test
2022 *
2023 * Find left edge of DQ/DQS working phase.
2024 */
2025 static void search_left_edge(const int write, const int rank_bgn,
2026 const u32 write_group, const u32 read_group, const u32 test_bgn,
2027 u32 *sticky_bit_chk,
2028 int *left_edge, int *right_edge, const u32 use_read_test)
2029 {
2030 const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX;
2031 const u32 dqs_max = write ? IO_IO_OUT1_DELAY_MAX : IO_DQS_IN_DELAY_MAX;
2032 const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2033 RW_MGR_MEM_DQ_PER_READ_DQS;
2034 u32 stop, bit_chk;
2035 int i, d;
2036
2037 for (d = 0; d <= dqs_max; d++) {
2038 if (write)
2039 scc_mgr_apply_group_dq_out1_delay(d);
2040 else
2041 scc_mgr_apply_group_dq_in_delay(test_bgn, d);
2042
2043 writel(0, &sdr_scc_mgr->update);
2044
2045 stop = search_stop_check(write, d, rank_bgn, write_group,
2046 read_group, &bit_chk, sticky_bit_chk,
2047 use_read_test);
2048 if (stop == 1)
2049 break;
2050
2051 /* stop != 1 */
2052 for (i = 0; i < per_dqs; i++) {
2053 if (bit_chk & 1) {
2054 /*
2055 * Remember a passing test as
2056 * the left_edge.
2057 */
2058 left_edge[i] = d;
2059 } else {
2060 /*
2061 * If a left edge has not been seen
2062 * yet, then a future passing test
2063 * will mark this edge as the right
2064 * edge.
2065 */
2066 if (left_edge[i] == delay_max + 1)
2067 right_edge[i] = -(d + 1);
2068 }
2069 bit_chk >>= 1;
2070 }
2071 }
2072
2073 /* Reset DQ delay chains to 0 */
2074 if (write)
2075 scc_mgr_apply_group_dq_out1_delay(0);
2076 else
2077 scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2078
2079 *sticky_bit_chk = 0;
2080 for (i = per_dqs - 1; i >= 0; i--) {
2081 debug_cond(DLEVEL == 2,
2082 "%s:%d vfifo_center: left_edge[%u]: %d right_edge[%u]: %d\n",
2083 __func__, __LINE__, i, left_edge[i],
2084 i, right_edge[i]);
2085
2086 /*
2087 * Check for cases where we haven't found the left edge,
2088 * which makes our assignment of the the right edge invalid.
2089 * Reset it to the illegal value.
2090 */
2091 if ((left_edge[i] == delay_max + 1) &&
2092 (right_edge[i] != delay_max + 1)) {
2093 right_edge[i] = delay_max + 1;
2094 debug_cond(DLEVEL == 2,
2095 "%s:%d vfifo_center: reset right_edge[%u]: %d\n",
2096 __func__, __LINE__, i, right_edge[i]);
2097 }
2098
2099 /*
2100 * Reset sticky bit
2101 * READ: except for bits where we have seen both
2102 * the left and right edge.
2103 * WRITE: except for bits where we have seen the
2104 * left edge.
2105 */
2106 *sticky_bit_chk <<= 1;
2107 if (write) {
2108 if (left_edge[i] != delay_max + 1)
2109 *sticky_bit_chk |= 1;
2110 } else {
2111 if ((left_edge[i] != delay_max + 1) &&
2112 (right_edge[i] != delay_max + 1))
2113 *sticky_bit_chk |= 1;
2114 }
2115 }
2116
2117
2118 }
2119
2120 /**
2121 * search_right_edge() - Find right edge of DQ/DQS working phase
2122 * @write: Perform read (Stage 2) or write (Stage 3) calibration
2123 * @rank_bgn: Rank number
2124 * @write_group: Write Group
2125 * @read_group: Read Group
2126 * @start_dqs: DQS start phase
2127 * @start_dqs_en: DQS enable start phase
2128 * @sticky_bit_chk: Resulting sticky bit mask after the test
2129 * @left_edge: Left edge of the DQ/DQS phase
2130 * @right_edge: Right edge of the DQ/DQS phase
2131 * @use_read_test: Perform read test
2132 *
2133 * Find right edge of DQ/DQS working phase.
2134 */
2135 static int search_right_edge(const int write, const int rank_bgn,
2136 const u32 write_group, const u32 read_group,
2137 const int start_dqs, const int start_dqs_en,
2138 u32 *sticky_bit_chk,
2139 int *left_edge, int *right_edge, const u32 use_read_test)
2140 {
2141 const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX;
2142 const u32 dqs_max = write ? IO_IO_OUT1_DELAY_MAX : IO_DQS_IN_DELAY_MAX;
2143 const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2144 RW_MGR_MEM_DQ_PER_READ_DQS;
2145 u32 stop, bit_chk;
2146 int i, d;
2147
2148 for (d = 0; d <= dqs_max - start_dqs; d++) {
2149 if (write) { /* WRITE-ONLY */
2150 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2151 d + start_dqs);
2152 } else { /* READ-ONLY */
2153 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
2154 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2155 uint32_t delay = d + start_dqs_en;
2156 if (delay > IO_DQS_EN_DELAY_MAX)
2157 delay = IO_DQS_EN_DELAY_MAX;
2158 scc_mgr_set_dqs_en_delay(read_group, delay);
2159 }
2160 scc_mgr_load_dqs(read_group);
2161 }
2162
2163 writel(0, &sdr_scc_mgr->update);
2164
2165 stop = search_stop_check(write, d, rank_bgn, write_group,
2166 read_group, &bit_chk, sticky_bit_chk,
2167 use_read_test);
2168 if (stop == 1) {
2169 if (write && (d == 0)) { /* WRITE-ONLY */
2170 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2171 /*
2172 * d = 0 failed, but it passed when
2173 * testing the left edge, so it must be
2174 * marginal, set it to -1
2175 */
2176 if (right_edge[i] == delay_max + 1 &&
2177 left_edge[i] != delay_max + 1)
2178 right_edge[i] = -1;
2179 }
2180 }
2181 break;
2182 }
2183
2184 /* stop != 1 */
2185 for (i = 0; i < per_dqs; i++) {
2186 if (bit_chk & 1) {
2187 /*
2188 * Remember a passing test as
2189 * the right_edge.
2190 */
2191 right_edge[i] = d;
2192 } else {
2193 if (d != 0) {
2194 /*
2195 * If a right edge has not
2196 * been seen yet, then a future
2197 * passing test will mark this
2198 * edge as the left edge.
2199 */
2200 if (right_edge[i] == delay_max + 1)
2201 left_edge[i] = -(d + 1);
2202 } else {
2203 /*
2204 * d = 0 failed, but it passed
2205 * when testing the left edge,
2206 * so it must be marginal, set
2207 * it to -1
2208 */
2209 if (right_edge[i] == delay_max + 1 &&
2210 left_edge[i] != delay_max + 1)
2211 right_edge[i] = -1;
2212 /*
2213 * If a right edge has not been
2214 * seen yet, then a future
2215 * passing test will mark this
2216 * edge as the left edge.
2217 */
2218 else if (right_edge[i] == delay_max + 1)
2219 left_edge[i] = -(d + 1);
2220 }
2221 }
2222
2223 debug_cond(DLEVEL == 2, "%s:%d center[r,d=%u]: ",
2224 __func__, __LINE__, d);
2225 debug_cond(DLEVEL == 2,
2226 "bit_chk_test=%i left_edge[%u]: %d ",
2227 bit_chk & 1, i, left_edge[i]);
2228 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2229 right_edge[i]);
2230 bit_chk >>= 1;
2231 }
2232 }
2233
2234 /* Check that all bits have a window */
2235 for (i = 0; i < per_dqs; i++) {
2236 debug_cond(DLEVEL == 2,
2237 "%s:%d write_center: left_edge[%u]: %d right_edge[%u]: %d",
2238 __func__, __LINE__, i, left_edge[i],
2239 i, right_edge[i]);
2240 if ((left_edge[i] == dqs_max + 1) ||
2241 (right_edge[i] == dqs_max + 1))
2242 return i + 1; /* FIXME: If we fail, retval > 0 */
2243 }
2244
2245 return 0;
2246 }
2247
2248 /**
2249 * get_window_mid_index() - Find the best middle setting of DQ/DQS phase
2250 * @write: Perform read (Stage 2) or write (Stage 3) calibration
2251 * @left_edge: Left edge of the DQ/DQS phase
2252 * @right_edge: Right edge of the DQ/DQS phase
2253 * @mid_min: Best DQ/DQS phase middle setting
2254 *
2255 * Find index and value of the middle of the DQ/DQS working phase.
2256 */
2257 static int get_window_mid_index(const int write, int *left_edge,
2258 int *right_edge, int *mid_min)
2259 {
2260 const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2261 RW_MGR_MEM_DQ_PER_READ_DQS;
2262 int i, mid, min_index;
2263
2264 /* Find middle of window for each DQ bit */
2265 *mid_min = left_edge[0] - right_edge[0];
2266 min_index = 0;
2267 for (i = 1; i < per_dqs; i++) {
2268 mid = left_edge[i] - right_edge[i];
2269 if (mid < *mid_min) {
2270 *mid_min = mid;
2271 min_index = i;
2272 }
2273 }
2274
2275 /*
2276 * -mid_min/2 represents the amount that we need to move DQS.
2277 * If mid_min is odd and positive we'll need to add one to make
2278 * sure the rounding in further calculations is correct (always
2279 * bias to the right), so just add 1 for all positive values.
2280 */
2281 if (*mid_min > 0)
2282 (*mid_min)++;
2283 *mid_min = *mid_min / 2;
2284
2285 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: *mid_min=%d (index=%u)\n",
2286 __func__, __LINE__, *mid_min, min_index);
2287 return min_index;
2288 }
2289
2290 /**
2291 * center_dq_windows() - Center the DQ/DQS windows
2292 * @write: Perform read (Stage 2) or write (Stage 3) calibration
2293 * @left_edge: Left edge of the DQ/DQS phase
2294 * @right_edge: Right edge of the DQ/DQS phase
2295 * @mid_min: Adjusted DQ/DQS phase middle setting
2296 * @orig_mid_min: Original DQ/DQS phase middle setting
2297 * @min_index: DQ/DQS phase middle setting index
2298 * @test_bgn: Rank number to begin the test
2299 * @dq_margin: Amount of shift for the DQ
2300 * @dqs_margin: Amount of shift for the DQS
2301 *
2302 * Align the DQ/DQS windows in each group.
2303 */
2304 static void center_dq_windows(const int write, int *left_edge, int *right_edge,
2305 const int mid_min, const int orig_mid_min,
2306 const int min_index, const int test_bgn,
2307 int *dq_margin, int *dqs_margin)
2308 {
2309 const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX;
2310 const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2311 RW_MGR_MEM_DQ_PER_READ_DQS;
2312 const u32 delay_off = write ? SCC_MGR_IO_OUT1_DELAY_OFFSET :
2313 SCC_MGR_IO_IN_DELAY_OFFSET;
2314 const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | delay_off;
2315
2316 u32 temp_dq_io_delay1, temp_dq_io_delay2;
2317 int shift_dq, i, p;
2318
2319 /* Initialize data for export structures */
2320 *dqs_margin = delay_max + 1;
2321 *dq_margin = delay_max + 1;
2322
2323 /* add delay to bring centre of all DQ windows to the same "level" */
2324 for (i = 0, p = test_bgn; i < per_dqs; i++, p++) {
2325 /* Use values before divide by 2 to reduce round off error */
2326 shift_dq = (left_edge[i] - right_edge[i] -
2327 (left_edge[min_index] - right_edge[min_index]))/2 +
2328 (orig_mid_min - mid_min);
2329
2330 debug_cond(DLEVEL == 2,
2331 "vfifo_center: before: shift_dq[%u]=%d\n",
2332 i, shift_dq);
2333
2334 temp_dq_io_delay1 = readl(addr + (p << 2));
2335 temp_dq_io_delay2 = readl(addr + (i << 2));
2336
2337 if (shift_dq + temp_dq_io_delay1 > delay_max)
2338 shift_dq = delay_max - temp_dq_io_delay2;
2339 else if (shift_dq + temp_dq_io_delay1 < 0)
2340 shift_dq = -temp_dq_io_delay1;
2341
2342 debug_cond(DLEVEL == 2,
2343 "vfifo_center: after: shift_dq[%u]=%d\n",
2344 i, shift_dq);
2345
2346 if (write)
2347 scc_mgr_set_dq_out1_delay(i, temp_dq_io_delay1 + shift_dq);
2348 else
2349 scc_mgr_set_dq_in_delay(p, temp_dq_io_delay1 + shift_dq);
2350
2351 scc_mgr_load_dq(p);
2352
2353 debug_cond(DLEVEL == 2,
2354 "vfifo_center: margin[%u]=[%d,%d]\n", i,
2355 left_edge[i] - shift_dq + (-mid_min),
2356 right_edge[i] + shift_dq - (-mid_min));
2357
2358 /* To determine values for export structures */
2359 if (left_edge[i] - shift_dq + (-mid_min) < *dq_margin)
2360 *dq_margin = left_edge[i] - shift_dq + (-mid_min);
2361
2362 if (right_edge[i] + shift_dq - (-mid_min) < *dqs_margin)
2363 *dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2364 }
2365
2366 }
2367
2368 /**
2369 * rw_mgr_mem_calibrate_vfifo_center() - Per-bit deskew DQ and centering
2370 * @rank_bgn: Rank number
2371 * @rw_group: Read/Write Group
2372 * @test_bgn: Rank at which the test begins
2373 * @use_read_test: Perform a read test
2374 * @update_fom: Update FOM
2375 *
2376 * Per-bit deskew DQ and centering.
2377 */
2378 static int rw_mgr_mem_calibrate_vfifo_center(const u32 rank_bgn,
2379 const u32 rw_group, const u32 test_bgn,
2380 const int use_read_test, const int update_fom)
2381 {
2382 const u32 addr =
2383 SDR_PHYGRP_SCCGRP_ADDRESS + SCC_MGR_DQS_IN_DELAY_OFFSET +
2384 (rw_group << 2);
2385 /*
2386 * Store these as signed since there are comparisons with
2387 * signed numbers.
2388 */
2389 uint32_t sticky_bit_chk;
2390 int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
2391 int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
2392 int32_t orig_mid_min, mid_min;
2393 int32_t new_dqs, start_dqs, start_dqs_en, final_dqs_en;
2394 int32_t dq_margin, dqs_margin;
2395 int i, min_index;
2396 int ret;
2397
2398 debug("%s:%d: %u %u", __func__, __LINE__, rw_group, test_bgn);
2399
2400 start_dqs = readl(addr);
2401 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2402 start_dqs_en = readl(addr - IO_DQS_EN_DELAY_OFFSET);
2403
2404 /* set the left and right edge of each bit to an illegal value */
2405 /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
2406 sticky_bit_chk = 0;
2407 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2408 left_edge[i] = IO_IO_IN_DELAY_MAX + 1;
2409 right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
2410 }
2411
2412 /* Search for the left edge of the window for each bit */
2413 search_left_edge(0, rank_bgn, rw_group, rw_group, test_bgn,
2414 &sticky_bit_chk,
2415 left_edge, right_edge, use_read_test);
2416
2417
2418 /* Search for the right edge of the window for each bit */
2419 ret = search_right_edge(0, rank_bgn, rw_group, rw_group,
2420 start_dqs, start_dqs_en,
2421 &sticky_bit_chk,
2422 left_edge, right_edge, use_read_test);
2423 if (ret) {
2424 /*
2425 * Restore delay chain settings before letting the loop
2426 * in rw_mgr_mem_calibrate_vfifo to retry different
2427 * dqs/ck relationships.
2428 */
2429 scc_mgr_set_dqs_bus_in_delay(rw_group, start_dqs);
2430 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2431 scc_mgr_set_dqs_en_delay(rw_group, start_dqs_en);
2432
2433 scc_mgr_load_dqs(rw_group);
2434 writel(0, &sdr_scc_mgr->update);
2435
2436 debug_cond(DLEVEL == 1,
2437 "%s:%d vfifo_center: failed to find edge [%u]: %d %d",
2438 __func__, __LINE__, i, left_edge[i], right_edge[i]);
2439 if (use_read_test) {
2440 set_failing_group_stage(rw_group *
2441 RW_MGR_MEM_DQ_PER_READ_DQS + i,
2442 CAL_STAGE_VFIFO,
2443 CAL_SUBSTAGE_VFIFO_CENTER);
2444 } else {
2445 set_failing_group_stage(rw_group *
2446 RW_MGR_MEM_DQ_PER_READ_DQS + i,
2447 CAL_STAGE_VFIFO_AFTER_WRITES,
2448 CAL_SUBSTAGE_VFIFO_CENTER);
2449 }
2450 return -EIO;
2451 }
2452
2453 min_index = get_window_mid_index(0, left_edge, right_edge, &mid_min);
2454
2455 /* Determine the amount we can change DQS (which is -mid_min) */
2456 orig_mid_min = mid_min;
2457 new_dqs = start_dqs - mid_min;
2458 if (new_dqs > IO_DQS_IN_DELAY_MAX)
2459 new_dqs = IO_DQS_IN_DELAY_MAX;
2460 else if (new_dqs < 0)
2461 new_dqs = 0;
2462
2463 mid_min = start_dqs - new_dqs;
2464 debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2465 mid_min, new_dqs);
2466
2467 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2468 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2469 mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2470 else if (start_dqs_en - mid_min < 0)
2471 mid_min += start_dqs_en - mid_min;
2472 }
2473 new_dqs = start_dqs - mid_min;
2474
2475 debug_cond(DLEVEL == 1,
2476 "vfifo_center: start_dqs=%d start_dqs_en=%d new_dqs=%d mid_min=%d\n",
2477 start_dqs,
2478 IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2479 new_dqs, mid_min);
2480
2481 /* Add delay to bring centre of all DQ windows to the same "level". */
2482 center_dq_windows(0, left_edge, right_edge, mid_min, orig_mid_min,
2483 min_index, test_bgn, &dq_margin, &dqs_margin);
2484
2485 /* Move DQS-en */
2486 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2487 final_dqs_en = start_dqs_en - mid_min;
2488 scc_mgr_set_dqs_en_delay(rw_group, final_dqs_en);
2489 scc_mgr_load_dqs(rw_group);
2490 }
2491
2492 /* Move DQS */
2493 scc_mgr_set_dqs_bus_in_delay(rw_group, new_dqs);
2494 scc_mgr_load_dqs(rw_group);
2495 debug_cond(DLEVEL == 2,
2496 "%s:%d vfifo_center: dq_margin=%d dqs_margin=%d",
2497 __func__, __LINE__, dq_margin, dqs_margin);
2498
2499 /*
2500 * Do not remove this line as it makes sure all of our decisions
2501 * have been applied. Apply the update bit.
2502 */
2503 writel(0, &sdr_scc_mgr->update);
2504
2505 if ((dq_margin < 0) || (dqs_margin < 0))
2506 return -EINVAL;
2507
2508 return 0;
2509 }
2510
2511 /**
2512 * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device
2513 * @rw_group: Read/Write Group
2514 * @phase: DQ/DQS phase
2515 *
2516 * Because initially no communication ca be reliably performed with the memory
2517 * device, the sequencer uses a guaranteed write mechanism to write data into
2518 * the memory device.
2519 */
2520 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group,
2521 const u32 phase)
2522 {
2523 int ret;
2524
2525 /* Set a particular DQ/DQS phase. */
2526 scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase);
2527
2528 debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n",
2529 __func__, __LINE__, rw_group, phase);
2530
2531 /*
2532 * Altera EMI_RM 2015.05.04 :: Figure 1-25
2533 * Load up the patterns used by read calibration using the
2534 * current DQDQS phase.
2535 */
2536 rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2537
2538 if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)
2539 return 0;
2540
2541 /*
2542 * Altera EMI_RM 2015.05.04 :: Figure 1-26
2543 * Back-to-Back reads of the patterns used for calibration.
2544 */
2545 ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1);
2546 if (ret)
2547 debug_cond(DLEVEL == 1,
2548 "%s:%d Guaranteed read test failed: g=%u p=%u\n",
2549 __func__, __LINE__, rw_group, phase);
2550 return ret;
2551 }
2552
2553 /**
2554 * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration
2555 * @rw_group: Read/Write Group
2556 * @test_bgn: Rank at which the test begins
2557 *
2558 * DQS enable calibration ensures reliable capture of the DQ signal without
2559 * glitches on the DQS line.
2560 */
2561 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group,
2562 const u32 test_bgn)
2563 {
2564 /*
2565 * Altera EMI_RM 2015.05.04 :: Figure 1-27
2566 * DQS and DQS Eanble Signal Relationships.
2567 */
2568
2569 /* We start at zero, so have one less dq to devide among */
2570 const u32 delay_step = IO_IO_IN_DELAY_MAX /
2571 (RW_MGR_MEM_DQ_PER_READ_DQS - 1);
2572 int ret;
2573 u32 i, p, d, r;
2574
2575 debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn);
2576
2577 /* Try different dq_in_delays since the DQ path is shorter than DQS. */
2578 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2579 r += NUM_RANKS_PER_SHADOW_REG) {
2580 for (i = 0, p = test_bgn, d = 0;
2581 i < RW_MGR_MEM_DQ_PER_READ_DQS;
2582 i++, p++, d += delay_step) {
2583 debug_cond(DLEVEL == 1,
2584 "%s:%d: g=%u r=%u i=%u p=%u d=%u\n",
2585 __func__, __LINE__, rw_group, r, i, p, d);
2586
2587 scc_mgr_set_dq_in_delay(p, d);
2588 scc_mgr_load_dq(p);
2589 }
2590
2591 writel(0, &sdr_scc_mgr->update);
2592 }
2593
2594 /*
2595 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
2596 * dq_in_delay values
2597 */
2598 ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group);
2599
2600 debug_cond(DLEVEL == 1,
2601 "%s:%d: g=%u found=%u; Reseting delay chain to zero\n",
2602 __func__, __LINE__, rw_group, !ret);
2603
2604 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2605 r += NUM_RANKS_PER_SHADOW_REG) {
2606 scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2607 writel(0, &sdr_scc_mgr->update);
2608 }
2609
2610 return ret;
2611 }
2612
2613 /**
2614 * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS
2615 * @rw_group: Read/Write Group
2616 * @test_bgn: Rank at which the test begins
2617 * @use_read_test: Perform a read test
2618 * @update_fom: Update FOM
2619 *
2620 * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads
2621 * within a group.
2622 */
2623 static int
2624 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn,
2625 const int use_read_test,
2626 const int update_fom)
2627
2628 {
2629 int ret, grp_calibrated;
2630 u32 rank_bgn, sr;
2631
2632 /*
2633 * Altera EMI_RM 2015.05.04 :: Figure 1-28
2634 * Read per-bit deskew can be done on a per shadow register basis.
2635 */
2636 grp_calibrated = 1;
2637 for (rank_bgn = 0, sr = 0;
2638 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2639 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
2640 ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group,
2641 test_bgn,
2642 use_read_test,
2643 update_fom);
2644 if (!ret)
2645 continue;
2646
2647 grp_calibrated = 0;
2648 }
2649
2650 if (!grp_calibrated)
2651 return -EIO;
2652
2653 return 0;
2654 }
2655
2656 /**
2657 * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
2658 * @rw_group: Read/Write Group
2659 * @test_bgn: Rank at which the test begins
2660 *
2661 * Stage 1: Calibrate the read valid prediction FIFO.
2662 *
2663 * This function implements UniPHY calibration Stage 1, as explained in
2664 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2665 *
2666 * - read valid prediction will consist of finding:
2667 * - DQS enable phase and DQS enable delay (DQS Enable Calibration)
2668 * - DQS input phase and DQS input delay (DQ/DQS Centering)
2669 * - we also do a per-bit deskew on the DQ lines.
2670 */
2671 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn)
2672 {
2673 uint32_t p, d;
2674 uint32_t dtaps_per_ptap;
2675 uint32_t failed_substage;
2676
2677 int ret;
2678
2679 debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn);
2680
2681 /* Update info for sims */
2682 reg_file_set_group(rw_group);
2683 reg_file_set_stage(CAL_STAGE_VFIFO);
2684 reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2685
2686 failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2687
2688 /* USER Determine number of delay taps for each phase tap. */
2689 dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP,
2690 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1;
2691
2692 for (d = 0; d <= dtaps_per_ptap; d += 2) {
2693 /*
2694 * In RLDRAMX we may be messing the delay of pins in
2695 * the same write rw_group but outside of the current read
2696 * the rw_group, but that's ok because we haven't calibrated
2697 * output side yet.
2698 */
2699 if (d > 0) {
2700 scc_mgr_apply_group_all_out_delay_add_all_ranks(
2701 rw_group, d);
2702 }
2703
2704 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) {
2705 /* 1) Guaranteed Write */
2706 ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p);
2707 if (ret)
2708 break;
2709
2710 /* 2) DQS Enable Calibration */
2711 ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group,
2712 test_bgn);
2713 if (ret) {
2714 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2715 continue;
2716 }
2717
2718 /* 3) Centering DQ/DQS */
2719 /*
2720 * If doing read after write calibration, do not update
2721 * FOM now. Do it then.
2722 */
2723 ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group,
2724 test_bgn, 1, 0);
2725 if (ret) {
2726 failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
2727 continue;
2728 }
2729
2730 /* All done. */
2731 goto cal_done_ok;
2732 }
2733 }
2734
2735 /* Calibration Stage 1 failed. */
2736 set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage);
2737 return 0;
2738
2739 /* Calibration Stage 1 completed OK. */
2740 cal_done_ok:
2741 /*
2742 * Reset the delay chains back to zero if they have moved > 1
2743 * (check for > 1 because loop will increase d even when pass in
2744 * first case).
2745 */
2746 if (d > 2)
2747 scc_mgr_zero_group(rw_group, 1);
2748
2749 return 1;
2750 }
2751
2752 /**
2753 * rw_mgr_mem_calibrate_vfifo_end() - DQ/DQS Centering.
2754 * @rw_group: Read/Write Group
2755 * @test_bgn: Rank at which the test begins
2756 *
2757 * Stage 3: DQ/DQS Centering.
2758 *
2759 * This function implements UniPHY calibration Stage 3, as explained in
2760 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2761 */
2762 static int rw_mgr_mem_calibrate_vfifo_end(const u32 rw_group,
2763 const u32 test_bgn)
2764 {
2765 int ret;
2766
2767 debug("%s:%d %u %u", __func__, __LINE__, rw_group, test_bgn);
2768
2769 /* Update info for sims. */
2770 reg_file_set_group(rw_group);
2771 reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2772 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2773
2774 ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, test_bgn, 0, 1);
2775 if (ret)
2776 set_failing_group_stage(rw_group,
2777 CAL_STAGE_VFIFO_AFTER_WRITES,
2778 CAL_SUBSTAGE_VFIFO_CENTER);
2779 return ret;
2780 }
2781
2782 /**
2783 * rw_mgr_mem_calibrate_lfifo() - Minimize latency
2784 *
2785 * Stage 4: Minimize latency.
2786 *
2787 * This function implements UniPHY calibration Stage 4, as explained in
2788 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2789 * Calibrate LFIFO to find smallest read latency.
2790 */
2791 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2792 {
2793 int found_one = 0;
2794
2795 debug("%s:%d\n", __func__, __LINE__);
2796
2797 /* Update info for sims. */
2798 reg_file_set_stage(CAL_STAGE_LFIFO);
2799 reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2800
2801 /* Load up the patterns used by read calibration for all ranks */
2802 rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2803
2804 do {
2805 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2806 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2807 __func__, __LINE__, gbl->curr_read_lat);
2808
2809 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, NUM_READ_TESTS,
2810 PASS_ALL_BITS, 1))
2811 break;
2812
2813 found_one = 1;
2814 /*
2815 * Reduce read latency and see if things are
2816 * working correctly.
2817 */
2818 gbl->curr_read_lat--;
2819 } while (gbl->curr_read_lat > 0);
2820
2821 /* Reset the fifos to get pointers to known state. */
2822 writel(0, &phy_mgr_cmd->fifo_reset);
2823
2824 if (found_one) {
2825 /* Add a fudge factor to the read latency that was determined */
2826 gbl->curr_read_lat += 2;
2827 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2828 debug_cond(DLEVEL == 2,
2829 "%s:%d lfifo: success: using read_lat=%u\n",
2830 __func__, __LINE__, gbl->curr_read_lat);
2831 } else {
2832 set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2833 CAL_SUBSTAGE_READ_LATENCY);
2834
2835 debug_cond(DLEVEL == 2,
2836 "%s:%d lfifo: failed at initial read_lat=%u\n",
2837 __func__, __LINE__, gbl->curr_read_lat);
2838 }
2839
2840 return found_one;
2841 }
2842
2843 /**
2844 * search_window() - Search for the/part of the window with DM/DQS shift
2845 * @search_dm: If 1, search for the DM shift, if 0, search for DQS shift
2846 * @rank_bgn: Rank number
2847 * @write_group: Write Group
2848 * @bgn_curr: Current window begin
2849 * @end_curr: Current window end
2850 * @bgn_best: Current best window begin
2851 * @end_best: Current best window end
2852 * @win_best: Size of the best window
2853 * @new_dqs: New DQS value (only applicable if search_dm = 0).
2854 *
2855 * Search for the/part of the window with DM/DQS shift.
2856 */
2857 static void search_window(const int search_dm,
2858 const u32 rank_bgn, const u32 write_group,
2859 int *bgn_curr, int *end_curr, int *bgn_best,
2860 int *end_best, int *win_best, int new_dqs)
2861 {
2862 u32 bit_chk;
2863 const int max = IO_IO_OUT1_DELAY_MAX - new_dqs;
2864 int d, di;
2865
2866 /* Search for the/part of the window with DM/DQS shift. */
2867 for (di = max; di >= 0; di -= DELTA_D) {
2868 if (search_dm) {
2869 d = di;
2870 scc_mgr_apply_group_dm_out1_delay(d);
2871 } else {
2872 /* For DQS, we go from 0...max */
2873 d = max - di;
2874 /*
2875 * Note: This only shifts DQS, so are we limiting ourselve to
2876 * width of DQ unnecessarily.
2877 */
2878 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2879 d + new_dqs);
2880 }
2881
2882 writel(0, &sdr_scc_mgr->update);
2883
2884 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
2885 PASS_ALL_BITS, &bit_chk,
2886 0)) {
2887 /* Set current end of the window. */
2888 *end_curr = search_dm ? -d : d;
2889
2890 /*
2891 * If a starting edge of our window has not been seen
2892 * this is our current start of the DM window.
2893 */
2894 if (*bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
2895 *bgn_curr = search_dm ? -d : d;
2896
2897 /*
2898 * If current window is bigger than best seen.
2899 * Set best seen to be current window.
2900 */
2901 if ((*end_curr - *bgn_curr + 1) > *win_best) {
2902 *win_best = *end_curr - *bgn_curr + 1;
2903 *bgn_best = *bgn_curr;
2904 *end_best = *end_curr;
2905 }
2906 } else {
2907 /* We just saw a failing test. Reset temp edge. */
2908 *bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2909 *end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2910
2911 /* Early exit is only applicable to DQS. */
2912 if (search_dm)
2913 continue;
2914
2915 /*
2916 * Early exit optimization: if the remaining delay
2917 * chain space is less than already seen largest
2918 * window we can exit.
2919 */
2920 if (*win_best - 1 > IO_IO_OUT1_DELAY_MAX - new_dqs - d)
2921 break;
2922 }
2923 }
2924 }
2925
2926 /*
2927 * rw_mgr_mem_calibrate_writes_center() - Center all windows
2928 * @rank_bgn: Rank number
2929 * @write_group: Write group
2930 * @test_bgn: Rank at which the test begins
2931 *
2932 * Center all windows. Do per-bit-deskew to possibly increase size of
2933 * certain windows.
2934 */
2935 static int
2936 rw_mgr_mem_calibrate_writes_center(const u32 rank_bgn, const u32 write_group,
2937 const u32 test_bgn)
2938 {
2939 int i;
2940 u32 sticky_bit_chk;
2941 u32 min_index;
2942 int left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2943 int right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2944 int mid;
2945 int mid_min, orig_mid_min;
2946 int new_dqs, start_dqs;
2947 int dq_margin, dqs_margin, dm_margin;
2948 int bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2949 int end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2950 int bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
2951 int end_best = IO_IO_OUT1_DELAY_MAX + 1;
2952 int win_best = 0;
2953
2954 int ret;
2955
2956 debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2957
2958 dm_margin = 0;
2959
2960 start_dqs = readl((SDR_PHYGRP_SCCGRP_ADDRESS |
2961 SCC_MGR_IO_OUT1_DELAY_OFFSET) +
2962 (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
2963
2964 /* Per-bit deskew. */
2965
2966 /*
2967 * Set the left and right edge of each bit to an illegal value.
2968 * Use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
2969 */
2970 sticky_bit_chk = 0;
2971 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2972 left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2973 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2974 }
2975
2976 /* Search for the left edge of the window for each bit. */
2977 search_left_edge(1, rank_bgn, write_group, 0, test_bgn,
2978 &sticky_bit_chk,
2979 left_edge, right_edge, 0);
2980
2981 /* Search for the right edge of the window for each bit. */
2982 ret = search_right_edge(1, rank_bgn, write_group, 0,
2983 start_dqs, 0,
2984 &sticky_bit_chk,
2985 left_edge, right_edge, 0);
2986 if (ret) {
2987 set_failing_group_stage(test_bgn + ret - 1, CAL_STAGE_WRITES,
2988 CAL_SUBSTAGE_WRITES_CENTER);
2989 return -EINVAL;
2990 }
2991
2992 min_index = get_window_mid_index(1, left_edge, right_edge, &mid_min);
2993
2994 /* Determine the amount we can change DQS (which is -mid_min). */
2995 orig_mid_min = mid_min;
2996 new_dqs = start_dqs;
2997 mid_min = 0;
2998 debug_cond(DLEVEL == 1,
2999 "%s:%d write_center: start_dqs=%d new_dqs=%d mid_min=%d\n",
3000 __func__, __LINE__, start_dqs, new_dqs, mid_min);
3001
3002 /* Add delay to bring centre of all DQ windows to the same "level". */
3003 center_dq_windows(1, left_edge, right_edge, mid_min, orig_mid_min,
3004 min_index, 0, &dq_margin, &dqs_margin);
3005
3006 /* Move DQS */
3007 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3008 writel(0, &sdr_scc_mgr->update);
3009
3010 /* Centre DM */
3011 debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
3012
3013 /*
3014 * Set the left and right edge of each bit to an illegal value.
3015 * Use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
3016 */
3017 left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
3018 right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
3019
3020 /* Search for the/part of the window with DM shift. */
3021 search_window(1, rank_bgn, write_group, &bgn_curr, &end_curr,
3022 &bgn_best, &end_best, &win_best, 0);
3023
3024 /* Reset DM delay chains to 0. */
3025 scc_mgr_apply_group_dm_out1_delay(0);
3026
3027 /*
3028 * Check to see if the current window nudges up aganist 0 delay.
3029 * If so we need to continue the search by shifting DQS otherwise DQS
3030 * search begins as a new search.
3031 */
3032 if (end_curr != 0) {
3033 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3034 end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3035 }
3036
3037 /* Search for the/part of the window with DQS shifts. */
3038 search_window(0, rank_bgn, write_group, &bgn_curr, &end_curr,
3039 &bgn_best, &end_best, &win_best, new_dqs);
3040
3041 /* Assign left and right edge for cal and reporting. */
3042 left_edge[0] = -1 * bgn_best;
3043 right_edge[0] = end_best;
3044
3045 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n",
3046 __func__, __LINE__, left_edge[0], right_edge[0]);
3047
3048 /* Move DQS (back to orig). */
3049 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3050
3051 /* Move DM */
3052
3053 /* Find middle of window for the DM bit. */
3054 mid = (left_edge[0] - right_edge[0]) / 2;
3055
3056 /* Only move right, since we are not moving DQS/DQ. */
3057 if (mid < 0)
3058 mid = 0;
3059
3060 /* dm_marign should fail if we never find a window. */
3061 if (win_best == 0)
3062 dm_margin = -1;
3063 else
3064 dm_margin = left_edge[0] - mid;
3065
3066 scc_mgr_apply_group_dm_out1_delay(mid);
3067 writel(0, &sdr_scc_mgr->update);
3068
3069 debug_cond(DLEVEL == 2,
3070 "%s:%d dm_calib: left=%d right=%d mid=%d dm_margin=%d\n",
3071 __func__, __LINE__, left_edge[0], right_edge[0],
3072 mid, dm_margin);
3073 /* Export values. */
3074 gbl->fom_out += dq_margin + dqs_margin;
3075
3076 debug_cond(DLEVEL == 2,
3077 "%s:%d write_center: dq_margin=%d dqs_margin=%d dm_margin=%d\n",
3078 __func__, __LINE__, dq_margin, dqs_margin, dm_margin);
3079
3080 /*
3081 * Do not remove this line as it makes sure all of our
3082 * decisions have been applied.
3083 */
3084 writel(0, &sdr_scc_mgr->update);
3085
3086 if ((dq_margin < 0) || (dqs_margin < 0) || (dm_margin < 0))
3087 return -EINVAL;
3088
3089 return 0;
3090 }
3091
3092 /**
3093 * rw_mgr_mem_calibrate_writes() - Write Calibration Part One
3094 * @rank_bgn: Rank number
3095 * @group: Read/Write Group
3096 * @test_bgn: Rank at which the test begins
3097 *
3098 * Stage 2: Write Calibration Part One.
3099 *
3100 * This function implements UniPHY calibration Stage 2, as explained in
3101 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
3102 */
3103 static int rw_mgr_mem_calibrate_writes(const u32 rank_bgn, const u32 group,
3104 const u32 test_bgn)
3105 {
3106 int ret;
3107
3108 /* Update info for sims */
3109 debug("%s:%d %u %u\n", __func__, __LINE__, group, test_bgn);
3110
3111 reg_file_set_group(group);
3112 reg_file_set_stage(CAL_STAGE_WRITES);
3113 reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3114
3115 ret = rw_mgr_mem_calibrate_writes_center(rank_bgn, group, test_bgn);
3116 if (ret)
3117 set_failing_group_stage(group, CAL_STAGE_WRITES,
3118 CAL_SUBSTAGE_WRITES_CENTER);
3119
3120 return ret;
3121 }
3122
3123 /**
3124 * mem_precharge_and_activate() - Precharge all banks and activate
3125 *
3126 * Precharge all banks and activate row 0 in bank "000..." and bank "111...".
3127 */
3128 static void mem_precharge_and_activate(void)
3129 {
3130 int r;
3131
3132 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
3133 /* Set rank. */
3134 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3135
3136 /* Precharge all banks. */
3137 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3138 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3139
3140 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3141 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
3142 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3143
3144 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3145 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
3146 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3147
3148 /* Activate rows. */
3149 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3150 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3151 }
3152 }
3153
3154 /**
3155 * mem_init_latency() - Configure memory RLAT and WLAT settings
3156 *
3157 * Configure memory RLAT and WLAT parameters.
3158 */
3159 static void mem_init_latency(void)
3160 {
3161 /*
3162 * For AV/CV, LFIFO is hardened and always runs at full rate
3163 * so max latency in AFI clocks, used here, is correspondingly
3164 * smaller.
3165 */
3166 const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1;
3167 u32 rlat, wlat;
3168
3169 debug("%s:%d\n", __func__, __LINE__);
3170
3171 /*
3172 * Read in write latency.
3173 * WL for Hard PHY does not include additive latency.
3174 */
3175 wlat = readl(&data_mgr->t_wl_add);
3176 wlat += readl(&data_mgr->mem_t_add);
3177
3178 gbl->rw_wl_nop_cycles = wlat - 1;
3179
3180 /* Read in readl latency. */
3181 rlat = readl(&data_mgr->t_rl_add);
3182
3183 /* Set a pretty high read latency initially. */
3184 gbl->curr_read_lat = rlat + 16;
3185 if (gbl->curr_read_lat > max_latency)
3186 gbl->curr_read_lat = max_latency;
3187
3188 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3189
3190 /* Advertise write latency. */
3191 writel(wlat, &phy_mgr_cfg->afi_wlat);
3192 }
3193
3194 /**
3195 * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
3196 *
3197 * Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
3198 */
3199 static void mem_skip_calibrate(void)
3200 {
3201 uint32_t vfifo_offset;
3202 uint32_t i, j, r;
3203
3204 debug("%s:%d\n", __func__, __LINE__);
3205 /* Need to update every shadow register set used by the interface */
3206 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
3207 r += NUM_RANKS_PER_SHADOW_REG) {
3208 /*
3209 * Set output phase alignment settings appropriate for
3210 * skip calibration.
3211 */
3212 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3213 scc_mgr_set_dqs_en_phase(i, 0);
3214 #if IO_DLL_CHAIN_LENGTH == 6
3215 scc_mgr_set_dqdqs_output_phase(i, 6);
3216 #else
3217 scc_mgr_set_dqdqs_output_phase(i, 7);
3218 #endif
3219 /*
3220 * Case:33398
3221 *
3222 * Write data arrives to the I/O two cycles before write
3223 * latency is reached (720 deg).
3224 * -> due to bit-slip in a/c bus
3225 * -> to allow board skew where dqs is longer than ck
3226 * -> how often can this happen!?
3227 * -> can claim back some ptaps for high freq
3228 * support if we can relax this, but i digress...
3229 *
3230 * The write_clk leads mem_ck by 90 deg
3231 * The minimum ptap of the OPA is 180 deg
3232 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3233 * The write_clk is always delayed by 2 ptaps
3234 *
3235 * Hence, to make DQS aligned to CK, we need to delay
3236 * DQS by:
3237 * (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3238 *
3239 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3240 * gives us the number of ptaps, which simplies to:
3241 *
3242 * (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3243 */
3244 scc_mgr_set_dqdqs_output_phase(i,
3245 1.25 * IO_DLL_CHAIN_LENGTH - 2);
3246 }
3247 writel(0xff, &sdr_scc_mgr->dqs_ena);
3248 writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3249
3250 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
3251 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3252 SCC_MGR_GROUP_COUNTER_OFFSET);
3253 }
3254 writel(0xff, &sdr_scc_mgr->dq_ena);
3255 writel(0xff, &sdr_scc_mgr->dm_ena);
3256 writel(0, &sdr_scc_mgr->update);
3257 }
3258
3259 /* Compensate for simulation model behaviour */
3260 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3261 scc_mgr_set_dqs_bus_in_delay(i, 10);
3262 scc_mgr_load_dqs(i);
3263 }
3264 writel(0, &sdr_scc_mgr->update);
3265
3266 /*
3267 * ArriaV has hard FIFOs that can only be initialized by incrementing
3268 * in sequencer.
3269 */
3270 vfifo_offset = CALIB_VFIFO_OFFSET;
3271 for (j = 0; j < vfifo_offset; j++)
3272 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3273 writel(0, &phy_mgr_cmd->fifo_reset);
3274
3275 /*
3276 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
3277 * setting from generation-time constant.
3278 */
3279 gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3280 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3281 }
3282
3283 /**
3284 * mem_calibrate() - Memory calibration entry point.
3285 *
3286 * Perform memory calibration.
3287 */
3288 static uint32_t mem_calibrate(void)
3289 {
3290 uint32_t i;
3291 uint32_t rank_bgn, sr;
3292 uint32_t write_group, write_test_bgn;
3293 uint32_t read_group, read_test_bgn;
3294 uint32_t run_groups, current_run;
3295 uint32_t failing_groups = 0;
3296 uint32_t group_failed = 0;
3297
3298 const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
3299 RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
3300
3301 debug("%s:%d\n", __func__, __LINE__);
3302
3303 /* Initialize the data settings */
3304 gbl->error_substage = CAL_SUBSTAGE_NIL;
3305 gbl->error_stage = CAL_STAGE_NIL;
3306 gbl->error_group = 0xff;
3307 gbl->fom_in = 0;
3308 gbl->fom_out = 0;
3309
3310 /* Initialize WLAT and RLAT. */
3311 mem_init_latency();
3312
3313 /* Initialize bit slips. */
3314 mem_precharge_and_activate();
3315
3316 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3317 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3318 SCC_MGR_GROUP_COUNTER_OFFSET);
3319 /* Only needed once to set all groups, pins, DQ, DQS, DM. */
3320 if (i == 0)
3321 scc_mgr_set_hhp_extras();
3322
3323 scc_set_bypass_mode(i);
3324 }
3325
3326 /* Calibration is skipped. */
3327 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3328 /*
3329 * Set VFIFO and LFIFO to instant-on settings in skip
3330 * calibration mode.
3331 */
3332 mem_skip_calibrate();
3333
3334 /*
3335 * Do not remove this line as it makes sure all of our
3336 * decisions have been applied.
3337 */
3338 writel(0, &sdr_scc_mgr->update);
3339 return 1;
3340 }
3341
3342 /* Calibration is not skipped. */
3343 for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3344 /*
3345 * Zero all delay chain/phase settings for all
3346 * groups and all shadow register sets.
3347 */
3348 scc_mgr_zero_all();
3349
3350 run_groups = ~0;
3351
3352 for (write_group = 0, write_test_bgn = 0; write_group
3353 < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3354 write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
3355
3356 /* Initialize the group failure */
3357 group_failed = 0;
3358
3359 current_run = run_groups & ((1 <<
3360 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3361 run_groups = run_groups >>
3362 RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3363
3364 if (current_run == 0)
3365 continue;
3366
3367 writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3368 SCC_MGR_GROUP_COUNTER_OFFSET);
3369 scc_mgr_zero_group(write_group, 0);
3370
3371 for (read_group = write_group * rwdqs_ratio,
3372 read_test_bgn = 0;
3373 read_group < (write_group + 1) * rwdqs_ratio;
3374 read_group++,
3375 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3376 if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO)
3377 continue;
3378
3379 /* Calibrate the VFIFO */
3380 if (rw_mgr_mem_calibrate_vfifo(read_group,
3381 read_test_bgn))
3382 continue;
3383
3384 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3385 return 0;
3386
3387 /* The group failed, we're done. */
3388 goto grp_failed;
3389 }
3390
3391 /* Calibrate the output side */
3392 for (rank_bgn = 0, sr = 0;
3393 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
3394 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
3395 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3396 continue;
3397
3398 /* Not needed in quick mode! */
3399 if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS)
3400 continue;
3401
3402 /* Calibrate WRITEs */
3403 if (!rw_mgr_mem_calibrate_writes(rank_bgn,
3404 write_group, write_test_bgn))
3405 continue;
3406
3407 group_failed = 1;
3408 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3409 return 0;
3410 }
3411
3412 /* Some group failed, we're done. */
3413 if (group_failed)
3414 goto grp_failed;
3415
3416 for (read_group = write_group * rwdqs_ratio,
3417 read_test_bgn = 0;
3418 read_group < (write_group + 1) * rwdqs_ratio;
3419 read_group++,
3420 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3421 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3422 continue;
3423
3424 if (!rw_mgr_mem_calibrate_vfifo_end(read_group,
3425 read_test_bgn))
3426 continue;
3427
3428 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3429 return 0;
3430
3431 /* The group failed, we're done. */
3432 goto grp_failed;
3433 }
3434
3435 /* No group failed, continue as usual. */
3436 continue;
3437
3438 grp_failed: /* A group failed, increment the counter. */
3439 failing_groups++;
3440 }
3441
3442 /*
3443 * USER If there are any failing groups then report
3444 * the failure.
3445 */
3446 if (failing_groups != 0)
3447 return 0;
3448
3449 if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO)
3450 continue;
3451
3452 /* Calibrate the LFIFO */
3453 if (!rw_mgr_mem_calibrate_lfifo())
3454 return 0;
3455 }
3456
3457 /*
3458 * Do not remove this line as it makes sure all of our decisions
3459 * have been applied.
3460 */
3461 writel(0, &sdr_scc_mgr->update);
3462 return 1;
3463 }
3464
3465 /**
3466 * run_mem_calibrate() - Perform memory calibration
3467 *
3468 * This function triggers the entire memory calibration procedure.
3469 */
3470 static int run_mem_calibrate(void)
3471 {
3472 int pass;
3473
3474 debug("%s:%d\n", __func__, __LINE__);
3475
3476 /* Reset pass/fail status shown on afi_cal_success/fail */
3477 writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3478
3479 /* Stop tracking manager. */
3480 clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3481
3482 phy_mgr_initialize();
3483 rw_mgr_mem_initialize();
3484
3485 /* Perform the actual memory calibration. */
3486 pass = mem_calibrate();
3487
3488 mem_precharge_and_activate();
3489 writel(0, &phy_mgr_cmd->fifo_reset);
3490
3491 /* Handoff. */
3492 rw_mgr_mem_handoff();
3493 /*
3494 * In Hard PHY this is a 2-bit control:
3495 * 0: AFI Mux Select
3496 * 1: DDIO Mux Select
3497 */
3498 writel(0x2, &phy_mgr_cfg->mux_sel);
3499
3500 /* Start tracking manager. */
3501 setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3502
3503 return pass;
3504 }
3505
3506 /**
3507 * debug_mem_calibrate() - Report result of memory calibration
3508 * @pass: Value indicating whether calibration passed or failed
3509 *
3510 * This function reports the results of the memory calibration
3511 * and writes debug information into the register file.
3512 */
3513 static void debug_mem_calibrate(int pass)
3514 {
3515 uint32_t debug_info;
3516
3517 if (pass) {
3518 printf("%s: CALIBRATION PASSED\n", __FILE__);
3519
3520 gbl->fom_in /= 2;
3521 gbl->fom_out /= 2;
3522
3523 if (gbl->fom_in > 0xff)
3524 gbl->fom_in = 0xff;
3525
3526 if (gbl->fom_out > 0xff)
3527 gbl->fom_out = 0xff;
3528
3529 /* Update the FOM in the register file */
3530 debug_info = gbl->fom_in;
3531 debug_info |= gbl->fom_out << 8;
3532 writel(debug_info, &sdr_reg_file->fom);
3533
3534 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3535 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3536 } else {
3537 printf("%s: CALIBRATION FAILED\n", __FILE__);
3538
3539 debug_info = gbl->error_stage;
3540 debug_info |= gbl->error_substage << 8;
3541 debug_info |= gbl->error_group << 16;
3542
3543 writel(debug_info, &sdr_reg_file->failing_stage);
3544 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3545 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3546
3547 /* Update the failing group/stage in the register file */
3548 debug_info = gbl->error_stage;
3549 debug_info |= gbl->error_substage << 8;
3550 debug_info |= gbl->error_group << 16;
3551 writel(debug_info, &sdr_reg_file->failing_stage);
3552 }
3553
3554 printf("%s: Calibration complete\n", __FILE__);
3555 }
3556
3557 /**
3558 * hc_initialize_rom_data() - Initialize ROM data
3559 *
3560 * Initialize ROM data.
3561 */
3562 static void hc_initialize_rom_data(void)
3563 {
3564 unsigned int nelem = 0;
3565 const u32 *rom_init;
3566 u32 i, addr;
3567
3568 socfpga_get_seq_inst_init(&rom_init, &nelem);
3569 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3570 for (i = 0; i < nelem; i++)
3571 writel(rom_init[i], addr + (i << 2));
3572
3573 socfpga_get_seq_ac_init(&rom_init, &nelem);
3574 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3575 for (i = 0; i < nelem; i++)
3576 writel(rom_init[i], addr + (i << 2));
3577 }
3578
3579 /**
3580 * initialize_reg_file() - Initialize SDR register file
3581 *
3582 * Initialize SDR register file.
3583 */
3584 static void initialize_reg_file(void)
3585 {
3586 /* Initialize the register file with the correct data */
3587 writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3588 writel(0, &sdr_reg_file->debug_data_addr);
3589 writel(0, &sdr_reg_file->cur_stage);
3590 writel(0, &sdr_reg_file->fom);
3591 writel(0, &sdr_reg_file->failing_stage);
3592 writel(0, &sdr_reg_file->debug1);
3593 writel(0, &sdr_reg_file->debug2);
3594 }
3595
3596 /**
3597 * initialize_hps_phy() - Initialize HPS PHY
3598 *
3599 * Initialize HPS PHY.
3600 */
3601 static void initialize_hps_phy(void)
3602 {
3603 uint32_t reg;
3604 /*
3605 * Tracking also gets configured here because it's in the
3606 * same register.
3607 */
3608 uint32_t trk_sample_count = 7500;
3609 uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3610 /*
3611 * Format is number of outer loops in the 16 MSB, sample
3612 * count in 16 LSB.
3613 */
3614
3615 reg = 0;
3616 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3617 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3618 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3619 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3620 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3621 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3622 /*
3623 * This field selects the intrinsic latency to RDATA_EN/FULL path.
3624 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3625 */
3626 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3627 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3628 trk_sample_count);
3629 writel(reg, &sdr_ctrl->phy_ctrl0);
3630
3631 reg = 0;
3632 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3633 trk_sample_count >>
3634 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3635 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3636 trk_long_idle_sample_count);
3637 writel(reg, &sdr_ctrl->phy_ctrl1);
3638
3639 reg = 0;
3640 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3641 trk_long_idle_sample_count >>
3642 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3643 writel(reg, &sdr_ctrl->phy_ctrl2);
3644 }
3645
3646 /**
3647 * initialize_tracking() - Initialize tracking
3648 *
3649 * Initialize the register file with usable initial data.
3650 */
3651 static void initialize_tracking(void)
3652 {
3653 /*
3654 * Initialize the register file with the correct data.
3655 * Compute usable version of value in case we skip full
3656 * computation later.
3657 */
3658 writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1,
3659 &sdr_reg_file->dtaps_per_ptap);
3660
3661 /* trk_sample_count */
3662 writel(7500, &sdr_reg_file->trk_sample_count);
3663
3664 /* longidle outer loop [15:0] */
3665 writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
3666
3667 /*
3668 * longidle sample count [31:24]
3669 * trfc, worst case of 933Mhz 4Gb [23:16]
3670 * trcd, worst case [15:8]
3671 * vfifo wait [7:0]
3672 */
3673 writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
3674 &sdr_reg_file->delays);
3675
3676 /* mux delay */
3677 writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) |
3678 (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0),
3679 &sdr_reg_file->trk_rw_mgr_addr);
3680
3681 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH,
3682 &sdr_reg_file->trk_read_dqs_width);
3683
3684 /* trefi [7:0] */
3685 writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0),
3686 &sdr_reg_file->trk_rfsh);
3687 }
3688
3689 int sdram_calibration_full(void)
3690 {
3691 struct param_type my_param;
3692 struct gbl_type my_gbl;
3693 uint32_t pass;
3694
3695 memset(&my_param, 0, sizeof(my_param));
3696 memset(&my_gbl, 0, sizeof(my_gbl));
3697
3698 param = &my_param;
3699 gbl = &my_gbl;
3700
3701 rwcfg = socfpga_get_sdram_rwmgr_config();
3702
3703 /* Set the calibration enabled by default */
3704 gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3705 /*
3706 * Only sweep all groups (regardless of fail state) by default
3707 * Set enabled read test by default.
3708 */
3709 #if DISABLE_GUARANTEED_READ
3710 gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3711 #endif
3712 /* Initialize the register file */
3713 initialize_reg_file();
3714
3715 /* Initialize any PHY CSR */
3716 initialize_hps_phy();
3717
3718 scc_mgr_initialize();
3719
3720 initialize_tracking();
3721
3722 printf("%s: Preparing to start memory calibration\n", __FILE__);
3723
3724 debug("%s:%d\n", __func__, __LINE__);
3725 debug_cond(DLEVEL == 1,
3726 "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3727 RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
3728 RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
3729 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
3730 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
3731 debug_cond(DLEVEL == 1,
3732 "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3733 RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3734 RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
3735 IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
3736 debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3737 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
3738 debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3739 IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
3740 IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
3741 debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3742 IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
3743 IO_IO_OUT2_DELAY_MAX);
3744 debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3745 IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3746
3747 hc_initialize_rom_data();
3748
3749 /* update info for sims */
3750 reg_file_set_stage(CAL_STAGE_NIL);
3751 reg_file_set_group(0);
3752
3753 /*
3754 * Load global needed for those actions that require
3755 * some dynamic calibration support.
3756 */
3757 dyn_calib_steps = STATIC_CALIB_STEPS;
3758 /*
3759 * Load global to allow dynamic selection of delay loop settings
3760 * based on calibration mode.
3761 */
3762 if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3763 skip_delay_mask = 0xff;
3764 else
3765 skip_delay_mask = 0x0;
3766
3767 pass = run_mem_calibrate();
3768 debug_mem_calibrate(pass);
3769 return pass;
3770 }