]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/ddr/altera/sequencer.c
ddr: altera: Clean up rw_mgr_mem_calibrate_read_test() part 2
[people/ms/u-boot.git] / drivers / ddr / altera / sequencer.c
1 /*
2 * Copyright Altera Corporation (C) 2012-2015
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include <errno.h>
11 #include "sequencer.h"
12 #include "sequencer_auto.h"
13 #include "sequencer_auto_ac_init.h"
14 #include "sequencer_auto_inst_init.h"
15 #include "sequencer_defines.h"
16
17 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
18 (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
19
20 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
21 (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
22
23 static struct socfpga_sdr_reg_file *sdr_reg_file =
24 (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
25
26 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
27 (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
28
29 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
30 (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
31
32 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
33 (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
34
35 static struct socfpga_data_mgr *data_mgr =
36 (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
37
38 static struct socfpga_sdr_ctrl *sdr_ctrl =
39 (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
40
41 #define DELTA_D 1
42
43 /*
44 * In order to reduce ROM size, most of the selectable calibration steps are
45 * decided at compile time based on the user's calibration mode selection,
46 * as captured by the STATIC_CALIB_STEPS selection below.
47 *
48 * However, to support simulation-time selection of fast simulation mode, where
49 * we skip everything except the bare minimum, we need a few of the steps to
50 * be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the
51 * check, which is based on the rtl-supplied value, or we dynamically compute
52 * the value to use based on the dynamically-chosen calibration mode
53 */
54
55 #define DLEVEL 0
56 #define STATIC_IN_RTL_SIM 0
57 #define STATIC_SKIP_DELAY_LOOPS 0
58
59 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
60 STATIC_SKIP_DELAY_LOOPS)
61
62 /* calibration steps requested by the rtl */
63 uint16_t dyn_calib_steps;
64
65 /*
66 * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
67 * instead of static, we use boolean logic to select between
68 * non-skip and skip values
69 *
70 * The mask is set to include all bits when not-skipping, but is
71 * zero when skipping
72 */
73
74 uint16_t skip_delay_mask; /* mask off bits when skipping/not-skipping */
75
76 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
77 ((non_skip_value) & skip_delay_mask)
78
79 struct gbl_type *gbl;
80 struct param_type *param;
81 uint32_t curr_shadow_reg;
82
83 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
84 uint32_t write_group, uint32_t use_dm,
85 uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks);
86
87 static void set_failing_group_stage(uint32_t group, uint32_t stage,
88 uint32_t substage)
89 {
90 /*
91 * Only set the global stage if there was not been any other
92 * failing group
93 */
94 if (gbl->error_stage == CAL_STAGE_NIL) {
95 gbl->error_substage = substage;
96 gbl->error_stage = stage;
97 gbl->error_group = group;
98 }
99 }
100
101 static void reg_file_set_group(u16 set_group)
102 {
103 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
104 }
105
106 static void reg_file_set_stage(u8 set_stage)
107 {
108 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
109 }
110
111 static void reg_file_set_sub_stage(u8 set_sub_stage)
112 {
113 set_sub_stage &= 0xff;
114 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
115 }
116
117 /**
118 * phy_mgr_initialize() - Initialize PHY Manager
119 *
120 * Initialize PHY Manager.
121 */
122 static void phy_mgr_initialize(void)
123 {
124 u32 ratio;
125
126 debug("%s:%d\n", __func__, __LINE__);
127 /* Calibration has control over path to memory */
128 /*
129 * In Hard PHY this is a 2-bit control:
130 * 0: AFI Mux Select
131 * 1: DDIO Mux Select
132 */
133 writel(0x3, &phy_mgr_cfg->mux_sel);
134
135 /* USER memory clock is not stable we begin initialization */
136 writel(0, &phy_mgr_cfg->reset_mem_stbl);
137
138 /* USER calibration status all set to zero */
139 writel(0, &phy_mgr_cfg->cal_status);
140
141 writel(0, &phy_mgr_cfg->cal_debug_info);
142
143 /* Init params only if we do NOT skip calibration. */
144 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
145 return;
146
147 ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
148 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
149 param->read_correct_mask_vg = (1 << ratio) - 1;
150 param->write_correct_mask_vg = (1 << ratio) - 1;
151 param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
152 param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
153 ratio = RW_MGR_MEM_DATA_WIDTH /
154 RW_MGR_MEM_DATA_MASK_WIDTH;
155 param->dm_correct_mask = (1 << ratio) - 1;
156 }
157
158 /**
159 * set_rank_and_odt_mask() - Set Rank and ODT mask
160 * @rank: Rank mask
161 * @odt_mode: ODT mode, OFF or READ_WRITE
162 *
163 * Set Rank and ODT mask (On-Die Termination).
164 */
165 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode)
166 {
167 u32 odt_mask_0 = 0;
168 u32 odt_mask_1 = 0;
169 u32 cs_and_odt_mask;
170
171 if (odt_mode == RW_MGR_ODT_MODE_OFF) {
172 odt_mask_0 = 0x0;
173 odt_mask_1 = 0x0;
174 } else { /* RW_MGR_ODT_MODE_READ_WRITE */
175 switch (RW_MGR_MEM_NUMBER_OF_RANKS) {
176 case 1: /* 1 Rank */
177 /* Read: ODT = 0 ; Write: ODT = 1 */
178 odt_mask_0 = 0x0;
179 odt_mask_1 = 0x1;
180 break;
181 case 2: /* 2 Ranks */
182 if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
183 /*
184 * - Dual-Slot , Single-Rank (1 CS per DIMM)
185 * OR
186 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
187 *
188 * Since MEM_NUMBER_OF_RANKS is 2, they
189 * are both single rank with 2 CS each
190 * (special for RDIMM).
191 *
192 * Read: Turn on ODT on the opposite rank
193 * Write: Turn on ODT on all ranks
194 */
195 odt_mask_0 = 0x3 & ~(1 << rank);
196 odt_mask_1 = 0x3;
197 } else {
198 /*
199 * - Single-Slot , Dual-Rank (2 CS per DIMM)
200 *
201 * Read: Turn on ODT off on all ranks
202 * Write: Turn on ODT on active rank
203 */
204 odt_mask_0 = 0x0;
205 odt_mask_1 = 0x3 & (1 << rank);
206 }
207 break;
208 case 4: /* 4 Ranks */
209 /* Read:
210 * ----------+-----------------------+
211 * | ODT |
212 * Read From +-----------------------+
213 * Rank | 3 | 2 | 1 | 0 |
214 * ----------+-----+-----+-----+-----+
215 * 0 | 0 | 1 | 0 | 0 |
216 * 1 | 1 | 0 | 0 | 0 |
217 * 2 | 0 | 0 | 0 | 1 |
218 * 3 | 0 | 0 | 1 | 0 |
219 * ----------+-----+-----+-----+-----+
220 *
221 * Write:
222 * ----------+-----------------------+
223 * | ODT |
224 * Write To +-----------------------+
225 * Rank | 3 | 2 | 1 | 0 |
226 * ----------+-----+-----+-----+-----+
227 * 0 | 0 | 1 | 0 | 1 |
228 * 1 | 1 | 0 | 1 | 0 |
229 * 2 | 0 | 1 | 0 | 1 |
230 * 3 | 1 | 0 | 1 | 0 |
231 * ----------+-----+-----+-----+-----+
232 */
233 switch (rank) {
234 case 0:
235 odt_mask_0 = 0x4;
236 odt_mask_1 = 0x5;
237 break;
238 case 1:
239 odt_mask_0 = 0x8;
240 odt_mask_1 = 0xA;
241 break;
242 case 2:
243 odt_mask_0 = 0x1;
244 odt_mask_1 = 0x5;
245 break;
246 case 3:
247 odt_mask_0 = 0x2;
248 odt_mask_1 = 0xA;
249 break;
250 }
251 break;
252 }
253 }
254
255 cs_and_odt_mask = (0xFF & ~(1 << rank)) |
256 ((0xFF & odt_mask_0) << 8) |
257 ((0xFF & odt_mask_1) << 16);
258 writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
259 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
260 }
261
262 /**
263 * scc_mgr_set() - Set SCC Manager register
264 * @off: Base offset in SCC Manager space
265 * @grp: Read/Write group
266 * @val: Value to be set
267 *
268 * This function sets the SCC Manager (Scan Chain Control Manager) register.
269 */
270 static void scc_mgr_set(u32 off, u32 grp, u32 val)
271 {
272 writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
273 }
274
275 /**
276 * scc_mgr_initialize() - Initialize SCC Manager registers
277 *
278 * Initialize SCC Manager registers.
279 */
280 static void scc_mgr_initialize(void)
281 {
282 /*
283 * Clear register file for HPS. 16 (2^4) is the size of the
284 * full register file in the scc mgr:
285 * RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
286 * MEM_IF_READ_DQS_WIDTH - 1);
287 */
288 int i;
289
290 for (i = 0; i < 16; i++) {
291 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
292 __func__, __LINE__, i);
293 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
294 }
295 }
296
297 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
298 {
299 scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
300 }
301
302 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
303 {
304 scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
305 }
306
307 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
308 {
309 scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
310 }
311
312 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
313 {
314 scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
315 }
316
317 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
318 {
319 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
320 delay);
321 }
322
323 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
324 {
325 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
326 }
327
328 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
329 {
330 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
331 }
332
333 static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
334 {
335 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
336 delay);
337 }
338
339 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
340 {
341 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
342 RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm,
343 delay);
344 }
345
346 /* load up dqs config settings */
347 static void scc_mgr_load_dqs(uint32_t dqs)
348 {
349 writel(dqs, &sdr_scc_mgr->dqs_ena);
350 }
351
352 /* load up dqs io config settings */
353 static void scc_mgr_load_dqs_io(void)
354 {
355 writel(0, &sdr_scc_mgr->dqs_io_ena);
356 }
357
358 /* load up dq config settings */
359 static void scc_mgr_load_dq(uint32_t dq_in_group)
360 {
361 writel(dq_in_group, &sdr_scc_mgr->dq_ena);
362 }
363
364 /* load up dm config settings */
365 static void scc_mgr_load_dm(uint32_t dm)
366 {
367 writel(dm, &sdr_scc_mgr->dm_ena);
368 }
369
370 /**
371 * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
372 * @off: Base offset in SCC Manager space
373 * @grp: Read/Write group
374 * @val: Value to be set
375 * @update: If non-zero, trigger SCC Manager update for all ranks
376 *
377 * This function sets the SCC Manager (Scan Chain Control Manager) register
378 * and optionally triggers the SCC update for all ranks.
379 */
380 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
381 const int update)
382 {
383 u32 r;
384
385 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
386 r += NUM_RANKS_PER_SHADOW_REG) {
387 scc_mgr_set(off, grp, val);
388
389 if (update || (r == 0)) {
390 writel(grp, &sdr_scc_mgr->dqs_ena);
391 writel(0, &sdr_scc_mgr->update);
392 }
393 }
394 }
395
396 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
397 {
398 /*
399 * USER although the h/w doesn't support different phases per
400 * shadow register, for simplicity our scc manager modeling
401 * keeps different phase settings per shadow reg, and it's
402 * important for us to keep them in sync to match h/w.
403 * for efficiency, the scan chain update should occur only
404 * once to sr0.
405 */
406 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
407 read_group, phase, 0);
408 }
409
410 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
411 uint32_t phase)
412 {
413 /*
414 * USER although the h/w doesn't support different phases per
415 * shadow register, for simplicity our scc manager modeling
416 * keeps different phase settings per shadow reg, and it's
417 * important for us to keep them in sync to match h/w.
418 * for efficiency, the scan chain update should occur only
419 * once to sr0.
420 */
421 scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
422 write_group, phase, 0);
423 }
424
425 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
426 uint32_t delay)
427 {
428 /*
429 * In shadow register mode, the T11 settings are stored in
430 * registers in the core, which are updated by the DQS_ENA
431 * signals. Not issuing the SCC_MGR_UPD command allows us to
432 * save lots of rank switching overhead, by calling
433 * select_shadow_regs_for_update with update_scan_chains
434 * set to 0.
435 */
436 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
437 read_group, delay, 1);
438 writel(0, &sdr_scc_mgr->update);
439 }
440
441 /**
442 * scc_mgr_set_oct_out1_delay() - Set OCT output delay
443 * @write_group: Write group
444 * @delay: Delay value
445 *
446 * This function sets the OCT output delay in SCC manager.
447 */
448 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
449 {
450 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
451 RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
452 const int base = write_group * ratio;
453 int i;
454 /*
455 * Load the setting in the SCC manager
456 * Although OCT affects only write data, the OCT delay is controlled
457 * by the DQS logic block which is instantiated once per read group.
458 * For protocols where a write group consists of multiple read groups,
459 * the setting must be set multiple times.
460 */
461 for (i = 0; i < ratio; i++)
462 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
463 }
464
465 /**
466 * scc_mgr_set_hhp_extras() - Set HHP extras.
467 *
468 * Load the fixed setting in the SCC manager HHP extras.
469 */
470 static void scc_mgr_set_hhp_extras(void)
471 {
472 /*
473 * Load the fixed setting in the SCC manager
474 * bits: 0:0 = 1'b1 - DQS bypass
475 * bits: 1:1 = 1'b1 - DQ bypass
476 * bits: 4:2 = 3'b001 - rfifo_mode
477 * bits: 6:5 = 2'b01 - rfifo clock_select
478 * bits: 7:7 = 1'b0 - separate gating from ungating setting
479 * bits: 8:8 = 1'b0 - separate OE from Output delay setting
480 */
481 const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
482 (1 << 2) | (1 << 1) | (1 << 0);
483 const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
484 SCC_MGR_HHP_GLOBALS_OFFSET |
485 SCC_MGR_HHP_EXTRAS_OFFSET;
486
487 debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
488 __func__, __LINE__);
489 writel(value, addr);
490 debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
491 __func__, __LINE__);
492 }
493
494 /**
495 * scc_mgr_zero_all() - Zero all DQS config
496 *
497 * Zero all DQS config.
498 */
499 static void scc_mgr_zero_all(void)
500 {
501 int i, r;
502
503 /*
504 * USER Zero all DQS config settings, across all groups and all
505 * shadow registers
506 */
507 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
508 r += NUM_RANKS_PER_SHADOW_REG) {
509 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
510 /*
511 * The phases actually don't exist on a per-rank basis,
512 * but there's no harm updating them several times, so
513 * let's keep the code simple.
514 */
515 scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
516 scc_mgr_set_dqs_en_phase(i, 0);
517 scc_mgr_set_dqs_en_delay(i, 0);
518 }
519
520 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
521 scc_mgr_set_dqdqs_output_phase(i, 0);
522 /* Arria V/Cyclone V don't have out2. */
523 scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
524 }
525 }
526
527 /* Multicast to all DQS group enables. */
528 writel(0xff, &sdr_scc_mgr->dqs_ena);
529 writel(0, &sdr_scc_mgr->update);
530 }
531
532 /**
533 * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
534 * @write_group: Write group
535 *
536 * Set bypass mode and trigger SCC update.
537 */
538 static void scc_set_bypass_mode(const u32 write_group)
539 {
540 /* Multicast to all DQ enables. */
541 writel(0xff, &sdr_scc_mgr->dq_ena);
542 writel(0xff, &sdr_scc_mgr->dm_ena);
543
544 /* Update current DQS IO enable. */
545 writel(0, &sdr_scc_mgr->dqs_io_ena);
546
547 /* Update the DQS logic. */
548 writel(write_group, &sdr_scc_mgr->dqs_ena);
549
550 /* Hit update. */
551 writel(0, &sdr_scc_mgr->update);
552 }
553
554 /**
555 * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
556 * @write_group: Write group
557 *
558 * Load DQS settings for Write Group, do not trigger SCC update.
559 */
560 static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
561 {
562 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
563 RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
564 const int base = write_group * ratio;
565 int i;
566 /*
567 * Load the setting in the SCC manager
568 * Although OCT affects only write data, the OCT delay is controlled
569 * by the DQS logic block which is instantiated once per read group.
570 * For protocols where a write group consists of multiple read groups,
571 * the setting must be set multiple times.
572 */
573 for (i = 0; i < ratio; i++)
574 writel(base + i, &sdr_scc_mgr->dqs_ena);
575 }
576
577 /**
578 * scc_mgr_zero_group() - Zero all configs for a group
579 *
580 * Zero DQ, DM, DQS and OCT configs for a group.
581 */
582 static void scc_mgr_zero_group(const u32 write_group, const int out_only)
583 {
584 int i, r;
585
586 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
587 r += NUM_RANKS_PER_SHADOW_REG) {
588 /* Zero all DQ config settings. */
589 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
590 scc_mgr_set_dq_out1_delay(i, 0);
591 if (!out_only)
592 scc_mgr_set_dq_in_delay(i, 0);
593 }
594
595 /* Multicast to all DQ enables. */
596 writel(0xff, &sdr_scc_mgr->dq_ena);
597
598 /* Zero all DM config settings. */
599 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
600 scc_mgr_set_dm_out1_delay(i, 0);
601
602 /* Multicast to all DM enables. */
603 writel(0xff, &sdr_scc_mgr->dm_ena);
604
605 /* Zero all DQS IO settings. */
606 if (!out_only)
607 scc_mgr_set_dqs_io_in_delay(0);
608
609 /* Arria V/Cyclone V don't have out2. */
610 scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE);
611 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
612 scc_mgr_load_dqs_for_write_group(write_group);
613
614 /* Multicast to all DQS IO enables (only 1 in total). */
615 writel(0, &sdr_scc_mgr->dqs_io_ena);
616
617 /* Hit update to zero everything. */
618 writel(0, &sdr_scc_mgr->update);
619 }
620 }
621
622 /*
623 * apply and load a particular input delay for the DQ pins in a group
624 * group_bgn is the index of the first dq pin (in the write group)
625 */
626 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
627 {
628 uint32_t i, p;
629
630 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
631 scc_mgr_set_dq_in_delay(p, delay);
632 scc_mgr_load_dq(p);
633 }
634 }
635
636 /**
637 * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
638 * @delay: Delay value
639 *
640 * Apply and load a particular output delay for the DQ pins in a group.
641 */
642 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
643 {
644 int i;
645
646 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
647 scc_mgr_set_dq_out1_delay(i, delay);
648 scc_mgr_load_dq(i);
649 }
650 }
651
652 /* apply and load a particular output delay for the DM pins in a group */
653 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
654 {
655 uint32_t i;
656
657 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
658 scc_mgr_set_dm_out1_delay(i, delay1);
659 scc_mgr_load_dm(i);
660 }
661 }
662
663
664 /* apply and load delay on both DQS and OCT out1 */
665 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
666 uint32_t delay)
667 {
668 scc_mgr_set_dqs_out1_delay(delay);
669 scc_mgr_load_dqs_io();
670
671 scc_mgr_set_oct_out1_delay(write_group, delay);
672 scc_mgr_load_dqs_for_write_group(write_group);
673 }
674
675 /**
676 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
677 * @write_group: Write group
678 * @delay: Delay value
679 *
680 * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
681 */
682 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
683 const u32 delay)
684 {
685 u32 i, new_delay;
686
687 /* DQ shift */
688 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++)
689 scc_mgr_load_dq(i);
690
691 /* DM shift */
692 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
693 scc_mgr_load_dm(i);
694
695 /* DQS shift */
696 new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
697 if (new_delay > IO_IO_OUT2_DELAY_MAX) {
698 debug_cond(DLEVEL == 1,
699 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
700 __func__, __LINE__, write_group, delay, new_delay,
701 IO_IO_OUT2_DELAY_MAX,
702 new_delay - IO_IO_OUT2_DELAY_MAX);
703 new_delay -= IO_IO_OUT2_DELAY_MAX;
704 scc_mgr_set_dqs_out1_delay(new_delay);
705 }
706
707 scc_mgr_load_dqs_io();
708
709 /* OCT shift */
710 new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
711 if (new_delay > IO_IO_OUT2_DELAY_MAX) {
712 debug_cond(DLEVEL == 1,
713 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
714 __func__, __LINE__, write_group, delay,
715 new_delay, IO_IO_OUT2_DELAY_MAX,
716 new_delay - IO_IO_OUT2_DELAY_MAX);
717 new_delay -= IO_IO_OUT2_DELAY_MAX;
718 scc_mgr_set_oct_out1_delay(write_group, new_delay);
719 }
720
721 scc_mgr_load_dqs_for_write_group(write_group);
722 }
723
724 /**
725 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
726 * @write_group: Write group
727 * @delay: Delay value
728 *
729 * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
730 */
731 static void
732 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
733 const u32 delay)
734 {
735 int r;
736
737 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
738 r += NUM_RANKS_PER_SHADOW_REG) {
739 scc_mgr_apply_group_all_out_delay_add(write_group, delay);
740 writel(0, &sdr_scc_mgr->update);
741 }
742 }
743
744 /**
745 * set_jump_as_return() - Return instruction optimization
746 *
747 * Optimization used to recover some slots in ddr3 inst_rom could be
748 * applied to other protocols if we wanted to
749 */
750 static void set_jump_as_return(void)
751 {
752 /*
753 * To save space, we replace return with jump to special shared
754 * RETURN instruction so we set the counter to large value so that
755 * we always jump.
756 */
757 writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
758 writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
759 }
760
761 /*
762 * should always use constants as argument to ensure all computations are
763 * performed at compile time
764 */
765 static void delay_for_n_mem_clocks(const uint32_t clocks)
766 {
767 uint32_t afi_clocks;
768 uint8_t inner = 0;
769 uint8_t outer = 0;
770 uint16_t c_loop = 0;
771
772 debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
773
774
775 afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
776 /* scale (rounding up) to get afi clocks */
777
778 /*
779 * Note, we don't bother accounting for being off a little bit
780 * because of a few extra instructions in outer loops
781 * Note, the loops have a test at the end, and do the test before
782 * the decrement, and so always perform the loop
783 * 1 time more than the counter value
784 */
785 if (afi_clocks == 0) {
786 ;
787 } else if (afi_clocks <= 0x100) {
788 inner = afi_clocks-1;
789 outer = 0;
790 c_loop = 0;
791 } else if (afi_clocks <= 0x10000) {
792 inner = 0xff;
793 outer = (afi_clocks-1) >> 8;
794 c_loop = 0;
795 } else {
796 inner = 0xff;
797 outer = 0xff;
798 c_loop = (afi_clocks-1) >> 16;
799 }
800
801 /*
802 * rom instructions are structured as follows:
803 *
804 * IDLE_LOOP2: jnz cntr0, TARGET_A
805 * IDLE_LOOP1: jnz cntr1, TARGET_B
806 * return
807 *
808 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
809 * TARGET_B is set to IDLE_LOOP2 as well
810 *
811 * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
812 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
813 *
814 * a little confusing, but it helps save precious space in the inst_rom
815 * and sequencer rom and keeps the delays more accurate and reduces
816 * overhead
817 */
818 if (afi_clocks <= 0x100) {
819 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
820 &sdr_rw_load_mgr_regs->load_cntr1);
821
822 writel(RW_MGR_IDLE_LOOP1,
823 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
824
825 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
826 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
827 } else {
828 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
829 &sdr_rw_load_mgr_regs->load_cntr0);
830
831 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
832 &sdr_rw_load_mgr_regs->load_cntr1);
833
834 writel(RW_MGR_IDLE_LOOP2,
835 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
836
837 writel(RW_MGR_IDLE_LOOP2,
838 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
839
840 /* hack to get around compiler not being smart enough */
841 if (afi_clocks <= 0x10000) {
842 /* only need to run once */
843 writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS |
844 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
845 } else {
846 do {
847 writel(RW_MGR_IDLE_LOOP2,
848 SDR_PHYGRP_RWMGRGRP_ADDRESS |
849 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
850 } while (c_loop-- != 0);
851 }
852 }
853 debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
854 }
855
856 /**
857 * rw_mgr_mem_init_load_regs() - Load instruction registers
858 * @cntr0: Counter 0 value
859 * @cntr1: Counter 1 value
860 * @cntr2: Counter 2 value
861 * @jump: Jump instruction value
862 *
863 * Load instruction registers.
864 */
865 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
866 {
867 uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
868 RW_MGR_RUN_SINGLE_GROUP_OFFSET;
869
870 /* Load counters */
871 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
872 &sdr_rw_load_mgr_regs->load_cntr0);
873 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
874 &sdr_rw_load_mgr_regs->load_cntr1);
875 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
876 &sdr_rw_load_mgr_regs->load_cntr2);
877
878 /* Load jump address */
879 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
880 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
881 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
882
883 /* Execute count instruction */
884 writel(jump, grpaddr);
885 }
886
887 /**
888 * rw_mgr_mem_load_user() - Load user calibration values
889 * @fin1: Final instruction 1
890 * @fin2: Final instruction 2
891 * @precharge: If 1, precharge the banks at the end
892 *
893 * Load user calibration values and optionally precharge the banks.
894 */
895 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
896 const int precharge)
897 {
898 u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
899 RW_MGR_RUN_SINGLE_GROUP_OFFSET;
900 u32 r;
901
902 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
903 if (param->skip_ranks[r]) {
904 /* request to skip the rank */
905 continue;
906 }
907
908 /* set rank */
909 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
910
911 /* precharge all banks ... */
912 if (precharge)
913 writel(RW_MGR_PRECHARGE_ALL, grpaddr);
914
915 /*
916 * USER Use Mirror-ed commands for odd ranks if address
917 * mirrorring is on
918 */
919 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
920 set_jump_as_return();
921 writel(RW_MGR_MRS2_MIRR, grpaddr);
922 delay_for_n_mem_clocks(4);
923 set_jump_as_return();
924 writel(RW_MGR_MRS3_MIRR, grpaddr);
925 delay_for_n_mem_clocks(4);
926 set_jump_as_return();
927 writel(RW_MGR_MRS1_MIRR, grpaddr);
928 delay_for_n_mem_clocks(4);
929 set_jump_as_return();
930 writel(fin1, grpaddr);
931 } else {
932 set_jump_as_return();
933 writel(RW_MGR_MRS2, grpaddr);
934 delay_for_n_mem_clocks(4);
935 set_jump_as_return();
936 writel(RW_MGR_MRS3, grpaddr);
937 delay_for_n_mem_clocks(4);
938 set_jump_as_return();
939 writel(RW_MGR_MRS1, grpaddr);
940 set_jump_as_return();
941 writel(fin2, grpaddr);
942 }
943
944 if (precharge)
945 continue;
946
947 set_jump_as_return();
948 writel(RW_MGR_ZQCL, grpaddr);
949
950 /* tZQinit = tDLLK = 512 ck cycles */
951 delay_for_n_mem_clocks(512);
952 }
953 }
954
955 /**
956 * rw_mgr_mem_initialize() - Initialize RW Manager
957 *
958 * Initialize RW Manager.
959 */
960 static void rw_mgr_mem_initialize(void)
961 {
962 debug("%s:%d\n", __func__, __LINE__);
963
964 /* The reset / cke part of initialization is broadcasted to all ranks */
965 writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
966 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
967
968 /*
969 * Here's how you load register for a loop
970 * Counters are located @ 0x800
971 * Jump address are located @ 0xC00
972 * For both, registers 0 to 3 are selected using bits 3 and 2, like
973 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
974 * I know this ain't pretty, but Avalon bus throws away the 2 least
975 * significant bits
976 */
977
978 /* Start with memory RESET activated */
979
980 /* tINIT = 200us */
981
982 /*
983 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
984 * If a and b are the number of iteration in 2 nested loops
985 * it takes the following number of cycles to complete the operation:
986 * number_of_cycles = ((2 + n) * a + 2) * b
987 * where n is the number of instruction in the inner loop
988 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
989 * b = 6A
990 */
991 rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL,
992 SEQ_TINIT_CNTR2_VAL,
993 RW_MGR_INIT_RESET_0_CKE_0);
994
995 /* Indicate that memory is stable. */
996 writel(1, &phy_mgr_cfg->reset_mem_stbl);
997
998 /*
999 * transition the RESET to high
1000 * Wait for 500us
1001 */
1002
1003 /*
1004 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
1005 * If a and b are the number of iteration in 2 nested loops
1006 * it takes the following number of cycles to complete the operation
1007 * number_of_cycles = ((2 + n) * a + 2) * b
1008 * where n is the number of instruction in the inner loop
1009 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
1010 * b = FF
1011 */
1012 rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL,
1013 SEQ_TRESET_CNTR2_VAL,
1014 RW_MGR_INIT_RESET_1_CKE_0);
1015
1016 /* Bring up clock enable. */
1017
1018 /* tXRP < 250 ck cycles */
1019 delay_for_n_mem_clocks(250);
1020
1021 rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET,
1022 0);
1023 }
1024
1025 /*
1026 * At the end of calibration we have to program the user settings in, and
1027 * USER hand off the memory to the user.
1028 */
1029 static void rw_mgr_mem_handoff(void)
1030 {
1031 rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1);
1032 /*
1033 * USER need to wait tMOD (12CK or 15ns) time before issuing
1034 * other commands, but we will have plenty of NIOS cycles before
1035 * actual handoff so its okay.
1036 */
1037 }
1038
1039 /**
1040 * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns
1041 * @rank_bgn: Rank number
1042 * @group: Read/Write Group
1043 * @all_ranks: Test all ranks
1044 *
1045 * Performs a guaranteed read on the patterns we are going to use during a
1046 * read test to ensure memory works.
1047 */
1048 static int
1049 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group,
1050 const u32 all_ranks)
1051 {
1052 const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1053 RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1054 const u32 addr_offset =
1055 (group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS) << 2;
1056 const u32 rank_end = all_ranks ?
1057 RW_MGR_MEM_NUMBER_OF_RANKS :
1058 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1059 const u32 shift_ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
1060 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
1061 const u32 correct_mask_vg = param->read_correct_mask_vg;
1062
1063 u32 tmp_bit_chk, base_rw_mgr, bit_chk;
1064 int vg, r;
1065 int ret = 0;
1066
1067 bit_chk = param->read_correct_mask;
1068
1069 for (r = rank_bgn; r < rank_end; r++) {
1070 /* Request to skip the rank */
1071 if (param->skip_ranks[r])
1072 continue;
1073
1074 /* Set rank */
1075 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1076
1077 /* Load up a constant bursts of read commands */
1078 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1079 writel(RW_MGR_GUARANTEED_READ,
1080 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1081
1082 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1083 writel(RW_MGR_GUARANTEED_READ_CONT,
1084 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1085
1086 tmp_bit_chk = 0;
1087 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1;
1088 vg >= 0; vg--) {
1089 /* Reset the FIFOs to get pointers to known state. */
1090 writel(0, &phy_mgr_cmd->fifo_reset);
1091 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1092 RW_MGR_RESET_READ_DATAPATH_OFFSET);
1093 writel(RW_MGR_GUARANTEED_READ,
1094 addr + addr_offset + (vg << 2));
1095
1096 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1097 tmp_bit_chk <<= shift_ratio;
1098 tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr;
1099 }
1100
1101 bit_chk &= tmp_bit_chk;
1102 }
1103
1104 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1105
1106 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1107
1108 if (bit_chk != param->read_correct_mask)
1109 ret = -EIO;
1110
1111 debug_cond(DLEVEL == 1,
1112 "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n",
1113 __func__, __LINE__, group, bit_chk,
1114 param->read_correct_mask, ret);
1115
1116 return ret;
1117 }
1118
1119 /**
1120 * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test
1121 * @rank_bgn: Rank number
1122 * @all_ranks: Test all ranks
1123 *
1124 * Load up the patterns we are going to use during a read test.
1125 */
1126 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn,
1127 const int all_ranks)
1128 {
1129 const u32 rank_end = all_ranks ?
1130 RW_MGR_MEM_NUMBER_OF_RANKS :
1131 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1132 u32 r;
1133
1134 debug("%s:%d\n", __func__, __LINE__);
1135
1136 for (r = rank_bgn; r < rank_end; r++) {
1137 if (param->skip_ranks[r])
1138 /* request to skip the rank */
1139 continue;
1140
1141 /* set rank */
1142 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1143
1144 /* Load up a constant bursts */
1145 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1146
1147 writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
1148 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1149
1150 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1151
1152 writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
1153 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1154
1155 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1156
1157 writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
1158 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1159
1160 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1161
1162 writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
1163 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1164
1165 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1166 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1167 }
1168
1169 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1170 }
1171
1172 /*
1173 * try a read and see if it returns correct data back. has dummy reads
1174 * inserted into the mix used to align dqs enable. has more thorough checks
1175 * than the regular read test.
1176 */
1177 static int
1178 rw_mgr_mem_calibrate_read_test(const u32 rank_bgn, const u32 group,
1179 const u32 num_tries, const u32 all_correct,
1180 u32 *bit_chk,
1181 const u32 all_groups, const u32 all_ranks)
1182 {
1183 const u32 rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1184 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1185 const u32 quick_read_mode =
1186 ((STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) &&
1187 ENABLE_SUPER_QUICK_CALIBRATION);
1188 u32 correct_mask_vg = param->read_correct_mask_vg;
1189 u32 tmp_bit_chk;
1190 u32 base_rw_mgr;
1191 u32 addr;
1192
1193 int r, vg, ret;
1194
1195 *bit_chk = param->read_correct_mask;
1196
1197 for (r = rank_bgn; r < rank_end; r++) {
1198 if (param->skip_ranks[r])
1199 /* request to skip the rank */
1200 continue;
1201
1202 /* set rank */
1203 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1204
1205 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1206
1207 writel(RW_MGR_READ_B2B_WAIT1,
1208 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1209
1210 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1211 writel(RW_MGR_READ_B2B_WAIT2,
1212 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1213
1214 if (quick_read_mode)
1215 writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1216 /* need at least two (1+1) reads to capture failures */
1217 else if (all_groups)
1218 writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1219 else
1220 writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1221
1222 writel(RW_MGR_READ_B2B,
1223 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1224 if (all_groups)
1225 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1226 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1227 &sdr_rw_load_mgr_regs->load_cntr3);
1228 else
1229 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1230
1231 writel(RW_MGR_READ_B2B,
1232 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1233
1234 tmp_bit_chk = 0;
1235 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1236 /* reset the fifos to get pointers to known state */
1237 writel(0, &phy_mgr_cmd->fifo_reset);
1238 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1239 RW_MGR_RESET_READ_DATAPATH_OFFSET);
1240
1241 tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1242 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1243
1244 if (all_groups)
1245 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET;
1246 else
1247 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1248
1249 writel(RW_MGR_READ_B2B, addr +
1250 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1251 vg) << 2));
1252
1253 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1254 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
1255
1256 if (vg == 0)
1257 break;
1258 }
1259 *bit_chk &= tmp_bit_chk;
1260 }
1261
1262 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1263 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1264
1265 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1266
1267 if (all_correct) {
1268 ret = (*bit_chk == param->read_correct_mask);
1269 debug_cond(DLEVEL == 2,
1270 "%s:%d read_test(%u,ALL,%u) => (%u == %u) => %i\n",
1271 __func__, __LINE__, group, all_groups, *bit_chk,
1272 param->read_correct_mask, ret);
1273 } else {
1274 ret = (*bit_chk != 0x00);
1275 debug_cond(DLEVEL == 2,
1276 "%s:%d read_test(%u,ONE,%u) => (%u != %u) => %i\n",
1277 __func__, __LINE__, group, all_groups, *bit_chk,
1278 0, ret);
1279 }
1280
1281 return ret;
1282 }
1283
1284 /**
1285 * rw_mgr_mem_calibrate_read_test_all_ranks() - Perform READ test on all ranks
1286 * @grp: Read/Write group
1287 * @num_tries: Number of retries of the test
1288 * @all_correct: All bits must be correct in the mask
1289 * @all_groups: Test all R/W groups
1290 *
1291 * Perform a READ test across all memory ranks.
1292 */
1293 static int
1294 rw_mgr_mem_calibrate_read_test_all_ranks(const u32 grp, const u32 num_tries,
1295 const u32 all_correct,
1296 const u32 all_groups)
1297 {
1298 u32 bit_chk;
1299 return rw_mgr_mem_calibrate_read_test(0, grp, num_tries, all_correct,
1300 &bit_chk, all_groups, 1);
1301 }
1302
1303 /**
1304 * rw_mgr_incr_vfifo() - Increase VFIFO value
1305 * @grp: Read/Write group
1306 *
1307 * Increase VFIFO value.
1308 */
1309 static void rw_mgr_incr_vfifo(const u32 grp)
1310 {
1311 writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1312 }
1313
1314 /**
1315 * rw_mgr_decr_vfifo() - Decrease VFIFO value
1316 * @grp: Read/Write group
1317 *
1318 * Decrease VFIFO value.
1319 */
1320 static void rw_mgr_decr_vfifo(const u32 grp)
1321 {
1322 u32 i;
1323
1324 for (i = 0; i < VFIFO_SIZE - 1; i++)
1325 rw_mgr_incr_vfifo(grp);
1326 }
1327
1328 /**
1329 * find_vfifo_failing_read() - Push VFIFO to get a failing read
1330 * @grp: Read/Write group
1331 *
1332 * Push VFIFO until a failing read happens.
1333 */
1334 static int find_vfifo_failing_read(const u32 grp)
1335 {
1336 u32 v, ret, fail_cnt = 0;
1337
1338 for (v = 0; v < VFIFO_SIZE; v++) {
1339 debug_cond(DLEVEL == 2, "%s:%d: vfifo %u\n",
1340 __func__, __LINE__, v);
1341 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1342 PASS_ONE_BIT, 0);
1343 if (!ret) {
1344 fail_cnt++;
1345
1346 if (fail_cnt == 2)
1347 return v;
1348 }
1349
1350 /* Fiddle with FIFO. */
1351 rw_mgr_incr_vfifo(grp);
1352 }
1353
1354 /* No failing read found! Something must have gone wrong. */
1355 debug_cond(DLEVEL == 2, "%s:%d: vfifo failed\n", __func__, __LINE__);
1356 return 0;
1357 }
1358
1359 /**
1360 * sdr_find_phase_delay() - Find DQS enable phase or delay
1361 * @working: If 1, look for working phase/delay, if 0, look for non-working
1362 * @delay: If 1, look for delay, if 0, look for phase
1363 * @grp: Read/Write group
1364 * @work: Working window position
1365 * @work_inc: Working window increment
1366 * @pd: DQS Phase/Delay Iterator
1367 *
1368 * Find working or non-working DQS enable phase setting.
1369 */
1370 static int sdr_find_phase_delay(int working, int delay, const u32 grp,
1371 u32 *work, const u32 work_inc, u32 *pd)
1372 {
1373 const u32 max = delay ? IO_DQS_EN_DELAY_MAX : IO_DQS_EN_PHASE_MAX;
1374 u32 ret;
1375
1376 for (; *pd <= max; (*pd)++) {
1377 if (delay)
1378 scc_mgr_set_dqs_en_delay_all_ranks(grp, *pd);
1379 else
1380 scc_mgr_set_dqs_en_phase_all_ranks(grp, *pd);
1381
1382 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1383 PASS_ONE_BIT, 0);
1384 if (!working)
1385 ret = !ret;
1386
1387 if (ret)
1388 return 0;
1389
1390 if (work)
1391 *work += work_inc;
1392 }
1393
1394 return -EINVAL;
1395 }
1396 /**
1397 * sdr_find_phase() - Find DQS enable phase
1398 * @working: If 1, look for working phase, if 0, look for non-working phase
1399 * @grp: Read/Write group
1400 * @work: Working window position
1401 * @i: Iterator
1402 * @p: DQS Phase Iterator
1403 *
1404 * Find working or non-working DQS enable phase setting.
1405 */
1406 static int sdr_find_phase(int working, const u32 grp, u32 *work,
1407 u32 *i, u32 *p)
1408 {
1409 const u32 end = VFIFO_SIZE + (working ? 0 : 1);
1410 int ret;
1411
1412 for (; *i < end; (*i)++) {
1413 if (working)
1414 *p = 0;
1415
1416 ret = sdr_find_phase_delay(working, 0, grp, work,
1417 IO_DELAY_PER_OPA_TAP, p);
1418 if (!ret)
1419 return 0;
1420
1421 if (*p > IO_DQS_EN_PHASE_MAX) {
1422 /* Fiddle with FIFO. */
1423 rw_mgr_incr_vfifo(grp);
1424 if (!working)
1425 *p = 0;
1426 }
1427 }
1428
1429 return -EINVAL;
1430 }
1431
1432 /**
1433 * sdr_working_phase() - Find working DQS enable phase
1434 * @grp: Read/Write group
1435 * @work_bgn: Working window start position
1436 * @d: dtaps output value
1437 * @p: DQS Phase Iterator
1438 * @i: Iterator
1439 *
1440 * Find working DQS enable phase setting.
1441 */
1442 static int sdr_working_phase(const u32 grp, u32 *work_bgn, u32 *d,
1443 u32 *p, u32 *i)
1444 {
1445 const u32 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP /
1446 IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1447 int ret;
1448
1449 *work_bgn = 0;
1450
1451 for (*d = 0; *d <= dtaps_per_ptap; (*d)++) {
1452 *i = 0;
1453 scc_mgr_set_dqs_en_delay_all_ranks(grp, *d);
1454 ret = sdr_find_phase(1, grp, work_bgn, i, p);
1455 if (!ret)
1456 return 0;
1457 *work_bgn += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1458 }
1459
1460 /* Cannot find working solution */
1461 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n",
1462 __func__, __LINE__);
1463 return -EINVAL;
1464 }
1465
1466 /**
1467 * sdr_backup_phase() - Find DQS enable backup phase
1468 * @grp: Read/Write group
1469 * @work_bgn: Working window start position
1470 * @p: DQS Phase Iterator
1471 *
1472 * Find DQS enable backup phase setting.
1473 */
1474 static void sdr_backup_phase(const u32 grp, u32 *work_bgn, u32 *p)
1475 {
1476 u32 tmp_delay, d;
1477 int ret;
1478
1479 /* Special case code for backing up a phase */
1480 if (*p == 0) {
1481 *p = IO_DQS_EN_PHASE_MAX;
1482 rw_mgr_decr_vfifo(grp);
1483 } else {
1484 (*p)--;
1485 }
1486 tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
1487 scc_mgr_set_dqs_en_phase_all_ranks(grp, *p);
1488
1489 for (d = 0; d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; d++) {
1490 scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1491
1492 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1493 PASS_ONE_BIT, 0);
1494 if (ret) {
1495 *work_bgn = tmp_delay;
1496 break;
1497 }
1498
1499 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1500 }
1501
1502 /* Restore VFIFO to old state before we decremented it (if needed). */
1503 (*p)++;
1504 if (*p > IO_DQS_EN_PHASE_MAX) {
1505 *p = 0;
1506 rw_mgr_incr_vfifo(grp);
1507 }
1508
1509 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1510 }
1511
1512 /**
1513 * sdr_nonworking_phase() - Find non-working DQS enable phase
1514 * @grp: Read/Write group
1515 * @work_end: Working window end position
1516 * @p: DQS Phase Iterator
1517 * @i: Iterator
1518 *
1519 * Find non-working DQS enable phase setting.
1520 */
1521 static int sdr_nonworking_phase(const u32 grp, u32 *work_end, u32 *p, u32 *i)
1522 {
1523 int ret;
1524
1525 (*p)++;
1526 *work_end += IO_DELAY_PER_OPA_TAP;
1527 if (*p > IO_DQS_EN_PHASE_MAX) {
1528 /* Fiddle with FIFO. */
1529 *p = 0;
1530 rw_mgr_incr_vfifo(grp);
1531 }
1532
1533 ret = sdr_find_phase(0, grp, work_end, i, p);
1534 if (ret) {
1535 /* Cannot see edge of failing read. */
1536 debug_cond(DLEVEL == 2, "%s:%d: end: failed\n",
1537 __func__, __LINE__);
1538 }
1539
1540 return ret;
1541 }
1542
1543 /**
1544 * sdr_find_window_center() - Find center of the working DQS window.
1545 * @grp: Read/Write group
1546 * @work_bgn: First working settings
1547 * @work_end: Last working settings
1548 *
1549 * Find center of the working DQS enable window.
1550 */
1551 static int sdr_find_window_center(const u32 grp, const u32 work_bgn,
1552 const u32 work_end)
1553 {
1554 u32 work_mid;
1555 int tmp_delay = 0;
1556 int i, p, d;
1557
1558 work_mid = (work_bgn + work_end) / 2;
1559
1560 debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1561 work_bgn, work_end, work_mid);
1562 /* Get the middle delay to be less than a VFIFO delay */
1563 tmp_delay = (IO_DQS_EN_PHASE_MAX + 1) * IO_DELAY_PER_OPA_TAP;
1564
1565 debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1566 work_mid %= tmp_delay;
1567 debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid);
1568
1569 tmp_delay = rounddown(work_mid, IO_DELAY_PER_OPA_TAP);
1570 if (tmp_delay > IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP)
1571 tmp_delay = IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP;
1572 p = tmp_delay / IO_DELAY_PER_OPA_TAP;
1573
1574 debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay);
1575
1576 d = DIV_ROUND_UP(work_mid - tmp_delay, IO_DELAY_PER_DQS_EN_DCHAIN_TAP);
1577 if (d > IO_DQS_EN_DELAY_MAX)
1578 d = IO_DQS_EN_DELAY_MAX;
1579 tmp_delay += d * IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1580
1581 debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay);
1582
1583 scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1584 scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1585
1586 /*
1587 * push vfifo until we can successfully calibrate. We can do this
1588 * because the largest possible margin in 1 VFIFO cycle.
1589 */
1590 for (i = 0; i < VFIFO_SIZE; i++) {
1591 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center\n");
1592 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1593 PASS_ONE_BIT,
1594 0)) {
1595 debug_cond(DLEVEL == 2,
1596 "%s:%d center: found: ptap=%u dtap=%u\n",
1597 __func__, __LINE__, p, d);
1598 return 0;
1599 }
1600
1601 /* Fiddle with FIFO. */
1602 rw_mgr_incr_vfifo(grp);
1603 }
1604
1605 debug_cond(DLEVEL == 2, "%s:%d center: failed.\n",
1606 __func__, __LINE__);
1607 return -EINVAL;
1608 }
1609
1610 /**
1611 * rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase() - Find a good DQS enable to use
1612 * @grp: Read/Write Group
1613 *
1614 * Find a good DQS enable to use.
1615 */
1616 static int rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(const u32 grp)
1617 {
1618 u32 d, p, i;
1619 u32 dtaps_per_ptap;
1620 u32 work_bgn, work_end;
1621 u32 found_passing_read, found_failing_read, initial_failing_dtap;
1622 int ret;
1623
1624 debug("%s:%d %u\n", __func__, __LINE__, grp);
1625
1626 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1627
1628 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1629 scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1630
1631 /* Step 0: Determine number of delay taps for each phase tap. */
1632 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP / IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1633
1634 /* Step 1: First push vfifo until we get a failing read. */
1635 find_vfifo_failing_read(grp);
1636
1637 /* Step 2: Find first working phase, increment in ptaps. */
1638 work_bgn = 0;
1639 ret = sdr_working_phase(grp, &work_bgn, &d, &p, &i);
1640 if (ret)
1641 return ret;
1642
1643 work_end = work_bgn;
1644
1645 /*
1646 * If d is 0 then the working window covers a phase tap and we can
1647 * follow the old procedure. Otherwise, we've found the beginning
1648 * and we need to increment the dtaps until we find the end.
1649 */
1650 if (d == 0) {
1651 /*
1652 * Step 3a: If we have room, back off by one and
1653 * increment in dtaps.
1654 */
1655 sdr_backup_phase(grp, &work_bgn, &p);
1656
1657 /*
1658 * Step 4a: go forward from working phase to non working
1659 * phase, increment in ptaps.
1660 */
1661 ret = sdr_nonworking_phase(grp, &work_end, &p, &i);
1662 if (ret)
1663 return ret;
1664
1665 /* Step 5a: Back off one from last, increment in dtaps. */
1666
1667 /* Special case code for backing up a phase */
1668 if (p == 0) {
1669 p = IO_DQS_EN_PHASE_MAX;
1670 rw_mgr_decr_vfifo(grp);
1671 } else {
1672 p = p - 1;
1673 }
1674
1675 work_end -= IO_DELAY_PER_OPA_TAP;
1676 scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1677
1678 d = 0;
1679
1680 debug_cond(DLEVEL == 2, "%s:%d p: ptap=%u\n",
1681 __func__, __LINE__, p);
1682 }
1683
1684 /* The dtap increment to find the failing edge is done here. */
1685 sdr_find_phase_delay(0, 1, grp, &work_end,
1686 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, &d);
1687
1688 /* Go back to working dtap */
1689 if (d != 0)
1690 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1691
1692 debug_cond(DLEVEL == 2,
1693 "%s:%d p/d: ptap=%u dtap=%u end=%u\n",
1694 __func__, __LINE__, p, d - 1, work_end);
1695
1696 if (work_end < work_bgn) {
1697 /* nil range */
1698 debug_cond(DLEVEL == 2, "%s:%d end-2: failed\n",
1699 __func__, __LINE__);
1700 return -EINVAL;
1701 }
1702
1703 debug_cond(DLEVEL == 2, "%s:%d found range [%u,%u]\n",
1704 __func__, __LINE__, work_bgn, work_end);
1705
1706 /*
1707 * We need to calculate the number of dtaps that equal a ptap.
1708 * To do that we'll back up a ptap and re-find the edge of the
1709 * window using dtaps
1710 */
1711 debug_cond(DLEVEL == 2, "%s:%d calculate dtaps_per_ptap for tracking\n",
1712 __func__, __LINE__);
1713
1714 /* Special case code for backing up a phase */
1715 if (p == 0) {
1716 p = IO_DQS_EN_PHASE_MAX;
1717 rw_mgr_decr_vfifo(grp);
1718 debug_cond(DLEVEL == 2, "%s:%d backedup cycle/phase: p=%u\n",
1719 __func__, __LINE__, p);
1720 } else {
1721 p = p - 1;
1722 debug_cond(DLEVEL == 2, "%s:%d backedup phase only: p=%u",
1723 __func__, __LINE__, p);
1724 }
1725
1726 scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1727
1728 /*
1729 * Increase dtap until we first see a passing read (in case the
1730 * window is smaller than a ptap), and then a failing read to
1731 * mark the edge of the window again.
1732 */
1733
1734 /* Find a passing read. */
1735 debug_cond(DLEVEL == 2, "%s:%d find passing read\n",
1736 __func__, __LINE__);
1737
1738 initial_failing_dtap = d;
1739
1740 found_passing_read = !sdr_find_phase_delay(1, 1, grp, NULL, 0, &d);
1741 if (found_passing_read) {
1742 /* Find a failing read. */
1743 debug_cond(DLEVEL == 2, "%s:%d find failing read\n",
1744 __func__, __LINE__);
1745 d++;
1746 found_failing_read = !sdr_find_phase_delay(0, 1, grp, NULL, 0,
1747 &d);
1748 } else {
1749 debug_cond(DLEVEL == 1,
1750 "%s:%d failed to calculate dtaps per ptap. Fall back on static value\n",
1751 __func__, __LINE__);
1752 }
1753
1754 /*
1755 * The dynamically calculated dtaps_per_ptap is only valid if we
1756 * found a passing/failing read. If we didn't, it means d hit the max
1757 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1758 * statically calculated value.
1759 */
1760 if (found_passing_read && found_failing_read)
1761 dtaps_per_ptap = d - initial_failing_dtap;
1762
1763 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1764 debug_cond(DLEVEL == 2, "%s:%d dtaps_per_ptap=%u - %u = %u",
1765 __func__, __LINE__, d, initial_failing_dtap, dtaps_per_ptap);
1766
1767 /* Step 6: Find the centre of the window. */
1768 ret = sdr_find_window_center(grp, work_bgn, work_end);
1769
1770 return ret;
1771 }
1772
1773 /* per-bit deskew DQ and center */
1774 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn,
1775 uint32_t write_group, uint32_t read_group, uint32_t test_bgn,
1776 uint32_t use_read_test, uint32_t update_fom)
1777 {
1778 uint32_t i, p, d, min_index;
1779 /*
1780 * Store these as signed since there are comparisons with
1781 * signed numbers.
1782 */
1783 uint32_t bit_chk;
1784 uint32_t sticky_bit_chk;
1785 int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1786 int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1787 int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
1788 int32_t mid;
1789 int32_t orig_mid_min, mid_min;
1790 int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs,
1791 final_dqs_en;
1792 int32_t dq_margin, dqs_margin;
1793 uint32_t stop;
1794 uint32_t temp_dq_in_delay1, temp_dq_in_delay2;
1795 uint32_t addr;
1796
1797 debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn);
1798
1799 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET;
1800 start_dqs = readl(addr + (read_group << 2));
1801 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
1802 start_dqs_en = readl(addr + ((read_group << 2)
1803 - IO_DQS_EN_DELAY_OFFSET));
1804
1805 /* set the left and right edge of each bit to an illegal value */
1806 /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
1807 sticky_bit_chk = 0;
1808 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1809 left_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1810 right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1811 }
1812
1813 /* Search for the left edge of the window for each bit */
1814 for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) {
1815 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d);
1816
1817 writel(0, &sdr_scc_mgr->update);
1818
1819 /*
1820 * Stop searching when the read test doesn't pass AND when
1821 * we've seen a passing read on every bit.
1822 */
1823 if (use_read_test) {
1824 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1825 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1826 &bit_chk, 0, 0);
1827 } else {
1828 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1829 0, PASS_ONE_BIT,
1830 &bit_chk, 0);
1831 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1832 (read_group - (write_group *
1833 RW_MGR_MEM_IF_READ_DQS_WIDTH /
1834 RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1835 stop = (bit_chk == 0);
1836 }
1837 sticky_bit_chk = sticky_bit_chk | bit_chk;
1838 stop = stop && (sticky_bit_chk == param->read_correct_mask);
1839 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \
1840 && %u", __func__, __LINE__, d,
1841 sticky_bit_chk,
1842 param->read_correct_mask, stop);
1843
1844 if (stop == 1) {
1845 break;
1846 } else {
1847 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1848 if (bit_chk & 1) {
1849 /* Remember a passing test as the
1850 left_edge */
1851 left_edge[i] = d;
1852 } else {
1853 /* If a left edge has not been seen yet,
1854 then a future passing test will mark
1855 this edge as the right edge */
1856 if (left_edge[i] ==
1857 IO_IO_IN_DELAY_MAX + 1) {
1858 right_edge[i] = -(d + 1);
1859 }
1860 }
1861 bit_chk = bit_chk >> 1;
1862 }
1863 }
1864 }
1865
1866 /* Reset DQ delay chains to 0 */
1867 scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
1868 sticky_bit_chk = 0;
1869 for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) {
1870 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
1871 %d right_edge[%u]: %d\n", __func__, __LINE__,
1872 i, left_edge[i], i, right_edge[i]);
1873
1874 /*
1875 * Check for cases where we haven't found the left edge,
1876 * which makes our assignment of the the right edge invalid.
1877 * Reset it to the illegal value.
1878 */
1879 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && (
1880 right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1881 right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1882 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \
1883 right_edge[%u]: %d\n", __func__, __LINE__,
1884 i, right_edge[i]);
1885 }
1886
1887 /*
1888 * Reset sticky bit (except for bits where we have seen
1889 * both the left and right edge).
1890 */
1891 sticky_bit_chk = sticky_bit_chk << 1;
1892 if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) &&
1893 (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1894 sticky_bit_chk = sticky_bit_chk | 1;
1895 }
1896
1897 if (i == 0)
1898 break;
1899 }
1900
1901 /* Search for the right edge of the window for each bit */
1902 for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) {
1903 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
1904 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
1905 uint32_t delay = d + start_dqs_en;
1906 if (delay > IO_DQS_EN_DELAY_MAX)
1907 delay = IO_DQS_EN_DELAY_MAX;
1908 scc_mgr_set_dqs_en_delay(read_group, delay);
1909 }
1910 scc_mgr_load_dqs(read_group);
1911
1912 writel(0, &sdr_scc_mgr->update);
1913
1914 /*
1915 * Stop searching when the read test doesn't pass AND when
1916 * we've seen a passing read on every bit.
1917 */
1918 if (use_read_test) {
1919 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1920 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1921 &bit_chk, 0, 0);
1922 } else {
1923 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1924 0, PASS_ONE_BIT,
1925 &bit_chk, 0);
1926 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1927 (read_group - (write_group *
1928 RW_MGR_MEM_IF_READ_DQS_WIDTH /
1929 RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1930 stop = (bit_chk == 0);
1931 }
1932 sticky_bit_chk = sticky_bit_chk | bit_chk;
1933 stop = stop && (sticky_bit_chk == param->read_correct_mask);
1934
1935 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \
1936 %u && %u", __func__, __LINE__, d,
1937 sticky_bit_chk, param->read_correct_mask, stop);
1938
1939 if (stop == 1) {
1940 break;
1941 } else {
1942 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1943 if (bit_chk & 1) {
1944 /* Remember a passing test as
1945 the right_edge */
1946 right_edge[i] = d;
1947 } else {
1948 if (d != 0) {
1949 /* If a right edge has not been
1950 seen yet, then a future passing
1951 test will mark this edge as the
1952 left edge */
1953 if (right_edge[i] ==
1954 IO_IO_IN_DELAY_MAX + 1) {
1955 left_edge[i] = -(d + 1);
1956 }
1957 } else {
1958 /* d = 0 failed, but it passed
1959 when testing the left edge,
1960 so it must be marginal,
1961 set it to -1 */
1962 if (right_edge[i] ==
1963 IO_IO_IN_DELAY_MAX + 1 &&
1964 left_edge[i] !=
1965 IO_IO_IN_DELAY_MAX
1966 + 1) {
1967 right_edge[i] = -1;
1968 }
1969 /* If a right edge has not been
1970 seen yet, then a future passing
1971 test will mark this edge as the
1972 left edge */
1973 else if (right_edge[i] ==
1974 IO_IO_IN_DELAY_MAX +
1975 1) {
1976 left_edge[i] = -(d + 1);
1977 }
1978 }
1979 }
1980
1981 debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\
1982 d=%u]: ", __func__, __LINE__, d);
1983 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ",
1984 (int)(bit_chk & 1), i, left_edge[i]);
1985 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
1986 right_edge[i]);
1987 bit_chk = bit_chk >> 1;
1988 }
1989 }
1990 }
1991
1992 /* Check that all bits have a window */
1993 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1994 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
1995 %d right_edge[%u]: %d", __func__, __LINE__,
1996 i, left_edge[i], i, right_edge[i]);
1997 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i]
1998 == IO_IO_IN_DELAY_MAX + 1)) {
1999 /*
2000 * Restore delay chain settings before letting the loop
2001 * in rw_mgr_mem_calibrate_vfifo to retry different
2002 * dqs/ck relationships.
2003 */
2004 scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs);
2005 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2006 scc_mgr_set_dqs_en_delay(read_group,
2007 start_dqs_en);
2008 }
2009 scc_mgr_load_dqs(read_group);
2010 writel(0, &sdr_scc_mgr->update);
2011
2012 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \
2013 find edge [%u]: %d %d", __func__, __LINE__,
2014 i, left_edge[i], right_edge[i]);
2015 if (use_read_test) {
2016 set_failing_group_stage(read_group *
2017 RW_MGR_MEM_DQ_PER_READ_DQS + i,
2018 CAL_STAGE_VFIFO,
2019 CAL_SUBSTAGE_VFIFO_CENTER);
2020 } else {
2021 set_failing_group_stage(read_group *
2022 RW_MGR_MEM_DQ_PER_READ_DQS + i,
2023 CAL_STAGE_VFIFO_AFTER_WRITES,
2024 CAL_SUBSTAGE_VFIFO_CENTER);
2025 }
2026 return 0;
2027 }
2028 }
2029
2030 /* Find middle of window for each DQ bit */
2031 mid_min = left_edge[0] - right_edge[0];
2032 min_index = 0;
2033 for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2034 mid = left_edge[i] - right_edge[i];
2035 if (mid < mid_min) {
2036 mid_min = mid;
2037 min_index = i;
2038 }
2039 }
2040
2041 /*
2042 * -mid_min/2 represents the amount that we need to move DQS.
2043 * If mid_min is odd and positive we'll need to add one to
2044 * make sure the rounding in further calculations is correct
2045 * (always bias to the right), so just add 1 for all positive values.
2046 */
2047 if (mid_min > 0)
2048 mid_min++;
2049
2050 mid_min = mid_min / 2;
2051
2052 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n",
2053 __func__, __LINE__, mid_min, min_index);
2054
2055 /* Determine the amount we can change DQS (which is -mid_min) */
2056 orig_mid_min = mid_min;
2057 new_dqs = start_dqs - mid_min;
2058 if (new_dqs > IO_DQS_IN_DELAY_MAX)
2059 new_dqs = IO_DQS_IN_DELAY_MAX;
2060 else if (new_dqs < 0)
2061 new_dqs = 0;
2062
2063 mid_min = start_dqs - new_dqs;
2064 debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2065 mid_min, new_dqs);
2066
2067 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2068 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2069 mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2070 else if (start_dqs_en - mid_min < 0)
2071 mid_min += start_dqs_en - mid_min;
2072 }
2073 new_dqs = start_dqs - mid_min;
2074
2075 debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \
2076 new_dqs=%d mid_min=%d\n", start_dqs,
2077 IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2078 new_dqs, mid_min);
2079
2080 /* Initialize data for export structures */
2081 dqs_margin = IO_IO_IN_DELAY_MAX + 1;
2082 dq_margin = IO_IO_IN_DELAY_MAX + 1;
2083
2084 /* add delay to bring centre of all DQ windows to the same "level" */
2085 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
2086 /* Use values before divide by 2 to reduce round off error */
2087 shift_dq = (left_edge[i] - right_edge[i] -
2088 (left_edge[min_index] - right_edge[min_index]))/2 +
2089 (orig_mid_min - mid_min);
2090
2091 debug_cond(DLEVEL == 2, "vfifo_center: before: \
2092 shift_dq[%u]=%d\n", i, shift_dq);
2093
2094 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET;
2095 temp_dq_in_delay1 = readl(addr + (p << 2));
2096 temp_dq_in_delay2 = readl(addr + (i << 2));
2097
2098 if (shift_dq + (int32_t)temp_dq_in_delay1 >
2099 (int32_t)IO_IO_IN_DELAY_MAX) {
2100 shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2;
2101 } else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) {
2102 shift_dq = -(int32_t)temp_dq_in_delay1;
2103 }
2104 debug_cond(DLEVEL == 2, "vfifo_center: after: \
2105 shift_dq[%u]=%d\n", i, shift_dq);
2106 final_dq[i] = temp_dq_in_delay1 + shift_dq;
2107 scc_mgr_set_dq_in_delay(p, final_dq[i]);
2108 scc_mgr_load_dq(p);
2109
2110 debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i,
2111 left_edge[i] - shift_dq + (-mid_min),
2112 right_edge[i] + shift_dq - (-mid_min));
2113 /* To determine values for export structures */
2114 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2115 dq_margin = left_edge[i] - shift_dq + (-mid_min);
2116
2117 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2118 dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2119 }
2120
2121 final_dqs = new_dqs;
2122 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2123 final_dqs_en = start_dqs_en - mid_min;
2124
2125 /* Move DQS-en */
2126 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2127 scc_mgr_set_dqs_en_delay(read_group, final_dqs_en);
2128 scc_mgr_load_dqs(read_group);
2129 }
2130
2131 /* Move DQS */
2132 scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs);
2133 scc_mgr_load_dqs(read_group);
2134 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \
2135 dqs_margin=%d", __func__, __LINE__,
2136 dq_margin, dqs_margin);
2137
2138 /*
2139 * Do not remove this line as it makes sure all of our decisions
2140 * have been applied. Apply the update bit.
2141 */
2142 writel(0, &sdr_scc_mgr->update);
2143
2144 return (dq_margin >= 0) && (dqs_margin >= 0);
2145 }
2146
2147 /**
2148 * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device
2149 * @rw_group: Read/Write Group
2150 * @phase: DQ/DQS phase
2151 *
2152 * Because initially no communication ca be reliably performed with the memory
2153 * device, the sequencer uses a guaranteed write mechanism to write data into
2154 * the memory device.
2155 */
2156 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group,
2157 const u32 phase)
2158 {
2159 int ret;
2160
2161 /* Set a particular DQ/DQS phase. */
2162 scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase);
2163
2164 debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n",
2165 __func__, __LINE__, rw_group, phase);
2166
2167 /*
2168 * Altera EMI_RM 2015.05.04 :: Figure 1-25
2169 * Load up the patterns used by read calibration using the
2170 * current DQDQS phase.
2171 */
2172 rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2173
2174 if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)
2175 return 0;
2176
2177 /*
2178 * Altera EMI_RM 2015.05.04 :: Figure 1-26
2179 * Back-to-Back reads of the patterns used for calibration.
2180 */
2181 ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1);
2182 if (ret)
2183 debug_cond(DLEVEL == 1,
2184 "%s:%d Guaranteed read test failed: g=%u p=%u\n",
2185 __func__, __LINE__, rw_group, phase);
2186 return ret;
2187 }
2188
2189 /**
2190 * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration
2191 * @rw_group: Read/Write Group
2192 * @test_bgn: Rank at which the test begins
2193 *
2194 * DQS enable calibration ensures reliable capture of the DQ signal without
2195 * glitches on the DQS line.
2196 */
2197 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group,
2198 const u32 test_bgn)
2199 {
2200 /*
2201 * Altera EMI_RM 2015.05.04 :: Figure 1-27
2202 * DQS and DQS Eanble Signal Relationships.
2203 */
2204
2205 /* We start at zero, so have one less dq to devide among */
2206 const u32 delay_step = IO_IO_IN_DELAY_MAX /
2207 (RW_MGR_MEM_DQ_PER_READ_DQS - 1);
2208 int ret;
2209 u32 i, p, d, r;
2210
2211 debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn);
2212
2213 /* Try different dq_in_delays since the DQ path is shorter than DQS. */
2214 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2215 r += NUM_RANKS_PER_SHADOW_REG) {
2216 for (i = 0, p = test_bgn, d = 0;
2217 i < RW_MGR_MEM_DQ_PER_READ_DQS;
2218 i++, p++, d += delay_step) {
2219 debug_cond(DLEVEL == 1,
2220 "%s:%d: g=%u r=%u i=%u p=%u d=%u\n",
2221 __func__, __LINE__, rw_group, r, i, p, d);
2222
2223 scc_mgr_set_dq_in_delay(p, d);
2224 scc_mgr_load_dq(p);
2225 }
2226
2227 writel(0, &sdr_scc_mgr->update);
2228 }
2229
2230 /*
2231 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
2232 * dq_in_delay values
2233 */
2234 ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group);
2235
2236 debug_cond(DLEVEL == 1,
2237 "%s:%d: g=%u found=%u; Reseting delay chain to zero\n",
2238 __func__, __LINE__, rw_group, !ret);
2239
2240 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2241 r += NUM_RANKS_PER_SHADOW_REG) {
2242 scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2243 writel(0, &sdr_scc_mgr->update);
2244 }
2245
2246 return ret;
2247 }
2248
2249 /**
2250 * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS
2251 * @rw_group: Read/Write Group
2252 * @test_bgn: Rank at which the test begins
2253 * @use_read_test: Perform a read test
2254 * @update_fom: Update FOM
2255 *
2256 * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads
2257 * within a group.
2258 */
2259 static int
2260 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn,
2261 const int use_read_test,
2262 const int update_fom)
2263
2264 {
2265 int ret, grp_calibrated;
2266 u32 rank_bgn, sr;
2267
2268 /*
2269 * Altera EMI_RM 2015.05.04 :: Figure 1-28
2270 * Read per-bit deskew can be done on a per shadow register basis.
2271 */
2272 grp_calibrated = 1;
2273 for (rank_bgn = 0, sr = 0;
2274 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2275 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
2276 /* Check if this set of ranks should be skipped entirely. */
2277 if (param->skip_shadow_regs[sr])
2278 continue;
2279
2280 ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group,
2281 rw_group, test_bgn,
2282 use_read_test,
2283 update_fom);
2284 if (ret)
2285 continue;
2286
2287 grp_calibrated = 0;
2288 }
2289
2290 if (!grp_calibrated)
2291 return -EIO;
2292
2293 return 0;
2294 }
2295
2296 /**
2297 * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
2298 * @rw_group: Read/Write Group
2299 * @test_bgn: Rank at which the test begins
2300 *
2301 * Stage 1: Calibrate the read valid prediction FIFO.
2302 *
2303 * This function implements UniPHY calibration Stage 1, as explained in
2304 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2305 *
2306 * - read valid prediction will consist of finding:
2307 * - DQS enable phase and DQS enable delay (DQS Enable Calibration)
2308 * - DQS input phase and DQS input delay (DQ/DQS Centering)
2309 * - we also do a per-bit deskew on the DQ lines.
2310 */
2311 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn)
2312 {
2313 uint32_t p, d;
2314 uint32_t dtaps_per_ptap;
2315 uint32_t failed_substage;
2316
2317 int ret;
2318
2319 debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn);
2320
2321 /* Update info for sims */
2322 reg_file_set_group(rw_group);
2323 reg_file_set_stage(CAL_STAGE_VFIFO);
2324 reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2325
2326 failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2327
2328 /* USER Determine number of delay taps for each phase tap. */
2329 dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP,
2330 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1;
2331
2332 for (d = 0; d <= dtaps_per_ptap; d += 2) {
2333 /*
2334 * In RLDRAMX we may be messing the delay of pins in
2335 * the same write rw_group but outside of the current read
2336 * the rw_group, but that's ok because we haven't calibrated
2337 * output side yet.
2338 */
2339 if (d > 0) {
2340 scc_mgr_apply_group_all_out_delay_add_all_ranks(
2341 rw_group, d);
2342 }
2343
2344 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) {
2345 /* 1) Guaranteed Write */
2346 ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p);
2347 if (ret)
2348 break;
2349
2350 /* 2) DQS Enable Calibration */
2351 ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group,
2352 test_bgn);
2353 if (ret) {
2354 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2355 continue;
2356 }
2357
2358 /* 3) Centering DQ/DQS */
2359 /*
2360 * If doing read after write calibration, do not update
2361 * FOM now. Do it then.
2362 */
2363 ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group,
2364 test_bgn, 1, 0);
2365 if (ret) {
2366 failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
2367 continue;
2368 }
2369
2370 /* All done. */
2371 goto cal_done_ok;
2372 }
2373 }
2374
2375 /* Calibration Stage 1 failed. */
2376 set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage);
2377 return 0;
2378
2379 /* Calibration Stage 1 completed OK. */
2380 cal_done_ok:
2381 /*
2382 * Reset the delay chains back to zero if they have moved > 1
2383 * (check for > 1 because loop will increase d even when pass in
2384 * first case).
2385 */
2386 if (d > 2)
2387 scc_mgr_zero_group(rw_group, 1);
2388
2389 return 1;
2390 }
2391
2392 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */
2393 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group,
2394 uint32_t test_bgn)
2395 {
2396 uint32_t rank_bgn, sr;
2397 uint32_t grp_calibrated;
2398 uint32_t write_group;
2399
2400 debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn);
2401
2402 /* update info for sims */
2403
2404 reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2405 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2406
2407 write_group = read_group;
2408
2409 /* update info for sims */
2410 reg_file_set_group(read_group);
2411
2412 grp_calibrated = 1;
2413 /* Read per-bit deskew can be done on a per shadow register basis */
2414 for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2415 rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
2416 /* Determine if this set of ranks should be skipped entirely */
2417 if (!param->skip_shadow_regs[sr]) {
2418 /* This is the last calibration round, update FOM here */
2419 if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn,
2420 write_group,
2421 read_group,
2422 test_bgn, 0,
2423 1)) {
2424 grp_calibrated = 0;
2425 }
2426 }
2427 }
2428
2429
2430 if (grp_calibrated == 0) {
2431 set_failing_group_stage(write_group,
2432 CAL_STAGE_VFIFO_AFTER_WRITES,
2433 CAL_SUBSTAGE_VFIFO_CENTER);
2434 return 0;
2435 }
2436
2437 return 1;
2438 }
2439
2440 /* Calibrate LFIFO to find smallest read latency */
2441 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2442 {
2443 uint32_t found_one;
2444
2445 debug("%s:%d\n", __func__, __LINE__);
2446
2447 /* update info for sims */
2448 reg_file_set_stage(CAL_STAGE_LFIFO);
2449 reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2450
2451 /* Load up the patterns used by read calibration for all ranks */
2452 rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2453 found_one = 0;
2454
2455 do {
2456 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2457 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2458 __func__, __LINE__, gbl->curr_read_lat);
2459
2460 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0,
2461 NUM_READ_TESTS,
2462 PASS_ALL_BITS,
2463 1)) {
2464 break;
2465 }
2466
2467 found_one = 1;
2468 /* reduce read latency and see if things are working */
2469 /* correctly */
2470 gbl->curr_read_lat--;
2471 } while (gbl->curr_read_lat > 0);
2472
2473 /* reset the fifos to get pointers to known state */
2474
2475 writel(0, &phy_mgr_cmd->fifo_reset);
2476
2477 if (found_one) {
2478 /* add a fudge factor to the read latency that was determined */
2479 gbl->curr_read_lat += 2;
2480 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2481 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \
2482 read_lat=%u\n", __func__, __LINE__,
2483 gbl->curr_read_lat);
2484 return 1;
2485 } else {
2486 set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2487 CAL_SUBSTAGE_READ_LATENCY);
2488
2489 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \
2490 read_lat=%u\n", __func__, __LINE__,
2491 gbl->curr_read_lat);
2492 return 0;
2493 }
2494 }
2495
2496 /*
2497 * issue write test command.
2498 * two variants are provided. one that just tests a write pattern and
2499 * another that tests datamask functionality.
2500 */
2501 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group,
2502 uint32_t test_dm)
2503 {
2504 uint32_t mcc_instruction;
2505 uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) &&
2506 ENABLE_SUPER_QUICK_CALIBRATION);
2507 uint32_t rw_wl_nop_cycles;
2508 uint32_t addr;
2509
2510 /*
2511 * Set counter and jump addresses for the right
2512 * number of NOP cycles.
2513 * The number of supported NOP cycles can range from -1 to infinity
2514 * Three different cases are handled:
2515 *
2516 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
2517 * mechanism will be used to insert the right number of NOPs
2518 *
2519 * 2. For a number of NOP cycles equals to 0, the micro-instruction
2520 * issuing the write command will jump straight to the
2521 * micro-instruction that turns on DQS (for DDRx), or outputs write
2522 * data (for RLD), skipping
2523 * the NOP micro-instruction all together
2524 *
2525 * 3. A number of NOP cycles equal to -1 indicates that DQS must be
2526 * turned on in the same micro-instruction that issues the write
2527 * command. Then we need
2528 * to directly jump to the micro-instruction that sends out the data
2529 *
2530 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
2531 * (2 and 3). One jump-counter (0) is used to perform multiple
2532 * write-read operations.
2533 * one counter left to issue this command in "multiple-group" mode
2534 */
2535
2536 rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
2537
2538 if (rw_wl_nop_cycles == -1) {
2539 /*
2540 * CNTR 2 - We want to execute the special write operation that
2541 * turns on DQS right away and then skip directly to the
2542 * instruction that sends out the data. We set the counter to a
2543 * large number so that the jump is always taken.
2544 */
2545 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2546
2547 /* CNTR 3 - Not used */
2548 if (test_dm) {
2549 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
2550 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
2551 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2552 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2553 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2554 } else {
2555 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
2556 writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
2557 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2558 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2559 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2560 }
2561 } else if (rw_wl_nop_cycles == 0) {
2562 /*
2563 * CNTR 2 - We want to skip the NOP operation and go straight
2564 * to the DQS enable instruction. We set the counter to a large
2565 * number so that the jump is always taken.
2566 */
2567 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2568
2569 /* CNTR 3 - Not used */
2570 if (test_dm) {
2571 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2572 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
2573 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2574 } else {
2575 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2576 writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
2577 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2578 }
2579 } else {
2580 /*
2581 * CNTR 2 - In this case we want to execute the next instruction
2582 * and NOT take the jump. So we set the counter to 0. The jump
2583 * address doesn't count.
2584 */
2585 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
2586 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2587
2588 /*
2589 * CNTR 3 - Set the nop counter to the number of cycles we
2590 * need to loop for, minus 1.
2591 */
2592 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
2593 if (test_dm) {
2594 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2595 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2596 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2597 } else {
2598 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2599 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2600 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2601 }
2602 }
2603
2604 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
2605 RW_MGR_RESET_READ_DATAPATH_OFFSET);
2606
2607 if (quick_write_mode)
2608 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
2609 else
2610 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
2611
2612 writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
2613
2614 /*
2615 * CNTR 1 - This is used to ensure enough time elapses
2616 * for read data to come back.
2617 */
2618 writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
2619
2620 if (test_dm) {
2621 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
2622 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
2623 } else {
2624 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
2625 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
2626 }
2627
2628 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
2629 writel(mcc_instruction, addr + (group << 2));
2630 }
2631
2632 /* Test writes, can check for a single bit pass or multiple bit pass */
2633 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
2634 uint32_t write_group, uint32_t use_dm, uint32_t all_correct,
2635 uint32_t *bit_chk, uint32_t all_ranks)
2636 {
2637 uint32_t r;
2638 uint32_t correct_mask_vg;
2639 uint32_t tmp_bit_chk;
2640 uint32_t vg;
2641 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
2642 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
2643 uint32_t addr_rw_mgr;
2644 uint32_t base_rw_mgr;
2645
2646 *bit_chk = param->write_correct_mask;
2647 correct_mask_vg = param->write_correct_mask_vg;
2648
2649 for (r = rank_bgn; r < rank_end; r++) {
2650 if (param->skip_ranks[r]) {
2651 /* request to skip the rank */
2652 continue;
2653 }
2654
2655 /* set rank */
2656 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
2657
2658 tmp_bit_chk = 0;
2659 addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
2660 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) {
2661 /* reset the fifos to get pointers to known state */
2662 writel(0, &phy_mgr_cmd->fifo_reset);
2663
2664 tmp_bit_chk = tmp_bit_chk <<
2665 (RW_MGR_MEM_DQ_PER_WRITE_DQS /
2666 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
2667 rw_mgr_mem_calibrate_write_test_issue(write_group *
2668 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg,
2669 use_dm);
2670
2671 base_rw_mgr = readl(addr_rw_mgr);
2672 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
2673 if (vg == 0)
2674 break;
2675 }
2676 *bit_chk &= tmp_bit_chk;
2677 }
2678
2679 if (all_correct) {
2680 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2681 debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \
2682 %u => %lu", write_group, use_dm,
2683 *bit_chk, param->write_correct_mask,
2684 (long unsigned int)(*bit_chk ==
2685 param->write_correct_mask));
2686 return *bit_chk == param->write_correct_mask;
2687 } else {
2688 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2689 debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ",
2690 write_group, use_dm, *bit_chk);
2691 debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0,
2692 (long unsigned int)(*bit_chk != 0));
2693 return *bit_chk != 0x00;
2694 }
2695 }
2696
2697 /*
2698 * center all windows. do per-bit-deskew to possibly increase size of
2699 * certain windows.
2700 */
2701 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn,
2702 uint32_t write_group, uint32_t test_bgn)
2703 {
2704 uint32_t i, p, min_index;
2705 int32_t d;
2706 /*
2707 * Store these as signed since there are comparisons with
2708 * signed numbers.
2709 */
2710 uint32_t bit_chk;
2711 uint32_t sticky_bit_chk;
2712 int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2713 int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2714 int32_t mid;
2715 int32_t mid_min, orig_mid_min;
2716 int32_t new_dqs, start_dqs, shift_dq;
2717 int32_t dq_margin, dqs_margin, dm_margin;
2718 uint32_t stop;
2719 uint32_t temp_dq_out1_delay;
2720 uint32_t addr;
2721
2722 debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2723
2724 dm_margin = 0;
2725
2726 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2727 start_dqs = readl(addr +
2728 (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
2729
2730 /* per-bit deskew */
2731
2732 /*
2733 * set the left and right edge of each bit to an illegal value
2734 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
2735 */
2736 sticky_bit_chk = 0;
2737 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2738 left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2739 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2740 }
2741
2742 /* Search for the left edge of the window for each bit */
2743 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
2744 scc_mgr_apply_group_dq_out1_delay(write_group, d);
2745
2746 writel(0, &sdr_scc_mgr->update);
2747
2748 /*
2749 * Stop searching when the read test doesn't pass AND when
2750 * we've seen a passing read on every bit.
2751 */
2752 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2753 0, PASS_ONE_BIT, &bit_chk, 0);
2754 sticky_bit_chk = sticky_bit_chk | bit_chk;
2755 stop = stop && (sticky_bit_chk == param->write_correct_mask);
2756 debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \
2757 == %u && %u [bit_chk= %u ]\n",
2758 d, sticky_bit_chk, param->write_correct_mask,
2759 stop, bit_chk);
2760
2761 if (stop == 1) {
2762 break;
2763 } else {
2764 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2765 if (bit_chk & 1) {
2766 /*
2767 * Remember a passing test as the
2768 * left_edge.
2769 */
2770 left_edge[i] = d;
2771 } else {
2772 /*
2773 * If a left edge has not been seen
2774 * yet, then a future passing test will
2775 * mark this edge as the right edge.
2776 */
2777 if (left_edge[i] ==
2778 IO_IO_OUT1_DELAY_MAX + 1) {
2779 right_edge[i] = -(d + 1);
2780 }
2781 }
2782 debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d);
2783 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2784 (int)(bit_chk & 1), i, left_edge[i]);
2785 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2786 right_edge[i]);
2787 bit_chk = bit_chk >> 1;
2788 }
2789 }
2790 }
2791
2792 /* Reset DQ delay chains to 0 */
2793 scc_mgr_apply_group_dq_out1_delay(0);
2794 sticky_bit_chk = 0;
2795 for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) {
2796 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2797 %d right_edge[%u]: %d\n", __func__, __LINE__,
2798 i, left_edge[i], i, right_edge[i]);
2799
2800 /*
2801 * Check for cases where we haven't found the left edge,
2802 * which makes our assignment of the the right edge invalid.
2803 * Reset it to the illegal value.
2804 */
2805 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) &&
2806 (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
2807 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2808 debug_cond(DLEVEL == 2, "%s:%d write_center: reset \
2809 right_edge[%u]: %d\n", __func__, __LINE__,
2810 i, right_edge[i]);
2811 }
2812
2813 /*
2814 * Reset sticky bit (except for bits where we have
2815 * seen the left edge).
2816 */
2817 sticky_bit_chk = sticky_bit_chk << 1;
2818 if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1))
2819 sticky_bit_chk = sticky_bit_chk | 1;
2820
2821 if (i == 0)
2822 break;
2823 }
2824
2825 /* Search for the right edge of the window for each bit */
2826 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) {
2827 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2828 d + start_dqs);
2829
2830 writel(0, &sdr_scc_mgr->update);
2831
2832 /*
2833 * Stop searching when the read test doesn't pass AND when
2834 * we've seen a passing read on every bit.
2835 */
2836 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2837 0, PASS_ONE_BIT, &bit_chk, 0);
2838
2839 sticky_bit_chk = sticky_bit_chk | bit_chk;
2840 stop = stop && (sticky_bit_chk == param->write_correct_mask);
2841
2842 debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \
2843 %u && %u\n", d, sticky_bit_chk,
2844 param->write_correct_mask, stop);
2845
2846 if (stop == 1) {
2847 if (d == 0) {
2848 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS;
2849 i++) {
2850 /* d = 0 failed, but it passed when
2851 testing the left edge, so it must be
2852 marginal, set it to -1 */
2853 if (right_edge[i] ==
2854 IO_IO_OUT1_DELAY_MAX + 1 &&
2855 left_edge[i] !=
2856 IO_IO_OUT1_DELAY_MAX + 1) {
2857 right_edge[i] = -1;
2858 }
2859 }
2860 }
2861 break;
2862 } else {
2863 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2864 if (bit_chk & 1) {
2865 /*
2866 * Remember a passing test as
2867 * the right_edge.
2868 */
2869 right_edge[i] = d;
2870 } else {
2871 if (d != 0) {
2872 /*
2873 * If a right edge has not
2874 * been seen yet, then a future
2875 * passing test will mark this
2876 * edge as the left edge.
2877 */
2878 if (right_edge[i] ==
2879 IO_IO_OUT1_DELAY_MAX + 1)
2880 left_edge[i] = -(d + 1);
2881 } else {
2882 /*
2883 * d = 0 failed, but it passed
2884 * when testing the left edge,
2885 * so it must be marginal, set
2886 * it to -1.
2887 */
2888 if (right_edge[i] ==
2889 IO_IO_OUT1_DELAY_MAX + 1 &&
2890 left_edge[i] !=
2891 IO_IO_OUT1_DELAY_MAX + 1)
2892 right_edge[i] = -1;
2893 /*
2894 * If a right edge has not been
2895 * seen yet, then a future
2896 * passing test will mark this
2897 * edge as the left edge.
2898 */
2899 else if (right_edge[i] ==
2900 IO_IO_OUT1_DELAY_MAX +
2901 1)
2902 left_edge[i] = -(d + 1);
2903 }
2904 }
2905 debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d);
2906 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2907 (int)(bit_chk & 1), i, left_edge[i]);
2908 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2909 right_edge[i]);
2910 bit_chk = bit_chk >> 1;
2911 }
2912 }
2913 }
2914
2915 /* Check that all bits have a window */
2916 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2917 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2918 %d right_edge[%u]: %d", __func__, __LINE__,
2919 i, left_edge[i], i, right_edge[i]);
2920 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) ||
2921 (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) {
2922 set_failing_group_stage(test_bgn + i,
2923 CAL_STAGE_WRITES,
2924 CAL_SUBSTAGE_WRITES_CENTER);
2925 return 0;
2926 }
2927 }
2928
2929 /* Find middle of window for each DQ bit */
2930 mid_min = left_edge[0] - right_edge[0];
2931 min_index = 0;
2932 for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2933 mid = left_edge[i] - right_edge[i];
2934 if (mid < mid_min) {
2935 mid_min = mid;
2936 min_index = i;
2937 }
2938 }
2939
2940 /*
2941 * -mid_min/2 represents the amount that we need to move DQS.
2942 * If mid_min is odd and positive we'll need to add one to
2943 * make sure the rounding in further calculations is correct
2944 * (always bias to the right), so just add 1 for all positive values.
2945 */
2946 if (mid_min > 0)
2947 mid_min++;
2948 mid_min = mid_min / 2;
2949 debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__,
2950 __LINE__, mid_min);
2951
2952 /* Determine the amount we can change DQS (which is -mid_min) */
2953 orig_mid_min = mid_min;
2954 new_dqs = start_dqs;
2955 mid_min = 0;
2956 debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \
2957 mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min);
2958 /* Initialize data for export structures */
2959 dqs_margin = IO_IO_OUT1_DELAY_MAX + 1;
2960 dq_margin = IO_IO_OUT1_DELAY_MAX + 1;
2961
2962 /* add delay to bring centre of all DQ windows to the same "level" */
2963 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
2964 /* Use values before divide by 2 to reduce round off error */
2965 shift_dq = (left_edge[i] - right_edge[i] -
2966 (left_edge[min_index] - right_edge[min_index]))/2 +
2967 (orig_mid_min - mid_min);
2968
2969 debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \
2970 [%u]=%d\n", __func__, __LINE__, i, shift_dq);
2971
2972 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2973 temp_dq_out1_delay = readl(addr + (i << 2));
2974 if (shift_dq + (int32_t)temp_dq_out1_delay >
2975 (int32_t)IO_IO_OUT1_DELAY_MAX) {
2976 shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay;
2977 } else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) {
2978 shift_dq = -(int32_t)temp_dq_out1_delay;
2979 }
2980 debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n",
2981 i, shift_dq);
2982 scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq);
2983 scc_mgr_load_dq(i);
2984
2985 debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i,
2986 left_edge[i] - shift_dq + (-mid_min),
2987 right_edge[i] + shift_dq - (-mid_min));
2988 /* To determine values for export structures */
2989 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2990 dq_margin = left_edge[i] - shift_dq + (-mid_min);
2991
2992 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2993 dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2994 }
2995
2996 /* Move DQS */
2997 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
2998 writel(0, &sdr_scc_mgr->update);
2999
3000 /* Centre DM */
3001 debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
3002
3003 /*
3004 * set the left and right edge of each bit to an illegal value,
3005 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value,
3006 */
3007 left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
3008 right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
3009 int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3010 int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3011 int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
3012 int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1;
3013 int32_t win_best = 0;
3014
3015 /* Search for the/part of the window with DM shift */
3016 for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) {
3017 scc_mgr_apply_group_dm_out1_delay(d);
3018 writel(0, &sdr_scc_mgr->update);
3019
3020 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3021 PASS_ALL_BITS, &bit_chk,
3022 0)) {
3023 /* USE Set current end of the window */
3024 end_curr = -d;
3025 /*
3026 * If a starting edge of our window has not been seen
3027 * this is our current start of the DM window.
3028 */
3029 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3030 bgn_curr = -d;
3031
3032 /*
3033 * If current window is bigger than best seen.
3034 * Set best seen to be current window.
3035 */
3036 if ((end_curr-bgn_curr+1) > win_best) {
3037 win_best = end_curr-bgn_curr+1;
3038 bgn_best = bgn_curr;
3039 end_best = end_curr;
3040 }
3041 } else {
3042 /* We just saw a failing test. Reset temp edge */
3043 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3044 end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3045 }
3046 }
3047
3048
3049 /* Reset DM delay chains to 0 */
3050 scc_mgr_apply_group_dm_out1_delay(0);
3051
3052 /*
3053 * Check to see if the current window nudges up aganist 0 delay.
3054 * If so we need to continue the search by shifting DQS otherwise DQS
3055 * search begins as a new search. */
3056 if (end_curr != 0) {
3057 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3058 end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3059 }
3060
3061 /* Search for the/part of the window with DQS shifts */
3062 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) {
3063 /*
3064 * Note: This only shifts DQS, so are we limiting ourselve to
3065 * width of DQ unnecessarily.
3066 */
3067 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
3068 d + new_dqs);
3069
3070 writel(0, &sdr_scc_mgr->update);
3071 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3072 PASS_ALL_BITS, &bit_chk,
3073 0)) {
3074 /* USE Set current end of the window */
3075 end_curr = d;
3076 /*
3077 * If a beginning edge of our window has not been seen
3078 * this is our current begin of the DM window.
3079 */
3080 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3081 bgn_curr = d;
3082
3083 /*
3084 * If current window is bigger than best seen. Set best
3085 * seen to be current window.
3086 */
3087 if ((end_curr-bgn_curr+1) > win_best) {
3088 win_best = end_curr-bgn_curr+1;
3089 bgn_best = bgn_curr;
3090 end_best = end_curr;
3091 }
3092 } else {
3093 /* We just saw a failing test. Reset temp edge */
3094 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3095 end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3096
3097 /* Early exit optimization: if ther remaining delay
3098 chain space is less than already seen largest window
3099 we can exit */
3100 if ((win_best-1) >
3101 (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) {
3102 break;
3103 }
3104 }
3105 }
3106
3107 /* assign left and right edge for cal and reporting; */
3108 left_edge[0] = -1*bgn_best;
3109 right_edge[0] = end_best;
3110
3111 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__,
3112 __LINE__, left_edge[0], right_edge[0]);
3113
3114 /* Move DQS (back to orig) */
3115 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3116
3117 /* Move DM */
3118
3119 /* Find middle of window for the DM bit */
3120 mid = (left_edge[0] - right_edge[0]) / 2;
3121
3122 /* only move right, since we are not moving DQS/DQ */
3123 if (mid < 0)
3124 mid = 0;
3125
3126 /* dm_marign should fail if we never find a window */
3127 if (win_best == 0)
3128 dm_margin = -1;
3129 else
3130 dm_margin = left_edge[0] - mid;
3131
3132 scc_mgr_apply_group_dm_out1_delay(mid);
3133 writel(0, &sdr_scc_mgr->update);
3134
3135 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \
3136 dm_margin=%d\n", __func__, __LINE__, left_edge[0],
3137 right_edge[0], mid, dm_margin);
3138 /* Export values */
3139 gbl->fom_out += dq_margin + dqs_margin;
3140
3141 debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \
3142 dqs_margin=%d dm_margin=%d\n", __func__, __LINE__,
3143 dq_margin, dqs_margin, dm_margin);
3144
3145 /*
3146 * Do not remove this line as it makes sure all of our
3147 * decisions have been applied.
3148 */
3149 writel(0, &sdr_scc_mgr->update);
3150 return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0);
3151 }
3152
3153 /* calibrate the write operations */
3154 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g,
3155 uint32_t test_bgn)
3156 {
3157 /* update info for sims */
3158 debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn);
3159
3160 reg_file_set_stage(CAL_STAGE_WRITES);
3161 reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3162
3163 reg_file_set_group(g);
3164
3165 if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) {
3166 set_failing_group_stage(g, CAL_STAGE_WRITES,
3167 CAL_SUBSTAGE_WRITES_CENTER);
3168 return 0;
3169 }
3170
3171 return 1;
3172 }
3173
3174 /**
3175 * mem_precharge_and_activate() - Precharge all banks and activate
3176 *
3177 * Precharge all banks and activate row 0 in bank "000..." and bank "111...".
3178 */
3179 static void mem_precharge_and_activate(void)
3180 {
3181 int r;
3182
3183 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
3184 /* Test if the rank should be skipped. */
3185 if (param->skip_ranks[r])
3186 continue;
3187
3188 /* Set rank. */
3189 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3190
3191 /* Precharge all banks. */
3192 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3193 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3194
3195 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3196 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
3197 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3198
3199 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3200 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
3201 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3202
3203 /* Activate rows. */
3204 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3205 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3206 }
3207 }
3208
3209 /**
3210 * mem_init_latency() - Configure memory RLAT and WLAT settings
3211 *
3212 * Configure memory RLAT and WLAT parameters.
3213 */
3214 static void mem_init_latency(void)
3215 {
3216 /*
3217 * For AV/CV, LFIFO is hardened and always runs at full rate
3218 * so max latency in AFI clocks, used here, is correspondingly
3219 * smaller.
3220 */
3221 const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1;
3222 u32 rlat, wlat;
3223
3224 debug("%s:%d\n", __func__, __LINE__);
3225
3226 /*
3227 * Read in write latency.
3228 * WL for Hard PHY does not include additive latency.
3229 */
3230 wlat = readl(&data_mgr->t_wl_add);
3231 wlat += readl(&data_mgr->mem_t_add);
3232
3233 gbl->rw_wl_nop_cycles = wlat - 1;
3234
3235 /* Read in readl latency. */
3236 rlat = readl(&data_mgr->t_rl_add);
3237
3238 /* Set a pretty high read latency initially. */
3239 gbl->curr_read_lat = rlat + 16;
3240 if (gbl->curr_read_lat > max_latency)
3241 gbl->curr_read_lat = max_latency;
3242
3243 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3244
3245 /* Advertise write latency. */
3246 writel(wlat, &phy_mgr_cfg->afi_wlat);
3247 }
3248
3249 /**
3250 * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
3251 *
3252 * Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
3253 */
3254 static void mem_skip_calibrate(void)
3255 {
3256 uint32_t vfifo_offset;
3257 uint32_t i, j, r;
3258
3259 debug("%s:%d\n", __func__, __LINE__);
3260 /* Need to update every shadow register set used by the interface */
3261 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
3262 r += NUM_RANKS_PER_SHADOW_REG) {
3263 /*
3264 * Set output phase alignment settings appropriate for
3265 * skip calibration.
3266 */
3267 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3268 scc_mgr_set_dqs_en_phase(i, 0);
3269 #if IO_DLL_CHAIN_LENGTH == 6
3270 scc_mgr_set_dqdqs_output_phase(i, 6);
3271 #else
3272 scc_mgr_set_dqdqs_output_phase(i, 7);
3273 #endif
3274 /*
3275 * Case:33398
3276 *
3277 * Write data arrives to the I/O two cycles before write
3278 * latency is reached (720 deg).
3279 * -> due to bit-slip in a/c bus
3280 * -> to allow board skew where dqs is longer than ck
3281 * -> how often can this happen!?
3282 * -> can claim back some ptaps for high freq
3283 * support if we can relax this, but i digress...
3284 *
3285 * The write_clk leads mem_ck by 90 deg
3286 * The minimum ptap of the OPA is 180 deg
3287 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3288 * The write_clk is always delayed by 2 ptaps
3289 *
3290 * Hence, to make DQS aligned to CK, we need to delay
3291 * DQS by:
3292 * (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3293 *
3294 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3295 * gives us the number of ptaps, which simplies to:
3296 *
3297 * (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3298 */
3299 scc_mgr_set_dqdqs_output_phase(i,
3300 1.25 * IO_DLL_CHAIN_LENGTH - 2);
3301 }
3302 writel(0xff, &sdr_scc_mgr->dqs_ena);
3303 writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3304
3305 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
3306 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3307 SCC_MGR_GROUP_COUNTER_OFFSET);
3308 }
3309 writel(0xff, &sdr_scc_mgr->dq_ena);
3310 writel(0xff, &sdr_scc_mgr->dm_ena);
3311 writel(0, &sdr_scc_mgr->update);
3312 }
3313
3314 /* Compensate for simulation model behaviour */
3315 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3316 scc_mgr_set_dqs_bus_in_delay(i, 10);
3317 scc_mgr_load_dqs(i);
3318 }
3319 writel(0, &sdr_scc_mgr->update);
3320
3321 /*
3322 * ArriaV has hard FIFOs that can only be initialized by incrementing
3323 * in sequencer.
3324 */
3325 vfifo_offset = CALIB_VFIFO_OFFSET;
3326 for (j = 0; j < vfifo_offset; j++)
3327 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3328 writel(0, &phy_mgr_cmd->fifo_reset);
3329
3330 /*
3331 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
3332 * setting from generation-time constant.
3333 */
3334 gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3335 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3336 }
3337
3338 /**
3339 * mem_calibrate() - Memory calibration entry point.
3340 *
3341 * Perform memory calibration.
3342 */
3343 static uint32_t mem_calibrate(void)
3344 {
3345 uint32_t i;
3346 uint32_t rank_bgn, sr;
3347 uint32_t write_group, write_test_bgn;
3348 uint32_t read_group, read_test_bgn;
3349 uint32_t run_groups, current_run;
3350 uint32_t failing_groups = 0;
3351 uint32_t group_failed = 0;
3352
3353 const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
3354 RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
3355
3356 debug("%s:%d\n", __func__, __LINE__);
3357
3358 /* Initialize the data settings */
3359 gbl->error_substage = CAL_SUBSTAGE_NIL;
3360 gbl->error_stage = CAL_STAGE_NIL;
3361 gbl->error_group = 0xff;
3362 gbl->fom_in = 0;
3363 gbl->fom_out = 0;
3364
3365 /* Initialize WLAT and RLAT. */
3366 mem_init_latency();
3367
3368 /* Initialize bit slips. */
3369 mem_precharge_and_activate();
3370
3371 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3372 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3373 SCC_MGR_GROUP_COUNTER_OFFSET);
3374 /* Only needed once to set all groups, pins, DQ, DQS, DM. */
3375 if (i == 0)
3376 scc_mgr_set_hhp_extras();
3377
3378 scc_set_bypass_mode(i);
3379 }
3380
3381 /* Calibration is skipped. */
3382 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3383 /*
3384 * Set VFIFO and LFIFO to instant-on settings in skip
3385 * calibration mode.
3386 */
3387 mem_skip_calibrate();
3388
3389 /*
3390 * Do not remove this line as it makes sure all of our
3391 * decisions have been applied.
3392 */
3393 writel(0, &sdr_scc_mgr->update);
3394 return 1;
3395 }
3396
3397 /* Calibration is not skipped. */
3398 for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3399 /*
3400 * Zero all delay chain/phase settings for all
3401 * groups and all shadow register sets.
3402 */
3403 scc_mgr_zero_all();
3404
3405 run_groups = ~param->skip_groups;
3406
3407 for (write_group = 0, write_test_bgn = 0; write_group
3408 < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3409 write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
3410
3411 /* Initialize the group failure */
3412 group_failed = 0;
3413
3414 current_run = run_groups & ((1 <<
3415 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3416 run_groups = run_groups >>
3417 RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3418
3419 if (current_run == 0)
3420 continue;
3421
3422 writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3423 SCC_MGR_GROUP_COUNTER_OFFSET);
3424 scc_mgr_zero_group(write_group, 0);
3425
3426 for (read_group = write_group * rwdqs_ratio,
3427 read_test_bgn = 0;
3428 read_group < (write_group + 1) * rwdqs_ratio;
3429 read_group++,
3430 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3431 if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO)
3432 continue;
3433
3434 /* Calibrate the VFIFO */
3435 if (rw_mgr_mem_calibrate_vfifo(read_group,
3436 read_test_bgn))
3437 continue;
3438
3439 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3440 return 0;
3441
3442 /* The group failed, we're done. */
3443 goto grp_failed;
3444 }
3445
3446 /* Calibrate the output side */
3447 for (rank_bgn = 0, sr = 0;
3448 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
3449 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
3450 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3451 continue;
3452
3453 /* Not needed in quick mode! */
3454 if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS)
3455 continue;
3456
3457 /*
3458 * Determine if this set of ranks
3459 * should be skipped entirely.
3460 */
3461 if (param->skip_shadow_regs[sr])
3462 continue;
3463
3464 /* Calibrate WRITEs */
3465 if (rw_mgr_mem_calibrate_writes(rank_bgn,
3466 write_group, write_test_bgn))
3467 continue;
3468
3469 group_failed = 1;
3470 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3471 return 0;
3472 }
3473
3474 /* Some group failed, we're done. */
3475 if (group_failed)
3476 goto grp_failed;
3477
3478 for (read_group = write_group * rwdqs_ratio,
3479 read_test_bgn = 0;
3480 read_group < (write_group + 1) * rwdqs_ratio;
3481 read_group++,
3482 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3483 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3484 continue;
3485
3486 if (rw_mgr_mem_calibrate_vfifo_end(read_group,
3487 read_test_bgn))
3488 continue;
3489
3490 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3491 return 0;
3492
3493 /* The group failed, we're done. */
3494 goto grp_failed;
3495 }
3496
3497 /* No group failed, continue as usual. */
3498 continue;
3499
3500 grp_failed: /* A group failed, increment the counter. */
3501 failing_groups++;
3502 }
3503
3504 /*
3505 * USER If there are any failing groups then report
3506 * the failure.
3507 */
3508 if (failing_groups != 0)
3509 return 0;
3510
3511 if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO)
3512 continue;
3513
3514 /*
3515 * If we're skipping groups as part of debug,
3516 * don't calibrate LFIFO.
3517 */
3518 if (param->skip_groups != 0)
3519 continue;
3520
3521 /* Calibrate the LFIFO */
3522 if (!rw_mgr_mem_calibrate_lfifo())
3523 return 0;
3524 }
3525
3526 /*
3527 * Do not remove this line as it makes sure all of our decisions
3528 * have been applied.
3529 */
3530 writel(0, &sdr_scc_mgr->update);
3531 return 1;
3532 }
3533
3534 /**
3535 * run_mem_calibrate() - Perform memory calibration
3536 *
3537 * This function triggers the entire memory calibration procedure.
3538 */
3539 static int run_mem_calibrate(void)
3540 {
3541 int pass;
3542
3543 debug("%s:%d\n", __func__, __LINE__);
3544
3545 /* Reset pass/fail status shown on afi_cal_success/fail */
3546 writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3547
3548 /* Stop tracking manager. */
3549 clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3550
3551 phy_mgr_initialize();
3552 rw_mgr_mem_initialize();
3553
3554 /* Perform the actual memory calibration. */
3555 pass = mem_calibrate();
3556
3557 mem_precharge_and_activate();
3558 writel(0, &phy_mgr_cmd->fifo_reset);
3559
3560 /* Handoff. */
3561 rw_mgr_mem_handoff();
3562 /*
3563 * In Hard PHY this is a 2-bit control:
3564 * 0: AFI Mux Select
3565 * 1: DDIO Mux Select
3566 */
3567 writel(0x2, &phy_mgr_cfg->mux_sel);
3568
3569 /* Start tracking manager. */
3570 setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3571
3572 return pass;
3573 }
3574
3575 /**
3576 * debug_mem_calibrate() - Report result of memory calibration
3577 * @pass: Value indicating whether calibration passed or failed
3578 *
3579 * This function reports the results of the memory calibration
3580 * and writes debug information into the register file.
3581 */
3582 static void debug_mem_calibrate(int pass)
3583 {
3584 uint32_t debug_info;
3585
3586 if (pass) {
3587 printf("%s: CALIBRATION PASSED\n", __FILE__);
3588
3589 gbl->fom_in /= 2;
3590 gbl->fom_out /= 2;
3591
3592 if (gbl->fom_in > 0xff)
3593 gbl->fom_in = 0xff;
3594
3595 if (gbl->fom_out > 0xff)
3596 gbl->fom_out = 0xff;
3597
3598 /* Update the FOM in the register file */
3599 debug_info = gbl->fom_in;
3600 debug_info |= gbl->fom_out << 8;
3601 writel(debug_info, &sdr_reg_file->fom);
3602
3603 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3604 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3605 } else {
3606 printf("%s: CALIBRATION FAILED\n", __FILE__);
3607
3608 debug_info = gbl->error_stage;
3609 debug_info |= gbl->error_substage << 8;
3610 debug_info |= gbl->error_group << 16;
3611
3612 writel(debug_info, &sdr_reg_file->failing_stage);
3613 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3614 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3615
3616 /* Update the failing group/stage in the register file */
3617 debug_info = gbl->error_stage;
3618 debug_info |= gbl->error_substage << 8;
3619 debug_info |= gbl->error_group << 16;
3620 writel(debug_info, &sdr_reg_file->failing_stage);
3621 }
3622
3623 printf("%s: Calibration complete\n", __FILE__);
3624 }
3625
3626 /**
3627 * hc_initialize_rom_data() - Initialize ROM data
3628 *
3629 * Initialize ROM data.
3630 */
3631 static void hc_initialize_rom_data(void)
3632 {
3633 u32 i, addr;
3634
3635 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3636 for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++)
3637 writel(inst_rom_init[i], addr + (i << 2));
3638
3639 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3640 for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++)
3641 writel(ac_rom_init[i], addr + (i << 2));
3642 }
3643
3644 /**
3645 * initialize_reg_file() - Initialize SDR register file
3646 *
3647 * Initialize SDR register file.
3648 */
3649 static void initialize_reg_file(void)
3650 {
3651 /* Initialize the register file with the correct data */
3652 writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3653 writel(0, &sdr_reg_file->debug_data_addr);
3654 writel(0, &sdr_reg_file->cur_stage);
3655 writel(0, &sdr_reg_file->fom);
3656 writel(0, &sdr_reg_file->failing_stage);
3657 writel(0, &sdr_reg_file->debug1);
3658 writel(0, &sdr_reg_file->debug2);
3659 }
3660
3661 /**
3662 * initialize_hps_phy() - Initialize HPS PHY
3663 *
3664 * Initialize HPS PHY.
3665 */
3666 static void initialize_hps_phy(void)
3667 {
3668 uint32_t reg;
3669 /*
3670 * Tracking also gets configured here because it's in the
3671 * same register.
3672 */
3673 uint32_t trk_sample_count = 7500;
3674 uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3675 /*
3676 * Format is number of outer loops in the 16 MSB, sample
3677 * count in 16 LSB.
3678 */
3679
3680 reg = 0;
3681 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3682 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3683 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3684 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3685 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3686 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3687 /*
3688 * This field selects the intrinsic latency to RDATA_EN/FULL path.
3689 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3690 */
3691 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3692 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3693 trk_sample_count);
3694 writel(reg, &sdr_ctrl->phy_ctrl0);
3695
3696 reg = 0;
3697 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3698 trk_sample_count >>
3699 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3700 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3701 trk_long_idle_sample_count);
3702 writel(reg, &sdr_ctrl->phy_ctrl1);
3703
3704 reg = 0;
3705 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3706 trk_long_idle_sample_count >>
3707 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3708 writel(reg, &sdr_ctrl->phy_ctrl2);
3709 }
3710
3711 /**
3712 * initialize_tracking() - Initialize tracking
3713 *
3714 * Initialize the register file with usable initial data.
3715 */
3716 static void initialize_tracking(void)
3717 {
3718 /*
3719 * Initialize the register file with the correct data.
3720 * Compute usable version of value in case we skip full
3721 * computation later.
3722 */
3723 writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1,
3724 &sdr_reg_file->dtaps_per_ptap);
3725
3726 /* trk_sample_count */
3727 writel(7500, &sdr_reg_file->trk_sample_count);
3728
3729 /* longidle outer loop [15:0] */
3730 writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
3731
3732 /*
3733 * longidle sample count [31:24]
3734 * trfc, worst case of 933Mhz 4Gb [23:16]
3735 * trcd, worst case [15:8]
3736 * vfifo wait [7:0]
3737 */
3738 writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
3739 &sdr_reg_file->delays);
3740
3741 /* mux delay */
3742 writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) |
3743 (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0),
3744 &sdr_reg_file->trk_rw_mgr_addr);
3745
3746 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH,
3747 &sdr_reg_file->trk_read_dqs_width);
3748
3749 /* trefi [7:0] */
3750 writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0),
3751 &sdr_reg_file->trk_rfsh);
3752 }
3753
3754 int sdram_calibration_full(void)
3755 {
3756 struct param_type my_param;
3757 struct gbl_type my_gbl;
3758 uint32_t pass;
3759
3760 memset(&my_param, 0, sizeof(my_param));
3761 memset(&my_gbl, 0, sizeof(my_gbl));
3762
3763 param = &my_param;
3764 gbl = &my_gbl;
3765
3766 /* Set the calibration enabled by default */
3767 gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3768 /*
3769 * Only sweep all groups (regardless of fail state) by default
3770 * Set enabled read test by default.
3771 */
3772 #if DISABLE_GUARANTEED_READ
3773 gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3774 #endif
3775 /* Initialize the register file */
3776 initialize_reg_file();
3777
3778 /* Initialize any PHY CSR */
3779 initialize_hps_phy();
3780
3781 scc_mgr_initialize();
3782
3783 initialize_tracking();
3784
3785 printf("%s: Preparing to start memory calibration\n", __FILE__);
3786
3787 debug("%s:%d\n", __func__, __LINE__);
3788 debug_cond(DLEVEL == 1,
3789 "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3790 RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
3791 RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
3792 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
3793 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
3794 debug_cond(DLEVEL == 1,
3795 "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3796 RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3797 RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
3798 IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
3799 debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3800 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
3801 debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3802 IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
3803 IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
3804 debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3805 IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
3806 IO_IO_OUT2_DELAY_MAX);
3807 debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3808 IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3809
3810 hc_initialize_rom_data();
3811
3812 /* update info for sims */
3813 reg_file_set_stage(CAL_STAGE_NIL);
3814 reg_file_set_group(0);
3815
3816 /*
3817 * Load global needed for those actions that require
3818 * some dynamic calibration support.
3819 */
3820 dyn_calib_steps = STATIC_CALIB_STEPS;
3821 /*
3822 * Load global to allow dynamic selection of delay loop settings
3823 * based on calibration mode.
3824 */
3825 if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3826 skip_delay_mask = 0xff;
3827 else
3828 skip_delay_mask = 0x0;
3829
3830 pass = run_mem_calibrate();
3831 debug_mem_calibrate(pass);
3832 return pass;
3833 }