]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/ddr/altera/sequencer.c
bc2e4571fb305a62020fba060017687a009bfcb5
[people/ms/u-boot.git] / drivers / ddr / altera / sequencer.c
1 /*
2 * Copyright Altera Corporation (C) 2012-2015
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include <errno.h>
11 #include "sequencer.h"
12
13 /*
14 * FIXME: This path is temporary until the SDRAM driver gets
15 * a proper thorough cleanup.
16 */
17 #include "../../../board/altera/socfpga/qts/sequencer_auto.h"
18 #include "../../../board/altera/socfpga/qts/sequencer_auto_ac_init.h"
19 #include "../../../board/altera/socfpga/qts/sequencer_auto_inst_init.h"
20 #include "../../../board/altera/socfpga/qts/sequencer_defines.h"
21
22 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
23 (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
24
25 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
26 (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
27
28 static struct socfpga_sdr_reg_file *sdr_reg_file =
29 (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
30
31 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
32 (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
33
34 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
35 (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
36
37 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
38 (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
39
40 static struct socfpga_data_mgr *data_mgr =
41 (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
42
43 static struct socfpga_sdr_ctrl *sdr_ctrl =
44 (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
45
46 #define DELTA_D 1
47
48 /*
49 * In order to reduce ROM size, most of the selectable calibration steps are
50 * decided at compile time based on the user's calibration mode selection,
51 * as captured by the STATIC_CALIB_STEPS selection below.
52 *
53 * However, to support simulation-time selection of fast simulation mode, where
54 * we skip everything except the bare minimum, we need a few of the steps to
55 * be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the
56 * check, which is based on the rtl-supplied value, or we dynamically compute
57 * the value to use based on the dynamically-chosen calibration mode
58 */
59
60 #define DLEVEL 0
61 #define STATIC_IN_RTL_SIM 0
62 #define STATIC_SKIP_DELAY_LOOPS 0
63
64 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
65 STATIC_SKIP_DELAY_LOOPS)
66
67 /* calibration steps requested by the rtl */
68 uint16_t dyn_calib_steps;
69
70 /*
71 * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
72 * instead of static, we use boolean logic to select between
73 * non-skip and skip values
74 *
75 * The mask is set to include all bits when not-skipping, but is
76 * zero when skipping
77 */
78
79 uint16_t skip_delay_mask; /* mask off bits when skipping/not-skipping */
80
81 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
82 ((non_skip_value) & skip_delay_mask)
83
84 struct gbl_type *gbl;
85 struct param_type *param;
86 uint32_t curr_shadow_reg;
87
88 static void set_failing_group_stage(uint32_t group, uint32_t stage,
89 uint32_t substage)
90 {
91 /*
92 * Only set the global stage if there was not been any other
93 * failing group
94 */
95 if (gbl->error_stage == CAL_STAGE_NIL) {
96 gbl->error_substage = substage;
97 gbl->error_stage = stage;
98 gbl->error_group = group;
99 }
100 }
101
102 static void reg_file_set_group(u16 set_group)
103 {
104 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
105 }
106
107 static void reg_file_set_stage(u8 set_stage)
108 {
109 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
110 }
111
112 static void reg_file_set_sub_stage(u8 set_sub_stage)
113 {
114 set_sub_stage &= 0xff;
115 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
116 }
117
118 /**
119 * phy_mgr_initialize() - Initialize PHY Manager
120 *
121 * Initialize PHY Manager.
122 */
123 static void phy_mgr_initialize(void)
124 {
125 u32 ratio;
126
127 debug("%s:%d\n", __func__, __LINE__);
128 /* Calibration has control over path to memory */
129 /*
130 * In Hard PHY this is a 2-bit control:
131 * 0: AFI Mux Select
132 * 1: DDIO Mux Select
133 */
134 writel(0x3, &phy_mgr_cfg->mux_sel);
135
136 /* USER memory clock is not stable we begin initialization */
137 writel(0, &phy_mgr_cfg->reset_mem_stbl);
138
139 /* USER calibration status all set to zero */
140 writel(0, &phy_mgr_cfg->cal_status);
141
142 writel(0, &phy_mgr_cfg->cal_debug_info);
143
144 /* Init params only if we do NOT skip calibration. */
145 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
146 return;
147
148 ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
149 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
150 param->read_correct_mask_vg = (1 << ratio) - 1;
151 param->write_correct_mask_vg = (1 << ratio) - 1;
152 param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
153 param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
154 ratio = RW_MGR_MEM_DATA_WIDTH /
155 RW_MGR_MEM_DATA_MASK_WIDTH;
156 param->dm_correct_mask = (1 << ratio) - 1;
157 }
158
159 /**
160 * set_rank_and_odt_mask() - Set Rank and ODT mask
161 * @rank: Rank mask
162 * @odt_mode: ODT mode, OFF or READ_WRITE
163 *
164 * Set Rank and ODT mask (On-Die Termination).
165 */
166 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode)
167 {
168 u32 odt_mask_0 = 0;
169 u32 odt_mask_1 = 0;
170 u32 cs_and_odt_mask;
171
172 if (odt_mode == RW_MGR_ODT_MODE_OFF) {
173 odt_mask_0 = 0x0;
174 odt_mask_1 = 0x0;
175 } else { /* RW_MGR_ODT_MODE_READ_WRITE */
176 switch (RW_MGR_MEM_NUMBER_OF_RANKS) {
177 case 1: /* 1 Rank */
178 /* Read: ODT = 0 ; Write: ODT = 1 */
179 odt_mask_0 = 0x0;
180 odt_mask_1 = 0x1;
181 break;
182 case 2: /* 2 Ranks */
183 if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
184 /*
185 * - Dual-Slot , Single-Rank (1 CS per DIMM)
186 * OR
187 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
188 *
189 * Since MEM_NUMBER_OF_RANKS is 2, they
190 * are both single rank with 2 CS each
191 * (special for RDIMM).
192 *
193 * Read: Turn on ODT on the opposite rank
194 * Write: Turn on ODT on all ranks
195 */
196 odt_mask_0 = 0x3 & ~(1 << rank);
197 odt_mask_1 = 0x3;
198 } else {
199 /*
200 * - Single-Slot , Dual-Rank (2 CS per DIMM)
201 *
202 * Read: Turn on ODT off on all ranks
203 * Write: Turn on ODT on active rank
204 */
205 odt_mask_0 = 0x0;
206 odt_mask_1 = 0x3 & (1 << rank);
207 }
208 break;
209 case 4: /* 4 Ranks */
210 /* Read:
211 * ----------+-----------------------+
212 * | ODT |
213 * Read From +-----------------------+
214 * Rank | 3 | 2 | 1 | 0 |
215 * ----------+-----+-----+-----+-----+
216 * 0 | 0 | 1 | 0 | 0 |
217 * 1 | 1 | 0 | 0 | 0 |
218 * 2 | 0 | 0 | 0 | 1 |
219 * 3 | 0 | 0 | 1 | 0 |
220 * ----------+-----+-----+-----+-----+
221 *
222 * Write:
223 * ----------+-----------------------+
224 * | ODT |
225 * Write To +-----------------------+
226 * Rank | 3 | 2 | 1 | 0 |
227 * ----------+-----+-----+-----+-----+
228 * 0 | 0 | 1 | 0 | 1 |
229 * 1 | 1 | 0 | 1 | 0 |
230 * 2 | 0 | 1 | 0 | 1 |
231 * 3 | 1 | 0 | 1 | 0 |
232 * ----------+-----+-----+-----+-----+
233 */
234 switch (rank) {
235 case 0:
236 odt_mask_0 = 0x4;
237 odt_mask_1 = 0x5;
238 break;
239 case 1:
240 odt_mask_0 = 0x8;
241 odt_mask_1 = 0xA;
242 break;
243 case 2:
244 odt_mask_0 = 0x1;
245 odt_mask_1 = 0x5;
246 break;
247 case 3:
248 odt_mask_0 = 0x2;
249 odt_mask_1 = 0xA;
250 break;
251 }
252 break;
253 }
254 }
255
256 cs_and_odt_mask = (0xFF & ~(1 << rank)) |
257 ((0xFF & odt_mask_0) << 8) |
258 ((0xFF & odt_mask_1) << 16);
259 writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
260 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
261 }
262
263 /**
264 * scc_mgr_set() - Set SCC Manager register
265 * @off: Base offset in SCC Manager space
266 * @grp: Read/Write group
267 * @val: Value to be set
268 *
269 * This function sets the SCC Manager (Scan Chain Control Manager) register.
270 */
271 static void scc_mgr_set(u32 off, u32 grp, u32 val)
272 {
273 writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
274 }
275
276 /**
277 * scc_mgr_initialize() - Initialize SCC Manager registers
278 *
279 * Initialize SCC Manager registers.
280 */
281 static void scc_mgr_initialize(void)
282 {
283 /*
284 * Clear register file for HPS. 16 (2^4) is the size of the
285 * full register file in the scc mgr:
286 * RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
287 * MEM_IF_READ_DQS_WIDTH - 1);
288 */
289 int i;
290
291 for (i = 0; i < 16; i++) {
292 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
293 __func__, __LINE__, i);
294 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
295 }
296 }
297
298 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
299 {
300 scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
301 }
302
303 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
304 {
305 scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
306 }
307
308 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
309 {
310 scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
311 }
312
313 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
314 {
315 scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
316 }
317
318 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
319 {
320 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
321 delay);
322 }
323
324 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
325 {
326 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
327 }
328
329 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
330 {
331 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
332 }
333
334 static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
335 {
336 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
337 delay);
338 }
339
340 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
341 {
342 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
343 RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm,
344 delay);
345 }
346
347 /* load up dqs config settings */
348 static void scc_mgr_load_dqs(uint32_t dqs)
349 {
350 writel(dqs, &sdr_scc_mgr->dqs_ena);
351 }
352
353 /* load up dqs io config settings */
354 static void scc_mgr_load_dqs_io(void)
355 {
356 writel(0, &sdr_scc_mgr->dqs_io_ena);
357 }
358
359 /* load up dq config settings */
360 static void scc_mgr_load_dq(uint32_t dq_in_group)
361 {
362 writel(dq_in_group, &sdr_scc_mgr->dq_ena);
363 }
364
365 /* load up dm config settings */
366 static void scc_mgr_load_dm(uint32_t dm)
367 {
368 writel(dm, &sdr_scc_mgr->dm_ena);
369 }
370
371 /**
372 * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
373 * @off: Base offset in SCC Manager space
374 * @grp: Read/Write group
375 * @val: Value to be set
376 * @update: If non-zero, trigger SCC Manager update for all ranks
377 *
378 * This function sets the SCC Manager (Scan Chain Control Manager) register
379 * and optionally triggers the SCC update for all ranks.
380 */
381 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
382 const int update)
383 {
384 u32 r;
385
386 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
387 r += NUM_RANKS_PER_SHADOW_REG) {
388 scc_mgr_set(off, grp, val);
389
390 if (update || (r == 0)) {
391 writel(grp, &sdr_scc_mgr->dqs_ena);
392 writel(0, &sdr_scc_mgr->update);
393 }
394 }
395 }
396
397 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
398 {
399 /*
400 * USER although the h/w doesn't support different phases per
401 * shadow register, for simplicity our scc manager modeling
402 * keeps different phase settings per shadow reg, and it's
403 * important for us to keep them in sync to match h/w.
404 * for efficiency, the scan chain update should occur only
405 * once to sr0.
406 */
407 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
408 read_group, phase, 0);
409 }
410
411 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
412 uint32_t phase)
413 {
414 /*
415 * USER although the h/w doesn't support different phases per
416 * shadow register, for simplicity our scc manager modeling
417 * keeps different phase settings per shadow reg, and it's
418 * important for us to keep them in sync to match h/w.
419 * for efficiency, the scan chain update should occur only
420 * once to sr0.
421 */
422 scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
423 write_group, phase, 0);
424 }
425
426 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
427 uint32_t delay)
428 {
429 /*
430 * In shadow register mode, the T11 settings are stored in
431 * registers in the core, which are updated by the DQS_ENA
432 * signals. Not issuing the SCC_MGR_UPD command allows us to
433 * save lots of rank switching overhead, by calling
434 * select_shadow_regs_for_update with update_scan_chains
435 * set to 0.
436 */
437 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
438 read_group, delay, 1);
439 writel(0, &sdr_scc_mgr->update);
440 }
441
442 /**
443 * scc_mgr_set_oct_out1_delay() - Set OCT output delay
444 * @write_group: Write group
445 * @delay: Delay value
446 *
447 * This function sets the OCT output delay in SCC manager.
448 */
449 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
450 {
451 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
452 RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
453 const int base = write_group * ratio;
454 int i;
455 /*
456 * Load the setting in the SCC manager
457 * Although OCT affects only write data, the OCT delay is controlled
458 * by the DQS logic block which is instantiated once per read group.
459 * For protocols where a write group consists of multiple read groups,
460 * the setting must be set multiple times.
461 */
462 for (i = 0; i < ratio; i++)
463 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
464 }
465
466 /**
467 * scc_mgr_set_hhp_extras() - Set HHP extras.
468 *
469 * Load the fixed setting in the SCC manager HHP extras.
470 */
471 static void scc_mgr_set_hhp_extras(void)
472 {
473 /*
474 * Load the fixed setting in the SCC manager
475 * bits: 0:0 = 1'b1 - DQS bypass
476 * bits: 1:1 = 1'b1 - DQ bypass
477 * bits: 4:2 = 3'b001 - rfifo_mode
478 * bits: 6:5 = 2'b01 - rfifo clock_select
479 * bits: 7:7 = 1'b0 - separate gating from ungating setting
480 * bits: 8:8 = 1'b0 - separate OE from Output delay setting
481 */
482 const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
483 (1 << 2) | (1 << 1) | (1 << 0);
484 const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
485 SCC_MGR_HHP_GLOBALS_OFFSET |
486 SCC_MGR_HHP_EXTRAS_OFFSET;
487
488 debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
489 __func__, __LINE__);
490 writel(value, addr);
491 debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
492 __func__, __LINE__);
493 }
494
495 /**
496 * scc_mgr_zero_all() - Zero all DQS config
497 *
498 * Zero all DQS config.
499 */
500 static void scc_mgr_zero_all(void)
501 {
502 int i, r;
503
504 /*
505 * USER Zero all DQS config settings, across all groups and all
506 * shadow registers
507 */
508 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
509 r += NUM_RANKS_PER_SHADOW_REG) {
510 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
511 /*
512 * The phases actually don't exist on a per-rank basis,
513 * but there's no harm updating them several times, so
514 * let's keep the code simple.
515 */
516 scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
517 scc_mgr_set_dqs_en_phase(i, 0);
518 scc_mgr_set_dqs_en_delay(i, 0);
519 }
520
521 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
522 scc_mgr_set_dqdqs_output_phase(i, 0);
523 /* Arria V/Cyclone V don't have out2. */
524 scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
525 }
526 }
527
528 /* Multicast to all DQS group enables. */
529 writel(0xff, &sdr_scc_mgr->dqs_ena);
530 writel(0, &sdr_scc_mgr->update);
531 }
532
533 /**
534 * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
535 * @write_group: Write group
536 *
537 * Set bypass mode and trigger SCC update.
538 */
539 static void scc_set_bypass_mode(const u32 write_group)
540 {
541 /* Multicast to all DQ enables. */
542 writel(0xff, &sdr_scc_mgr->dq_ena);
543 writel(0xff, &sdr_scc_mgr->dm_ena);
544
545 /* Update current DQS IO enable. */
546 writel(0, &sdr_scc_mgr->dqs_io_ena);
547
548 /* Update the DQS logic. */
549 writel(write_group, &sdr_scc_mgr->dqs_ena);
550
551 /* Hit update. */
552 writel(0, &sdr_scc_mgr->update);
553 }
554
555 /**
556 * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
557 * @write_group: Write group
558 *
559 * Load DQS settings for Write Group, do not trigger SCC update.
560 */
561 static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
562 {
563 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
564 RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
565 const int base = write_group * ratio;
566 int i;
567 /*
568 * Load the setting in the SCC manager
569 * Although OCT affects only write data, the OCT delay is controlled
570 * by the DQS logic block which is instantiated once per read group.
571 * For protocols where a write group consists of multiple read groups,
572 * the setting must be set multiple times.
573 */
574 for (i = 0; i < ratio; i++)
575 writel(base + i, &sdr_scc_mgr->dqs_ena);
576 }
577
578 /**
579 * scc_mgr_zero_group() - Zero all configs for a group
580 *
581 * Zero DQ, DM, DQS and OCT configs for a group.
582 */
583 static void scc_mgr_zero_group(const u32 write_group, const int out_only)
584 {
585 int i, r;
586
587 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
588 r += NUM_RANKS_PER_SHADOW_REG) {
589 /* Zero all DQ config settings. */
590 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
591 scc_mgr_set_dq_out1_delay(i, 0);
592 if (!out_only)
593 scc_mgr_set_dq_in_delay(i, 0);
594 }
595
596 /* Multicast to all DQ enables. */
597 writel(0xff, &sdr_scc_mgr->dq_ena);
598
599 /* Zero all DM config settings. */
600 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
601 scc_mgr_set_dm_out1_delay(i, 0);
602
603 /* Multicast to all DM enables. */
604 writel(0xff, &sdr_scc_mgr->dm_ena);
605
606 /* Zero all DQS IO settings. */
607 if (!out_only)
608 scc_mgr_set_dqs_io_in_delay(0);
609
610 /* Arria V/Cyclone V don't have out2. */
611 scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE);
612 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
613 scc_mgr_load_dqs_for_write_group(write_group);
614
615 /* Multicast to all DQS IO enables (only 1 in total). */
616 writel(0, &sdr_scc_mgr->dqs_io_ena);
617
618 /* Hit update to zero everything. */
619 writel(0, &sdr_scc_mgr->update);
620 }
621 }
622
623 /*
624 * apply and load a particular input delay for the DQ pins in a group
625 * group_bgn is the index of the first dq pin (in the write group)
626 */
627 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
628 {
629 uint32_t i, p;
630
631 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
632 scc_mgr_set_dq_in_delay(p, delay);
633 scc_mgr_load_dq(p);
634 }
635 }
636
637 /**
638 * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
639 * @delay: Delay value
640 *
641 * Apply and load a particular output delay for the DQ pins in a group.
642 */
643 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
644 {
645 int i;
646
647 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
648 scc_mgr_set_dq_out1_delay(i, delay);
649 scc_mgr_load_dq(i);
650 }
651 }
652
653 /* apply and load a particular output delay for the DM pins in a group */
654 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
655 {
656 uint32_t i;
657
658 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
659 scc_mgr_set_dm_out1_delay(i, delay1);
660 scc_mgr_load_dm(i);
661 }
662 }
663
664
665 /* apply and load delay on both DQS and OCT out1 */
666 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
667 uint32_t delay)
668 {
669 scc_mgr_set_dqs_out1_delay(delay);
670 scc_mgr_load_dqs_io();
671
672 scc_mgr_set_oct_out1_delay(write_group, delay);
673 scc_mgr_load_dqs_for_write_group(write_group);
674 }
675
676 /**
677 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
678 * @write_group: Write group
679 * @delay: Delay value
680 *
681 * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
682 */
683 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
684 const u32 delay)
685 {
686 u32 i, new_delay;
687
688 /* DQ shift */
689 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++)
690 scc_mgr_load_dq(i);
691
692 /* DM shift */
693 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
694 scc_mgr_load_dm(i);
695
696 /* DQS shift */
697 new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
698 if (new_delay > IO_IO_OUT2_DELAY_MAX) {
699 debug_cond(DLEVEL == 1,
700 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
701 __func__, __LINE__, write_group, delay, new_delay,
702 IO_IO_OUT2_DELAY_MAX,
703 new_delay - IO_IO_OUT2_DELAY_MAX);
704 new_delay -= IO_IO_OUT2_DELAY_MAX;
705 scc_mgr_set_dqs_out1_delay(new_delay);
706 }
707
708 scc_mgr_load_dqs_io();
709
710 /* OCT shift */
711 new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
712 if (new_delay > IO_IO_OUT2_DELAY_MAX) {
713 debug_cond(DLEVEL == 1,
714 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
715 __func__, __LINE__, write_group, delay,
716 new_delay, IO_IO_OUT2_DELAY_MAX,
717 new_delay - IO_IO_OUT2_DELAY_MAX);
718 new_delay -= IO_IO_OUT2_DELAY_MAX;
719 scc_mgr_set_oct_out1_delay(write_group, new_delay);
720 }
721
722 scc_mgr_load_dqs_for_write_group(write_group);
723 }
724
725 /**
726 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
727 * @write_group: Write group
728 * @delay: Delay value
729 *
730 * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
731 */
732 static void
733 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
734 const u32 delay)
735 {
736 int r;
737
738 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
739 r += NUM_RANKS_PER_SHADOW_REG) {
740 scc_mgr_apply_group_all_out_delay_add(write_group, delay);
741 writel(0, &sdr_scc_mgr->update);
742 }
743 }
744
745 /**
746 * set_jump_as_return() - Return instruction optimization
747 *
748 * Optimization used to recover some slots in ddr3 inst_rom could be
749 * applied to other protocols if we wanted to
750 */
751 static void set_jump_as_return(void)
752 {
753 /*
754 * To save space, we replace return with jump to special shared
755 * RETURN instruction so we set the counter to large value so that
756 * we always jump.
757 */
758 writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
759 writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
760 }
761
762 /**
763 * delay_for_n_mem_clocks() - Delay for N memory clocks
764 * @clocks: Length of the delay
765 *
766 * Delay for N memory clocks.
767 */
768 static void delay_for_n_mem_clocks(const u32 clocks)
769 {
770 u32 afi_clocks;
771 u16 c_loop;
772 u8 inner;
773 u8 outer;
774
775 debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
776
777 /* Scale (rounding up) to get afi clocks. */
778 afi_clocks = DIV_ROUND_UP(clocks, AFI_RATE_RATIO);
779 if (afi_clocks) /* Temporary underflow protection */
780 afi_clocks--;
781
782 /*
783 * Note, we don't bother accounting for being off a little
784 * bit because of a few extra instructions in outer loops.
785 * Note, the loops have a test at the end, and do the test
786 * before the decrement, and so always perform the loop
787 * 1 time more than the counter value
788 */
789 c_loop = afi_clocks >> 16;
790 outer = c_loop ? 0xff : (afi_clocks >> 8);
791 inner = outer ? 0xff : afi_clocks;
792
793 /*
794 * rom instructions are structured as follows:
795 *
796 * IDLE_LOOP2: jnz cntr0, TARGET_A
797 * IDLE_LOOP1: jnz cntr1, TARGET_B
798 * return
799 *
800 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
801 * TARGET_B is set to IDLE_LOOP2 as well
802 *
803 * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
804 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
805 *
806 * a little confusing, but it helps save precious space in the inst_rom
807 * and sequencer rom and keeps the delays more accurate and reduces
808 * overhead
809 */
810 if (afi_clocks < 0x100) {
811 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
812 &sdr_rw_load_mgr_regs->load_cntr1);
813
814 writel(RW_MGR_IDLE_LOOP1,
815 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
816
817 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
818 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
819 } else {
820 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
821 &sdr_rw_load_mgr_regs->load_cntr0);
822
823 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
824 &sdr_rw_load_mgr_regs->load_cntr1);
825
826 writel(RW_MGR_IDLE_LOOP2,
827 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
828
829 writel(RW_MGR_IDLE_LOOP2,
830 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
831
832 do {
833 writel(RW_MGR_IDLE_LOOP2,
834 SDR_PHYGRP_RWMGRGRP_ADDRESS |
835 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
836 } while (c_loop-- != 0);
837 }
838 debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
839 }
840
841 /**
842 * rw_mgr_mem_init_load_regs() - Load instruction registers
843 * @cntr0: Counter 0 value
844 * @cntr1: Counter 1 value
845 * @cntr2: Counter 2 value
846 * @jump: Jump instruction value
847 *
848 * Load instruction registers.
849 */
850 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
851 {
852 uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
853 RW_MGR_RUN_SINGLE_GROUP_OFFSET;
854
855 /* Load counters */
856 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
857 &sdr_rw_load_mgr_regs->load_cntr0);
858 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
859 &sdr_rw_load_mgr_regs->load_cntr1);
860 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
861 &sdr_rw_load_mgr_regs->load_cntr2);
862
863 /* Load jump address */
864 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
865 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
866 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
867
868 /* Execute count instruction */
869 writel(jump, grpaddr);
870 }
871
872 /**
873 * rw_mgr_mem_load_user() - Load user calibration values
874 * @fin1: Final instruction 1
875 * @fin2: Final instruction 2
876 * @precharge: If 1, precharge the banks at the end
877 *
878 * Load user calibration values and optionally precharge the banks.
879 */
880 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
881 const int precharge)
882 {
883 u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
884 RW_MGR_RUN_SINGLE_GROUP_OFFSET;
885 u32 r;
886
887 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
888 if (param->skip_ranks[r]) {
889 /* request to skip the rank */
890 continue;
891 }
892
893 /* set rank */
894 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
895
896 /* precharge all banks ... */
897 if (precharge)
898 writel(RW_MGR_PRECHARGE_ALL, grpaddr);
899
900 /*
901 * USER Use Mirror-ed commands for odd ranks if address
902 * mirrorring is on
903 */
904 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
905 set_jump_as_return();
906 writel(RW_MGR_MRS2_MIRR, grpaddr);
907 delay_for_n_mem_clocks(4);
908 set_jump_as_return();
909 writel(RW_MGR_MRS3_MIRR, grpaddr);
910 delay_for_n_mem_clocks(4);
911 set_jump_as_return();
912 writel(RW_MGR_MRS1_MIRR, grpaddr);
913 delay_for_n_mem_clocks(4);
914 set_jump_as_return();
915 writel(fin1, grpaddr);
916 } else {
917 set_jump_as_return();
918 writel(RW_MGR_MRS2, grpaddr);
919 delay_for_n_mem_clocks(4);
920 set_jump_as_return();
921 writel(RW_MGR_MRS3, grpaddr);
922 delay_for_n_mem_clocks(4);
923 set_jump_as_return();
924 writel(RW_MGR_MRS1, grpaddr);
925 set_jump_as_return();
926 writel(fin2, grpaddr);
927 }
928
929 if (precharge)
930 continue;
931
932 set_jump_as_return();
933 writel(RW_MGR_ZQCL, grpaddr);
934
935 /* tZQinit = tDLLK = 512 ck cycles */
936 delay_for_n_mem_clocks(512);
937 }
938 }
939
940 /**
941 * rw_mgr_mem_initialize() - Initialize RW Manager
942 *
943 * Initialize RW Manager.
944 */
945 static void rw_mgr_mem_initialize(void)
946 {
947 debug("%s:%d\n", __func__, __LINE__);
948
949 /* The reset / cke part of initialization is broadcasted to all ranks */
950 writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
951 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
952
953 /*
954 * Here's how you load register for a loop
955 * Counters are located @ 0x800
956 * Jump address are located @ 0xC00
957 * For both, registers 0 to 3 are selected using bits 3 and 2, like
958 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
959 * I know this ain't pretty, but Avalon bus throws away the 2 least
960 * significant bits
961 */
962
963 /* Start with memory RESET activated */
964
965 /* tINIT = 200us */
966
967 /*
968 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
969 * If a and b are the number of iteration in 2 nested loops
970 * it takes the following number of cycles to complete the operation:
971 * number_of_cycles = ((2 + n) * a + 2) * b
972 * where n is the number of instruction in the inner loop
973 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
974 * b = 6A
975 */
976 rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL,
977 SEQ_TINIT_CNTR2_VAL,
978 RW_MGR_INIT_RESET_0_CKE_0);
979
980 /* Indicate that memory is stable. */
981 writel(1, &phy_mgr_cfg->reset_mem_stbl);
982
983 /*
984 * transition the RESET to high
985 * Wait for 500us
986 */
987
988 /*
989 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
990 * If a and b are the number of iteration in 2 nested loops
991 * it takes the following number of cycles to complete the operation
992 * number_of_cycles = ((2 + n) * a + 2) * b
993 * where n is the number of instruction in the inner loop
994 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
995 * b = FF
996 */
997 rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL,
998 SEQ_TRESET_CNTR2_VAL,
999 RW_MGR_INIT_RESET_1_CKE_0);
1000
1001 /* Bring up clock enable. */
1002
1003 /* tXRP < 250 ck cycles */
1004 delay_for_n_mem_clocks(250);
1005
1006 rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET,
1007 0);
1008 }
1009
1010 /**
1011 * rw_mgr_mem_handoff() - Hand off the memory to user
1012 *
1013 * At the end of calibration we have to program the user settings in
1014 * and hand off the memory to the user.
1015 */
1016 static void rw_mgr_mem_handoff(void)
1017 {
1018 rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1);
1019 /*
1020 * Need to wait tMOD (12CK or 15ns) time before issuing other
1021 * commands, but we will have plenty of NIOS cycles before actual
1022 * handoff so its okay.
1023 */
1024 }
1025
1026 /**
1027 * rw_mgr_mem_calibrate_write_test_issue() - Issue write test command
1028 * @group: Write Group
1029 * @use_dm: Use DM
1030 *
1031 * Issue write test command. Two variants are provided, one that just tests
1032 * a write pattern and another that tests datamask functionality.
1033 */
1034 static void rw_mgr_mem_calibrate_write_test_issue(u32 group,
1035 u32 test_dm)
1036 {
1037 const u32 quick_write_mode =
1038 (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) &&
1039 ENABLE_SUPER_QUICK_CALIBRATION;
1040 u32 mcc_instruction;
1041 u32 rw_wl_nop_cycles;
1042
1043 /*
1044 * Set counter and jump addresses for the right
1045 * number of NOP cycles.
1046 * The number of supported NOP cycles can range from -1 to infinity
1047 * Three different cases are handled:
1048 *
1049 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
1050 * mechanism will be used to insert the right number of NOPs
1051 *
1052 * 2. For a number of NOP cycles equals to 0, the micro-instruction
1053 * issuing the write command will jump straight to the
1054 * micro-instruction that turns on DQS (for DDRx), or outputs write
1055 * data (for RLD), skipping
1056 * the NOP micro-instruction all together
1057 *
1058 * 3. A number of NOP cycles equal to -1 indicates that DQS must be
1059 * turned on in the same micro-instruction that issues the write
1060 * command. Then we need
1061 * to directly jump to the micro-instruction that sends out the data
1062 *
1063 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
1064 * (2 and 3). One jump-counter (0) is used to perform multiple
1065 * write-read operations.
1066 * one counter left to issue this command in "multiple-group" mode
1067 */
1068
1069 rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
1070
1071 if (rw_wl_nop_cycles == -1) {
1072 /*
1073 * CNTR 2 - We want to execute the special write operation that
1074 * turns on DQS right away and then skip directly to the
1075 * instruction that sends out the data. We set the counter to a
1076 * large number so that the jump is always taken.
1077 */
1078 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
1079
1080 /* CNTR 3 - Not used */
1081 if (test_dm) {
1082 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
1083 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
1084 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1085 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
1086 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1087 } else {
1088 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
1089 writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
1090 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1091 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
1092 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1093 }
1094 } else if (rw_wl_nop_cycles == 0) {
1095 /*
1096 * CNTR 2 - We want to skip the NOP operation and go straight
1097 * to the DQS enable instruction. We set the counter to a large
1098 * number so that the jump is always taken.
1099 */
1100 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
1101
1102 /* CNTR 3 - Not used */
1103 if (test_dm) {
1104 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
1105 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
1106 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1107 } else {
1108 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
1109 writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
1110 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1111 }
1112 } else {
1113 /*
1114 * CNTR 2 - In this case we want to execute the next instruction
1115 * and NOT take the jump. So we set the counter to 0. The jump
1116 * address doesn't count.
1117 */
1118 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
1119 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1120
1121 /*
1122 * CNTR 3 - Set the nop counter to the number of cycles we
1123 * need to loop for, minus 1.
1124 */
1125 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
1126 if (test_dm) {
1127 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
1128 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
1129 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1130 } else {
1131 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
1132 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
1133 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1134 }
1135 }
1136
1137 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1138 RW_MGR_RESET_READ_DATAPATH_OFFSET);
1139
1140 if (quick_write_mode)
1141 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
1142 else
1143 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
1144
1145 writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1146
1147 /*
1148 * CNTR 1 - This is used to ensure enough time elapses
1149 * for read data to come back.
1150 */
1151 writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
1152
1153 if (test_dm) {
1154 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
1155 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1156 } else {
1157 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
1158 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1159 }
1160
1161 writel(mcc_instruction, (SDR_PHYGRP_RWMGRGRP_ADDRESS |
1162 RW_MGR_RUN_SINGLE_GROUP_OFFSET) +
1163 (group << 2));
1164 }
1165
1166 /**
1167 * rw_mgr_mem_calibrate_write_test() - Test writes, check for single/multiple pass
1168 * @rank_bgn: Rank number
1169 * @write_group: Write Group
1170 * @use_dm: Use DM
1171 * @all_correct: All bits must be correct in the mask
1172 * @bit_chk: Resulting bit mask after the test
1173 * @all_ranks: Test all ranks
1174 *
1175 * Test writes, can check for a single bit pass or multiple bit pass.
1176 */
1177 static int
1178 rw_mgr_mem_calibrate_write_test(const u32 rank_bgn, const u32 write_group,
1179 const u32 use_dm, const u32 all_correct,
1180 u32 *bit_chk, const u32 all_ranks)
1181 {
1182 const u32 rank_end = all_ranks ?
1183 RW_MGR_MEM_NUMBER_OF_RANKS :
1184 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1185 const u32 shift_ratio = RW_MGR_MEM_DQ_PER_WRITE_DQS /
1186 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS;
1187 const u32 correct_mask_vg = param->write_correct_mask_vg;
1188
1189 u32 tmp_bit_chk, base_rw_mgr;
1190 int vg, r;
1191
1192 *bit_chk = param->write_correct_mask;
1193
1194 for (r = rank_bgn; r < rank_end; r++) {
1195 /* Request to skip the rank */
1196 if (param->skip_ranks[r])
1197 continue;
1198
1199 /* Set rank */
1200 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1201
1202 tmp_bit_chk = 0;
1203 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS - 1;
1204 vg >= 0; vg--) {
1205 /* Reset the FIFOs to get pointers to known state. */
1206 writel(0, &phy_mgr_cmd->fifo_reset);
1207
1208 rw_mgr_mem_calibrate_write_test_issue(
1209 write_group *
1210 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS + vg,
1211 use_dm);
1212
1213 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1214 tmp_bit_chk <<= shift_ratio;
1215 tmp_bit_chk |= (correct_mask_vg & ~(base_rw_mgr));
1216 }
1217
1218 *bit_chk &= tmp_bit_chk;
1219 }
1220
1221 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1222 if (all_correct) {
1223 debug_cond(DLEVEL == 2,
1224 "write_test(%u,%u,ALL) : %u == %u => %i\n",
1225 write_group, use_dm, *bit_chk,
1226 param->write_correct_mask,
1227 *bit_chk == param->write_correct_mask);
1228 return *bit_chk == param->write_correct_mask;
1229 } else {
1230 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1231 debug_cond(DLEVEL == 2,
1232 "write_test(%u,%u,ONE) : %u != %i => %i\n",
1233 write_group, use_dm, *bit_chk, 0, *bit_chk != 0);
1234 return *bit_chk != 0x00;
1235 }
1236 }
1237
1238 /**
1239 * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns
1240 * @rank_bgn: Rank number
1241 * @group: Read/Write Group
1242 * @all_ranks: Test all ranks
1243 *
1244 * Performs a guaranteed read on the patterns we are going to use during a
1245 * read test to ensure memory works.
1246 */
1247 static int
1248 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group,
1249 const u32 all_ranks)
1250 {
1251 const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1252 RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1253 const u32 addr_offset =
1254 (group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS) << 2;
1255 const u32 rank_end = all_ranks ?
1256 RW_MGR_MEM_NUMBER_OF_RANKS :
1257 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1258 const u32 shift_ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
1259 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
1260 const u32 correct_mask_vg = param->read_correct_mask_vg;
1261
1262 u32 tmp_bit_chk, base_rw_mgr, bit_chk;
1263 int vg, r;
1264 int ret = 0;
1265
1266 bit_chk = param->read_correct_mask;
1267
1268 for (r = rank_bgn; r < rank_end; r++) {
1269 /* Request to skip the rank */
1270 if (param->skip_ranks[r])
1271 continue;
1272
1273 /* Set rank */
1274 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1275
1276 /* Load up a constant bursts of read commands */
1277 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1278 writel(RW_MGR_GUARANTEED_READ,
1279 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1280
1281 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1282 writel(RW_MGR_GUARANTEED_READ_CONT,
1283 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1284
1285 tmp_bit_chk = 0;
1286 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1;
1287 vg >= 0; vg--) {
1288 /* Reset the FIFOs to get pointers to known state. */
1289 writel(0, &phy_mgr_cmd->fifo_reset);
1290 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1291 RW_MGR_RESET_READ_DATAPATH_OFFSET);
1292 writel(RW_MGR_GUARANTEED_READ,
1293 addr + addr_offset + (vg << 2));
1294
1295 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1296 tmp_bit_chk <<= shift_ratio;
1297 tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr;
1298 }
1299
1300 bit_chk &= tmp_bit_chk;
1301 }
1302
1303 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1304
1305 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1306
1307 if (bit_chk != param->read_correct_mask)
1308 ret = -EIO;
1309
1310 debug_cond(DLEVEL == 1,
1311 "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n",
1312 __func__, __LINE__, group, bit_chk,
1313 param->read_correct_mask, ret);
1314
1315 return ret;
1316 }
1317
1318 /**
1319 * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test
1320 * @rank_bgn: Rank number
1321 * @all_ranks: Test all ranks
1322 *
1323 * Load up the patterns we are going to use during a read test.
1324 */
1325 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn,
1326 const int all_ranks)
1327 {
1328 const u32 rank_end = all_ranks ?
1329 RW_MGR_MEM_NUMBER_OF_RANKS :
1330 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1331 u32 r;
1332
1333 debug("%s:%d\n", __func__, __LINE__);
1334
1335 for (r = rank_bgn; r < rank_end; r++) {
1336 if (param->skip_ranks[r])
1337 /* request to skip the rank */
1338 continue;
1339
1340 /* set rank */
1341 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1342
1343 /* Load up a constant bursts */
1344 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1345
1346 writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
1347 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1348
1349 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1350
1351 writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
1352 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1353
1354 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1355
1356 writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
1357 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1358
1359 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1360
1361 writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
1362 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1363
1364 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1365 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1366 }
1367
1368 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1369 }
1370
1371 /**
1372 * rw_mgr_mem_calibrate_read_test() - Perform READ test on single rank
1373 * @rank_bgn: Rank number
1374 * @group: Read/Write group
1375 * @num_tries: Number of retries of the test
1376 * @all_correct: All bits must be correct in the mask
1377 * @bit_chk: Resulting bit mask after the test
1378 * @all_groups: Test all R/W groups
1379 * @all_ranks: Test all ranks
1380 *
1381 * Try a read and see if it returns correct data back. Test has dummy reads
1382 * inserted into the mix used to align DQS enable. Test has more thorough
1383 * checks than the regular read test.
1384 */
1385 static int
1386 rw_mgr_mem_calibrate_read_test(const u32 rank_bgn, const u32 group,
1387 const u32 num_tries, const u32 all_correct,
1388 u32 *bit_chk,
1389 const u32 all_groups, const u32 all_ranks)
1390 {
1391 const u32 rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1392 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1393 const u32 quick_read_mode =
1394 ((STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) &&
1395 ENABLE_SUPER_QUICK_CALIBRATION);
1396 u32 correct_mask_vg = param->read_correct_mask_vg;
1397 u32 tmp_bit_chk;
1398 u32 base_rw_mgr;
1399 u32 addr;
1400
1401 int r, vg, ret;
1402
1403 *bit_chk = param->read_correct_mask;
1404
1405 for (r = rank_bgn; r < rank_end; r++) {
1406 if (param->skip_ranks[r])
1407 /* request to skip the rank */
1408 continue;
1409
1410 /* set rank */
1411 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1412
1413 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1414
1415 writel(RW_MGR_READ_B2B_WAIT1,
1416 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1417
1418 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1419 writel(RW_MGR_READ_B2B_WAIT2,
1420 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1421
1422 if (quick_read_mode)
1423 writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1424 /* need at least two (1+1) reads to capture failures */
1425 else if (all_groups)
1426 writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1427 else
1428 writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1429
1430 writel(RW_MGR_READ_B2B,
1431 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1432 if (all_groups)
1433 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1434 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1435 &sdr_rw_load_mgr_regs->load_cntr3);
1436 else
1437 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1438
1439 writel(RW_MGR_READ_B2B,
1440 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1441
1442 tmp_bit_chk = 0;
1443 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1; vg >= 0;
1444 vg--) {
1445 /* Reset the FIFOs to get pointers to known state. */
1446 writel(0, &phy_mgr_cmd->fifo_reset);
1447 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1448 RW_MGR_RESET_READ_DATAPATH_OFFSET);
1449
1450 if (all_groups) {
1451 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1452 RW_MGR_RUN_ALL_GROUPS_OFFSET;
1453 } else {
1454 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1455 RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1456 }
1457
1458 writel(RW_MGR_READ_B2B, addr +
1459 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1460 vg) << 2));
1461
1462 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1463 tmp_bit_chk <<= RW_MGR_MEM_DQ_PER_READ_DQS /
1464 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
1465 tmp_bit_chk |= correct_mask_vg & ~(base_rw_mgr);
1466 }
1467
1468 *bit_chk &= tmp_bit_chk;
1469 }
1470
1471 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1472 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1473
1474 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1475
1476 if (all_correct) {
1477 ret = (*bit_chk == param->read_correct_mask);
1478 debug_cond(DLEVEL == 2,
1479 "%s:%d read_test(%u,ALL,%u) => (%u == %u) => %i\n",
1480 __func__, __LINE__, group, all_groups, *bit_chk,
1481 param->read_correct_mask, ret);
1482 } else {
1483 ret = (*bit_chk != 0x00);
1484 debug_cond(DLEVEL == 2,
1485 "%s:%d read_test(%u,ONE,%u) => (%u != %u) => %i\n",
1486 __func__, __LINE__, group, all_groups, *bit_chk,
1487 0, ret);
1488 }
1489
1490 return ret;
1491 }
1492
1493 /**
1494 * rw_mgr_mem_calibrate_read_test_all_ranks() - Perform READ test on all ranks
1495 * @grp: Read/Write group
1496 * @num_tries: Number of retries of the test
1497 * @all_correct: All bits must be correct in the mask
1498 * @all_groups: Test all R/W groups
1499 *
1500 * Perform a READ test across all memory ranks.
1501 */
1502 static int
1503 rw_mgr_mem_calibrate_read_test_all_ranks(const u32 grp, const u32 num_tries,
1504 const u32 all_correct,
1505 const u32 all_groups)
1506 {
1507 u32 bit_chk;
1508 return rw_mgr_mem_calibrate_read_test(0, grp, num_tries, all_correct,
1509 &bit_chk, all_groups, 1);
1510 }
1511
1512 /**
1513 * rw_mgr_incr_vfifo() - Increase VFIFO value
1514 * @grp: Read/Write group
1515 *
1516 * Increase VFIFO value.
1517 */
1518 static void rw_mgr_incr_vfifo(const u32 grp)
1519 {
1520 writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1521 }
1522
1523 /**
1524 * rw_mgr_decr_vfifo() - Decrease VFIFO value
1525 * @grp: Read/Write group
1526 *
1527 * Decrease VFIFO value.
1528 */
1529 static void rw_mgr_decr_vfifo(const u32 grp)
1530 {
1531 u32 i;
1532
1533 for (i = 0; i < VFIFO_SIZE - 1; i++)
1534 rw_mgr_incr_vfifo(grp);
1535 }
1536
1537 /**
1538 * find_vfifo_failing_read() - Push VFIFO to get a failing read
1539 * @grp: Read/Write group
1540 *
1541 * Push VFIFO until a failing read happens.
1542 */
1543 static int find_vfifo_failing_read(const u32 grp)
1544 {
1545 u32 v, ret, fail_cnt = 0;
1546
1547 for (v = 0; v < VFIFO_SIZE; v++) {
1548 debug_cond(DLEVEL == 2, "%s:%d: vfifo %u\n",
1549 __func__, __LINE__, v);
1550 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1551 PASS_ONE_BIT, 0);
1552 if (!ret) {
1553 fail_cnt++;
1554
1555 if (fail_cnt == 2)
1556 return v;
1557 }
1558
1559 /* Fiddle with FIFO. */
1560 rw_mgr_incr_vfifo(grp);
1561 }
1562
1563 /* No failing read found! Something must have gone wrong. */
1564 debug_cond(DLEVEL == 2, "%s:%d: vfifo failed\n", __func__, __LINE__);
1565 return 0;
1566 }
1567
1568 /**
1569 * sdr_find_phase_delay() - Find DQS enable phase or delay
1570 * @working: If 1, look for working phase/delay, if 0, look for non-working
1571 * @delay: If 1, look for delay, if 0, look for phase
1572 * @grp: Read/Write group
1573 * @work: Working window position
1574 * @work_inc: Working window increment
1575 * @pd: DQS Phase/Delay Iterator
1576 *
1577 * Find working or non-working DQS enable phase setting.
1578 */
1579 static int sdr_find_phase_delay(int working, int delay, const u32 grp,
1580 u32 *work, const u32 work_inc, u32 *pd)
1581 {
1582 const u32 max = delay ? IO_DQS_EN_DELAY_MAX : IO_DQS_EN_PHASE_MAX;
1583 u32 ret;
1584
1585 for (; *pd <= max; (*pd)++) {
1586 if (delay)
1587 scc_mgr_set_dqs_en_delay_all_ranks(grp, *pd);
1588 else
1589 scc_mgr_set_dqs_en_phase_all_ranks(grp, *pd);
1590
1591 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1592 PASS_ONE_BIT, 0);
1593 if (!working)
1594 ret = !ret;
1595
1596 if (ret)
1597 return 0;
1598
1599 if (work)
1600 *work += work_inc;
1601 }
1602
1603 return -EINVAL;
1604 }
1605 /**
1606 * sdr_find_phase() - Find DQS enable phase
1607 * @working: If 1, look for working phase, if 0, look for non-working phase
1608 * @grp: Read/Write group
1609 * @work: Working window position
1610 * @i: Iterator
1611 * @p: DQS Phase Iterator
1612 *
1613 * Find working or non-working DQS enable phase setting.
1614 */
1615 static int sdr_find_phase(int working, const u32 grp, u32 *work,
1616 u32 *i, u32 *p)
1617 {
1618 const u32 end = VFIFO_SIZE + (working ? 0 : 1);
1619 int ret;
1620
1621 for (; *i < end; (*i)++) {
1622 if (working)
1623 *p = 0;
1624
1625 ret = sdr_find_phase_delay(working, 0, grp, work,
1626 IO_DELAY_PER_OPA_TAP, p);
1627 if (!ret)
1628 return 0;
1629
1630 if (*p > IO_DQS_EN_PHASE_MAX) {
1631 /* Fiddle with FIFO. */
1632 rw_mgr_incr_vfifo(grp);
1633 if (!working)
1634 *p = 0;
1635 }
1636 }
1637
1638 return -EINVAL;
1639 }
1640
1641 /**
1642 * sdr_working_phase() - Find working DQS enable phase
1643 * @grp: Read/Write group
1644 * @work_bgn: Working window start position
1645 * @d: dtaps output value
1646 * @p: DQS Phase Iterator
1647 * @i: Iterator
1648 *
1649 * Find working DQS enable phase setting.
1650 */
1651 static int sdr_working_phase(const u32 grp, u32 *work_bgn, u32 *d,
1652 u32 *p, u32 *i)
1653 {
1654 const u32 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP /
1655 IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1656 int ret;
1657
1658 *work_bgn = 0;
1659
1660 for (*d = 0; *d <= dtaps_per_ptap; (*d)++) {
1661 *i = 0;
1662 scc_mgr_set_dqs_en_delay_all_ranks(grp, *d);
1663 ret = sdr_find_phase(1, grp, work_bgn, i, p);
1664 if (!ret)
1665 return 0;
1666 *work_bgn += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1667 }
1668
1669 /* Cannot find working solution */
1670 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n",
1671 __func__, __LINE__);
1672 return -EINVAL;
1673 }
1674
1675 /**
1676 * sdr_backup_phase() - Find DQS enable backup phase
1677 * @grp: Read/Write group
1678 * @work_bgn: Working window start position
1679 * @p: DQS Phase Iterator
1680 *
1681 * Find DQS enable backup phase setting.
1682 */
1683 static void sdr_backup_phase(const u32 grp, u32 *work_bgn, u32 *p)
1684 {
1685 u32 tmp_delay, d;
1686 int ret;
1687
1688 /* Special case code for backing up a phase */
1689 if (*p == 0) {
1690 *p = IO_DQS_EN_PHASE_MAX;
1691 rw_mgr_decr_vfifo(grp);
1692 } else {
1693 (*p)--;
1694 }
1695 tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
1696 scc_mgr_set_dqs_en_phase_all_ranks(grp, *p);
1697
1698 for (d = 0; d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; d++) {
1699 scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1700
1701 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1702 PASS_ONE_BIT, 0);
1703 if (ret) {
1704 *work_bgn = tmp_delay;
1705 break;
1706 }
1707
1708 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1709 }
1710
1711 /* Restore VFIFO to old state before we decremented it (if needed). */
1712 (*p)++;
1713 if (*p > IO_DQS_EN_PHASE_MAX) {
1714 *p = 0;
1715 rw_mgr_incr_vfifo(grp);
1716 }
1717
1718 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1719 }
1720
1721 /**
1722 * sdr_nonworking_phase() - Find non-working DQS enable phase
1723 * @grp: Read/Write group
1724 * @work_end: Working window end position
1725 * @p: DQS Phase Iterator
1726 * @i: Iterator
1727 *
1728 * Find non-working DQS enable phase setting.
1729 */
1730 static int sdr_nonworking_phase(const u32 grp, u32 *work_end, u32 *p, u32 *i)
1731 {
1732 int ret;
1733
1734 (*p)++;
1735 *work_end += IO_DELAY_PER_OPA_TAP;
1736 if (*p > IO_DQS_EN_PHASE_MAX) {
1737 /* Fiddle with FIFO. */
1738 *p = 0;
1739 rw_mgr_incr_vfifo(grp);
1740 }
1741
1742 ret = sdr_find_phase(0, grp, work_end, i, p);
1743 if (ret) {
1744 /* Cannot see edge of failing read. */
1745 debug_cond(DLEVEL == 2, "%s:%d: end: failed\n",
1746 __func__, __LINE__);
1747 }
1748
1749 return ret;
1750 }
1751
1752 /**
1753 * sdr_find_window_center() - Find center of the working DQS window.
1754 * @grp: Read/Write group
1755 * @work_bgn: First working settings
1756 * @work_end: Last working settings
1757 *
1758 * Find center of the working DQS enable window.
1759 */
1760 static int sdr_find_window_center(const u32 grp, const u32 work_bgn,
1761 const u32 work_end)
1762 {
1763 u32 work_mid;
1764 int tmp_delay = 0;
1765 int i, p, d;
1766
1767 work_mid = (work_bgn + work_end) / 2;
1768
1769 debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1770 work_bgn, work_end, work_mid);
1771 /* Get the middle delay to be less than a VFIFO delay */
1772 tmp_delay = (IO_DQS_EN_PHASE_MAX + 1) * IO_DELAY_PER_OPA_TAP;
1773
1774 debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1775 work_mid %= tmp_delay;
1776 debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid);
1777
1778 tmp_delay = rounddown(work_mid, IO_DELAY_PER_OPA_TAP);
1779 if (tmp_delay > IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP)
1780 tmp_delay = IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP;
1781 p = tmp_delay / IO_DELAY_PER_OPA_TAP;
1782
1783 debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay);
1784
1785 d = DIV_ROUND_UP(work_mid - tmp_delay, IO_DELAY_PER_DQS_EN_DCHAIN_TAP);
1786 if (d > IO_DQS_EN_DELAY_MAX)
1787 d = IO_DQS_EN_DELAY_MAX;
1788 tmp_delay += d * IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1789
1790 debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay);
1791
1792 scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1793 scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1794
1795 /*
1796 * push vfifo until we can successfully calibrate. We can do this
1797 * because the largest possible margin in 1 VFIFO cycle.
1798 */
1799 for (i = 0; i < VFIFO_SIZE; i++) {
1800 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center\n");
1801 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1802 PASS_ONE_BIT,
1803 0)) {
1804 debug_cond(DLEVEL == 2,
1805 "%s:%d center: found: ptap=%u dtap=%u\n",
1806 __func__, __LINE__, p, d);
1807 return 0;
1808 }
1809
1810 /* Fiddle with FIFO. */
1811 rw_mgr_incr_vfifo(grp);
1812 }
1813
1814 debug_cond(DLEVEL == 2, "%s:%d center: failed.\n",
1815 __func__, __LINE__);
1816 return -EINVAL;
1817 }
1818
1819 /**
1820 * rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase() - Find a good DQS enable to use
1821 * @grp: Read/Write Group
1822 *
1823 * Find a good DQS enable to use.
1824 */
1825 static int rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(const u32 grp)
1826 {
1827 u32 d, p, i;
1828 u32 dtaps_per_ptap;
1829 u32 work_bgn, work_end;
1830 u32 found_passing_read, found_failing_read, initial_failing_dtap;
1831 int ret;
1832
1833 debug("%s:%d %u\n", __func__, __LINE__, grp);
1834
1835 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1836
1837 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1838 scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1839
1840 /* Step 0: Determine number of delay taps for each phase tap. */
1841 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP / IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1842
1843 /* Step 1: First push vfifo until we get a failing read. */
1844 find_vfifo_failing_read(grp);
1845
1846 /* Step 2: Find first working phase, increment in ptaps. */
1847 work_bgn = 0;
1848 ret = sdr_working_phase(grp, &work_bgn, &d, &p, &i);
1849 if (ret)
1850 return ret;
1851
1852 work_end = work_bgn;
1853
1854 /*
1855 * If d is 0 then the working window covers a phase tap and we can
1856 * follow the old procedure. Otherwise, we've found the beginning
1857 * and we need to increment the dtaps until we find the end.
1858 */
1859 if (d == 0) {
1860 /*
1861 * Step 3a: If we have room, back off by one and
1862 * increment in dtaps.
1863 */
1864 sdr_backup_phase(grp, &work_bgn, &p);
1865
1866 /*
1867 * Step 4a: go forward from working phase to non working
1868 * phase, increment in ptaps.
1869 */
1870 ret = sdr_nonworking_phase(grp, &work_end, &p, &i);
1871 if (ret)
1872 return ret;
1873
1874 /* Step 5a: Back off one from last, increment in dtaps. */
1875
1876 /* Special case code for backing up a phase */
1877 if (p == 0) {
1878 p = IO_DQS_EN_PHASE_MAX;
1879 rw_mgr_decr_vfifo(grp);
1880 } else {
1881 p = p - 1;
1882 }
1883
1884 work_end -= IO_DELAY_PER_OPA_TAP;
1885 scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1886
1887 d = 0;
1888
1889 debug_cond(DLEVEL == 2, "%s:%d p: ptap=%u\n",
1890 __func__, __LINE__, p);
1891 }
1892
1893 /* The dtap increment to find the failing edge is done here. */
1894 sdr_find_phase_delay(0, 1, grp, &work_end,
1895 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, &d);
1896
1897 /* Go back to working dtap */
1898 if (d != 0)
1899 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1900
1901 debug_cond(DLEVEL == 2,
1902 "%s:%d p/d: ptap=%u dtap=%u end=%u\n",
1903 __func__, __LINE__, p, d - 1, work_end);
1904
1905 if (work_end < work_bgn) {
1906 /* nil range */
1907 debug_cond(DLEVEL == 2, "%s:%d end-2: failed\n",
1908 __func__, __LINE__);
1909 return -EINVAL;
1910 }
1911
1912 debug_cond(DLEVEL == 2, "%s:%d found range [%u,%u]\n",
1913 __func__, __LINE__, work_bgn, work_end);
1914
1915 /*
1916 * We need to calculate the number of dtaps that equal a ptap.
1917 * To do that we'll back up a ptap and re-find the edge of the
1918 * window using dtaps
1919 */
1920 debug_cond(DLEVEL == 2, "%s:%d calculate dtaps_per_ptap for tracking\n",
1921 __func__, __LINE__);
1922
1923 /* Special case code for backing up a phase */
1924 if (p == 0) {
1925 p = IO_DQS_EN_PHASE_MAX;
1926 rw_mgr_decr_vfifo(grp);
1927 debug_cond(DLEVEL == 2, "%s:%d backedup cycle/phase: p=%u\n",
1928 __func__, __LINE__, p);
1929 } else {
1930 p = p - 1;
1931 debug_cond(DLEVEL == 2, "%s:%d backedup phase only: p=%u",
1932 __func__, __LINE__, p);
1933 }
1934
1935 scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1936
1937 /*
1938 * Increase dtap until we first see a passing read (in case the
1939 * window is smaller than a ptap), and then a failing read to
1940 * mark the edge of the window again.
1941 */
1942
1943 /* Find a passing read. */
1944 debug_cond(DLEVEL == 2, "%s:%d find passing read\n",
1945 __func__, __LINE__);
1946
1947 initial_failing_dtap = d;
1948
1949 found_passing_read = !sdr_find_phase_delay(1, 1, grp, NULL, 0, &d);
1950 if (found_passing_read) {
1951 /* Find a failing read. */
1952 debug_cond(DLEVEL == 2, "%s:%d find failing read\n",
1953 __func__, __LINE__);
1954 d++;
1955 found_failing_read = !sdr_find_phase_delay(0, 1, grp, NULL, 0,
1956 &d);
1957 } else {
1958 debug_cond(DLEVEL == 1,
1959 "%s:%d failed to calculate dtaps per ptap. Fall back on static value\n",
1960 __func__, __LINE__);
1961 }
1962
1963 /*
1964 * The dynamically calculated dtaps_per_ptap is only valid if we
1965 * found a passing/failing read. If we didn't, it means d hit the max
1966 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1967 * statically calculated value.
1968 */
1969 if (found_passing_read && found_failing_read)
1970 dtaps_per_ptap = d - initial_failing_dtap;
1971
1972 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1973 debug_cond(DLEVEL == 2, "%s:%d dtaps_per_ptap=%u - %u = %u",
1974 __func__, __LINE__, d, initial_failing_dtap, dtaps_per_ptap);
1975
1976 /* Step 6: Find the centre of the window. */
1977 ret = sdr_find_window_center(grp, work_bgn, work_end);
1978
1979 return ret;
1980 }
1981
1982 /**
1983 * search_stop_check() - Check if the detected edge is valid
1984 * @write: Perform read (Stage 2) or write (Stage 3) calibration
1985 * @d: DQS delay
1986 * @rank_bgn: Rank number
1987 * @write_group: Write Group
1988 * @read_group: Read Group
1989 * @bit_chk: Resulting bit mask after the test
1990 * @sticky_bit_chk: Resulting sticky bit mask after the test
1991 * @use_read_test: Perform read test
1992 *
1993 * Test if the found edge is valid.
1994 */
1995 static u32 search_stop_check(const int write, const int d, const int rank_bgn,
1996 const u32 write_group, const u32 read_group,
1997 u32 *bit_chk, u32 *sticky_bit_chk,
1998 const u32 use_read_test)
1999 {
2000 const u32 ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
2001 RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
2002 const u32 correct_mask = write ? param->write_correct_mask :
2003 param->read_correct_mask;
2004 const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2005 RW_MGR_MEM_DQ_PER_READ_DQS;
2006 u32 ret;
2007 /*
2008 * Stop searching when the read test doesn't pass AND when
2009 * we've seen a passing read on every bit.
2010 */
2011 if (write) { /* WRITE-ONLY */
2012 ret = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2013 0, PASS_ONE_BIT,
2014 bit_chk, 0);
2015 } else if (use_read_test) { /* READ-ONLY */
2016 ret = !rw_mgr_mem_calibrate_read_test(rank_bgn, read_group,
2017 NUM_READ_PB_TESTS,
2018 PASS_ONE_BIT, bit_chk,
2019 0, 0);
2020 } else { /* READ-ONLY */
2021 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 0,
2022 PASS_ONE_BIT, bit_chk, 0);
2023 *bit_chk = *bit_chk >> (per_dqs *
2024 (read_group - (write_group * ratio)));
2025 ret = (*bit_chk == 0);
2026 }
2027 *sticky_bit_chk = *sticky_bit_chk | *bit_chk;
2028 ret = ret && (*sticky_bit_chk == correct_mask);
2029 debug_cond(DLEVEL == 2,
2030 "%s:%d center(left): dtap=%u => %u == %u && %u",
2031 __func__, __LINE__, d,
2032 *sticky_bit_chk, correct_mask, ret);
2033 return ret;
2034 }
2035
2036 /**
2037 * search_left_edge() - Find left edge of DQ/DQS working phase
2038 * @write: Perform read (Stage 2) or write (Stage 3) calibration
2039 * @rank_bgn: Rank number
2040 * @write_group: Write Group
2041 * @read_group: Read Group
2042 * @test_bgn: Rank number to begin the test
2043 * @sticky_bit_chk: Resulting sticky bit mask after the test
2044 * @left_edge: Left edge of the DQ/DQS phase
2045 * @right_edge: Right edge of the DQ/DQS phase
2046 * @use_read_test: Perform read test
2047 *
2048 * Find left edge of DQ/DQS working phase.
2049 */
2050 static void search_left_edge(const int write, const int rank_bgn,
2051 const u32 write_group, const u32 read_group, const u32 test_bgn,
2052 u32 *sticky_bit_chk,
2053 int *left_edge, int *right_edge, const u32 use_read_test)
2054 {
2055 const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX;
2056 const u32 dqs_max = write ? IO_IO_OUT1_DELAY_MAX : IO_DQS_IN_DELAY_MAX;
2057 const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2058 RW_MGR_MEM_DQ_PER_READ_DQS;
2059 u32 stop, bit_chk;
2060 int i, d;
2061
2062 for (d = 0; d <= dqs_max; d++) {
2063 if (write)
2064 scc_mgr_apply_group_dq_out1_delay(d);
2065 else
2066 scc_mgr_apply_group_dq_in_delay(test_bgn, d);
2067
2068 writel(0, &sdr_scc_mgr->update);
2069
2070 stop = search_stop_check(write, d, rank_bgn, write_group,
2071 read_group, &bit_chk, sticky_bit_chk,
2072 use_read_test);
2073 if (stop == 1)
2074 break;
2075
2076 /* stop != 1 */
2077 for (i = 0; i < per_dqs; i++) {
2078 if (bit_chk & 1) {
2079 /*
2080 * Remember a passing test as
2081 * the left_edge.
2082 */
2083 left_edge[i] = d;
2084 } else {
2085 /*
2086 * If a left edge has not been seen
2087 * yet, then a future passing test
2088 * will mark this edge as the right
2089 * edge.
2090 */
2091 if (left_edge[i] == delay_max + 1)
2092 right_edge[i] = -(d + 1);
2093 }
2094 bit_chk >>= 1;
2095 }
2096 }
2097
2098 /* Reset DQ delay chains to 0 */
2099 if (write)
2100 scc_mgr_apply_group_dq_out1_delay(0);
2101 else
2102 scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2103
2104 *sticky_bit_chk = 0;
2105 for (i = per_dqs - 1; i >= 0; i--) {
2106 debug_cond(DLEVEL == 2,
2107 "%s:%d vfifo_center: left_edge[%u]: %d right_edge[%u]: %d\n",
2108 __func__, __LINE__, i, left_edge[i],
2109 i, right_edge[i]);
2110
2111 /*
2112 * Check for cases where we haven't found the left edge,
2113 * which makes our assignment of the the right edge invalid.
2114 * Reset it to the illegal value.
2115 */
2116 if ((left_edge[i] == delay_max + 1) &&
2117 (right_edge[i] != delay_max + 1)) {
2118 right_edge[i] = delay_max + 1;
2119 debug_cond(DLEVEL == 2,
2120 "%s:%d vfifo_center: reset right_edge[%u]: %d\n",
2121 __func__, __LINE__, i, right_edge[i]);
2122 }
2123
2124 /*
2125 * Reset sticky bit
2126 * READ: except for bits where we have seen both
2127 * the left and right edge.
2128 * WRITE: except for bits where we have seen the
2129 * left edge.
2130 */
2131 *sticky_bit_chk <<= 1;
2132 if (write) {
2133 if (left_edge[i] != delay_max + 1)
2134 *sticky_bit_chk |= 1;
2135 } else {
2136 if ((left_edge[i] != delay_max + 1) &&
2137 (right_edge[i] != delay_max + 1))
2138 *sticky_bit_chk |= 1;
2139 }
2140 }
2141
2142
2143 }
2144
2145 /**
2146 * search_right_edge() - Find right edge of DQ/DQS working phase
2147 * @write: Perform read (Stage 2) or write (Stage 3) calibration
2148 * @rank_bgn: Rank number
2149 * @write_group: Write Group
2150 * @read_group: Read Group
2151 * @start_dqs: DQS start phase
2152 * @start_dqs_en: DQS enable start phase
2153 * @sticky_bit_chk: Resulting sticky bit mask after the test
2154 * @left_edge: Left edge of the DQ/DQS phase
2155 * @right_edge: Right edge of the DQ/DQS phase
2156 * @use_read_test: Perform read test
2157 *
2158 * Find right edge of DQ/DQS working phase.
2159 */
2160 static int search_right_edge(const int write, const int rank_bgn,
2161 const u32 write_group, const u32 read_group,
2162 const int start_dqs, const int start_dqs_en,
2163 u32 *sticky_bit_chk,
2164 int *left_edge, int *right_edge, const u32 use_read_test)
2165 {
2166 const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX;
2167 const u32 dqs_max = write ? IO_IO_OUT1_DELAY_MAX : IO_DQS_IN_DELAY_MAX;
2168 const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2169 RW_MGR_MEM_DQ_PER_READ_DQS;
2170 u32 stop, bit_chk;
2171 int i, d;
2172
2173 for (d = 0; d <= dqs_max - start_dqs; d++) {
2174 if (write) { /* WRITE-ONLY */
2175 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2176 d + start_dqs);
2177 } else { /* READ-ONLY */
2178 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
2179 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2180 uint32_t delay = d + start_dqs_en;
2181 if (delay > IO_DQS_EN_DELAY_MAX)
2182 delay = IO_DQS_EN_DELAY_MAX;
2183 scc_mgr_set_dqs_en_delay(read_group, delay);
2184 }
2185 scc_mgr_load_dqs(read_group);
2186 }
2187
2188 writel(0, &sdr_scc_mgr->update);
2189
2190 stop = search_stop_check(write, d, rank_bgn, write_group,
2191 read_group, &bit_chk, sticky_bit_chk,
2192 use_read_test);
2193 if (stop == 1) {
2194 if (write && (d == 0)) { /* WRITE-ONLY */
2195 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2196 /*
2197 * d = 0 failed, but it passed when
2198 * testing the left edge, so it must be
2199 * marginal, set it to -1
2200 */
2201 if (right_edge[i] == delay_max + 1 &&
2202 left_edge[i] != delay_max + 1)
2203 right_edge[i] = -1;
2204 }
2205 }
2206 break;
2207 }
2208
2209 /* stop != 1 */
2210 for (i = 0; i < per_dqs; i++) {
2211 if (bit_chk & 1) {
2212 /*
2213 * Remember a passing test as
2214 * the right_edge.
2215 */
2216 right_edge[i] = d;
2217 } else {
2218 if (d != 0) {
2219 /*
2220 * If a right edge has not
2221 * been seen yet, then a future
2222 * passing test will mark this
2223 * edge as the left edge.
2224 */
2225 if (right_edge[i] == delay_max + 1)
2226 left_edge[i] = -(d + 1);
2227 } else {
2228 /*
2229 * d = 0 failed, but it passed
2230 * when testing the left edge,
2231 * so it must be marginal, set
2232 * it to -1
2233 */
2234 if (right_edge[i] == delay_max + 1 &&
2235 left_edge[i] != delay_max + 1)
2236 right_edge[i] = -1;
2237 /*
2238 * If a right edge has not been
2239 * seen yet, then a future
2240 * passing test will mark this
2241 * edge as the left edge.
2242 */
2243 else if (right_edge[i] == delay_max + 1)
2244 left_edge[i] = -(d + 1);
2245 }
2246 }
2247
2248 debug_cond(DLEVEL == 2, "%s:%d center[r,d=%u]: ",
2249 __func__, __LINE__, d);
2250 debug_cond(DLEVEL == 2,
2251 "bit_chk_test=%i left_edge[%u]: %d ",
2252 bit_chk & 1, i, left_edge[i]);
2253 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2254 right_edge[i]);
2255 bit_chk >>= 1;
2256 }
2257 }
2258
2259 /* Check that all bits have a window */
2260 for (i = 0; i < per_dqs; i++) {
2261 debug_cond(DLEVEL == 2,
2262 "%s:%d write_center: left_edge[%u]: %d right_edge[%u]: %d",
2263 __func__, __LINE__, i, left_edge[i],
2264 i, right_edge[i]);
2265 if ((left_edge[i] == dqs_max + 1) ||
2266 (right_edge[i] == dqs_max + 1))
2267 return i + 1; /* FIXME: If we fail, retval > 0 */
2268 }
2269
2270 return 0;
2271 }
2272
2273 /**
2274 * get_window_mid_index() - Find the best middle setting of DQ/DQS phase
2275 * @write: Perform read (Stage 2) or write (Stage 3) calibration
2276 * @left_edge: Left edge of the DQ/DQS phase
2277 * @right_edge: Right edge of the DQ/DQS phase
2278 * @mid_min: Best DQ/DQS phase middle setting
2279 *
2280 * Find index and value of the middle of the DQ/DQS working phase.
2281 */
2282 static int get_window_mid_index(const int write, int *left_edge,
2283 int *right_edge, int *mid_min)
2284 {
2285 const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2286 RW_MGR_MEM_DQ_PER_READ_DQS;
2287 int i, mid, min_index;
2288
2289 /* Find middle of window for each DQ bit */
2290 *mid_min = left_edge[0] - right_edge[0];
2291 min_index = 0;
2292 for (i = 1; i < per_dqs; i++) {
2293 mid = left_edge[i] - right_edge[i];
2294 if (mid < *mid_min) {
2295 *mid_min = mid;
2296 min_index = i;
2297 }
2298 }
2299
2300 /*
2301 * -mid_min/2 represents the amount that we need to move DQS.
2302 * If mid_min is odd and positive we'll need to add one to make
2303 * sure the rounding in further calculations is correct (always
2304 * bias to the right), so just add 1 for all positive values.
2305 */
2306 if (*mid_min > 0)
2307 (*mid_min)++;
2308 *mid_min = *mid_min / 2;
2309
2310 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: *mid_min=%d (index=%u)\n",
2311 __func__, __LINE__, *mid_min, min_index);
2312 return min_index;
2313 }
2314
2315 /**
2316 * center_dq_windows() - Center the DQ/DQS windows
2317 * @write: Perform read (Stage 2) or write (Stage 3) calibration
2318 * @left_edge: Left edge of the DQ/DQS phase
2319 * @right_edge: Right edge of the DQ/DQS phase
2320 * @mid_min: Adjusted DQ/DQS phase middle setting
2321 * @orig_mid_min: Original DQ/DQS phase middle setting
2322 * @min_index: DQ/DQS phase middle setting index
2323 * @test_bgn: Rank number to begin the test
2324 * @dq_margin: Amount of shift for the DQ
2325 * @dqs_margin: Amount of shift for the DQS
2326 *
2327 * Align the DQ/DQS windows in each group.
2328 */
2329 static void center_dq_windows(const int write, int *left_edge, int *right_edge,
2330 const int mid_min, const int orig_mid_min,
2331 const int min_index, const int test_bgn,
2332 int *dq_margin, int *dqs_margin)
2333 {
2334 const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX;
2335 const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2336 RW_MGR_MEM_DQ_PER_READ_DQS;
2337 const u32 delay_off = write ? SCC_MGR_IO_OUT1_DELAY_OFFSET :
2338 SCC_MGR_IO_IN_DELAY_OFFSET;
2339 const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | delay_off;
2340
2341 u32 temp_dq_io_delay1, temp_dq_io_delay2;
2342 int shift_dq, i, p;
2343
2344 /* Initialize data for export structures */
2345 *dqs_margin = delay_max + 1;
2346 *dq_margin = delay_max + 1;
2347
2348 /* add delay to bring centre of all DQ windows to the same "level" */
2349 for (i = 0, p = test_bgn; i < per_dqs; i++, p++) {
2350 /* Use values before divide by 2 to reduce round off error */
2351 shift_dq = (left_edge[i] - right_edge[i] -
2352 (left_edge[min_index] - right_edge[min_index]))/2 +
2353 (orig_mid_min - mid_min);
2354
2355 debug_cond(DLEVEL == 2,
2356 "vfifo_center: before: shift_dq[%u]=%d\n",
2357 i, shift_dq);
2358
2359 temp_dq_io_delay1 = readl(addr + (p << 2));
2360 temp_dq_io_delay2 = readl(addr + (i << 2));
2361
2362 if (shift_dq + temp_dq_io_delay1 > delay_max)
2363 shift_dq = delay_max - temp_dq_io_delay2;
2364 else if (shift_dq + temp_dq_io_delay1 < 0)
2365 shift_dq = -temp_dq_io_delay1;
2366
2367 debug_cond(DLEVEL == 2,
2368 "vfifo_center: after: shift_dq[%u]=%d\n",
2369 i, shift_dq);
2370
2371 if (write)
2372 scc_mgr_set_dq_out1_delay(i, temp_dq_io_delay1 + shift_dq);
2373 else
2374 scc_mgr_set_dq_in_delay(p, temp_dq_io_delay1 + shift_dq);
2375
2376 scc_mgr_load_dq(p);
2377
2378 debug_cond(DLEVEL == 2,
2379 "vfifo_center: margin[%u]=[%d,%d]\n", i,
2380 left_edge[i] - shift_dq + (-mid_min),
2381 right_edge[i] + shift_dq - (-mid_min));
2382
2383 /* To determine values for export structures */
2384 if (left_edge[i] - shift_dq + (-mid_min) < *dq_margin)
2385 *dq_margin = left_edge[i] - shift_dq + (-mid_min);
2386
2387 if (right_edge[i] + shift_dq - (-mid_min) < *dqs_margin)
2388 *dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2389 }
2390
2391 }
2392
2393 /**
2394 * rw_mgr_mem_calibrate_vfifo_center() - Per-bit deskew DQ and centering
2395 * @rank_bgn: Rank number
2396 * @rw_group: Read/Write Group
2397 * @test_bgn: Rank at which the test begins
2398 * @use_read_test: Perform a read test
2399 * @update_fom: Update FOM
2400 *
2401 * Per-bit deskew DQ and centering.
2402 */
2403 static int rw_mgr_mem_calibrate_vfifo_center(const u32 rank_bgn,
2404 const u32 rw_group, const u32 test_bgn,
2405 const int use_read_test, const int update_fom)
2406 {
2407 const u32 addr =
2408 SDR_PHYGRP_SCCGRP_ADDRESS + SCC_MGR_DQS_IN_DELAY_OFFSET +
2409 (rw_group << 2);
2410 /*
2411 * Store these as signed since there are comparisons with
2412 * signed numbers.
2413 */
2414 uint32_t sticky_bit_chk;
2415 int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
2416 int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
2417 int32_t orig_mid_min, mid_min;
2418 int32_t new_dqs, start_dqs, start_dqs_en, final_dqs_en;
2419 int32_t dq_margin, dqs_margin;
2420 int i, min_index;
2421 int ret;
2422
2423 debug("%s:%d: %u %u", __func__, __LINE__, rw_group, test_bgn);
2424
2425 start_dqs = readl(addr);
2426 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2427 start_dqs_en = readl(addr - IO_DQS_EN_DELAY_OFFSET);
2428
2429 /* set the left and right edge of each bit to an illegal value */
2430 /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
2431 sticky_bit_chk = 0;
2432 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2433 left_edge[i] = IO_IO_IN_DELAY_MAX + 1;
2434 right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
2435 }
2436
2437 /* Search for the left edge of the window for each bit */
2438 search_left_edge(0, rank_bgn, rw_group, rw_group, test_bgn,
2439 &sticky_bit_chk,
2440 left_edge, right_edge, use_read_test);
2441
2442
2443 /* Search for the right edge of the window for each bit */
2444 ret = search_right_edge(0, rank_bgn, rw_group, rw_group,
2445 start_dqs, start_dqs_en,
2446 &sticky_bit_chk,
2447 left_edge, right_edge, use_read_test);
2448 if (ret) {
2449 /*
2450 * Restore delay chain settings before letting the loop
2451 * in rw_mgr_mem_calibrate_vfifo to retry different
2452 * dqs/ck relationships.
2453 */
2454 scc_mgr_set_dqs_bus_in_delay(rw_group, start_dqs);
2455 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2456 scc_mgr_set_dqs_en_delay(rw_group, start_dqs_en);
2457
2458 scc_mgr_load_dqs(rw_group);
2459 writel(0, &sdr_scc_mgr->update);
2460
2461 debug_cond(DLEVEL == 1,
2462 "%s:%d vfifo_center: failed to find edge [%u]: %d %d",
2463 __func__, __LINE__, i, left_edge[i], right_edge[i]);
2464 if (use_read_test) {
2465 set_failing_group_stage(rw_group *
2466 RW_MGR_MEM_DQ_PER_READ_DQS + i,
2467 CAL_STAGE_VFIFO,
2468 CAL_SUBSTAGE_VFIFO_CENTER);
2469 } else {
2470 set_failing_group_stage(rw_group *
2471 RW_MGR_MEM_DQ_PER_READ_DQS + i,
2472 CAL_STAGE_VFIFO_AFTER_WRITES,
2473 CAL_SUBSTAGE_VFIFO_CENTER);
2474 }
2475 return -EIO;
2476 }
2477
2478 min_index = get_window_mid_index(0, left_edge, right_edge, &mid_min);
2479
2480 /* Determine the amount we can change DQS (which is -mid_min) */
2481 orig_mid_min = mid_min;
2482 new_dqs = start_dqs - mid_min;
2483 if (new_dqs > IO_DQS_IN_DELAY_MAX)
2484 new_dqs = IO_DQS_IN_DELAY_MAX;
2485 else if (new_dqs < 0)
2486 new_dqs = 0;
2487
2488 mid_min = start_dqs - new_dqs;
2489 debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2490 mid_min, new_dqs);
2491
2492 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2493 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2494 mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2495 else if (start_dqs_en - mid_min < 0)
2496 mid_min += start_dqs_en - mid_min;
2497 }
2498 new_dqs = start_dqs - mid_min;
2499
2500 debug_cond(DLEVEL == 1,
2501 "vfifo_center: start_dqs=%d start_dqs_en=%d new_dqs=%d mid_min=%d\n",
2502 start_dqs,
2503 IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2504 new_dqs, mid_min);
2505
2506 /* Add delay to bring centre of all DQ windows to the same "level". */
2507 center_dq_windows(0, left_edge, right_edge, mid_min, orig_mid_min,
2508 min_index, test_bgn, &dq_margin, &dqs_margin);
2509
2510 /* Move DQS-en */
2511 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2512 final_dqs_en = start_dqs_en - mid_min;
2513 scc_mgr_set_dqs_en_delay(rw_group, final_dqs_en);
2514 scc_mgr_load_dqs(rw_group);
2515 }
2516
2517 /* Move DQS */
2518 scc_mgr_set_dqs_bus_in_delay(rw_group, new_dqs);
2519 scc_mgr_load_dqs(rw_group);
2520 debug_cond(DLEVEL == 2,
2521 "%s:%d vfifo_center: dq_margin=%d dqs_margin=%d",
2522 __func__, __LINE__, dq_margin, dqs_margin);
2523
2524 /*
2525 * Do not remove this line as it makes sure all of our decisions
2526 * have been applied. Apply the update bit.
2527 */
2528 writel(0, &sdr_scc_mgr->update);
2529
2530 if ((dq_margin < 0) || (dqs_margin < 0))
2531 return -EINVAL;
2532
2533 return 0;
2534 }
2535
2536 /**
2537 * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device
2538 * @rw_group: Read/Write Group
2539 * @phase: DQ/DQS phase
2540 *
2541 * Because initially no communication ca be reliably performed with the memory
2542 * device, the sequencer uses a guaranteed write mechanism to write data into
2543 * the memory device.
2544 */
2545 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group,
2546 const u32 phase)
2547 {
2548 int ret;
2549
2550 /* Set a particular DQ/DQS phase. */
2551 scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase);
2552
2553 debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n",
2554 __func__, __LINE__, rw_group, phase);
2555
2556 /*
2557 * Altera EMI_RM 2015.05.04 :: Figure 1-25
2558 * Load up the patterns used by read calibration using the
2559 * current DQDQS phase.
2560 */
2561 rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2562
2563 if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)
2564 return 0;
2565
2566 /*
2567 * Altera EMI_RM 2015.05.04 :: Figure 1-26
2568 * Back-to-Back reads of the patterns used for calibration.
2569 */
2570 ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1);
2571 if (ret)
2572 debug_cond(DLEVEL == 1,
2573 "%s:%d Guaranteed read test failed: g=%u p=%u\n",
2574 __func__, __LINE__, rw_group, phase);
2575 return ret;
2576 }
2577
2578 /**
2579 * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration
2580 * @rw_group: Read/Write Group
2581 * @test_bgn: Rank at which the test begins
2582 *
2583 * DQS enable calibration ensures reliable capture of the DQ signal without
2584 * glitches on the DQS line.
2585 */
2586 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group,
2587 const u32 test_bgn)
2588 {
2589 /*
2590 * Altera EMI_RM 2015.05.04 :: Figure 1-27
2591 * DQS and DQS Eanble Signal Relationships.
2592 */
2593
2594 /* We start at zero, so have one less dq to devide among */
2595 const u32 delay_step = IO_IO_IN_DELAY_MAX /
2596 (RW_MGR_MEM_DQ_PER_READ_DQS - 1);
2597 int ret;
2598 u32 i, p, d, r;
2599
2600 debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn);
2601
2602 /* Try different dq_in_delays since the DQ path is shorter than DQS. */
2603 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2604 r += NUM_RANKS_PER_SHADOW_REG) {
2605 for (i = 0, p = test_bgn, d = 0;
2606 i < RW_MGR_MEM_DQ_PER_READ_DQS;
2607 i++, p++, d += delay_step) {
2608 debug_cond(DLEVEL == 1,
2609 "%s:%d: g=%u r=%u i=%u p=%u d=%u\n",
2610 __func__, __LINE__, rw_group, r, i, p, d);
2611
2612 scc_mgr_set_dq_in_delay(p, d);
2613 scc_mgr_load_dq(p);
2614 }
2615
2616 writel(0, &sdr_scc_mgr->update);
2617 }
2618
2619 /*
2620 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
2621 * dq_in_delay values
2622 */
2623 ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group);
2624
2625 debug_cond(DLEVEL == 1,
2626 "%s:%d: g=%u found=%u; Reseting delay chain to zero\n",
2627 __func__, __LINE__, rw_group, !ret);
2628
2629 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2630 r += NUM_RANKS_PER_SHADOW_REG) {
2631 scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2632 writel(0, &sdr_scc_mgr->update);
2633 }
2634
2635 return ret;
2636 }
2637
2638 /**
2639 * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS
2640 * @rw_group: Read/Write Group
2641 * @test_bgn: Rank at which the test begins
2642 * @use_read_test: Perform a read test
2643 * @update_fom: Update FOM
2644 *
2645 * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads
2646 * within a group.
2647 */
2648 static int
2649 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn,
2650 const int use_read_test,
2651 const int update_fom)
2652
2653 {
2654 int ret, grp_calibrated;
2655 u32 rank_bgn, sr;
2656
2657 /*
2658 * Altera EMI_RM 2015.05.04 :: Figure 1-28
2659 * Read per-bit deskew can be done on a per shadow register basis.
2660 */
2661 grp_calibrated = 1;
2662 for (rank_bgn = 0, sr = 0;
2663 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2664 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
2665 /* Check if this set of ranks should be skipped entirely. */
2666 if (param->skip_shadow_regs[sr])
2667 continue;
2668
2669 ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group,
2670 test_bgn,
2671 use_read_test,
2672 update_fom);
2673 if (!ret)
2674 continue;
2675
2676 grp_calibrated = 0;
2677 }
2678
2679 if (!grp_calibrated)
2680 return -EIO;
2681
2682 return 0;
2683 }
2684
2685 /**
2686 * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
2687 * @rw_group: Read/Write Group
2688 * @test_bgn: Rank at which the test begins
2689 *
2690 * Stage 1: Calibrate the read valid prediction FIFO.
2691 *
2692 * This function implements UniPHY calibration Stage 1, as explained in
2693 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2694 *
2695 * - read valid prediction will consist of finding:
2696 * - DQS enable phase and DQS enable delay (DQS Enable Calibration)
2697 * - DQS input phase and DQS input delay (DQ/DQS Centering)
2698 * - we also do a per-bit deskew on the DQ lines.
2699 */
2700 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn)
2701 {
2702 uint32_t p, d;
2703 uint32_t dtaps_per_ptap;
2704 uint32_t failed_substage;
2705
2706 int ret;
2707
2708 debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn);
2709
2710 /* Update info for sims */
2711 reg_file_set_group(rw_group);
2712 reg_file_set_stage(CAL_STAGE_VFIFO);
2713 reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2714
2715 failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2716
2717 /* USER Determine number of delay taps for each phase tap. */
2718 dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP,
2719 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1;
2720
2721 for (d = 0; d <= dtaps_per_ptap; d += 2) {
2722 /*
2723 * In RLDRAMX we may be messing the delay of pins in
2724 * the same write rw_group but outside of the current read
2725 * the rw_group, but that's ok because we haven't calibrated
2726 * output side yet.
2727 */
2728 if (d > 0) {
2729 scc_mgr_apply_group_all_out_delay_add_all_ranks(
2730 rw_group, d);
2731 }
2732
2733 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) {
2734 /* 1) Guaranteed Write */
2735 ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p);
2736 if (ret)
2737 break;
2738
2739 /* 2) DQS Enable Calibration */
2740 ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group,
2741 test_bgn);
2742 if (ret) {
2743 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2744 continue;
2745 }
2746
2747 /* 3) Centering DQ/DQS */
2748 /*
2749 * If doing read after write calibration, do not update
2750 * FOM now. Do it then.
2751 */
2752 ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group,
2753 test_bgn, 1, 0);
2754 if (ret) {
2755 failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
2756 continue;
2757 }
2758
2759 /* All done. */
2760 goto cal_done_ok;
2761 }
2762 }
2763
2764 /* Calibration Stage 1 failed. */
2765 set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage);
2766 return 0;
2767
2768 /* Calibration Stage 1 completed OK. */
2769 cal_done_ok:
2770 /*
2771 * Reset the delay chains back to zero if they have moved > 1
2772 * (check for > 1 because loop will increase d even when pass in
2773 * first case).
2774 */
2775 if (d > 2)
2776 scc_mgr_zero_group(rw_group, 1);
2777
2778 return 1;
2779 }
2780
2781 /**
2782 * rw_mgr_mem_calibrate_vfifo_end() - DQ/DQS Centering.
2783 * @rw_group: Read/Write Group
2784 * @test_bgn: Rank at which the test begins
2785 *
2786 * Stage 3: DQ/DQS Centering.
2787 *
2788 * This function implements UniPHY calibration Stage 3, as explained in
2789 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2790 */
2791 static int rw_mgr_mem_calibrate_vfifo_end(const u32 rw_group,
2792 const u32 test_bgn)
2793 {
2794 int ret;
2795
2796 debug("%s:%d %u %u", __func__, __LINE__, rw_group, test_bgn);
2797
2798 /* Update info for sims. */
2799 reg_file_set_group(rw_group);
2800 reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2801 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2802
2803 ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, test_bgn, 0, 1);
2804 if (ret)
2805 set_failing_group_stage(rw_group,
2806 CAL_STAGE_VFIFO_AFTER_WRITES,
2807 CAL_SUBSTAGE_VFIFO_CENTER);
2808 return ret;
2809 }
2810
2811 /**
2812 * rw_mgr_mem_calibrate_lfifo() - Minimize latency
2813 *
2814 * Stage 4: Minimize latency.
2815 *
2816 * This function implements UniPHY calibration Stage 4, as explained in
2817 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2818 * Calibrate LFIFO to find smallest read latency.
2819 */
2820 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2821 {
2822 int found_one = 0;
2823
2824 debug("%s:%d\n", __func__, __LINE__);
2825
2826 /* Update info for sims. */
2827 reg_file_set_stage(CAL_STAGE_LFIFO);
2828 reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2829
2830 /* Load up the patterns used by read calibration for all ranks */
2831 rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2832
2833 do {
2834 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2835 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2836 __func__, __LINE__, gbl->curr_read_lat);
2837
2838 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, NUM_READ_TESTS,
2839 PASS_ALL_BITS, 1))
2840 break;
2841
2842 found_one = 1;
2843 /*
2844 * Reduce read latency and see if things are
2845 * working correctly.
2846 */
2847 gbl->curr_read_lat--;
2848 } while (gbl->curr_read_lat > 0);
2849
2850 /* Reset the fifos to get pointers to known state. */
2851 writel(0, &phy_mgr_cmd->fifo_reset);
2852
2853 if (found_one) {
2854 /* Add a fudge factor to the read latency that was determined */
2855 gbl->curr_read_lat += 2;
2856 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2857 debug_cond(DLEVEL == 2,
2858 "%s:%d lfifo: success: using read_lat=%u\n",
2859 __func__, __LINE__, gbl->curr_read_lat);
2860 } else {
2861 set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2862 CAL_SUBSTAGE_READ_LATENCY);
2863
2864 debug_cond(DLEVEL == 2,
2865 "%s:%d lfifo: failed at initial read_lat=%u\n",
2866 __func__, __LINE__, gbl->curr_read_lat);
2867 }
2868
2869 return found_one;
2870 }
2871
2872 /**
2873 * search_window() - Search for the/part of the window with DM/DQS shift
2874 * @search_dm: If 1, search for the DM shift, if 0, search for DQS shift
2875 * @rank_bgn: Rank number
2876 * @write_group: Write Group
2877 * @bgn_curr: Current window begin
2878 * @end_curr: Current window end
2879 * @bgn_best: Current best window begin
2880 * @end_best: Current best window end
2881 * @win_best: Size of the best window
2882 * @new_dqs: New DQS value (only applicable if search_dm = 0).
2883 *
2884 * Search for the/part of the window with DM/DQS shift.
2885 */
2886 static void search_window(const int search_dm,
2887 const u32 rank_bgn, const u32 write_group,
2888 int *bgn_curr, int *end_curr, int *bgn_best,
2889 int *end_best, int *win_best, int new_dqs)
2890 {
2891 u32 bit_chk;
2892 const int max = IO_IO_OUT1_DELAY_MAX - new_dqs;
2893 int d, di;
2894
2895 /* Search for the/part of the window with DM/DQS shift. */
2896 for (di = max; di >= 0; di -= DELTA_D) {
2897 if (search_dm) {
2898 d = di;
2899 scc_mgr_apply_group_dm_out1_delay(d);
2900 } else {
2901 /* For DQS, we go from 0...max */
2902 d = max - di;
2903 /*
2904 * Note: This only shifts DQS, so are we limiting ourselve to
2905 * width of DQ unnecessarily.
2906 */
2907 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2908 d + new_dqs);
2909 }
2910
2911 writel(0, &sdr_scc_mgr->update);
2912
2913 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
2914 PASS_ALL_BITS, &bit_chk,
2915 0)) {
2916 /* Set current end of the window. */
2917 *end_curr = search_dm ? -d : d;
2918
2919 /*
2920 * If a starting edge of our window has not been seen
2921 * this is our current start of the DM window.
2922 */
2923 if (*bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
2924 *bgn_curr = search_dm ? -d : d;
2925
2926 /*
2927 * If current window is bigger than best seen.
2928 * Set best seen to be current window.
2929 */
2930 if ((*end_curr - *bgn_curr + 1) > *win_best) {
2931 *win_best = *end_curr - *bgn_curr + 1;
2932 *bgn_best = *bgn_curr;
2933 *end_best = *end_curr;
2934 }
2935 } else {
2936 /* We just saw a failing test. Reset temp edge. */
2937 *bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2938 *end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2939
2940 /* Early exit is only applicable to DQS. */
2941 if (search_dm)
2942 continue;
2943
2944 /*
2945 * Early exit optimization: if the remaining delay
2946 * chain space is less than already seen largest
2947 * window we can exit.
2948 */
2949 if (*win_best - 1 > IO_IO_OUT1_DELAY_MAX - new_dqs - d)
2950 break;
2951 }
2952 }
2953 }
2954
2955 /*
2956 * rw_mgr_mem_calibrate_writes_center() - Center all windows
2957 * @rank_bgn: Rank number
2958 * @write_group: Write group
2959 * @test_bgn: Rank at which the test begins
2960 *
2961 * Center all windows. Do per-bit-deskew to possibly increase size of
2962 * certain windows.
2963 */
2964 static int
2965 rw_mgr_mem_calibrate_writes_center(const u32 rank_bgn, const u32 write_group,
2966 const u32 test_bgn)
2967 {
2968 int i;
2969 u32 sticky_bit_chk;
2970 u32 min_index;
2971 int left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2972 int right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2973 int mid;
2974 int mid_min, orig_mid_min;
2975 int new_dqs, start_dqs;
2976 int dq_margin, dqs_margin, dm_margin;
2977 int bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2978 int end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2979 int bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
2980 int end_best = IO_IO_OUT1_DELAY_MAX + 1;
2981 int win_best = 0;
2982
2983 int ret;
2984
2985 debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2986
2987 dm_margin = 0;
2988
2989 start_dqs = readl((SDR_PHYGRP_SCCGRP_ADDRESS |
2990 SCC_MGR_IO_OUT1_DELAY_OFFSET) +
2991 (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
2992
2993 /* Per-bit deskew. */
2994
2995 /*
2996 * Set the left and right edge of each bit to an illegal value.
2997 * Use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
2998 */
2999 sticky_bit_chk = 0;
3000 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
3001 left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
3002 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
3003 }
3004
3005 /* Search for the left edge of the window for each bit. */
3006 search_left_edge(1, rank_bgn, write_group, 0, test_bgn,
3007 &sticky_bit_chk,
3008 left_edge, right_edge, 0);
3009
3010 /* Search for the right edge of the window for each bit. */
3011 ret = search_right_edge(1, rank_bgn, write_group, 0,
3012 start_dqs, 0,
3013 &sticky_bit_chk,
3014 left_edge, right_edge, 0);
3015 if (ret) {
3016 set_failing_group_stage(test_bgn + ret - 1, CAL_STAGE_WRITES,
3017 CAL_SUBSTAGE_WRITES_CENTER);
3018 return -EINVAL;
3019 }
3020
3021 min_index = get_window_mid_index(1, left_edge, right_edge, &mid_min);
3022
3023 /* Determine the amount we can change DQS (which is -mid_min). */
3024 orig_mid_min = mid_min;
3025 new_dqs = start_dqs;
3026 mid_min = 0;
3027 debug_cond(DLEVEL == 1,
3028 "%s:%d write_center: start_dqs=%d new_dqs=%d mid_min=%d\n",
3029 __func__, __LINE__, start_dqs, new_dqs, mid_min);
3030
3031 /* Add delay to bring centre of all DQ windows to the same "level". */
3032 center_dq_windows(1, left_edge, right_edge, mid_min, orig_mid_min,
3033 min_index, 0, &dq_margin, &dqs_margin);
3034
3035 /* Move DQS */
3036 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3037 writel(0, &sdr_scc_mgr->update);
3038
3039 /* Centre DM */
3040 debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
3041
3042 /*
3043 * Set the left and right edge of each bit to an illegal value.
3044 * Use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
3045 */
3046 left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
3047 right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
3048
3049 /* Search for the/part of the window with DM shift. */
3050 search_window(1, rank_bgn, write_group, &bgn_curr, &end_curr,
3051 &bgn_best, &end_best, &win_best, 0);
3052
3053 /* Reset DM delay chains to 0. */
3054 scc_mgr_apply_group_dm_out1_delay(0);
3055
3056 /*
3057 * Check to see if the current window nudges up aganist 0 delay.
3058 * If so we need to continue the search by shifting DQS otherwise DQS
3059 * search begins as a new search.
3060 */
3061 if (end_curr != 0) {
3062 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3063 end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3064 }
3065
3066 /* Search for the/part of the window with DQS shifts. */
3067 search_window(0, rank_bgn, write_group, &bgn_curr, &end_curr,
3068 &bgn_best, &end_best, &win_best, new_dqs);
3069
3070 /* Assign left and right edge for cal and reporting. */
3071 left_edge[0] = -1 * bgn_best;
3072 right_edge[0] = end_best;
3073
3074 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n",
3075 __func__, __LINE__, left_edge[0], right_edge[0]);
3076
3077 /* Move DQS (back to orig). */
3078 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3079
3080 /* Move DM */
3081
3082 /* Find middle of window for the DM bit. */
3083 mid = (left_edge[0] - right_edge[0]) / 2;
3084
3085 /* Only move right, since we are not moving DQS/DQ. */
3086 if (mid < 0)
3087 mid = 0;
3088
3089 /* dm_marign should fail if we never find a window. */
3090 if (win_best == 0)
3091 dm_margin = -1;
3092 else
3093 dm_margin = left_edge[0] - mid;
3094
3095 scc_mgr_apply_group_dm_out1_delay(mid);
3096 writel(0, &sdr_scc_mgr->update);
3097
3098 debug_cond(DLEVEL == 2,
3099 "%s:%d dm_calib: left=%d right=%d mid=%d dm_margin=%d\n",
3100 __func__, __LINE__, left_edge[0], right_edge[0],
3101 mid, dm_margin);
3102 /* Export values. */
3103 gbl->fom_out += dq_margin + dqs_margin;
3104
3105 debug_cond(DLEVEL == 2,
3106 "%s:%d write_center: dq_margin=%d dqs_margin=%d dm_margin=%d\n",
3107 __func__, __LINE__, dq_margin, dqs_margin, dm_margin);
3108
3109 /*
3110 * Do not remove this line as it makes sure all of our
3111 * decisions have been applied.
3112 */
3113 writel(0, &sdr_scc_mgr->update);
3114
3115 if ((dq_margin < 0) || (dqs_margin < 0) || (dm_margin < 0))
3116 return -EINVAL;
3117
3118 return 0;
3119 }
3120
3121 /**
3122 * rw_mgr_mem_calibrate_writes() - Write Calibration Part One
3123 * @rank_bgn: Rank number
3124 * @group: Read/Write Group
3125 * @test_bgn: Rank at which the test begins
3126 *
3127 * Stage 2: Write Calibration Part One.
3128 *
3129 * This function implements UniPHY calibration Stage 2, as explained in
3130 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
3131 */
3132 static int rw_mgr_mem_calibrate_writes(const u32 rank_bgn, const u32 group,
3133 const u32 test_bgn)
3134 {
3135 int ret;
3136
3137 /* Update info for sims */
3138 debug("%s:%d %u %u\n", __func__, __LINE__, group, test_bgn);
3139
3140 reg_file_set_group(group);
3141 reg_file_set_stage(CAL_STAGE_WRITES);
3142 reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3143
3144 ret = rw_mgr_mem_calibrate_writes_center(rank_bgn, group, test_bgn);
3145 if (ret)
3146 set_failing_group_stage(group, CAL_STAGE_WRITES,
3147 CAL_SUBSTAGE_WRITES_CENTER);
3148
3149 return ret;
3150 }
3151
3152 /**
3153 * mem_precharge_and_activate() - Precharge all banks and activate
3154 *
3155 * Precharge all banks and activate row 0 in bank "000..." and bank "111...".
3156 */
3157 static void mem_precharge_and_activate(void)
3158 {
3159 int r;
3160
3161 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
3162 /* Test if the rank should be skipped. */
3163 if (param->skip_ranks[r])
3164 continue;
3165
3166 /* Set rank. */
3167 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3168
3169 /* Precharge all banks. */
3170 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3171 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3172
3173 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3174 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
3175 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3176
3177 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3178 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
3179 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3180
3181 /* Activate rows. */
3182 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3183 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3184 }
3185 }
3186
3187 /**
3188 * mem_init_latency() - Configure memory RLAT and WLAT settings
3189 *
3190 * Configure memory RLAT and WLAT parameters.
3191 */
3192 static void mem_init_latency(void)
3193 {
3194 /*
3195 * For AV/CV, LFIFO is hardened and always runs at full rate
3196 * so max latency in AFI clocks, used here, is correspondingly
3197 * smaller.
3198 */
3199 const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1;
3200 u32 rlat, wlat;
3201
3202 debug("%s:%d\n", __func__, __LINE__);
3203
3204 /*
3205 * Read in write latency.
3206 * WL for Hard PHY does not include additive latency.
3207 */
3208 wlat = readl(&data_mgr->t_wl_add);
3209 wlat += readl(&data_mgr->mem_t_add);
3210
3211 gbl->rw_wl_nop_cycles = wlat - 1;
3212
3213 /* Read in readl latency. */
3214 rlat = readl(&data_mgr->t_rl_add);
3215
3216 /* Set a pretty high read latency initially. */
3217 gbl->curr_read_lat = rlat + 16;
3218 if (gbl->curr_read_lat > max_latency)
3219 gbl->curr_read_lat = max_latency;
3220
3221 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3222
3223 /* Advertise write latency. */
3224 writel(wlat, &phy_mgr_cfg->afi_wlat);
3225 }
3226
3227 /**
3228 * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
3229 *
3230 * Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
3231 */
3232 static void mem_skip_calibrate(void)
3233 {
3234 uint32_t vfifo_offset;
3235 uint32_t i, j, r;
3236
3237 debug("%s:%d\n", __func__, __LINE__);
3238 /* Need to update every shadow register set used by the interface */
3239 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
3240 r += NUM_RANKS_PER_SHADOW_REG) {
3241 /*
3242 * Set output phase alignment settings appropriate for
3243 * skip calibration.
3244 */
3245 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3246 scc_mgr_set_dqs_en_phase(i, 0);
3247 #if IO_DLL_CHAIN_LENGTH == 6
3248 scc_mgr_set_dqdqs_output_phase(i, 6);
3249 #else
3250 scc_mgr_set_dqdqs_output_phase(i, 7);
3251 #endif
3252 /*
3253 * Case:33398
3254 *
3255 * Write data arrives to the I/O two cycles before write
3256 * latency is reached (720 deg).
3257 * -> due to bit-slip in a/c bus
3258 * -> to allow board skew where dqs is longer than ck
3259 * -> how often can this happen!?
3260 * -> can claim back some ptaps for high freq
3261 * support if we can relax this, but i digress...
3262 *
3263 * The write_clk leads mem_ck by 90 deg
3264 * The minimum ptap of the OPA is 180 deg
3265 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3266 * The write_clk is always delayed by 2 ptaps
3267 *
3268 * Hence, to make DQS aligned to CK, we need to delay
3269 * DQS by:
3270 * (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3271 *
3272 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3273 * gives us the number of ptaps, which simplies to:
3274 *
3275 * (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3276 */
3277 scc_mgr_set_dqdqs_output_phase(i,
3278 1.25 * IO_DLL_CHAIN_LENGTH - 2);
3279 }
3280 writel(0xff, &sdr_scc_mgr->dqs_ena);
3281 writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3282
3283 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
3284 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3285 SCC_MGR_GROUP_COUNTER_OFFSET);
3286 }
3287 writel(0xff, &sdr_scc_mgr->dq_ena);
3288 writel(0xff, &sdr_scc_mgr->dm_ena);
3289 writel(0, &sdr_scc_mgr->update);
3290 }
3291
3292 /* Compensate for simulation model behaviour */
3293 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3294 scc_mgr_set_dqs_bus_in_delay(i, 10);
3295 scc_mgr_load_dqs(i);
3296 }
3297 writel(0, &sdr_scc_mgr->update);
3298
3299 /*
3300 * ArriaV has hard FIFOs that can only be initialized by incrementing
3301 * in sequencer.
3302 */
3303 vfifo_offset = CALIB_VFIFO_OFFSET;
3304 for (j = 0; j < vfifo_offset; j++)
3305 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3306 writel(0, &phy_mgr_cmd->fifo_reset);
3307
3308 /*
3309 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
3310 * setting from generation-time constant.
3311 */
3312 gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3313 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3314 }
3315
3316 /**
3317 * mem_calibrate() - Memory calibration entry point.
3318 *
3319 * Perform memory calibration.
3320 */
3321 static uint32_t mem_calibrate(void)
3322 {
3323 uint32_t i;
3324 uint32_t rank_bgn, sr;
3325 uint32_t write_group, write_test_bgn;
3326 uint32_t read_group, read_test_bgn;
3327 uint32_t run_groups, current_run;
3328 uint32_t failing_groups = 0;
3329 uint32_t group_failed = 0;
3330
3331 const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
3332 RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
3333
3334 debug("%s:%d\n", __func__, __LINE__);
3335
3336 /* Initialize the data settings */
3337 gbl->error_substage = CAL_SUBSTAGE_NIL;
3338 gbl->error_stage = CAL_STAGE_NIL;
3339 gbl->error_group = 0xff;
3340 gbl->fom_in = 0;
3341 gbl->fom_out = 0;
3342
3343 /* Initialize WLAT and RLAT. */
3344 mem_init_latency();
3345
3346 /* Initialize bit slips. */
3347 mem_precharge_and_activate();
3348
3349 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3350 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3351 SCC_MGR_GROUP_COUNTER_OFFSET);
3352 /* Only needed once to set all groups, pins, DQ, DQS, DM. */
3353 if (i == 0)
3354 scc_mgr_set_hhp_extras();
3355
3356 scc_set_bypass_mode(i);
3357 }
3358
3359 /* Calibration is skipped. */
3360 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3361 /*
3362 * Set VFIFO and LFIFO to instant-on settings in skip
3363 * calibration mode.
3364 */
3365 mem_skip_calibrate();
3366
3367 /*
3368 * Do not remove this line as it makes sure all of our
3369 * decisions have been applied.
3370 */
3371 writel(0, &sdr_scc_mgr->update);
3372 return 1;
3373 }
3374
3375 /* Calibration is not skipped. */
3376 for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3377 /*
3378 * Zero all delay chain/phase settings for all
3379 * groups and all shadow register sets.
3380 */
3381 scc_mgr_zero_all();
3382
3383 run_groups = ~param->skip_groups;
3384
3385 for (write_group = 0, write_test_bgn = 0; write_group
3386 < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3387 write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
3388
3389 /* Initialize the group failure */
3390 group_failed = 0;
3391
3392 current_run = run_groups & ((1 <<
3393 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3394 run_groups = run_groups >>
3395 RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3396
3397 if (current_run == 0)
3398 continue;
3399
3400 writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3401 SCC_MGR_GROUP_COUNTER_OFFSET);
3402 scc_mgr_zero_group(write_group, 0);
3403
3404 for (read_group = write_group * rwdqs_ratio,
3405 read_test_bgn = 0;
3406 read_group < (write_group + 1) * rwdqs_ratio;
3407 read_group++,
3408 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3409 if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO)
3410 continue;
3411
3412 /* Calibrate the VFIFO */
3413 if (rw_mgr_mem_calibrate_vfifo(read_group,
3414 read_test_bgn))
3415 continue;
3416
3417 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3418 return 0;
3419
3420 /* The group failed, we're done. */
3421 goto grp_failed;
3422 }
3423
3424 /* Calibrate the output side */
3425 for (rank_bgn = 0, sr = 0;
3426 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
3427 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
3428 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3429 continue;
3430
3431 /* Not needed in quick mode! */
3432 if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS)
3433 continue;
3434
3435 /*
3436 * Determine if this set of ranks
3437 * should be skipped entirely.
3438 */
3439 if (param->skip_shadow_regs[sr])
3440 continue;
3441
3442 /* Calibrate WRITEs */
3443 if (!rw_mgr_mem_calibrate_writes(rank_bgn,
3444 write_group, write_test_bgn))
3445 continue;
3446
3447 group_failed = 1;
3448 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3449 return 0;
3450 }
3451
3452 /* Some group failed, we're done. */
3453 if (group_failed)
3454 goto grp_failed;
3455
3456 for (read_group = write_group * rwdqs_ratio,
3457 read_test_bgn = 0;
3458 read_group < (write_group + 1) * rwdqs_ratio;
3459 read_group++,
3460 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3461 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3462 continue;
3463
3464 if (!rw_mgr_mem_calibrate_vfifo_end(read_group,
3465 read_test_bgn))
3466 continue;
3467
3468 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3469 return 0;
3470
3471 /* The group failed, we're done. */
3472 goto grp_failed;
3473 }
3474
3475 /* No group failed, continue as usual. */
3476 continue;
3477
3478 grp_failed: /* A group failed, increment the counter. */
3479 failing_groups++;
3480 }
3481
3482 /*
3483 * USER If there are any failing groups then report
3484 * the failure.
3485 */
3486 if (failing_groups != 0)
3487 return 0;
3488
3489 if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO)
3490 continue;
3491
3492 /*
3493 * If we're skipping groups as part of debug,
3494 * don't calibrate LFIFO.
3495 */
3496 if (param->skip_groups != 0)
3497 continue;
3498
3499 /* Calibrate the LFIFO */
3500 if (!rw_mgr_mem_calibrate_lfifo())
3501 return 0;
3502 }
3503
3504 /*
3505 * Do not remove this line as it makes sure all of our decisions
3506 * have been applied.
3507 */
3508 writel(0, &sdr_scc_mgr->update);
3509 return 1;
3510 }
3511
3512 /**
3513 * run_mem_calibrate() - Perform memory calibration
3514 *
3515 * This function triggers the entire memory calibration procedure.
3516 */
3517 static int run_mem_calibrate(void)
3518 {
3519 int pass;
3520
3521 debug("%s:%d\n", __func__, __LINE__);
3522
3523 /* Reset pass/fail status shown on afi_cal_success/fail */
3524 writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3525
3526 /* Stop tracking manager. */
3527 clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3528
3529 phy_mgr_initialize();
3530 rw_mgr_mem_initialize();
3531
3532 /* Perform the actual memory calibration. */
3533 pass = mem_calibrate();
3534
3535 mem_precharge_and_activate();
3536 writel(0, &phy_mgr_cmd->fifo_reset);
3537
3538 /* Handoff. */
3539 rw_mgr_mem_handoff();
3540 /*
3541 * In Hard PHY this is a 2-bit control:
3542 * 0: AFI Mux Select
3543 * 1: DDIO Mux Select
3544 */
3545 writel(0x2, &phy_mgr_cfg->mux_sel);
3546
3547 /* Start tracking manager. */
3548 setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3549
3550 return pass;
3551 }
3552
3553 /**
3554 * debug_mem_calibrate() - Report result of memory calibration
3555 * @pass: Value indicating whether calibration passed or failed
3556 *
3557 * This function reports the results of the memory calibration
3558 * and writes debug information into the register file.
3559 */
3560 static void debug_mem_calibrate(int pass)
3561 {
3562 uint32_t debug_info;
3563
3564 if (pass) {
3565 printf("%s: CALIBRATION PASSED\n", __FILE__);
3566
3567 gbl->fom_in /= 2;
3568 gbl->fom_out /= 2;
3569
3570 if (gbl->fom_in > 0xff)
3571 gbl->fom_in = 0xff;
3572
3573 if (gbl->fom_out > 0xff)
3574 gbl->fom_out = 0xff;
3575
3576 /* Update the FOM in the register file */
3577 debug_info = gbl->fom_in;
3578 debug_info |= gbl->fom_out << 8;
3579 writel(debug_info, &sdr_reg_file->fom);
3580
3581 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3582 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3583 } else {
3584 printf("%s: CALIBRATION FAILED\n", __FILE__);
3585
3586 debug_info = gbl->error_stage;
3587 debug_info |= gbl->error_substage << 8;
3588 debug_info |= gbl->error_group << 16;
3589
3590 writel(debug_info, &sdr_reg_file->failing_stage);
3591 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3592 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3593
3594 /* Update the failing group/stage in the register file */
3595 debug_info = gbl->error_stage;
3596 debug_info |= gbl->error_substage << 8;
3597 debug_info |= gbl->error_group << 16;
3598 writel(debug_info, &sdr_reg_file->failing_stage);
3599 }
3600
3601 printf("%s: Calibration complete\n", __FILE__);
3602 }
3603
3604 /**
3605 * hc_initialize_rom_data() - Initialize ROM data
3606 *
3607 * Initialize ROM data.
3608 */
3609 static void hc_initialize_rom_data(void)
3610 {
3611 u32 i, addr;
3612
3613 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3614 for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++)
3615 writel(inst_rom_init[i], addr + (i << 2));
3616
3617 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3618 for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++)
3619 writel(ac_rom_init[i], addr + (i << 2));
3620 }
3621
3622 /**
3623 * initialize_reg_file() - Initialize SDR register file
3624 *
3625 * Initialize SDR register file.
3626 */
3627 static void initialize_reg_file(void)
3628 {
3629 /* Initialize the register file with the correct data */
3630 writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3631 writel(0, &sdr_reg_file->debug_data_addr);
3632 writel(0, &sdr_reg_file->cur_stage);
3633 writel(0, &sdr_reg_file->fom);
3634 writel(0, &sdr_reg_file->failing_stage);
3635 writel(0, &sdr_reg_file->debug1);
3636 writel(0, &sdr_reg_file->debug2);
3637 }
3638
3639 /**
3640 * initialize_hps_phy() - Initialize HPS PHY
3641 *
3642 * Initialize HPS PHY.
3643 */
3644 static void initialize_hps_phy(void)
3645 {
3646 uint32_t reg;
3647 /*
3648 * Tracking also gets configured here because it's in the
3649 * same register.
3650 */
3651 uint32_t trk_sample_count = 7500;
3652 uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3653 /*
3654 * Format is number of outer loops in the 16 MSB, sample
3655 * count in 16 LSB.
3656 */
3657
3658 reg = 0;
3659 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3660 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3661 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3662 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3663 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3664 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3665 /*
3666 * This field selects the intrinsic latency to RDATA_EN/FULL path.
3667 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3668 */
3669 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3670 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3671 trk_sample_count);
3672 writel(reg, &sdr_ctrl->phy_ctrl0);
3673
3674 reg = 0;
3675 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3676 trk_sample_count >>
3677 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3678 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3679 trk_long_idle_sample_count);
3680 writel(reg, &sdr_ctrl->phy_ctrl1);
3681
3682 reg = 0;
3683 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3684 trk_long_idle_sample_count >>
3685 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3686 writel(reg, &sdr_ctrl->phy_ctrl2);
3687 }
3688
3689 /**
3690 * initialize_tracking() - Initialize tracking
3691 *
3692 * Initialize the register file with usable initial data.
3693 */
3694 static void initialize_tracking(void)
3695 {
3696 /*
3697 * Initialize the register file with the correct data.
3698 * Compute usable version of value in case we skip full
3699 * computation later.
3700 */
3701 writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1,
3702 &sdr_reg_file->dtaps_per_ptap);
3703
3704 /* trk_sample_count */
3705 writel(7500, &sdr_reg_file->trk_sample_count);
3706
3707 /* longidle outer loop [15:0] */
3708 writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
3709
3710 /*
3711 * longidle sample count [31:24]
3712 * trfc, worst case of 933Mhz 4Gb [23:16]
3713 * trcd, worst case [15:8]
3714 * vfifo wait [7:0]
3715 */
3716 writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
3717 &sdr_reg_file->delays);
3718
3719 /* mux delay */
3720 writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) |
3721 (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0),
3722 &sdr_reg_file->trk_rw_mgr_addr);
3723
3724 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH,
3725 &sdr_reg_file->trk_read_dqs_width);
3726
3727 /* trefi [7:0] */
3728 writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0),
3729 &sdr_reg_file->trk_rfsh);
3730 }
3731
3732 int sdram_calibration_full(void)
3733 {
3734 struct param_type my_param;
3735 struct gbl_type my_gbl;
3736 uint32_t pass;
3737
3738 memset(&my_param, 0, sizeof(my_param));
3739 memset(&my_gbl, 0, sizeof(my_gbl));
3740
3741 param = &my_param;
3742 gbl = &my_gbl;
3743
3744 /* Set the calibration enabled by default */
3745 gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3746 /*
3747 * Only sweep all groups (regardless of fail state) by default
3748 * Set enabled read test by default.
3749 */
3750 #if DISABLE_GUARANTEED_READ
3751 gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3752 #endif
3753 /* Initialize the register file */
3754 initialize_reg_file();
3755
3756 /* Initialize any PHY CSR */
3757 initialize_hps_phy();
3758
3759 scc_mgr_initialize();
3760
3761 initialize_tracking();
3762
3763 printf("%s: Preparing to start memory calibration\n", __FILE__);
3764
3765 debug("%s:%d\n", __func__, __LINE__);
3766 debug_cond(DLEVEL == 1,
3767 "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3768 RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
3769 RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
3770 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
3771 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
3772 debug_cond(DLEVEL == 1,
3773 "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3774 RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3775 RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
3776 IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
3777 debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3778 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
3779 debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3780 IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
3781 IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
3782 debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3783 IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
3784 IO_IO_OUT2_DELAY_MAX);
3785 debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3786 IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3787
3788 hc_initialize_rom_data();
3789
3790 /* update info for sims */
3791 reg_file_set_stage(CAL_STAGE_NIL);
3792 reg_file_set_group(0);
3793
3794 /*
3795 * Load global needed for those actions that require
3796 * some dynamic calibration support.
3797 */
3798 dyn_calib_steps = STATIC_CALIB_STEPS;
3799 /*
3800 * Load global to allow dynamic selection of delay loop settings
3801 * based on calibration mode.
3802 */
3803 if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3804 skip_delay_mask = 0xff;
3805 else
3806 skip_delay_mask = 0x0;
3807
3808 pass = run_mem_calibrate();
3809 debug_mem_calibrate(pass);
3810 return pass;
3811 }