]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/ddr/altera/sequencer.c
ddr: altera: sequencer: Wrap misc remaining macros
[people/ms/u-boot.git] / drivers / ddr / altera / sequencer.c
1 /*
2 * Copyright Altera Corporation (C) 2012-2015
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include <errno.h>
11 #include "sequencer.h"
12
13 /*
14 * FIXME: This path is temporary until the SDRAM driver gets
15 * a proper thorough cleanup.
16 */
17 #include "../../../board/altera/socfpga/qts/sequencer_auto.h"
18 #include "../../../board/altera/socfpga/qts/sequencer_defines.h"
19
20 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
21 (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
22
23 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
24 (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
25
26 static struct socfpga_sdr_reg_file *sdr_reg_file =
27 (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
28
29 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
30 (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
31
32 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
33 (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
34
35 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
36 (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
37
38 static struct socfpga_data_mgr *data_mgr =
39 (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
40
41 static struct socfpga_sdr_ctrl *sdr_ctrl =
42 (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
43
44 const struct socfpga_sdram_rw_mgr_config *rwcfg;
45 const struct socfpga_sdram_io_config *iocfg;
46 const struct socfpga_sdram_misc_config *misccfg;
47
48 #define DELTA_D 1
49
50 /*
51 * In order to reduce ROM size, most of the selectable calibration steps are
52 * decided at compile time based on the user's calibration mode selection,
53 * as captured by the STATIC_CALIB_STEPS selection below.
54 *
55 * However, to support simulation-time selection of fast simulation mode, where
56 * we skip everything except the bare minimum, we need a few of the steps to
57 * be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the
58 * check, which is based on the rtl-supplied value, or we dynamically compute
59 * the value to use based on the dynamically-chosen calibration mode
60 */
61
62 #define DLEVEL 0
63 #define STATIC_IN_RTL_SIM 0
64 #define STATIC_SKIP_DELAY_LOOPS 0
65
66 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
67 STATIC_SKIP_DELAY_LOOPS)
68
69 /* calibration steps requested by the rtl */
70 uint16_t dyn_calib_steps;
71
72 /*
73 * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
74 * instead of static, we use boolean logic to select between
75 * non-skip and skip values
76 *
77 * The mask is set to include all bits when not-skipping, but is
78 * zero when skipping
79 */
80
81 uint16_t skip_delay_mask; /* mask off bits when skipping/not-skipping */
82
83 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
84 ((non_skip_value) & skip_delay_mask)
85
86 struct gbl_type *gbl;
87 struct param_type *param;
88
89 static void set_failing_group_stage(uint32_t group, uint32_t stage,
90 uint32_t substage)
91 {
92 /*
93 * Only set the global stage if there was not been any other
94 * failing group
95 */
96 if (gbl->error_stage == CAL_STAGE_NIL) {
97 gbl->error_substage = substage;
98 gbl->error_stage = stage;
99 gbl->error_group = group;
100 }
101 }
102
103 static void reg_file_set_group(u16 set_group)
104 {
105 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
106 }
107
108 static void reg_file_set_stage(u8 set_stage)
109 {
110 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
111 }
112
113 static void reg_file_set_sub_stage(u8 set_sub_stage)
114 {
115 set_sub_stage &= 0xff;
116 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
117 }
118
119 /**
120 * phy_mgr_initialize() - Initialize PHY Manager
121 *
122 * Initialize PHY Manager.
123 */
124 static void phy_mgr_initialize(void)
125 {
126 u32 ratio;
127
128 debug("%s:%d\n", __func__, __LINE__);
129 /* Calibration has control over path to memory */
130 /*
131 * In Hard PHY this is a 2-bit control:
132 * 0: AFI Mux Select
133 * 1: DDIO Mux Select
134 */
135 writel(0x3, &phy_mgr_cfg->mux_sel);
136
137 /* USER memory clock is not stable we begin initialization */
138 writel(0, &phy_mgr_cfg->reset_mem_stbl);
139
140 /* USER calibration status all set to zero */
141 writel(0, &phy_mgr_cfg->cal_status);
142
143 writel(0, &phy_mgr_cfg->cal_debug_info);
144
145 /* Init params only if we do NOT skip calibration. */
146 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
147 return;
148
149 ratio = rwcfg->mem_dq_per_read_dqs /
150 rwcfg->mem_virtual_groups_per_read_dqs;
151 param->read_correct_mask_vg = (1 << ratio) - 1;
152 param->write_correct_mask_vg = (1 << ratio) - 1;
153 param->read_correct_mask = (1 << rwcfg->mem_dq_per_read_dqs) - 1;
154 param->write_correct_mask = (1 << rwcfg->mem_dq_per_write_dqs) - 1;
155 }
156
157 /**
158 * set_rank_and_odt_mask() - Set Rank and ODT mask
159 * @rank: Rank mask
160 * @odt_mode: ODT mode, OFF or READ_WRITE
161 *
162 * Set Rank and ODT mask (On-Die Termination).
163 */
164 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode)
165 {
166 u32 odt_mask_0 = 0;
167 u32 odt_mask_1 = 0;
168 u32 cs_and_odt_mask;
169
170 if (odt_mode == RW_MGR_ODT_MODE_OFF) {
171 odt_mask_0 = 0x0;
172 odt_mask_1 = 0x0;
173 } else { /* RW_MGR_ODT_MODE_READ_WRITE */
174 switch (rwcfg->mem_number_of_ranks) {
175 case 1: /* 1 Rank */
176 /* Read: ODT = 0 ; Write: ODT = 1 */
177 odt_mask_0 = 0x0;
178 odt_mask_1 = 0x1;
179 break;
180 case 2: /* 2 Ranks */
181 if (rwcfg->mem_number_of_cs_per_dimm == 1) {
182 /*
183 * - Dual-Slot , Single-Rank (1 CS per DIMM)
184 * OR
185 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
186 *
187 * Since MEM_NUMBER_OF_RANKS is 2, they
188 * are both single rank with 2 CS each
189 * (special for RDIMM).
190 *
191 * Read: Turn on ODT on the opposite rank
192 * Write: Turn on ODT on all ranks
193 */
194 odt_mask_0 = 0x3 & ~(1 << rank);
195 odt_mask_1 = 0x3;
196 } else {
197 /*
198 * - Single-Slot , Dual-Rank (2 CS per DIMM)
199 *
200 * Read: Turn on ODT off on all ranks
201 * Write: Turn on ODT on active rank
202 */
203 odt_mask_0 = 0x0;
204 odt_mask_1 = 0x3 & (1 << rank);
205 }
206 break;
207 case 4: /* 4 Ranks */
208 /* Read:
209 * ----------+-----------------------+
210 * | ODT |
211 * Read From +-----------------------+
212 * Rank | 3 | 2 | 1 | 0 |
213 * ----------+-----+-----+-----+-----+
214 * 0 | 0 | 1 | 0 | 0 |
215 * 1 | 1 | 0 | 0 | 0 |
216 * 2 | 0 | 0 | 0 | 1 |
217 * 3 | 0 | 0 | 1 | 0 |
218 * ----------+-----+-----+-----+-----+
219 *
220 * Write:
221 * ----------+-----------------------+
222 * | ODT |
223 * Write To +-----------------------+
224 * Rank | 3 | 2 | 1 | 0 |
225 * ----------+-----+-----+-----+-----+
226 * 0 | 0 | 1 | 0 | 1 |
227 * 1 | 1 | 0 | 1 | 0 |
228 * 2 | 0 | 1 | 0 | 1 |
229 * 3 | 1 | 0 | 1 | 0 |
230 * ----------+-----+-----+-----+-----+
231 */
232 switch (rank) {
233 case 0:
234 odt_mask_0 = 0x4;
235 odt_mask_1 = 0x5;
236 break;
237 case 1:
238 odt_mask_0 = 0x8;
239 odt_mask_1 = 0xA;
240 break;
241 case 2:
242 odt_mask_0 = 0x1;
243 odt_mask_1 = 0x5;
244 break;
245 case 3:
246 odt_mask_0 = 0x2;
247 odt_mask_1 = 0xA;
248 break;
249 }
250 break;
251 }
252 }
253
254 cs_and_odt_mask = (0xFF & ~(1 << rank)) |
255 ((0xFF & odt_mask_0) << 8) |
256 ((0xFF & odt_mask_1) << 16);
257 writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
258 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
259 }
260
261 /**
262 * scc_mgr_set() - Set SCC Manager register
263 * @off: Base offset in SCC Manager space
264 * @grp: Read/Write group
265 * @val: Value to be set
266 *
267 * This function sets the SCC Manager (Scan Chain Control Manager) register.
268 */
269 static void scc_mgr_set(u32 off, u32 grp, u32 val)
270 {
271 writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
272 }
273
274 /**
275 * scc_mgr_initialize() - Initialize SCC Manager registers
276 *
277 * Initialize SCC Manager registers.
278 */
279 static void scc_mgr_initialize(void)
280 {
281 /*
282 * Clear register file for HPS. 16 (2^4) is the size of the
283 * full register file in the scc mgr:
284 * RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
285 * MEM_IF_READ_DQS_WIDTH - 1);
286 */
287 int i;
288
289 for (i = 0; i < 16; i++) {
290 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
291 __func__, __LINE__, i);
292 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
293 }
294 }
295
296 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
297 {
298 scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
299 }
300
301 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
302 {
303 scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
304 }
305
306 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
307 {
308 scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
309 }
310
311 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
312 {
313 scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
314 }
315
316 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
317 {
318 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, rwcfg->mem_dq_per_write_dqs,
319 delay);
320 }
321
322 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
323 {
324 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
325 }
326
327 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
328 {
329 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
330 }
331
332 static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
333 {
334 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, rwcfg->mem_dq_per_write_dqs,
335 delay);
336 }
337
338 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
339 {
340 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
341 rwcfg->mem_dq_per_write_dqs + 1 + dm,
342 delay);
343 }
344
345 /* load up dqs config settings */
346 static void scc_mgr_load_dqs(uint32_t dqs)
347 {
348 writel(dqs, &sdr_scc_mgr->dqs_ena);
349 }
350
351 /* load up dqs io config settings */
352 static void scc_mgr_load_dqs_io(void)
353 {
354 writel(0, &sdr_scc_mgr->dqs_io_ena);
355 }
356
357 /* load up dq config settings */
358 static void scc_mgr_load_dq(uint32_t dq_in_group)
359 {
360 writel(dq_in_group, &sdr_scc_mgr->dq_ena);
361 }
362
363 /* load up dm config settings */
364 static void scc_mgr_load_dm(uint32_t dm)
365 {
366 writel(dm, &sdr_scc_mgr->dm_ena);
367 }
368
369 /**
370 * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
371 * @off: Base offset in SCC Manager space
372 * @grp: Read/Write group
373 * @val: Value to be set
374 * @update: If non-zero, trigger SCC Manager update for all ranks
375 *
376 * This function sets the SCC Manager (Scan Chain Control Manager) register
377 * and optionally triggers the SCC update for all ranks.
378 */
379 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
380 const int update)
381 {
382 u32 r;
383
384 for (r = 0; r < rwcfg->mem_number_of_ranks;
385 r += NUM_RANKS_PER_SHADOW_REG) {
386 scc_mgr_set(off, grp, val);
387
388 if (update || (r == 0)) {
389 writel(grp, &sdr_scc_mgr->dqs_ena);
390 writel(0, &sdr_scc_mgr->update);
391 }
392 }
393 }
394
395 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
396 {
397 /*
398 * USER although the h/w doesn't support different phases per
399 * shadow register, for simplicity our scc manager modeling
400 * keeps different phase settings per shadow reg, and it's
401 * important for us to keep them in sync to match h/w.
402 * for efficiency, the scan chain update should occur only
403 * once to sr0.
404 */
405 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
406 read_group, phase, 0);
407 }
408
409 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
410 uint32_t phase)
411 {
412 /*
413 * USER although the h/w doesn't support different phases per
414 * shadow register, for simplicity our scc manager modeling
415 * keeps different phase settings per shadow reg, and it's
416 * important for us to keep them in sync to match h/w.
417 * for efficiency, the scan chain update should occur only
418 * once to sr0.
419 */
420 scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
421 write_group, phase, 0);
422 }
423
424 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
425 uint32_t delay)
426 {
427 /*
428 * In shadow register mode, the T11 settings are stored in
429 * registers in the core, which are updated by the DQS_ENA
430 * signals. Not issuing the SCC_MGR_UPD command allows us to
431 * save lots of rank switching overhead, by calling
432 * select_shadow_regs_for_update with update_scan_chains
433 * set to 0.
434 */
435 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
436 read_group, delay, 1);
437 writel(0, &sdr_scc_mgr->update);
438 }
439
440 /**
441 * scc_mgr_set_oct_out1_delay() - Set OCT output delay
442 * @write_group: Write group
443 * @delay: Delay value
444 *
445 * This function sets the OCT output delay in SCC manager.
446 */
447 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
448 {
449 const int ratio = rwcfg->mem_if_read_dqs_width /
450 rwcfg->mem_if_write_dqs_width;
451 const int base = write_group * ratio;
452 int i;
453 /*
454 * Load the setting in the SCC manager
455 * Although OCT affects only write data, the OCT delay is controlled
456 * by the DQS logic block which is instantiated once per read group.
457 * For protocols where a write group consists of multiple read groups,
458 * the setting must be set multiple times.
459 */
460 for (i = 0; i < ratio; i++)
461 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
462 }
463
464 /**
465 * scc_mgr_set_hhp_extras() - Set HHP extras.
466 *
467 * Load the fixed setting in the SCC manager HHP extras.
468 */
469 static void scc_mgr_set_hhp_extras(void)
470 {
471 /*
472 * Load the fixed setting in the SCC manager
473 * bits: 0:0 = 1'b1 - DQS bypass
474 * bits: 1:1 = 1'b1 - DQ bypass
475 * bits: 4:2 = 3'b001 - rfifo_mode
476 * bits: 6:5 = 2'b01 - rfifo clock_select
477 * bits: 7:7 = 1'b0 - separate gating from ungating setting
478 * bits: 8:8 = 1'b0 - separate OE from Output delay setting
479 */
480 const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
481 (1 << 2) | (1 << 1) | (1 << 0);
482 const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
483 SCC_MGR_HHP_GLOBALS_OFFSET |
484 SCC_MGR_HHP_EXTRAS_OFFSET;
485
486 debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
487 __func__, __LINE__);
488 writel(value, addr);
489 debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
490 __func__, __LINE__);
491 }
492
493 /**
494 * scc_mgr_zero_all() - Zero all DQS config
495 *
496 * Zero all DQS config.
497 */
498 static void scc_mgr_zero_all(void)
499 {
500 int i, r;
501
502 /*
503 * USER Zero all DQS config settings, across all groups and all
504 * shadow registers
505 */
506 for (r = 0; r < rwcfg->mem_number_of_ranks;
507 r += NUM_RANKS_PER_SHADOW_REG) {
508 for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) {
509 /*
510 * The phases actually don't exist on a per-rank basis,
511 * but there's no harm updating them several times, so
512 * let's keep the code simple.
513 */
514 scc_mgr_set_dqs_bus_in_delay(i, iocfg->dqs_in_reserve);
515 scc_mgr_set_dqs_en_phase(i, 0);
516 scc_mgr_set_dqs_en_delay(i, 0);
517 }
518
519 for (i = 0; i < rwcfg->mem_if_write_dqs_width; i++) {
520 scc_mgr_set_dqdqs_output_phase(i, 0);
521 /* Arria V/Cyclone V don't have out2. */
522 scc_mgr_set_oct_out1_delay(i, iocfg->dqs_out_reserve);
523 }
524 }
525
526 /* Multicast to all DQS group enables. */
527 writel(0xff, &sdr_scc_mgr->dqs_ena);
528 writel(0, &sdr_scc_mgr->update);
529 }
530
531 /**
532 * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
533 * @write_group: Write group
534 *
535 * Set bypass mode and trigger SCC update.
536 */
537 static void scc_set_bypass_mode(const u32 write_group)
538 {
539 /* Multicast to all DQ enables. */
540 writel(0xff, &sdr_scc_mgr->dq_ena);
541 writel(0xff, &sdr_scc_mgr->dm_ena);
542
543 /* Update current DQS IO enable. */
544 writel(0, &sdr_scc_mgr->dqs_io_ena);
545
546 /* Update the DQS logic. */
547 writel(write_group, &sdr_scc_mgr->dqs_ena);
548
549 /* Hit update. */
550 writel(0, &sdr_scc_mgr->update);
551 }
552
553 /**
554 * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
555 * @write_group: Write group
556 *
557 * Load DQS settings for Write Group, do not trigger SCC update.
558 */
559 static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
560 {
561 const int ratio = rwcfg->mem_if_read_dqs_width /
562 rwcfg->mem_if_write_dqs_width;
563 const int base = write_group * ratio;
564 int i;
565 /*
566 * Load the setting in the SCC manager
567 * Although OCT affects only write data, the OCT delay is controlled
568 * by the DQS logic block which is instantiated once per read group.
569 * For protocols where a write group consists of multiple read groups,
570 * the setting must be set multiple times.
571 */
572 for (i = 0; i < ratio; i++)
573 writel(base + i, &sdr_scc_mgr->dqs_ena);
574 }
575
576 /**
577 * scc_mgr_zero_group() - Zero all configs for a group
578 *
579 * Zero DQ, DM, DQS and OCT configs for a group.
580 */
581 static void scc_mgr_zero_group(const u32 write_group, const int out_only)
582 {
583 int i, r;
584
585 for (r = 0; r < rwcfg->mem_number_of_ranks;
586 r += NUM_RANKS_PER_SHADOW_REG) {
587 /* Zero all DQ config settings. */
588 for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) {
589 scc_mgr_set_dq_out1_delay(i, 0);
590 if (!out_only)
591 scc_mgr_set_dq_in_delay(i, 0);
592 }
593
594 /* Multicast to all DQ enables. */
595 writel(0xff, &sdr_scc_mgr->dq_ena);
596
597 /* Zero all DM config settings. */
598 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
599 scc_mgr_set_dm_out1_delay(i, 0);
600
601 /* Multicast to all DM enables. */
602 writel(0xff, &sdr_scc_mgr->dm_ena);
603
604 /* Zero all DQS IO settings. */
605 if (!out_only)
606 scc_mgr_set_dqs_io_in_delay(0);
607
608 /* Arria V/Cyclone V don't have out2. */
609 scc_mgr_set_dqs_out1_delay(iocfg->dqs_out_reserve);
610 scc_mgr_set_oct_out1_delay(write_group, iocfg->dqs_out_reserve);
611 scc_mgr_load_dqs_for_write_group(write_group);
612
613 /* Multicast to all DQS IO enables (only 1 in total). */
614 writel(0, &sdr_scc_mgr->dqs_io_ena);
615
616 /* Hit update to zero everything. */
617 writel(0, &sdr_scc_mgr->update);
618 }
619 }
620
621 /*
622 * apply and load a particular input delay for the DQ pins in a group
623 * group_bgn is the index of the first dq pin (in the write group)
624 */
625 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
626 {
627 uint32_t i, p;
628
629 for (i = 0, p = group_bgn; i < rwcfg->mem_dq_per_read_dqs; i++, p++) {
630 scc_mgr_set_dq_in_delay(p, delay);
631 scc_mgr_load_dq(p);
632 }
633 }
634
635 /**
636 * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
637 * @delay: Delay value
638 *
639 * Apply and load a particular output delay for the DQ pins in a group.
640 */
641 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
642 {
643 int i;
644
645 for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) {
646 scc_mgr_set_dq_out1_delay(i, delay);
647 scc_mgr_load_dq(i);
648 }
649 }
650
651 /* apply and load a particular output delay for the DM pins in a group */
652 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
653 {
654 uint32_t i;
655
656 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
657 scc_mgr_set_dm_out1_delay(i, delay1);
658 scc_mgr_load_dm(i);
659 }
660 }
661
662
663 /* apply and load delay on both DQS and OCT out1 */
664 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
665 uint32_t delay)
666 {
667 scc_mgr_set_dqs_out1_delay(delay);
668 scc_mgr_load_dqs_io();
669
670 scc_mgr_set_oct_out1_delay(write_group, delay);
671 scc_mgr_load_dqs_for_write_group(write_group);
672 }
673
674 /**
675 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
676 * @write_group: Write group
677 * @delay: Delay value
678 *
679 * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
680 */
681 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
682 const u32 delay)
683 {
684 u32 i, new_delay;
685
686 /* DQ shift */
687 for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++)
688 scc_mgr_load_dq(i);
689
690 /* DM shift */
691 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
692 scc_mgr_load_dm(i);
693
694 /* DQS shift */
695 new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
696 if (new_delay > iocfg->io_out2_delay_max) {
697 debug_cond(DLEVEL == 1,
698 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
699 __func__, __LINE__, write_group, delay, new_delay,
700 iocfg->io_out2_delay_max,
701 new_delay - iocfg->io_out2_delay_max);
702 new_delay -= iocfg->io_out2_delay_max;
703 scc_mgr_set_dqs_out1_delay(new_delay);
704 }
705
706 scc_mgr_load_dqs_io();
707
708 /* OCT shift */
709 new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
710 if (new_delay > iocfg->io_out2_delay_max) {
711 debug_cond(DLEVEL == 1,
712 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
713 __func__, __LINE__, write_group, delay,
714 new_delay, iocfg->io_out2_delay_max,
715 new_delay - iocfg->io_out2_delay_max);
716 new_delay -= iocfg->io_out2_delay_max;
717 scc_mgr_set_oct_out1_delay(write_group, new_delay);
718 }
719
720 scc_mgr_load_dqs_for_write_group(write_group);
721 }
722
723 /**
724 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
725 * @write_group: Write group
726 * @delay: Delay value
727 *
728 * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
729 */
730 static void
731 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
732 const u32 delay)
733 {
734 int r;
735
736 for (r = 0; r < rwcfg->mem_number_of_ranks;
737 r += NUM_RANKS_PER_SHADOW_REG) {
738 scc_mgr_apply_group_all_out_delay_add(write_group, delay);
739 writel(0, &sdr_scc_mgr->update);
740 }
741 }
742
743 /**
744 * set_jump_as_return() - Return instruction optimization
745 *
746 * Optimization used to recover some slots in ddr3 inst_rom could be
747 * applied to other protocols if we wanted to
748 */
749 static void set_jump_as_return(void)
750 {
751 /*
752 * To save space, we replace return with jump to special shared
753 * RETURN instruction so we set the counter to large value so that
754 * we always jump.
755 */
756 writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
757 writel(rwcfg->rreturn, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
758 }
759
760 /**
761 * delay_for_n_mem_clocks() - Delay for N memory clocks
762 * @clocks: Length of the delay
763 *
764 * Delay for N memory clocks.
765 */
766 static void delay_for_n_mem_clocks(const u32 clocks)
767 {
768 u32 afi_clocks;
769 u16 c_loop;
770 u8 inner;
771 u8 outer;
772
773 debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
774
775 /* Scale (rounding up) to get afi clocks. */
776 afi_clocks = DIV_ROUND_UP(clocks, AFI_RATE_RATIO);
777 if (afi_clocks) /* Temporary underflow protection */
778 afi_clocks--;
779
780 /*
781 * Note, we don't bother accounting for being off a little
782 * bit because of a few extra instructions in outer loops.
783 * Note, the loops have a test at the end, and do the test
784 * before the decrement, and so always perform the loop
785 * 1 time more than the counter value
786 */
787 c_loop = afi_clocks >> 16;
788 outer = c_loop ? 0xff : (afi_clocks >> 8);
789 inner = outer ? 0xff : afi_clocks;
790
791 /*
792 * rom instructions are structured as follows:
793 *
794 * IDLE_LOOP2: jnz cntr0, TARGET_A
795 * IDLE_LOOP1: jnz cntr1, TARGET_B
796 * return
797 *
798 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
799 * TARGET_B is set to IDLE_LOOP2 as well
800 *
801 * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
802 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
803 *
804 * a little confusing, but it helps save precious space in the inst_rom
805 * and sequencer rom and keeps the delays more accurate and reduces
806 * overhead
807 */
808 if (afi_clocks < 0x100) {
809 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
810 &sdr_rw_load_mgr_regs->load_cntr1);
811
812 writel(rwcfg->idle_loop1,
813 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
814
815 writel(rwcfg->idle_loop1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
816 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
817 } else {
818 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
819 &sdr_rw_load_mgr_regs->load_cntr0);
820
821 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
822 &sdr_rw_load_mgr_regs->load_cntr1);
823
824 writel(rwcfg->idle_loop2,
825 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
826
827 writel(rwcfg->idle_loop2,
828 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
829
830 do {
831 writel(rwcfg->idle_loop2,
832 SDR_PHYGRP_RWMGRGRP_ADDRESS |
833 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
834 } while (c_loop-- != 0);
835 }
836 debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
837 }
838
839 /**
840 * rw_mgr_mem_init_load_regs() - Load instruction registers
841 * @cntr0: Counter 0 value
842 * @cntr1: Counter 1 value
843 * @cntr2: Counter 2 value
844 * @jump: Jump instruction value
845 *
846 * Load instruction registers.
847 */
848 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
849 {
850 uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
851 RW_MGR_RUN_SINGLE_GROUP_OFFSET;
852
853 /* Load counters */
854 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
855 &sdr_rw_load_mgr_regs->load_cntr0);
856 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
857 &sdr_rw_load_mgr_regs->load_cntr1);
858 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
859 &sdr_rw_load_mgr_regs->load_cntr2);
860
861 /* Load jump address */
862 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
863 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
864 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
865
866 /* Execute count instruction */
867 writel(jump, grpaddr);
868 }
869
870 /**
871 * rw_mgr_mem_load_user() - Load user calibration values
872 * @fin1: Final instruction 1
873 * @fin2: Final instruction 2
874 * @precharge: If 1, precharge the banks at the end
875 *
876 * Load user calibration values and optionally precharge the banks.
877 */
878 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
879 const int precharge)
880 {
881 u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
882 RW_MGR_RUN_SINGLE_GROUP_OFFSET;
883 u32 r;
884
885 for (r = 0; r < rwcfg->mem_number_of_ranks; r++) {
886 /* set rank */
887 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
888
889 /* precharge all banks ... */
890 if (precharge)
891 writel(rwcfg->precharge_all, grpaddr);
892
893 /*
894 * USER Use Mirror-ed commands for odd ranks if address
895 * mirrorring is on
896 */
897 if ((rwcfg->mem_address_mirroring >> r) & 0x1) {
898 set_jump_as_return();
899 writel(rwcfg->mrs2_mirr, grpaddr);
900 delay_for_n_mem_clocks(4);
901 set_jump_as_return();
902 writel(rwcfg->mrs3_mirr, grpaddr);
903 delay_for_n_mem_clocks(4);
904 set_jump_as_return();
905 writel(rwcfg->mrs1_mirr, grpaddr);
906 delay_for_n_mem_clocks(4);
907 set_jump_as_return();
908 writel(fin1, grpaddr);
909 } else {
910 set_jump_as_return();
911 writel(rwcfg->mrs2, grpaddr);
912 delay_for_n_mem_clocks(4);
913 set_jump_as_return();
914 writel(rwcfg->mrs3, grpaddr);
915 delay_for_n_mem_clocks(4);
916 set_jump_as_return();
917 writel(rwcfg->mrs1, grpaddr);
918 set_jump_as_return();
919 writel(fin2, grpaddr);
920 }
921
922 if (precharge)
923 continue;
924
925 set_jump_as_return();
926 writel(rwcfg->zqcl, grpaddr);
927
928 /* tZQinit = tDLLK = 512 ck cycles */
929 delay_for_n_mem_clocks(512);
930 }
931 }
932
933 /**
934 * rw_mgr_mem_initialize() - Initialize RW Manager
935 *
936 * Initialize RW Manager.
937 */
938 static void rw_mgr_mem_initialize(void)
939 {
940 debug("%s:%d\n", __func__, __LINE__);
941
942 /* The reset / cke part of initialization is broadcasted to all ranks */
943 writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
944 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
945
946 /*
947 * Here's how you load register for a loop
948 * Counters are located @ 0x800
949 * Jump address are located @ 0xC00
950 * For both, registers 0 to 3 are selected using bits 3 and 2, like
951 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
952 * I know this ain't pretty, but Avalon bus throws away the 2 least
953 * significant bits
954 */
955
956 /* Start with memory RESET activated */
957
958 /* tINIT = 200us */
959
960 /*
961 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
962 * If a and b are the number of iteration in 2 nested loops
963 * it takes the following number of cycles to complete the operation:
964 * number_of_cycles = ((2 + n) * a + 2) * b
965 * where n is the number of instruction in the inner loop
966 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
967 * b = 6A
968 */
969 rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL,
970 SEQ_TINIT_CNTR2_VAL,
971 rwcfg->init_reset_0_cke_0);
972
973 /* Indicate that memory is stable. */
974 writel(1, &phy_mgr_cfg->reset_mem_stbl);
975
976 /*
977 * transition the RESET to high
978 * Wait for 500us
979 */
980
981 /*
982 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
983 * If a and b are the number of iteration in 2 nested loops
984 * it takes the following number of cycles to complete the operation
985 * number_of_cycles = ((2 + n) * a + 2) * b
986 * where n is the number of instruction in the inner loop
987 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
988 * b = FF
989 */
990 rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL,
991 SEQ_TRESET_CNTR2_VAL,
992 rwcfg->init_reset_1_cke_0);
993
994 /* Bring up clock enable. */
995
996 /* tXRP < 250 ck cycles */
997 delay_for_n_mem_clocks(250);
998
999 rw_mgr_mem_load_user(rwcfg->mrs0_dll_reset_mirr, rwcfg->mrs0_dll_reset,
1000 0);
1001 }
1002
1003 /**
1004 * rw_mgr_mem_handoff() - Hand off the memory to user
1005 *
1006 * At the end of calibration we have to program the user settings in
1007 * and hand off the memory to the user.
1008 */
1009 static void rw_mgr_mem_handoff(void)
1010 {
1011 rw_mgr_mem_load_user(rwcfg->mrs0_user_mirr, rwcfg->mrs0_user, 1);
1012 /*
1013 * Need to wait tMOD (12CK or 15ns) time before issuing other
1014 * commands, but we will have plenty of NIOS cycles before actual
1015 * handoff so its okay.
1016 */
1017 }
1018
1019 /**
1020 * rw_mgr_mem_calibrate_write_test_issue() - Issue write test command
1021 * @group: Write Group
1022 * @use_dm: Use DM
1023 *
1024 * Issue write test command. Two variants are provided, one that just tests
1025 * a write pattern and another that tests datamask functionality.
1026 */
1027 static void rw_mgr_mem_calibrate_write_test_issue(u32 group,
1028 u32 test_dm)
1029 {
1030 const u32 quick_write_mode =
1031 (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) &&
1032 ENABLE_SUPER_QUICK_CALIBRATION;
1033 u32 mcc_instruction;
1034 u32 rw_wl_nop_cycles;
1035
1036 /*
1037 * Set counter and jump addresses for the right
1038 * number of NOP cycles.
1039 * The number of supported NOP cycles can range from -1 to infinity
1040 * Three different cases are handled:
1041 *
1042 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
1043 * mechanism will be used to insert the right number of NOPs
1044 *
1045 * 2. For a number of NOP cycles equals to 0, the micro-instruction
1046 * issuing the write command will jump straight to the
1047 * micro-instruction that turns on DQS (for DDRx), or outputs write
1048 * data (for RLD), skipping
1049 * the NOP micro-instruction all together
1050 *
1051 * 3. A number of NOP cycles equal to -1 indicates that DQS must be
1052 * turned on in the same micro-instruction that issues the write
1053 * command. Then we need
1054 * to directly jump to the micro-instruction that sends out the data
1055 *
1056 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
1057 * (2 and 3). One jump-counter (0) is used to perform multiple
1058 * write-read operations.
1059 * one counter left to issue this command in "multiple-group" mode
1060 */
1061
1062 rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
1063
1064 if (rw_wl_nop_cycles == -1) {
1065 /*
1066 * CNTR 2 - We want to execute the special write operation that
1067 * turns on DQS right away and then skip directly to the
1068 * instruction that sends out the data. We set the counter to a
1069 * large number so that the jump is always taken.
1070 */
1071 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
1072
1073 /* CNTR 3 - Not used */
1074 if (test_dm) {
1075 mcc_instruction = rwcfg->lfsr_wr_rd_dm_bank_0_wl_1;
1076 writel(rwcfg->lfsr_wr_rd_dm_bank_0_data,
1077 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1078 writel(rwcfg->lfsr_wr_rd_dm_bank_0_nop,
1079 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1080 } else {
1081 mcc_instruction = rwcfg->lfsr_wr_rd_bank_0_wl_1;
1082 writel(rwcfg->lfsr_wr_rd_bank_0_data,
1083 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1084 writel(rwcfg->lfsr_wr_rd_bank_0_nop,
1085 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1086 }
1087 } else if (rw_wl_nop_cycles == 0) {
1088 /*
1089 * CNTR 2 - We want to skip the NOP operation and go straight
1090 * to the DQS enable instruction. We set the counter to a large
1091 * number so that the jump is always taken.
1092 */
1093 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
1094
1095 /* CNTR 3 - Not used */
1096 if (test_dm) {
1097 mcc_instruction = rwcfg->lfsr_wr_rd_dm_bank_0;
1098 writel(rwcfg->lfsr_wr_rd_dm_bank_0_dqs,
1099 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1100 } else {
1101 mcc_instruction = rwcfg->lfsr_wr_rd_bank_0;
1102 writel(rwcfg->lfsr_wr_rd_bank_0_dqs,
1103 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1104 }
1105 } else {
1106 /*
1107 * CNTR 2 - In this case we want to execute the next instruction
1108 * and NOT take the jump. So we set the counter to 0. The jump
1109 * address doesn't count.
1110 */
1111 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
1112 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1113
1114 /*
1115 * CNTR 3 - Set the nop counter to the number of cycles we
1116 * need to loop for, minus 1.
1117 */
1118 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
1119 if (test_dm) {
1120 mcc_instruction = rwcfg->lfsr_wr_rd_dm_bank_0;
1121 writel(rwcfg->lfsr_wr_rd_dm_bank_0_nop,
1122 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1123 } else {
1124 mcc_instruction = rwcfg->lfsr_wr_rd_bank_0;
1125 writel(rwcfg->lfsr_wr_rd_bank_0_nop,
1126 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1127 }
1128 }
1129
1130 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1131 RW_MGR_RESET_READ_DATAPATH_OFFSET);
1132
1133 if (quick_write_mode)
1134 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
1135 else
1136 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
1137
1138 writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1139
1140 /*
1141 * CNTR 1 - This is used to ensure enough time elapses
1142 * for read data to come back.
1143 */
1144 writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
1145
1146 if (test_dm) {
1147 writel(rwcfg->lfsr_wr_rd_dm_bank_0_wait,
1148 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1149 } else {
1150 writel(rwcfg->lfsr_wr_rd_bank_0_wait,
1151 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1152 }
1153
1154 writel(mcc_instruction, (SDR_PHYGRP_RWMGRGRP_ADDRESS |
1155 RW_MGR_RUN_SINGLE_GROUP_OFFSET) +
1156 (group << 2));
1157 }
1158
1159 /**
1160 * rw_mgr_mem_calibrate_write_test() - Test writes, check for single/multiple pass
1161 * @rank_bgn: Rank number
1162 * @write_group: Write Group
1163 * @use_dm: Use DM
1164 * @all_correct: All bits must be correct in the mask
1165 * @bit_chk: Resulting bit mask after the test
1166 * @all_ranks: Test all ranks
1167 *
1168 * Test writes, can check for a single bit pass or multiple bit pass.
1169 */
1170 static int
1171 rw_mgr_mem_calibrate_write_test(const u32 rank_bgn, const u32 write_group,
1172 const u32 use_dm, const u32 all_correct,
1173 u32 *bit_chk, const u32 all_ranks)
1174 {
1175 const u32 rank_end = all_ranks ?
1176 rwcfg->mem_number_of_ranks :
1177 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1178 const u32 shift_ratio = rwcfg->mem_dq_per_write_dqs /
1179 rwcfg->mem_virtual_groups_per_write_dqs;
1180 const u32 correct_mask_vg = param->write_correct_mask_vg;
1181
1182 u32 tmp_bit_chk, base_rw_mgr;
1183 int vg, r;
1184
1185 *bit_chk = param->write_correct_mask;
1186
1187 for (r = rank_bgn; r < rank_end; r++) {
1188 /* Set rank */
1189 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1190
1191 tmp_bit_chk = 0;
1192 for (vg = rwcfg->mem_virtual_groups_per_write_dqs - 1;
1193 vg >= 0; vg--) {
1194 /* Reset the FIFOs to get pointers to known state. */
1195 writel(0, &phy_mgr_cmd->fifo_reset);
1196
1197 rw_mgr_mem_calibrate_write_test_issue(
1198 write_group *
1199 rwcfg->mem_virtual_groups_per_write_dqs + vg,
1200 use_dm);
1201
1202 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1203 tmp_bit_chk <<= shift_ratio;
1204 tmp_bit_chk |= (correct_mask_vg & ~(base_rw_mgr));
1205 }
1206
1207 *bit_chk &= tmp_bit_chk;
1208 }
1209
1210 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1211 if (all_correct) {
1212 debug_cond(DLEVEL == 2,
1213 "write_test(%u,%u,ALL) : %u == %u => %i\n",
1214 write_group, use_dm, *bit_chk,
1215 param->write_correct_mask,
1216 *bit_chk == param->write_correct_mask);
1217 return *bit_chk == param->write_correct_mask;
1218 } else {
1219 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1220 debug_cond(DLEVEL == 2,
1221 "write_test(%u,%u,ONE) : %u != %i => %i\n",
1222 write_group, use_dm, *bit_chk, 0, *bit_chk != 0);
1223 return *bit_chk != 0x00;
1224 }
1225 }
1226
1227 /**
1228 * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns
1229 * @rank_bgn: Rank number
1230 * @group: Read/Write Group
1231 * @all_ranks: Test all ranks
1232 *
1233 * Performs a guaranteed read on the patterns we are going to use during a
1234 * read test to ensure memory works.
1235 */
1236 static int
1237 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group,
1238 const u32 all_ranks)
1239 {
1240 const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1241 RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1242 const u32 addr_offset =
1243 (group * rwcfg->mem_virtual_groups_per_read_dqs) << 2;
1244 const u32 rank_end = all_ranks ?
1245 rwcfg->mem_number_of_ranks :
1246 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1247 const u32 shift_ratio = rwcfg->mem_dq_per_read_dqs /
1248 rwcfg->mem_virtual_groups_per_read_dqs;
1249 const u32 correct_mask_vg = param->read_correct_mask_vg;
1250
1251 u32 tmp_bit_chk, base_rw_mgr, bit_chk;
1252 int vg, r;
1253 int ret = 0;
1254
1255 bit_chk = param->read_correct_mask;
1256
1257 for (r = rank_bgn; r < rank_end; r++) {
1258 /* Set rank */
1259 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1260
1261 /* Load up a constant bursts of read commands */
1262 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1263 writel(rwcfg->guaranteed_read,
1264 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1265
1266 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1267 writel(rwcfg->guaranteed_read_cont,
1268 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1269
1270 tmp_bit_chk = 0;
1271 for (vg = rwcfg->mem_virtual_groups_per_read_dqs - 1;
1272 vg >= 0; vg--) {
1273 /* Reset the FIFOs to get pointers to known state. */
1274 writel(0, &phy_mgr_cmd->fifo_reset);
1275 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1276 RW_MGR_RESET_READ_DATAPATH_OFFSET);
1277 writel(rwcfg->guaranteed_read,
1278 addr + addr_offset + (vg << 2));
1279
1280 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1281 tmp_bit_chk <<= shift_ratio;
1282 tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr;
1283 }
1284
1285 bit_chk &= tmp_bit_chk;
1286 }
1287
1288 writel(rwcfg->clear_dqs_enable, addr + (group << 2));
1289
1290 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1291
1292 if (bit_chk != param->read_correct_mask)
1293 ret = -EIO;
1294
1295 debug_cond(DLEVEL == 1,
1296 "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n",
1297 __func__, __LINE__, group, bit_chk,
1298 param->read_correct_mask, ret);
1299
1300 return ret;
1301 }
1302
1303 /**
1304 * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test
1305 * @rank_bgn: Rank number
1306 * @all_ranks: Test all ranks
1307 *
1308 * Load up the patterns we are going to use during a read test.
1309 */
1310 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn,
1311 const int all_ranks)
1312 {
1313 const u32 rank_end = all_ranks ?
1314 rwcfg->mem_number_of_ranks :
1315 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1316 u32 r;
1317
1318 debug("%s:%d\n", __func__, __LINE__);
1319
1320 for (r = rank_bgn; r < rank_end; r++) {
1321 /* set rank */
1322 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1323
1324 /* Load up a constant bursts */
1325 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1326
1327 writel(rwcfg->guaranteed_write_wait0,
1328 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1329
1330 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1331
1332 writel(rwcfg->guaranteed_write_wait1,
1333 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1334
1335 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1336
1337 writel(rwcfg->guaranteed_write_wait2,
1338 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1339
1340 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1341
1342 writel(rwcfg->guaranteed_write_wait3,
1343 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1344
1345 writel(rwcfg->guaranteed_write, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1346 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1347 }
1348
1349 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1350 }
1351
1352 /**
1353 * rw_mgr_mem_calibrate_read_test() - Perform READ test on single rank
1354 * @rank_bgn: Rank number
1355 * @group: Read/Write group
1356 * @num_tries: Number of retries of the test
1357 * @all_correct: All bits must be correct in the mask
1358 * @bit_chk: Resulting bit mask after the test
1359 * @all_groups: Test all R/W groups
1360 * @all_ranks: Test all ranks
1361 *
1362 * Try a read and see if it returns correct data back. Test has dummy reads
1363 * inserted into the mix used to align DQS enable. Test has more thorough
1364 * checks than the regular read test.
1365 */
1366 static int
1367 rw_mgr_mem_calibrate_read_test(const u32 rank_bgn, const u32 group,
1368 const u32 num_tries, const u32 all_correct,
1369 u32 *bit_chk,
1370 const u32 all_groups, const u32 all_ranks)
1371 {
1372 const u32 rank_end = all_ranks ? rwcfg->mem_number_of_ranks :
1373 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1374 const u32 quick_read_mode =
1375 ((STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) &&
1376 ENABLE_SUPER_QUICK_CALIBRATION);
1377 u32 correct_mask_vg = param->read_correct_mask_vg;
1378 u32 tmp_bit_chk;
1379 u32 base_rw_mgr;
1380 u32 addr;
1381
1382 int r, vg, ret;
1383
1384 *bit_chk = param->read_correct_mask;
1385
1386 for (r = rank_bgn; r < rank_end; r++) {
1387 /* set rank */
1388 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1389
1390 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1391
1392 writel(rwcfg->read_b2b_wait1,
1393 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1394
1395 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1396 writel(rwcfg->read_b2b_wait2,
1397 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1398
1399 if (quick_read_mode)
1400 writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1401 /* need at least two (1+1) reads to capture failures */
1402 else if (all_groups)
1403 writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1404 else
1405 writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1406
1407 writel(rwcfg->read_b2b,
1408 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1409 if (all_groups)
1410 writel(rwcfg->mem_if_read_dqs_width *
1411 rwcfg->mem_virtual_groups_per_read_dqs - 1,
1412 &sdr_rw_load_mgr_regs->load_cntr3);
1413 else
1414 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1415
1416 writel(rwcfg->read_b2b,
1417 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1418
1419 tmp_bit_chk = 0;
1420 for (vg = rwcfg->mem_virtual_groups_per_read_dqs - 1; vg >= 0;
1421 vg--) {
1422 /* Reset the FIFOs to get pointers to known state. */
1423 writel(0, &phy_mgr_cmd->fifo_reset);
1424 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1425 RW_MGR_RESET_READ_DATAPATH_OFFSET);
1426
1427 if (all_groups) {
1428 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1429 RW_MGR_RUN_ALL_GROUPS_OFFSET;
1430 } else {
1431 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1432 RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1433 }
1434
1435 writel(rwcfg->read_b2b, addr +
1436 ((group * rwcfg->mem_virtual_groups_per_read_dqs +
1437 vg) << 2));
1438
1439 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1440 tmp_bit_chk <<= rwcfg->mem_dq_per_read_dqs /
1441 rwcfg->mem_virtual_groups_per_read_dqs;
1442 tmp_bit_chk |= correct_mask_vg & ~(base_rw_mgr);
1443 }
1444
1445 *bit_chk &= tmp_bit_chk;
1446 }
1447
1448 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1449 writel(rwcfg->clear_dqs_enable, addr + (group << 2));
1450
1451 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1452
1453 if (all_correct) {
1454 ret = (*bit_chk == param->read_correct_mask);
1455 debug_cond(DLEVEL == 2,
1456 "%s:%d read_test(%u,ALL,%u) => (%u == %u) => %i\n",
1457 __func__, __LINE__, group, all_groups, *bit_chk,
1458 param->read_correct_mask, ret);
1459 } else {
1460 ret = (*bit_chk != 0x00);
1461 debug_cond(DLEVEL == 2,
1462 "%s:%d read_test(%u,ONE,%u) => (%u != %u) => %i\n",
1463 __func__, __LINE__, group, all_groups, *bit_chk,
1464 0, ret);
1465 }
1466
1467 return ret;
1468 }
1469
1470 /**
1471 * rw_mgr_mem_calibrate_read_test_all_ranks() - Perform READ test on all ranks
1472 * @grp: Read/Write group
1473 * @num_tries: Number of retries of the test
1474 * @all_correct: All bits must be correct in the mask
1475 * @all_groups: Test all R/W groups
1476 *
1477 * Perform a READ test across all memory ranks.
1478 */
1479 static int
1480 rw_mgr_mem_calibrate_read_test_all_ranks(const u32 grp, const u32 num_tries,
1481 const u32 all_correct,
1482 const u32 all_groups)
1483 {
1484 u32 bit_chk;
1485 return rw_mgr_mem_calibrate_read_test(0, grp, num_tries, all_correct,
1486 &bit_chk, all_groups, 1);
1487 }
1488
1489 /**
1490 * rw_mgr_incr_vfifo() - Increase VFIFO value
1491 * @grp: Read/Write group
1492 *
1493 * Increase VFIFO value.
1494 */
1495 static void rw_mgr_incr_vfifo(const u32 grp)
1496 {
1497 writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1498 }
1499
1500 /**
1501 * rw_mgr_decr_vfifo() - Decrease VFIFO value
1502 * @grp: Read/Write group
1503 *
1504 * Decrease VFIFO value.
1505 */
1506 static void rw_mgr_decr_vfifo(const u32 grp)
1507 {
1508 u32 i;
1509
1510 for (i = 0; i < VFIFO_SIZE - 1; i++)
1511 rw_mgr_incr_vfifo(grp);
1512 }
1513
1514 /**
1515 * find_vfifo_failing_read() - Push VFIFO to get a failing read
1516 * @grp: Read/Write group
1517 *
1518 * Push VFIFO until a failing read happens.
1519 */
1520 static int find_vfifo_failing_read(const u32 grp)
1521 {
1522 u32 v, ret, fail_cnt = 0;
1523
1524 for (v = 0; v < VFIFO_SIZE; v++) {
1525 debug_cond(DLEVEL == 2, "%s:%d: vfifo %u\n",
1526 __func__, __LINE__, v);
1527 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1528 PASS_ONE_BIT, 0);
1529 if (!ret) {
1530 fail_cnt++;
1531
1532 if (fail_cnt == 2)
1533 return v;
1534 }
1535
1536 /* Fiddle with FIFO. */
1537 rw_mgr_incr_vfifo(grp);
1538 }
1539
1540 /* No failing read found! Something must have gone wrong. */
1541 debug_cond(DLEVEL == 2, "%s:%d: vfifo failed\n", __func__, __LINE__);
1542 return 0;
1543 }
1544
1545 /**
1546 * sdr_find_phase_delay() - Find DQS enable phase or delay
1547 * @working: If 1, look for working phase/delay, if 0, look for non-working
1548 * @delay: If 1, look for delay, if 0, look for phase
1549 * @grp: Read/Write group
1550 * @work: Working window position
1551 * @work_inc: Working window increment
1552 * @pd: DQS Phase/Delay Iterator
1553 *
1554 * Find working or non-working DQS enable phase setting.
1555 */
1556 static int sdr_find_phase_delay(int working, int delay, const u32 grp,
1557 u32 *work, const u32 work_inc, u32 *pd)
1558 {
1559 const u32 max = delay ? iocfg->dqs_en_delay_max : iocfg->dqs_en_phase_max;
1560 u32 ret;
1561
1562 for (; *pd <= max; (*pd)++) {
1563 if (delay)
1564 scc_mgr_set_dqs_en_delay_all_ranks(grp, *pd);
1565 else
1566 scc_mgr_set_dqs_en_phase_all_ranks(grp, *pd);
1567
1568 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1569 PASS_ONE_BIT, 0);
1570 if (!working)
1571 ret = !ret;
1572
1573 if (ret)
1574 return 0;
1575
1576 if (work)
1577 *work += work_inc;
1578 }
1579
1580 return -EINVAL;
1581 }
1582 /**
1583 * sdr_find_phase() - Find DQS enable phase
1584 * @working: If 1, look for working phase, if 0, look for non-working phase
1585 * @grp: Read/Write group
1586 * @work: Working window position
1587 * @i: Iterator
1588 * @p: DQS Phase Iterator
1589 *
1590 * Find working or non-working DQS enable phase setting.
1591 */
1592 static int sdr_find_phase(int working, const u32 grp, u32 *work,
1593 u32 *i, u32 *p)
1594 {
1595 const u32 end = VFIFO_SIZE + (working ? 0 : 1);
1596 int ret;
1597
1598 for (; *i < end; (*i)++) {
1599 if (working)
1600 *p = 0;
1601
1602 ret = sdr_find_phase_delay(working, 0, grp, work,
1603 iocfg->delay_per_opa_tap, p);
1604 if (!ret)
1605 return 0;
1606
1607 if (*p > iocfg->dqs_en_phase_max) {
1608 /* Fiddle with FIFO. */
1609 rw_mgr_incr_vfifo(grp);
1610 if (!working)
1611 *p = 0;
1612 }
1613 }
1614
1615 return -EINVAL;
1616 }
1617
1618 /**
1619 * sdr_working_phase() - Find working DQS enable phase
1620 * @grp: Read/Write group
1621 * @work_bgn: Working window start position
1622 * @d: dtaps output value
1623 * @p: DQS Phase Iterator
1624 * @i: Iterator
1625 *
1626 * Find working DQS enable phase setting.
1627 */
1628 static int sdr_working_phase(const u32 grp, u32 *work_bgn, u32 *d,
1629 u32 *p, u32 *i)
1630 {
1631 const u32 dtaps_per_ptap = iocfg->delay_per_opa_tap /
1632 iocfg->delay_per_dqs_en_dchain_tap;
1633 int ret;
1634
1635 *work_bgn = 0;
1636
1637 for (*d = 0; *d <= dtaps_per_ptap; (*d)++) {
1638 *i = 0;
1639 scc_mgr_set_dqs_en_delay_all_ranks(grp, *d);
1640 ret = sdr_find_phase(1, grp, work_bgn, i, p);
1641 if (!ret)
1642 return 0;
1643 *work_bgn += iocfg->delay_per_dqs_en_dchain_tap;
1644 }
1645
1646 /* Cannot find working solution */
1647 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n",
1648 __func__, __LINE__);
1649 return -EINVAL;
1650 }
1651
1652 /**
1653 * sdr_backup_phase() - Find DQS enable backup phase
1654 * @grp: Read/Write group
1655 * @work_bgn: Working window start position
1656 * @p: DQS Phase Iterator
1657 *
1658 * Find DQS enable backup phase setting.
1659 */
1660 static void sdr_backup_phase(const u32 grp, u32 *work_bgn, u32 *p)
1661 {
1662 u32 tmp_delay, d;
1663 int ret;
1664
1665 /* Special case code for backing up a phase */
1666 if (*p == 0) {
1667 *p = iocfg->dqs_en_phase_max;
1668 rw_mgr_decr_vfifo(grp);
1669 } else {
1670 (*p)--;
1671 }
1672 tmp_delay = *work_bgn - iocfg->delay_per_opa_tap;
1673 scc_mgr_set_dqs_en_phase_all_ranks(grp, *p);
1674
1675 for (d = 0; d <= iocfg->dqs_en_delay_max && tmp_delay < *work_bgn; d++) {
1676 scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1677
1678 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1679 PASS_ONE_BIT, 0);
1680 if (ret) {
1681 *work_bgn = tmp_delay;
1682 break;
1683 }
1684
1685 tmp_delay += iocfg->delay_per_dqs_en_dchain_tap;
1686 }
1687
1688 /* Restore VFIFO to old state before we decremented it (if needed). */
1689 (*p)++;
1690 if (*p > iocfg->dqs_en_phase_max) {
1691 *p = 0;
1692 rw_mgr_incr_vfifo(grp);
1693 }
1694
1695 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1696 }
1697
1698 /**
1699 * sdr_nonworking_phase() - Find non-working DQS enable phase
1700 * @grp: Read/Write group
1701 * @work_end: Working window end position
1702 * @p: DQS Phase Iterator
1703 * @i: Iterator
1704 *
1705 * Find non-working DQS enable phase setting.
1706 */
1707 static int sdr_nonworking_phase(const u32 grp, u32 *work_end, u32 *p, u32 *i)
1708 {
1709 int ret;
1710
1711 (*p)++;
1712 *work_end += iocfg->delay_per_opa_tap;
1713 if (*p > iocfg->dqs_en_phase_max) {
1714 /* Fiddle with FIFO. */
1715 *p = 0;
1716 rw_mgr_incr_vfifo(grp);
1717 }
1718
1719 ret = sdr_find_phase(0, grp, work_end, i, p);
1720 if (ret) {
1721 /* Cannot see edge of failing read. */
1722 debug_cond(DLEVEL == 2, "%s:%d: end: failed\n",
1723 __func__, __LINE__);
1724 }
1725
1726 return ret;
1727 }
1728
1729 /**
1730 * sdr_find_window_center() - Find center of the working DQS window.
1731 * @grp: Read/Write group
1732 * @work_bgn: First working settings
1733 * @work_end: Last working settings
1734 *
1735 * Find center of the working DQS enable window.
1736 */
1737 static int sdr_find_window_center(const u32 grp, const u32 work_bgn,
1738 const u32 work_end)
1739 {
1740 u32 work_mid;
1741 int tmp_delay = 0;
1742 int i, p, d;
1743
1744 work_mid = (work_bgn + work_end) / 2;
1745
1746 debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1747 work_bgn, work_end, work_mid);
1748 /* Get the middle delay to be less than a VFIFO delay */
1749 tmp_delay = (iocfg->dqs_en_phase_max + 1) * iocfg->delay_per_opa_tap;
1750
1751 debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1752 work_mid %= tmp_delay;
1753 debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid);
1754
1755 tmp_delay = rounddown(work_mid, iocfg->delay_per_opa_tap);
1756 if (tmp_delay > iocfg->dqs_en_phase_max * iocfg->delay_per_opa_tap)
1757 tmp_delay = iocfg->dqs_en_phase_max * iocfg->delay_per_opa_tap;
1758 p = tmp_delay / iocfg->delay_per_opa_tap;
1759
1760 debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay);
1761
1762 d = DIV_ROUND_UP(work_mid - tmp_delay, iocfg->delay_per_dqs_en_dchain_tap);
1763 if (d > iocfg->dqs_en_delay_max)
1764 d = iocfg->dqs_en_delay_max;
1765 tmp_delay += d * iocfg->delay_per_dqs_en_dchain_tap;
1766
1767 debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay);
1768
1769 scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1770 scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1771
1772 /*
1773 * push vfifo until we can successfully calibrate. We can do this
1774 * because the largest possible margin in 1 VFIFO cycle.
1775 */
1776 for (i = 0; i < VFIFO_SIZE; i++) {
1777 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center\n");
1778 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1779 PASS_ONE_BIT,
1780 0)) {
1781 debug_cond(DLEVEL == 2,
1782 "%s:%d center: found: ptap=%u dtap=%u\n",
1783 __func__, __LINE__, p, d);
1784 return 0;
1785 }
1786
1787 /* Fiddle with FIFO. */
1788 rw_mgr_incr_vfifo(grp);
1789 }
1790
1791 debug_cond(DLEVEL == 2, "%s:%d center: failed.\n",
1792 __func__, __LINE__);
1793 return -EINVAL;
1794 }
1795
1796 /**
1797 * rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase() - Find a good DQS enable to use
1798 * @grp: Read/Write Group
1799 *
1800 * Find a good DQS enable to use.
1801 */
1802 static int rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(const u32 grp)
1803 {
1804 u32 d, p, i;
1805 u32 dtaps_per_ptap;
1806 u32 work_bgn, work_end;
1807 u32 found_passing_read, found_failing_read, initial_failing_dtap;
1808 int ret;
1809
1810 debug("%s:%d %u\n", __func__, __LINE__, grp);
1811
1812 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1813
1814 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1815 scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1816
1817 /* Step 0: Determine number of delay taps for each phase tap. */
1818 dtaps_per_ptap = iocfg->delay_per_opa_tap / iocfg->delay_per_dqs_en_dchain_tap;
1819
1820 /* Step 1: First push vfifo until we get a failing read. */
1821 find_vfifo_failing_read(grp);
1822
1823 /* Step 2: Find first working phase, increment in ptaps. */
1824 work_bgn = 0;
1825 ret = sdr_working_phase(grp, &work_bgn, &d, &p, &i);
1826 if (ret)
1827 return ret;
1828
1829 work_end = work_bgn;
1830
1831 /*
1832 * If d is 0 then the working window covers a phase tap and we can
1833 * follow the old procedure. Otherwise, we've found the beginning
1834 * and we need to increment the dtaps until we find the end.
1835 */
1836 if (d == 0) {
1837 /*
1838 * Step 3a: If we have room, back off by one and
1839 * increment in dtaps.
1840 */
1841 sdr_backup_phase(grp, &work_bgn, &p);
1842
1843 /*
1844 * Step 4a: go forward from working phase to non working
1845 * phase, increment in ptaps.
1846 */
1847 ret = sdr_nonworking_phase(grp, &work_end, &p, &i);
1848 if (ret)
1849 return ret;
1850
1851 /* Step 5a: Back off one from last, increment in dtaps. */
1852
1853 /* Special case code for backing up a phase */
1854 if (p == 0) {
1855 p = iocfg->dqs_en_phase_max;
1856 rw_mgr_decr_vfifo(grp);
1857 } else {
1858 p = p - 1;
1859 }
1860
1861 work_end -= iocfg->delay_per_opa_tap;
1862 scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1863
1864 d = 0;
1865
1866 debug_cond(DLEVEL == 2, "%s:%d p: ptap=%u\n",
1867 __func__, __LINE__, p);
1868 }
1869
1870 /* The dtap increment to find the failing edge is done here. */
1871 sdr_find_phase_delay(0, 1, grp, &work_end,
1872 iocfg->delay_per_dqs_en_dchain_tap, &d);
1873
1874 /* Go back to working dtap */
1875 if (d != 0)
1876 work_end -= iocfg->delay_per_dqs_en_dchain_tap;
1877
1878 debug_cond(DLEVEL == 2,
1879 "%s:%d p/d: ptap=%u dtap=%u end=%u\n",
1880 __func__, __LINE__, p, d - 1, work_end);
1881
1882 if (work_end < work_bgn) {
1883 /* nil range */
1884 debug_cond(DLEVEL == 2, "%s:%d end-2: failed\n",
1885 __func__, __LINE__);
1886 return -EINVAL;
1887 }
1888
1889 debug_cond(DLEVEL == 2, "%s:%d found range [%u,%u]\n",
1890 __func__, __LINE__, work_bgn, work_end);
1891
1892 /*
1893 * We need to calculate the number of dtaps that equal a ptap.
1894 * To do that we'll back up a ptap and re-find the edge of the
1895 * window using dtaps
1896 */
1897 debug_cond(DLEVEL == 2, "%s:%d calculate dtaps_per_ptap for tracking\n",
1898 __func__, __LINE__);
1899
1900 /* Special case code for backing up a phase */
1901 if (p == 0) {
1902 p = iocfg->dqs_en_phase_max;
1903 rw_mgr_decr_vfifo(grp);
1904 debug_cond(DLEVEL == 2, "%s:%d backedup cycle/phase: p=%u\n",
1905 __func__, __LINE__, p);
1906 } else {
1907 p = p - 1;
1908 debug_cond(DLEVEL == 2, "%s:%d backedup phase only: p=%u",
1909 __func__, __LINE__, p);
1910 }
1911
1912 scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1913
1914 /*
1915 * Increase dtap until we first see a passing read (in case the
1916 * window is smaller than a ptap), and then a failing read to
1917 * mark the edge of the window again.
1918 */
1919
1920 /* Find a passing read. */
1921 debug_cond(DLEVEL == 2, "%s:%d find passing read\n",
1922 __func__, __LINE__);
1923
1924 initial_failing_dtap = d;
1925
1926 found_passing_read = !sdr_find_phase_delay(1, 1, grp, NULL, 0, &d);
1927 if (found_passing_read) {
1928 /* Find a failing read. */
1929 debug_cond(DLEVEL == 2, "%s:%d find failing read\n",
1930 __func__, __LINE__);
1931 d++;
1932 found_failing_read = !sdr_find_phase_delay(0, 1, grp, NULL, 0,
1933 &d);
1934 } else {
1935 debug_cond(DLEVEL == 1,
1936 "%s:%d failed to calculate dtaps per ptap. Fall back on static value\n",
1937 __func__, __LINE__);
1938 }
1939
1940 /*
1941 * The dynamically calculated dtaps_per_ptap is only valid if we
1942 * found a passing/failing read. If we didn't, it means d hit the max
1943 * (iocfg->dqs_en_delay_max). Otherwise, dtaps_per_ptap retains its
1944 * statically calculated value.
1945 */
1946 if (found_passing_read && found_failing_read)
1947 dtaps_per_ptap = d - initial_failing_dtap;
1948
1949 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1950 debug_cond(DLEVEL == 2, "%s:%d dtaps_per_ptap=%u - %u = %u",
1951 __func__, __LINE__, d, initial_failing_dtap, dtaps_per_ptap);
1952
1953 /* Step 6: Find the centre of the window. */
1954 ret = sdr_find_window_center(grp, work_bgn, work_end);
1955
1956 return ret;
1957 }
1958
1959 /**
1960 * search_stop_check() - Check if the detected edge is valid
1961 * @write: Perform read (Stage 2) or write (Stage 3) calibration
1962 * @d: DQS delay
1963 * @rank_bgn: Rank number
1964 * @write_group: Write Group
1965 * @read_group: Read Group
1966 * @bit_chk: Resulting bit mask after the test
1967 * @sticky_bit_chk: Resulting sticky bit mask after the test
1968 * @use_read_test: Perform read test
1969 *
1970 * Test if the found edge is valid.
1971 */
1972 static u32 search_stop_check(const int write, const int d, const int rank_bgn,
1973 const u32 write_group, const u32 read_group,
1974 u32 *bit_chk, u32 *sticky_bit_chk,
1975 const u32 use_read_test)
1976 {
1977 const u32 ratio = rwcfg->mem_if_read_dqs_width /
1978 rwcfg->mem_if_write_dqs_width;
1979 const u32 correct_mask = write ? param->write_correct_mask :
1980 param->read_correct_mask;
1981 const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
1982 rwcfg->mem_dq_per_read_dqs;
1983 u32 ret;
1984 /*
1985 * Stop searching when the read test doesn't pass AND when
1986 * we've seen a passing read on every bit.
1987 */
1988 if (write) { /* WRITE-ONLY */
1989 ret = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1990 0, PASS_ONE_BIT,
1991 bit_chk, 0);
1992 } else if (use_read_test) { /* READ-ONLY */
1993 ret = !rw_mgr_mem_calibrate_read_test(rank_bgn, read_group,
1994 NUM_READ_PB_TESTS,
1995 PASS_ONE_BIT, bit_chk,
1996 0, 0);
1997 } else { /* READ-ONLY */
1998 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 0,
1999 PASS_ONE_BIT, bit_chk, 0);
2000 *bit_chk = *bit_chk >> (per_dqs *
2001 (read_group - (write_group * ratio)));
2002 ret = (*bit_chk == 0);
2003 }
2004 *sticky_bit_chk = *sticky_bit_chk | *bit_chk;
2005 ret = ret && (*sticky_bit_chk == correct_mask);
2006 debug_cond(DLEVEL == 2,
2007 "%s:%d center(left): dtap=%u => %u == %u && %u",
2008 __func__, __LINE__, d,
2009 *sticky_bit_chk, correct_mask, ret);
2010 return ret;
2011 }
2012
2013 /**
2014 * search_left_edge() - Find left edge of DQ/DQS working phase
2015 * @write: Perform read (Stage 2) or write (Stage 3) calibration
2016 * @rank_bgn: Rank number
2017 * @write_group: Write Group
2018 * @read_group: Read Group
2019 * @test_bgn: Rank number to begin the test
2020 * @sticky_bit_chk: Resulting sticky bit mask after the test
2021 * @left_edge: Left edge of the DQ/DQS phase
2022 * @right_edge: Right edge of the DQ/DQS phase
2023 * @use_read_test: Perform read test
2024 *
2025 * Find left edge of DQ/DQS working phase.
2026 */
2027 static void search_left_edge(const int write, const int rank_bgn,
2028 const u32 write_group, const u32 read_group, const u32 test_bgn,
2029 u32 *sticky_bit_chk,
2030 int *left_edge, int *right_edge, const u32 use_read_test)
2031 {
2032 const u32 delay_max = write ? iocfg->io_out1_delay_max : iocfg->io_in_delay_max;
2033 const u32 dqs_max = write ? iocfg->io_out1_delay_max : iocfg->dqs_in_delay_max;
2034 const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
2035 rwcfg->mem_dq_per_read_dqs;
2036 u32 stop, bit_chk;
2037 int i, d;
2038
2039 for (d = 0; d <= dqs_max; d++) {
2040 if (write)
2041 scc_mgr_apply_group_dq_out1_delay(d);
2042 else
2043 scc_mgr_apply_group_dq_in_delay(test_bgn, d);
2044
2045 writel(0, &sdr_scc_mgr->update);
2046
2047 stop = search_stop_check(write, d, rank_bgn, write_group,
2048 read_group, &bit_chk, sticky_bit_chk,
2049 use_read_test);
2050 if (stop == 1)
2051 break;
2052
2053 /* stop != 1 */
2054 for (i = 0; i < per_dqs; i++) {
2055 if (bit_chk & 1) {
2056 /*
2057 * Remember a passing test as
2058 * the left_edge.
2059 */
2060 left_edge[i] = d;
2061 } else {
2062 /*
2063 * If a left edge has not been seen
2064 * yet, then a future passing test
2065 * will mark this edge as the right
2066 * edge.
2067 */
2068 if (left_edge[i] == delay_max + 1)
2069 right_edge[i] = -(d + 1);
2070 }
2071 bit_chk >>= 1;
2072 }
2073 }
2074
2075 /* Reset DQ delay chains to 0 */
2076 if (write)
2077 scc_mgr_apply_group_dq_out1_delay(0);
2078 else
2079 scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2080
2081 *sticky_bit_chk = 0;
2082 for (i = per_dqs - 1; i >= 0; i--) {
2083 debug_cond(DLEVEL == 2,
2084 "%s:%d vfifo_center: left_edge[%u]: %d right_edge[%u]: %d\n",
2085 __func__, __LINE__, i, left_edge[i],
2086 i, right_edge[i]);
2087
2088 /*
2089 * Check for cases where we haven't found the left edge,
2090 * which makes our assignment of the the right edge invalid.
2091 * Reset it to the illegal value.
2092 */
2093 if ((left_edge[i] == delay_max + 1) &&
2094 (right_edge[i] != delay_max + 1)) {
2095 right_edge[i] = delay_max + 1;
2096 debug_cond(DLEVEL == 2,
2097 "%s:%d vfifo_center: reset right_edge[%u]: %d\n",
2098 __func__, __LINE__, i, right_edge[i]);
2099 }
2100
2101 /*
2102 * Reset sticky bit
2103 * READ: except for bits where we have seen both
2104 * the left and right edge.
2105 * WRITE: except for bits where we have seen the
2106 * left edge.
2107 */
2108 *sticky_bit_chk <<= 1;
2109 if (write) {
2110 if (left_edge[i] != delay_max + 1)
2111 *sticky_bit_chk |= 1;
2112 } else {
2113 if ((left_edge[i] != delay_max + 1) &&
2114 (right_edge[i] != delay_max + 1))
2115 *sticky_bit_chk |= 1;
2116 }
2117 }
2118
2119
2120 }
2121
2122 /**
2123 * search_right_edge() - Find right edge of DQ/DQS working phase
2124 * @write: Perform read (Stage 2) or write (Stage 3) calibration
2125 * @rank_bgn: Rank number
2126 * @write_group: Write Group
2127 * @read_group: Read Group
2128 * @start_dqs: DQS start phase
2129 * @start_dqs_en: DQS enable start phase
2130 * @sticky_bit_chk: Resulting sticky bit mask after the test
2131 * @left_edge: Left edge of the DQ/DQS phase
2132 * @right_edge: Right edge of the DQ/DQS phase
2133 * @use_read_test: Perform read test
2134 *
2135 * Find right edge of DQ/DQS working phase.
2136 */
2137 static int search_right_edge(const int write, const int rank_bgn,
2138 const u32 write_group, const u32 read_group,
2139 const int start_dqs, const int start_dqs_en,
2140 u32 *sticky_bit_chk,
2141 int *left_edge, int *right_edge, const u32 use_read_test)
2142 {
2143 const u32 delay_max = write ? iocfg->io_out1_delay_max : iocfg->io_in_delay_max;
2144 const u32 dqs_max = write ? iocfg->io_out1_delay_max : iocfg->dqs_in_delay_max;
2145 const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
2146 rwcfg->mem_dq_per_read_dqs;
2147 u32 stop, bit_chk;
2148 int i, d;
2149
2150 for (d = 0; d <= dqs_max - start_dqs; d++) {
2151 if (write) { /* WRITE-ONLY */
2152 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2153 d + start_dqs);
2154 } else { /* READ-ONLY */
2155 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
2156 if (iocfg->shift_dqs_en_when_shift_dqs) {
2157 uint32_t delay = d + start_dqs_en;
2158 if (delay > iocfg->dqs_en_delay_max)
2159 delay = iocfg->dqs_en_delay_max;
2160 scc_mgr_set_dqs_en_delay(read_group, delay);
2161 }
2162 scc_mgr_load_dqs(read_group);
2163 }
2164
2165 writel(0, &sdr_scc_mgr->update);
2166
2167 stop = search_stop_check(write, d, rank_bgn, write_group,
2168 read_group, &bit_chk, sticky_bit_chk,
2169 use_read_test);
2170 if (stop == 1) {
2171 if (write && (d == 0)) { /* WRITE-ONLY */
2172 for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) {
2173 /*
2174 * d = 0 failed, but it passed when
2175 * testing the left edge, so it must be
2176 * marginal, set it to -1
2177 */
2178 if (right_edge[i] == delay_max + 1 &&
2179 left_edge[i] != delay_max + 1)
2180 right_edge[i] = -1;
2181 }
2182 }
2183 break;
2184 }
2185
2186 /* stop != 1 */
2187 for (i = 0; i < per_dqs; i++) {
2188 if (bit_chk & 1) {
2189 /*
2190 * Remember a passing test as
2191 * the right_edge.
2192 */
2193 right_edge[i] = d;
2194 } else {
2195 if (d != 0) {
2196 /*
2197 * If a right edge has not
2198 * been seen yet, then a future
2199 * passing test will mark this
2200 * edge as the left edge.
2201 */
2202 if (right_edge[i] == delay_max + 1)
2203 left_edge[i] = -(d + 1);
2204 } else {
2205 /*
2206 * d = 0 failed, but it passed
2207 * when testing the left edge,
2208 * so it must be marginal, set
2209 * it to -1
2210 */
2211 if (right_edge[i] == delay_max + 1 &&
2212 left_edge[i] != delay_max + 1)
2213 right_edge[i] = -1;
2214 /*
2215 * If a right edge has not been
2216 * seen yet, then a future
2217 * passing test will mark this
2218 * edge as the left edge.
2219 */
2220 else if (right_edge[i] == delay_max + 1)
2221 left_edge[i] = -(d + 1);
2222 }
2223 }
2224
2225 debug_cond(DLEVEL == 2, "%s:%d center[r,d=%u]: ",
2226 __func__, __LINE__, d);
2227 debug_cond(DLEVEL == 2,
2228 "bit_chk_test=%i left_edge[%u]: %d ",
2229 bit_chk & 1, i, left_edge[i]);
2230 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2231 right_edge[i]);
2232 bit_chk >>= 1;
2233 }
2234 }
2235
2236 /* Check that all bits have a window */
2237 for (i = 0; i < per_dqs; i++) {
2238 debug_cond(DLEVEL == 2,
2239 "%s:%d write_center: left_edge[%u]: %d right_edge[%u]: %d",
2240 __func__, __LINE__, i, left_edge[i],
2241 i, right_edge[i]);
2242 if ((left_edge[i] == dqs_max + 1) ||
2243 (right_edge[i] == dqs_max + 1))
2244 return i + 1; /* FIXME: If we fail, retval > 0 */
2245 }
2246
2247 return 0;
2248 }
2249
2250 /**
2251 * get_window_mid_index() - Find the best middle setting of DQ/DQS phase
2252 * @write: Perform read (Stage 2) or write (Stage 3) calibration
2253 * @left_edge: Left edge of the DQ/DQS phase
2254 * @right_edge: Right edge of the DQ/DQS phase
2255 * @mid_min: Best DQ/DQS phase middle setting
2256 *
2257 * Find index and value of the middle of the DQ/DQS working phase.
2258 */
2259 static int get_window_mid_index(const int write, int *left_edge,
2260 int *right_edge, int *mid_min)
2261 {
2262 const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
2263 rwcfg->mem_dq_per_read_dqs;
2264 int i, mid, min_index;
2265
2266 /* Find middle of window for each DQ bit */
2267 *mid_min = left_edge[0] - right_edge[0];
2268 min_index = 0;
2269 for (i = 1; i < per_dqs; i++) {
2270 mid = left_edge[i] - right_edge[i];
2271 if (mid < *mid_min) {
2272 *mid_min = mid;
2273 min_index = i;
2274 }
2275 }
2276
2277 /*
2278 * -mid_min/2 represents the amount that we need to move DQS.
2279 * If mid_min is odd and positive we'll need to add one to make
2280 * sure the rounding in further calculations is correct (always
2281 * bias to the right), so just add 1 for all positive values.
2282 */
2283 if (*mid_min > 0)
2284 (*mid_min)++;
2285 *mid_min = *mid_min / 2;
2286
2287 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: *mid_min=%d (index=%u)\n",
2288 __func__, __LINE__, *mid_min, min_index);
2289 return min_index;
2290 }
2291
2292 /**
2293 * center_dq_windows() - Center the DQ/DQS windows
2294 * @write: Perform read (Stage 2) or write (Stage 3) calibration
2295 * @left_edge: Left edge of the DQ/DQS phase
2296 * @right_edge: Right edge of the DQ/DQS phase
2297 * @mid_min: Adjusted DQ/DQS phase middle setting
2298 * @orig_mid_min: Original DQ/DQS phase middle setting
2299 * @min_index: DQ/DQS phase middle setting index
2300 * @test_bgn: Rank number to begin the test
2301 * @dq_margin: Amount of shift for the DQ
2302 * @dqs_margin: Amount of shift for the DQS
2303 *
2304 * Align the DQ/DQS windows in each group.
2305 */
2306 static void center_dq_windows(const int write, int *left_edge, int *right_edge,
2307 const int mid_min, const int orig_mid_min,
2308 const int min_index, const int test_bgn,
2309 int *dq_margin, int *dqs_margin)
2310 {
2311 const u32 delay_max = write ? iocfg->io_out1_delay_max : iocfg->io_in_delay_max;
2312 const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
2313 rwcfg->mem_dq_per_read_dqs;
2314 const u32 delay_off = write ? SCC_MGR_IO_OUT1_DELAY_OFFSET :
2315 SCC_MGR_IO_IN_DELAY_OFFSET;
2316 const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | delay_off;
2317
2318 u32 temp_dq_io_delay1, temp_dq_io_delay2;
2319 int shift_dq, i, p;
2320
2321 /* Initialize data for export structures */
2322 *dqs_margin = delay_max + 1;
2323 *dq_margin = delay_max + 1;
2324
2325 /* add delay to bring centre of all DQ windows to the same "level" */
2326 for (i = 0, p = test_bgn; i < per_dqs; i++, p++) {
2327 /* Use values before divide by 2 to reduce round off error */
2328 shift_dq = (left_edge[i] - right_edge[i] -
2329 (left_edge[min_index] - right_edge[min_index]))/2 +
2330 (orig_mid_min - mid_min);
2331
2332 debug_cond(DLEVEL == 2,
2333 "vfifo_center: before: shift_dq[%u]=%d\n",
2334 i, shift_dq);
2335
2336 temp_dq_io_delay1 = readl(addr + (p << 2));
2337 temp_dq_io_delay2 = readl(addr + (i << 2));
2338
2339 if (shift_dq + temp_dq_io_delay1 > delay_max)
2340 shift_dq = delay_max - temp_dq_io_delay2;
2341 else if (shift_dq + temp_dq_io_delay1 < 0)
2342 shift_dq = -temp_dq_io_delay1;
2343
2344 debug_cond(DLEVEL == 2,
2345 "vfifo_center: after: shift_dq[%u]=%d\n",
2346 i, shift_dq);
2347
2348 if (write)
2349 scc_mgr_set_dq_out1_delay(i, temp_dq_io_delay1 + shift_dq);
2350 else
2351 scc_mgr_set_dq_in_delay(p, temp_dq_io_delay1 + shift_dq);
2352
2353 scc_mgr_load_dq(p);
2354
2355 debug_cond(DLEVEL == 2,
2356 "vfifo_center: margin[%u]=[%d,%d]\n", i,
2357 left_edge[i] - shift_dq + (-mid_min),
2358 right_edge[i] + shift_dq - (-mid_min));
2359
2360 /* To determine values for export structures */
2361 if (left_edge[i] - shift_dq + (-mid_min) < *dq_margin)
2362 *dq_margin = left_edge[i] - shift_dq + (-mid_min);
2363
2364 if (right_edge[i] + shift_dq - (-mid_min) < *dqs_margin)
2365 *dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2366 }
2367
2368 }
2369
2370 /**
2371 * rw_mgr_mem_calibrate_vfifo_center() - Per-bit deskew DQ and centering
2372 * @rank_bgn: Rank number
2373 * @rw_group: Read/Write Group
2374 * @test_bgn: Rank at which the test begins
2375 * @use_read_test: Perform a read test
2376 * @update_fom: Update FOM
2377 *
2378 * Per-bit deskew DQ and centering.
2379 */
2380 static int rw_mgr_mem_calibrate_vfifo_center(const u32 rank_bgn,
2381 const u32 rw_group, const u32 test_bgn,
2382 const int use_read_test, const int update_fom)
2383 {
2384 const u32 addr =
2385 SDR_PHYGRP_SCCGRP_ADDRESS + SCC_MGR_DQS_IN_DELAY_OFFSET +
2386 (rw_group << 2);
2387 /*
2388 * Store these as signed since there are comparisons with
2389 * signed numbers.
2390 */
2391 uint32_t sticky_bit_chk;
2392 int32_t left_edge[rwcfg->mem_dq_per_read_dqs];
2393 int32_t right_edge[rwcfg->mem_dq_per_read_dqs];
2394 int32_t orig_mid_min, mid_min;
2395 int32_t new_dqs, start_dqs, start_dqs_en = 0, final_dqs_en;
2396 int32_t dq_margin, dqs_margin;
2397 int i, min_index;
2398 int ret;
2399
2400 debug("%s:%d: %u %u", __func__, __LINE__, rw_group, test_bgn);
2401
2402 start_dqs = readl(addr);
2403 if (iocfg->shift_dqs_en_when_shift_dqs)
2404 start_dqs_en = readl(addr - iocfg->dqs_en_delay_offset);
2405
2406 /* set the left and right edge of each bit to an illegal value */
2407 /* use (iocfg->io_in_delay_max + 1) as an illegal value */
2408 sticky_bit_chk = 0;
2409 for (i = 0; i < rwcfg->mem_dq_per_read_dqs; i++) {
2410 left_edge[i] = iocfg->io_in_delay_max + 1;
2411 right_edge[i] = iocfg->io_in_delay_max + 1;
2412 }
2413
2414 /* Search for the left edge of the window for each bit */
2415 search_left_edge(0, rank_bgn, rw_group, rw_group, test_bgn,
2416 &sticky_bit_chk,
2417 left_edge, right_edge, use_read_test);
2418
2419
2420 /* Search for the right edge of the window for each bit */
2421 ret = search_right_edge(0, rank_bgn, rw_group, rw_group,
2422 start_dqs, start_dqs_en,
2423 &sticky_bit_chk,
2424 left_edge, right_edge, use_read_test);
2425 if (ret) {
2426 /*
2427 * Restore delay chain settings before letting the loop
2428 * in rw_mgr_mem_calibrate_vfifo to retry different
2429 * dqs/ck relationships.
2430 */
2431 scc_mgr_set_dqs_bus_in_delay(rw_group, start_dqs);
2432 if (iocfg->shift_dqs_en_when_shift_dqs)
2433 scc_mgr_set_dqs_en_delay(rw_group, start_dqs_en);
2434
2435 scc_mgr_load_dqs(rw_group);
2436 writel(0, &sdr_scc_mgr->update);
2437
2438 debug_cond(DLEVEL == 1,
2439 "%s:%d vfifo_center: failed to find edge [%u]: %d %d",
2440 __func__, __LINE__, i, left_edge[i], right_edge[i]);
2441 if (use_read_test) {
2442 set_failing_group_stage(rw_group *
2443 rwcfg->mem_dq_per_read_dqs + i,
2444 CAL_STAGE_VFIFO,
2445 CAL_SUBSTAGE_VFIFO_CENTER);
2446 } else {
2447 set_failing_group_stage(rw_group *
2448 rwcfg->mem_dq_per_read_dqs + i,
2449 CAL_STAGE_VFIFO_AFTER_WRITES,
2450 CAL_SUBSTAGE_VFIFO_CENTER);
2451 }
2452 return -EIO;
2453 }
2454
2455 min_index = get_window_mid_index(0, left_edge, right_edge, &mid_min);
2456
2457 /* Determine the amount we can change DQS (which is -mid_min) */
2458 orig_mid_min = mid_min;
2459 new_dqs = start_dqs - mid_min;
2460 if (new_dqs > iocfg->dqs_in_delay_max)
2461 new_dqs = iocfg->dqs_in_delay_max;
2462 else if (new_dqs < 0)
2463 new_dqs = 0;
2464
2465 mid_min = start_dqs - new_dqs;
2466 debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2467 mid_min, new_dqs);
2468
2469 if (iocfg->shift_dqs_en_when_shift_dqs) {
2470 if (start_dqs_en - mid_min > iocfg->dqs_en_delay_max)
2471 mid_min += start_dqs_en - mid_min - iocfg->dqs_en_delay_max;
2472 else if (start_dqs_en - mid_min < 0)
2473 mid_min += start_dqs_en - mid_min;
2474 }
2475 new_dqs = start_dqs - mid_min;
2476
2477 debug_cond(DLEVEL == 1,
2478 "vfifo_center: start_dqs=%d start_dqs_en=%d new_dqs=%d mid_min=%d\n",
2479 start_dqs,
2480 iocfg->shift_dqs_en_when_shift_dqs ? start_dqs_en : -1,
2481 new_dqs, mid_min);
2482
2483 /* Add delay to bring centre of all DQ windows to the same "level". */
2484 center_dq_windows(0, left_edge, right_edge, mid_min, orig_mid_min,
2485 min_index, test_bgn, &dq_margin, &dqs_margin);
2486
2487 /* Move DQS-en */
2488 if (iocfg->shift_dqs_en_when_shift_dqs) {
2489 final_dqs_en = start_dqs_en - mid_min;
2490 scc_mgr_set_dqs_en_delay(rw_group, final_dqs_en);
2491 scc_mgr_load_dqs(rw_group);
2492 }
2493
2494 /* Move DQS */
2495 scc_mgr_set_dqs_bus_in_delay(rw_group, new_dqs);
2496 scc_mgr_load_dqs(rw_group);
2497 debug_cond(DLEVEL == 2,
2498 "%s:%d vfifo_center: dq_margin=%d dqs_margin=%d",
2499 __func__, __LINE__, dq_margin, dqs_margin);
2500
2501 /*
2502 * Do not remove this line as it makes sure all of our decisions
2503 * have been applied. Apply the update bit.
2504 */
2505 writel(0, &sdr_scc_mgr->update);
2506
2507 if ((dq_margin < 0) || (dqs_margin < 0))
2508 return -EINVAL;
2509
2510 return 0;
2511 }
2512
2513 /**
2514 * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device
2515 * @rw_group: Read/Write Group
2516 * @phase: DQ/DQS phase
2517 *
2518 * Because initially no communication ca be reliably performed with the memory
2519 * device, the sequencer uses a guaranteed write mechanism to write data into
2520 * the memory device.
2521 */
2522 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group,
2523 const u32 phase)
2524 {
2525 int ret;
2526
2527 /* Set a particular DQ/DQS phase. */
2528 scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase);
2529
2530 debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n",
2531 __func__, __LINE__, rw_group, phase);
2532
2533 /*
2534 * Altera EMI_RM 2015.05.04 :: Figure 1-25
2535 * Load up the patterns used by read calibration using the
2536 * current DQDQS phase.
2537 */
2538 rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2539
2540 if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)
2541 return 0;
2542
2543 /*
2544 * Altera EMI_RM 2015.05.04 :: Figure 1-26
2545 * Back-to-Back reads of the patterns used for calibration.
2546 */
2547 ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1);
2548 if (ret)
2549 debug_cond(DLEVEL == 1,
2550 "%s:%d Guaranteed read test failed: g=%u p=%u\n",
2551 __func__, __LINE__, rw_group, phase);
2552 return ret;
2553 }
2554
2555 /**
2556 * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration
2557 * @rw_group: Read/Write Group
2558 * @test_bgn: Rank at which the test begins
2559 *
2560 * DQS enable calibration ensures reliable capture of the DQ signal without
2561 * glitches on the DQS line.
2562 */
2563 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group,
2564 const u32 test_bgn)
2565 {
2566 /*
2567 * Altera EMI_RM 2015.05.04 :: Figure 1-27
2568 * DQS and DQS Eanble Signal Relationships.
2569 */
2570
2571 /* We start at zero, so have one less dq to devide among */
2572 const u32 delay_step = iocfg->io_in_delay_max /
2573 (rwcfg->mem_dq_per_read_dqs - 1);
2574 int ret;
2575 u32 i, p, d, r;
2576
2577 debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn);
2578
2579 /* Try different dq_in_delays since the DQ path is shorter than DQS. */
2580 for (r = 0; r < rwcfg->mem_number_of_ranks;
2581 r += NUM_RANKS_PER_SHADOW_REG) {
2582 for (i = 0, p = test_bgn, d = 0;
2583 i < rwcfg->mem_dq_per_read_dqs;
2584 i++, p++, d += delay_step) {
2585 debug_cond(DLEVEL == 1,
2586 "%s:%d: g=%u r=%u i=%u p=%u d=%u\n",
2587 __func__, __LINE__, rw_group, r, i, p, d);
2588
2589 scc_mgr_set_dq_in_delay(p, d);
2590 scc_mgr_load_dq(p);
2591 }
2592
2593 writel(0, &sdr_scc_mgr->update);
2594 }
2595
2596 /*
2597 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
2598 * dq_in_delay values
2599 */
2600 ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group);
2601
2602 debug_cond(DLEVEL == 1,
2603 "%s:%d: g=%u found=%u; Reseting delay chain to zero\n",
2604 __func__, __LINE__, rw_group, !ret);
2605
2606 for (r = 0; r < rwcfg->mem_number_of_ranks;
2607 r += NUM_RANKS_PER_SHADOW_REG) {
2608 scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2609 writel(0, &sdr_scc_mgr->update);
2610 }
2611
2612 return ret;
2613 }
2614
2615 /**
2616 * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS
2617 * @rw_group: Read/Write Group
2618 * @test_bgn: Rank at which the test begins
2619 * @use_read_test: Perform a read test
2620 * @update_fom: Update FOM
2621 *
2622 * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads
2623 * within a group.
2624 */
2625 static int
2626 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn,
2627 const int use_read_test,
2628 const int update_fom)
2629
2630 {
2631 int ret, grp_calibrated;
2632 u32 rank_bgn, sr;
2633
2634 /*
2635 * Altera EMI_RM 2015.05.04 :: Figure 1-28
2636 * Read per-bit deskew can be done on a per shadow register basis.
2637 */
2638 grp_calibrated = 1;
2639 for (rank_bgn = 0, sr = 0;
2640 rank_bgn < rwcfg->mem_number_of_ranks;
2641 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
2642 ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group,
2643 test_bgn,
2644 use_read_test,
2645 update_fom);
2646 if (!ret)
2647 continue;
2648
2649 grp_calibrated = 0;
2650 }
2651
2652 if (!grp_calibrated)
2653 return -EIO;
2654
2655 return 0;
2656 }
2657
2658 /**
2659 * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
2660 * @rw_group: Read/Write Group
2661 * @test_bgn: Rank at which the test begins
2662 *
2663 * Stage 1: Calibrate the read valid prediction FIFO.
2664 *
2665 * This function implements UniPHY calibration Stage 1, as explained in
2666 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2667 *
2668 * - read valid prediction will consist of finding:
2669 * - DQS enable phase and DQS enable delay (DQS Enable Calibration)
2670 * - DQS input phase and DQS input delay (DQ/DQS Centering)
2671 * - we also do a per-bit deskew on the DQ lines.
2672 */
2673 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn)
2674 {
2675 uint32_t p, d;
2676 uint32_t dtaps_per_ptap;
2677 uint32_t failed_substage;
2678
2679 int ret;
2680
2681 debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn);
2682
2683 /* Update info for sims */
2684 reg_file_set_group(rw_group);
2685 reg_file_set_stage(CAL_STAGE_VFIFO);
2686 reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2687
2688 failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2689
2690 /* USER Determine number of delay taps for each phase tap. */
2691 dtaps_per_ptap = DIV_ROUND_UP(iocfg->delay_per_opa_tap,
2692 iocfg->delay_per_dqs_en_dchain_tap) - 1;
2693
2694 for (d = 0; d <= dtaps_per_ptap; d += 2) {
2695 /*
2696 * In RLDRAMX we may be messing the delay of pins in
2697 * the same write rw_group but outside of the current read
2698 * the rw_group, but that's ok because we haven't calibrated
2699 * output side yet.
2700 */
2701 if (d > 0) {
2702 scc_mgr_apply_group_all_out_delay_add_all_ranks(
2703 rw_group, d);
2704 }
2705
2706 for (p = 0; p <= iocfg->dqdqs_out_phase_max; p++) {
2707 /* 1) Guaranteed Write */
2708 ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p);
2709 if (ret)
2710 break;
2711
2712 /* 2) DQS Enable Calibration */
2713 ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group,
2714 test_bgn);
2715 if (ret) {
2716 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2717 continue;
2718 }
2719
2720 /* 3) Centering DQ/DQS */
2721 /*
2722 * If doing read after write calibration, do not update
2723 * FOM now. Do it then.
2724 */
2725 ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group,
2726 test_bgn, 1, 0);
2727 if (ret) {
2728 failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
2729 continue;
2730 }
2731
2732 /* All done. */
2733 goto cal_done_ok;
2734 }
2735 }
2736
2737 /* Calibration Stage 1 failed. */
2738 set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage);
2739 return 0;
2740
2741 /* Calibration Stage 1 completed OK. */
2742 cal_done_ok:
2743 /*
2744 * Reset the delay chains back to zero if they have moved > 1
2745 * (check for > 1 because loop will increase d even when pass in
2746 * first case).
2747 */
2748 if (d > 2)
2749 scc_mgr_zero_group(rw_group, 1);
2750
2751 return 1;
2752 }
2753
2754 /**
2755 * rw_mgr_mem_calibrate_vfifo_end() - DQ/DQS Centering.
2756 * @rw_group: Read/Write Group
2757 * @test_bgn: Rank at which the test begins
2758 *
2759 * Stage 3: DQ/DQS Centering.
2760 *
2761 * This function implements UniPHY calibration Stage 3, as explained in
2762 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2763 */
2764 static int rw_mgr_mem_calibrate_vfifo_end(const u32 rw_group,
2765 const u32 test_bgn)
2766 {
2767 int ret;
2768
2769 debug("%s:%d %u %u", __func__, __LINE__, rw_group, test_bgn);
2770
2771 /* Update info for sims. */
2772 reg_file_set_group(rw_group);
2773 reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2774 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2775
2776 ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, test_bgn, 0, 1);
2777 if (ret)
2778 set_failing_group_stage(rw_group,
2779 CAL_STAGE_VFIFO_AFTER_WRITES,
2780 CAL_SUBSTAGE_VFIFO_CENTER);
2781 return ret;
2782 }
2783
2784 /**
2785 * rw_mgr_mem_calibrate_lfifo() - Minimize latency
2786 *
2787 * Stage 4: Minimize latency.
2788 *
2789 * This function implements UniPHY calibration Stage 4, as explained in
2790 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2791 * Calibrate LFIFO to find smallest read latency.
2792 */
2793 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2794 {
2795 int found_one = 0;
2796
2797 debug("%s:%d\n", __func__, __LINE__);
2798
2799 /* Update info for sims. */
2800 reg_file_set_stage(CAL_STAGE_LFIFO);
2801 reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2802
2803 /* Load up the patterns used by read calibration for all ranks */
2804 rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2805
2806 do {
2807 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2808 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2809 __func__, __LINE__, gbl->curr_read_lat);
2810
2811 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, NUM_READ_TESTS,
2812 PASS_ALL_BITS, 1))
2813 break;
2814
2815 found_one = 1;
2816 /*
2817 * Reduce read latency and see if things are
2818 * working correctly.
2819 */
2820 gbl->curr_read_lat--;
2821 } while (gbl->curr_read_lat > 0);
2822
2823 /* Reset the fifos to get pointers to known state. */
2824 writel(0, &phy_mgr_cmd->fifo_reset);
2825
2826 if (found_one) {
2827 /* Add a fudge factor to the read latency that was determined */
2828 gbl->curr_read_lat += 2;
2829 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2830 debug_cond(DLEVEL == 2,
2831 "%s:%d lfifo: success: using read_lat=%u\n",
2832 __func__, __LINE__, gbl->curr_read_lat);
2833 } else {
2834 set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2835 CAL_SUBSTAGE_READ_LATENCY);
2836
2837 debug_cond(DLEVEL == 2,
2838 "%s:%d lfifo: failed at initial read_lat=%u\n",
2839 __func__, __LINE__, gbl->curr_read_lat);
2840 }
2841
2842 return found_one;
2843 }
2844
2845 /**
2846 * search_window() - Search for the/part of the window with DM/DQS shift
2847 * @search_dm: If 1, search for the DM shift, if 0, search for DQS shift
2848 * @rank_bgn: Rank number
2849 * @write_group: Write Group
2850 * @bgn_curr: Current window begin
2851 * @end_curr: Current window end
2852 * @bgn_best: Current best window begin
2853 * @end_best: Current best window end
2854 * @win_best: Size of the best window
2855 * @new_dqs: New DQS value (only applicable if search_dm = 0).
2856 *
2857 * Search for the/part of the window with DM/DQS shift.
2858 */
2859 static void search_window(const int search_dm,
2860 const u32 rank_bgn, const u32 write_group,
2861 int *bgn_curr, int *end_curr, int *bgn_best,
2862 int *end_best, int *win_best, int new_dqs)
2863 {
2864 u32 bit_chk;
2865 const int max = iocfg->io_out1_delay_max - new_dqs;
2866 int d, di;
2867
2868 /* Search for the/part of the window with DM/DQS shift. */
2869 for (di = max; di >= 0; di -= DELTA_D) {
2870 if (search_dm) {
2871 d = di;
2872 scc_mgr_apply_group_dm_out1_delay(d);
2873 } else {
2874 /* For DQS, we go from 0...max */
2875 d = max - di;
2876 /*
2877 * Note: This only shifts DQS, so are we limiting ourselve to
2878 * width of DQ unnecessarily.
2879 */
2880 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2881 d + new_dqs);
2882 }
2883
2884 writel(0, &sdr_scc_mgr->update);
2885
2886 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
2887 PASS_ALL_BITS, &bit_chk,
2888 0)) {
2889 /* Set current end of the window. */
2890 *end_curr = search_dm ? -d : d;
2891
2892 /*
2893 * If a starting edge of our window has not been seen
2894 * this is our current start of the DM window.
2895 */
2896 if (*bgn_curr == iocfg->io_out1_delay_max + 1)
2897 *bgn_curr = search_dm ? -d : d;
2898
2899 /*
2900 * If current window is bigger than best seen.
2901 * Set best seen to be current window.
2902 */
2903 if ((*end_curr - *bgn_curr + 1) > *win_best) {
2904 *win_best = *end_curr - *bgn_curr + 1;
2905 *bgn_best = *bgn_curr;
2906 *end_best = *end_curr;
2907 }
2908 } else {
2909 /* We just saw a failing test. Reset temp edge. */
2910 *bgn_curr = iocfg->io_out1_delay_max + 1;
2911 *end_curr = iocfg->io_out1_delay_max + 1;
2912
2913 /* Early exit is only applicable to DQS. */
2914 if (search_dm)
2915 continue;
2916
2917 /*
2918 * Early exit optimization: if the remaining delay
2919 * chain space is less than already seen largest
2920 * window we can exit.
2921 */
2922 if (*win_best - 1 > iocfg->io_out1_delay_max - new_dqs - d)
2923 break;
2924 }
2925 }
2926 }
2927
2928 /*
2929 * rw_mgr_mem_calibrate_writes_center() - Center all windows
2930 * @rank_bgn: Rank number
2931 * @write_group: Write group
2932 * @test_bgn: Rank at which the test begins
2933 *
2934 * Center all windows. Do per-bit-deskew to possibly increase size of
2935 * certain windows.
2936 */
2937 static int
2938 rw_mgr_mem_calibrate_writes_center(const u32 rank_bgn, const u32 write_group,
2939 const u32 test_bgn)
2940 {
2941 int i;
2942 u32 sticky_bit_chk;
2943 u32 min_index;
2944 int left_edge[rwcfg->mem_dq_per_write_dqs];
2945 int right_edge[rwcfg->mem_dq_per_write_dqs];
2946 int mid;
2947 int mid_min, orig_mid_min;
2948 int new_dqs, start_dqs;
2949 int dq_margin, dqs_margin, dm_margin;
2950 int bgn_curr = iocfg->io_out1_delay_max + 1;
2951 int end_curr = iocfg->io_out1_delay_max + 1;
2952 int bgn_best = iocfg->io_out1_delay_max + 1;
2953 int end_best = iocfg->io_out1_delay_max + 1;
2954 int win_best = 0;
2955
2956 int ret;
2957
2958 debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2959
2960 dm_margin = 0;
2961
2962 start_dqs = readl((SDR_PHYGRP_SCCGRP_ADDRESS |
2963 SCC_MGR_IO_OUT1_DELAY_OFFSET) +
2964 (rwcfg->mem_dq_per_write_dqs << 2));
2965
2966 /* Per-bit deskew. */
2967
2968 /*
2969 * Set the left and right edge of each bit to an illegal value.
2970 * Use (iocfg->io_out1_delay_max + 1) as an illegal value.
2971 */
2972 sticky_bit_chk = 0;
2973 for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) {
2974 left_edge[i] = iocfg->io_out1_delay_max + 1;
2975 right_edge[i] = iocfg->io_out1_delay_max + 1;
2976 }
2977
2978 /* Search for the left edge of the window for each bit. */
2979 search_left_edge(1, rank_bgn, write_group, 0, test_bgn,
2980 &sticky_bit_chk,
2981 left_edge, right_edge, 0);
2982
2983 /* Search for the right edge of the window for each bit. */
2984 ret = search_right_edge(1, rank_bgn, write_group, 0,
2985 start_dqs, 0,
2986 &sticky_bit_chk,
2987 left_edge, right_edge, 0);
2988 if (ret) {
2989 set_failing_group_stage(test_bgn + ret - 1, CAL_STAGE_WRITES,
2990 CAL_SUBSTAGE_WRITES_CENTER);
2991 return -EINVAL;
2992 }
2993
2994 min_index = get_window_mid_index(1, left_edge, right_edge, &mid_min);
2995
2996 /* Determine the amount we can change DQS (which is -mid_min). */
2997 orig_mid_min = mid_min;
2998 new_dqs = start_dqs;
2999 mid_min = 0;
3000 debug_cond(DLEVEL == 1,
3001 "%s:%d write_center: start_dqs=%d new_dqs=%d mid_min=%d\n",
3002 __func__, __LINE__, start_dqs, new_dqs, mid_min);
3003
3004 /* Add delay to bring centre of all DQ windows to the same "level". */
3005 center_dq_windows(1, left_edge, right_edge, mid_min, orig_mid_min,
3006 min_index, 0, &dq_margin, &dqs_margin);
3007
3008 /* Move DQS */
3009 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3010 writel(0, &sdr_scc_mgr->update);
3011
3012 /* Centre DM */
3013 debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
3014
3015 /*
3016 * Set the left and right edge of each bit to an illegal value.
3017 * Use (iocfg->io_out1_delay_max + 1) as an illegal value.
3018 */
3019 left_edge[0] = iocfg->io_out1_delay_max + 1;
3020 right_edge[0] = iocfg->io_out1_delay_max + 1;
3021
3022 /* Search for the/part of the window with DM shift. */
3023 search_window(1, rank_bgn, write_group, &bgn_curr, &end_curr,
3024 &bgn_best, &end_best, &win_best, 0);
3025
3026 /* Reset DM delay chains to 0. */
3027 scc_mgr_apply_group_dm_out1_delay(0);
3028
3029 /*
3030 * Check to see if the current window nudges up aganist 0 delay.
3031 * If so we need to continue the search by shifting DQS otherwise DQS
3032 * search begins as a new search.
3033 */
3034 if (end_curr != 0) {
3035 bgn_curr = iocfg->io_out1_delay_max + 1;
3036 end_curr = iocfg->io_out1_delay_max + 1;
3037 }
3038
3039 /* Search for the/part of the window with DQS shifts. */
3040 search_window(0, rank_bgn, write_group, &bgn_curr, &end_curr,
3041 &bgn_best, &end_best, &win_best, new_dqs);
3042
3043 /* Assign left and right edge for cal and reporting. */
3044 left_edge[0] = -1 * bgn_best;
3045 right_edge[0] = end_best;
3046
3047 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n",
3048 __func__, __LINE__, left_edge[0], right_edge[0]);
3049
3050 /* Move DQS (back to orig). */
3051 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3052
3053 /* Move DM */
3054
3055 /* Find middle of window for the DM bit. */
3056 mid = (left_edge[0] - right_edge[0]) / 2;
3057
3058 /* Only move right, since we are not moving DQS/DQ. */
3059 if (mid < 0)
3060 mid = 0;
3061
3062 /* dm_marign should fail if we never find a window. */
3063 if (win_best == 0)
3064 dm_margin = -1;
3065 else
3066 dm_margin = left_edge[0] - mid;
3067
3068 scc_mgr_apply_group_dm_out1_delay(mid);
3069 writel(0, &sdr_scc_mgr->update);
3070
3071 debug_cond(DLEVEL == 2,
3072 "%s:%d dm_calib: left=%d right=%d mid=%d dm_margin=%d\n",
3073 __func__, __LINE__, left_edge[0], right_edge[0],
3074 mid, dm_margin);
3075 /* Export values. */
3076 gbl->fom_out += dq_margin + dqs_margin;
3077
3078 debug_cond(DLEVEL == 2,
3079 "%s:%d write_center: dq_margin=%d dqs_margin=%d dm_margin=%d\n",
3080 __func__, __LINE__, dq_margin, dqs_margin, dm_margin);
3081
3082 /*
3083 * Do not remove this line as it makes sure all of our
3084 * decisions have been applied.
3085 */
3086 writel(0, &sdr_scc_mgr->update);
3087
3088 if ((dq_margin < 0) || (dqs_margin < 0) || (dm_margin < 0))
3089 return -EINVAL;
3090
3091 return 0;
3092 }
3093
3094 /**
3095 * rw_mgr_mem_calibrate_writes() - Write Calibration Part One
3096 * @rank_bgn: Rank number
3097 * @group: Read/Write Group
3098 * @test_bgn: Rank at which the test begins
3099 *
3100 * Stage 2: Write Calibration Part One.
3101 *
3102 * This function implements UniPHY calibration Stage 2, as explained in
3103 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
3104 */
3105 static int rw_mgr_mem_calibrate_writes(const u32 rank_bgn, const u32 group,
3106 const u32 test_bgn)
3107 {
3108 int ret;
3109
3110 /* Update info for sims */
3111 debug("%s:%d %u %u\n", __func__, __LINE__, group, test_bgn);
3112
3113 reg_file_set_group(group);
3114 reg_file_set_stage(CAL_STAGE_WRITES);
3115 reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3116
3117 ret = rw_mgr_mem_calibrate_writes_center(rank_bgn, group, test_bgn);
3118 if (ret)
3119 set_failing_group_stage(group, CAL_STAGE_WRITES,
3120 CAL_SUBSTAGE_WRITES_CENTER);
3121
3122 return ret;
3123 }
3124
3125 /**
3126 * mem_precharge_and_activate() - Precharge all banks and activate
3127 *
3128 * Precharge all banks and activate row 0 in bank "000..." and bank "111...".
3129 */
3130 static void mem_precharge_and_activate(void)
3131 {
3132 int r;
3133
3134 for (r = 0; r < rwcfg->mem_number_of_ranks; r++) {
3135 /* Set rank. */
3136 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3137
3138 /* Precharge all banks. */
3139 writel(rwcfg->precharge_all, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3140 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3141
3142 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3143 writel(rwcfg->activate_0_and_1_wait1,
3144 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3145
3146 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3147 writel(rwcfg->activate_0_and_1_wait2,
3148 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3149
3150 /* Activate rows. */
3151 writel(rwcfg->activate_0_and_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3152 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3153 }
3154 }
3155
3156 /**
3157 * mem_init_latency() - Configure memory RLAT and WLAT settings
3158 *
3159 * Configure memory RLAT and WLAT parameters.
3160 */
3161 static void mem_init_latency(void)
3162 {
3163 /*
3164 * For AV/CV, LFIFO is hardened and always runs at full rate
3165 * so max latency in AFI clocks, used here, is correspondingly
3166 * smaller.
3167 */
3168 const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1;
3169 u32 rlat, wlat;
3170
3171 debug("%s:%d\n", __func__, __LINE__);
3172
3173 /*
3174 * Read in write latency.
3175 * WL for Hard PHY does not include additive latency.
3176 */
3177 wlat = readl(&data_mgr->t_wl_add);
3178 wlat += readl(&data_mgr->mem_t_add);
3179
3180 gbl->rw_wl_nop_cycles = wlat - 1;
3181
3182 /* Read in readl latency. */
3183 rlat = readl(&data_mgr->t_rl_add);
3184
3185 /* Set a pretty high read latency initially. */
3186 gbl->curr_read_lat = rlat + 16;
3187 if (gbl->curr_read_lat > max_latency)
3188 gbl->curr_read_lat = max_latency;
3189
3190 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3191
3192 /* Advertise write latency. */
3193 writel(wlat, &phy_mgr_cfg->afi_wlat);
3194 }
3195
3196 /**
3197 * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
3198 *
3199 * Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
3200 */
3201 static void mem_skip_calibrate(void)
3202 {
3203 uint32_t vfifo_offset;
3204 uint32_t i, j, r;
3205
3206 debug("%s:%d\n", __func__, __LINE__);
3207 /* Need to update every shadow register set used by the interface */
3208 for (r = 0; r < rwcfg->mem_number_of_ranks;
3209 r += NUM_RANKS_PER_SHADOW_REG) {
3210 /*
3211 * Set output phase alignment settings appropriate for
3212 * skip calibration.
3213 */
3214 for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) {
3215 scc_mgr_set_dqs_en_phase(i, 0);
3216 if (iocfg->dll_chain_length == 6)
3217 scc_mgr_set_dqdqs_output_phase(i, 6);
3218 else
3219 scc_mgr_set_dqdqs_output_phase(i, 7);
3220 /*
3221 * Case:33398
3222 *
3223 * Write data arrives to the I/O two cycles before write
3224 * latency is reached (720 deg).
3225 * -> due to bit-slip in a/c bus
3226 * -> to allow board skew where dqs is longer than ck
3227 * -> how often can this happen!?
3228 * -> can claim back some ptaps for high freq
3229 * support if we can relax this, but i digress...
3230 *
3231 * The write_clk leads mem_ck by 90 deg
3232 * The minimum ptap of the OPA is 180 deg
3233 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3234 * The write_clk is always delayed by 2 ptaps
3235 *
3236 * Hence, to make DQS aligned to CK, we need to delay
3237 * DQS by:
3238 * (720 - 90 - 180 - 2 * (360 / iocfg->dll_chain_length))
3239 *
3240 * Dividing the above by (360 / iocfg->dll_chain_length)
3241 * gives us the number of ptaps, which simplies to:
3242 *
3243 * (1.25 * iocfg->dll_chain_length - 2)
3244 */
3245 scc_mgr_set_dqdqs_output_phase(i,
3246 1.25 * iocfg->dll_chain_length - 2);
3247 }
3248 writel(0xff, &sdr_scc_mgr->dqs_ena);
3249 writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3250
3251 for (i = 0; i < rwcfg->mem_if_write_dqs_width; i++) {
3252 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3253 SCC_MGR_GROUP_COUNTER_OFFSET);
3254 }
3255 writel(0xff, &sdr_scc_mgr->dq_ena);
3256 writel(0xff, &sdr_scc_mgr->dm_ena);
3257 writel(0, &sdr_scc_mgr->update);
3258 }
3259
3260 /* Compensate for simulation model behaviour */
3261 for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) {
3262 scc_mgr_set_dqs_bus_in_delay(i, 10);
3263 scc_mgr_load_dqs(i);
3264 }
3265 writel(0, &sdr_scc_mgr->update);
3266
3267 /*
3268 * ArriaV has hard FIFOs that can only be initialized by incrementing
3269 * in sequencer.
3270 */
3271 vfifo_offset = CALIB_VFIFO_OFFSET;
3272 for (j = 0; j < vfifo_offset; j++)
3273 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3274 writel(0, &phy_mgr_cmd->fifo_reset);
3275
3276 /*
3277 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
3278 * setting from generation-time constant.
3279 */
3280 gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3281 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3282 }
3283
3284 /**
3285 * mem_calibrate() - Memory calibration entry point.
3286 *
3287 * Perform memory calibration.
3288 */
3289 static uint32_t mem_calibrate(void)
3290 {
3291 uint32_t i;
3292 uint32_t rank_bgn, sr;
3293 uint32_t write_group, write_test_bgn;
3294 uint32_t read_group, read_test_bgn;
3295 uint32_t run_groups, current_run;
3296 uint32_t failing_groups = 0;
3297 uint32_t group_failed = 0;
3298
3299 const u32 rwdqs_ratio = rwcfg->mem_if_read_dqs_width /
3300 rwcfg->mem_if_write_dqs_width;
3301
3302 debug("%s:%d\n", __func__, __LINE__);
3303
3304 /* Initialize the data settings */
3305 gbl->error_substage = CAL_SUBSTAGE_NIL;
3306 gbl->error_stage = CAL_STAGE_NIL;
3307 gbl->error_group = 0xff;
3308 gbl->fom_in = 0;
3309 gbl->fom_out = 0;
3310
3311 /* Initialize WLAT and RLAT. */
3312 mem_init_latency();
3313
3314 /* Initialize bit slips. */
3315 mem_precharge_and_activate();
3316
3317 for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) {
3318 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3319 SCC_MGR_GROUP_COUNTER_OFFSET);
3320 /* Only needed once to set all groups, pins, DQ, DQS, DM. */
3321 if (i == 0)
3322 scc_mgr_set_hhp_extras();
3323
3324 scc_set_bypass_mode(i);
3325 }
3326
3327 /* Calibration is skipped. */
3328 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3329 /*
3330 * Set VFIFO and LFIFO to instant-on settings in skip
3331 * calibration mode.
3332 */
3333 mem_skip_calibrate();
3334
3335 /*
3336 * Do not remove this line as it makes sure all of our
3337 * decisions have been applied.
3338 */
3339 writel(0, &sdr_scc_mgr->update);
3340 return 1;
3341 }
3342
3343 /* Calibration is not skipped. */
3344 for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3345 /*
3346 * Zero all delay chain/phase settings for all
3347 * groups and all shadow register sets.
3348 */
3349 scc_mgr_zero_all();
3350
3351 run_groups = ~0;
3352
3353 for (write_group = 0, write_test_bgn = 0; write_group
3354 < rwcfg->mem_if_write_dqs_width; write_group++,
3355 write_test_bgn += rwcfg->mem_dq_per_write_dqs) {
3356
3357 /* Initialize the group failure */
3358 group_failed = 0;
3359
3360 current_run = run_groups & ((1 <<
3361 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3362 run_groups = run_groups >>
3363 RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3364
3365 if (current_run == 0)
3366 continue;
3367
3368 writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3369 SCC_MGR_GROUP_COUNTER_OFFSET);
3370 scc_mgr_zero_group(write_group, 0);
3371
3372 for (read_group = write_group * rwdqs_ratio,
3373 read_test_bgn = 0;
3374 read_group < (write_group + 1) * rwdqs_ratio;
3375 read_group++,
3376 read_test_bgn += rwcfg->mem_dq_per_read_dqs) {
3377 if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO)
3378 continue;
3379
3380 /* Calibrate the VFIFO */
3381 if (rw_mgr_mem_calibrate_vfifo(read_group,
3382 read_test_bgn))
3383 continue;
3384
3385 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3386 return 0;
3387
3388 /* The group failed, we're done. */
3389 goto grp_failed;
3390 }
3391
3392 /* Calibrate the output side */
3393 for (rank_bgn = 0, sr = 0;
3394 rank_bgn < rwcfg->mem_number_of_ranks;
3395 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
3396 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3397 continue;
3398
3399 /* Not needed in quick mode! */
3400 if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS)
3401 continue;
3402
3403 /* Calibrate WRITEs */
3404 if (!rw_mgr_mem_calibrate_writes(rank_bgn,
3405 write_group, write_test_bgn))
3406 continue;
3407
3408 group_failed = 1;
3409 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3410 return 0;
3411 }
3412
3413 /* Some group failed, we're done. */
3414 if (group_failed)
3415 goto grp_failed;
3416
3417 for (read_group = write_group * rwdqs_ratio,
3418 read_test_bgn = 0;
3419 read_group < (write_group + 1) * rwdqs_ratio;
3420 read_group++,
3421 read_test_bgn += rwcfg->mem_dq_per_read_dqs) {
3422 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3423 continue;
3424
3425 if (!rw_mgr_mem_calibrate_vfifo_end(read_group,
3426 read_test_bgn))
3427 continue;
3428
3429 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3430 return 0;
3431
3432 /* The group failed, we're done. */
3433 goto grp_failed;
3434 }
3435
3436 /* No group failed, continue as usual. */
3437 continue;
3438
3439 grp_failed: /* A group failed, increment the counter. */
3440 failing_groups++;
3441 }
3442
3443 /*
3444 * USER If there are any failing groups then report
3445 * the failure.
3446 */
3447 if (failing_groups != 0)
3448 return 0;
3449
3450 if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO)
3451 continue;
3452
3453 /* Calibrate the LFIFO */
3454 if (!rw_mgr_mem_calibrate_lfifo())
3455 return 0;
3456 }
3457
3458 /*
3459 * Do not remove this line as it makes sure all of our decisions
3460 * have been applied.
3461 */
3462 writel(0, &sdr_scc_mgr->update);
3463 return 1;
3464 }
3465
3466 /**
3467 * run_mem_calibrate() - Perform memory calibration
3468 *
3469 * This function triggers the entire memory calibration procedure.
3470 */
3471 static int run_mem_calibrate(void)
3472 {
3473 int pass;
3474
3475 debug("%s:%d\n", __func__, __LINE__);
3476
3477 /* Reset pass/fail status shown on afi_cal_success/fail */
3478 writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3479
3480 /* Stop tracking manager. */
3481 clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3482
3483 phy_mgr_initialize();
3484 rw_mgr_mem_initialize();
3485
3486 /* Perform the actual memory calibration. */
3487 pass = mem_calibrate();
3488
3489 mem_precharge_and_activate();
3490 writel(0, &phy_mgr_cmd->fifo_reset);
3491
3492 /* Handoff. */
3493 rw_mgr_mem_handoff();
3494 /*
3495 * In Hard PHY this is a 2-bit control:
3496 * 0: AFI Mux Select
3497 * 1: DDIO Mux Select
3498 */
3499 writel(0x2, &phy_mgr_cfg->mux_sel);
3500
3501 /* Start tracking manager. */
3502 setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3503
3504 return pass;
3505 }
3506
3507 /**
3508 * debug_mem_calibrate() - Report result of memory calibration
3509 * @pass: Value indicating whether calibration passed or failed
3510 *
3511 * This function reports the results of the memory calibration
3512 * and writes debug information into the register file.
3513 */
3514 static void debug_mem_calibrate(int pass)
3515 {
3516 uint32_t debug_info;
3517
3518 if (pass) {
3519 printf("%s: CALIBRATION PASSED\n", __FILE__);
3520
3521 gbl->fom_in /= 2;
3522 gbl->fom_out /= 2;
3523
3524 if (gbl->fom_in > 0xff)
3525 gbl->fom_in = 0xff;
3526
3527 if (gbl->fom_out > 0xff)
3528 gbl->fom_out = 0xff;
3529
3530 /* Update the FOM in the register file */
3531 debug_info = gbl->fom_in;
3532 debug_info |= gbl->fom_out << 8;
3533 writel(debug_info, &sdr_reg_file->fom);
3534
3535 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3536 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3537 } else {
3538 printf("%s: CALIBRATION FAILED\n", __FILE__);
3539
3540 debug_info = gbl->error_stage;
3541 debug_info |= gbl->error_substage << 8;
3542 debug_info |= gbl->error_group << 16;
3543
3544 writel(debug_info, &sdr_reg_file->failing_stage);
3545 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3546 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3547
3548 /* Update the failing group/stage in the register file */
3549 debug_info = gbl->error_stage;
3550 debug_info |= gbl->error_substage << 8;
3551 debug_info |= gbl->error_group << 16;
3552 writel(debug_info, &sdr_reg_file->failing_stage);
3553 }
3554
3555 printf("%s: Calibration complete\n", __FILE__);
3556 }
3557
3558 /**
3559 * hc_initialize_rom_data() - Initialize ROM data
3560 *
3561 * Initialize ROM data.
3562 */
3563 static void hc_initialize_rom_data(void)
3564 {
3565 unsigned int nelem = 0;
3566 const u32 *rom_init;
3567 u32 i, addr;
3568
3569 socfpga_get_seq_inst_init(&rom_init, &nelem);
3570 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3571 for (i = 0; i < nelem; i++)
3572 writel(rom_init[i], addr + (i << 2));
3573
3574 socfpga_get_seq_ac_init(&rom_init, &nelem);
3575 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3576 for (i = 0; i < nelem; i++)
3577 writel(rom_init[i], addr + (i << 2));
3578 }
3579
3580 /**
3581 * initialize_reg_file() - Initialize SDR register file
3582 *
3583 * Initialize SDR register file.
3584 */
3585 static void initialize_reg_file(void)
3586 {
3587 /* Initialize the register file with the correct data */
3588 writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3589 writel(0, &sdr_reg_file->debug_data_addr);
3590 writel(0, &sdr_reg_file->cur_stage);
3591 writel(0, &sdr_reg_file->fom);
3592 writel(0, &sdr_reg_file->failing_stage);
3593 writel(0, &sdr_reg_file->debug1);
3594 writel(0, &sdr_reg_file->debug2);
3595 }
3596
3597 /**
3598 * initialize_hps_phy() - Initialize HPS PHY
3599 *
3600 * Initialize HPS PHY.
3601 */
3602 static void initialize_hps_phy(void)
3603 {
3604 uint32_t reg;
3605 /*
3606 * Tracking also gets configured here because it's in the
3607 * same register.
3608 */
3609 uint32_t trk_sample_count = 7500;
3610 uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3611 /*
3612 * Format is number of outer loops in the 16 MSB, sample
3613 * count in 16 LSB.
3614 */
3615
3616 reg = 0;
3617 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3618 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3619 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3620 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3621 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3622 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3623 /*
3624 * This field selects the intrinsic latency to RDATA_EN/FULL path.
3625 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3626 */
3627 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3628 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3629 trk_sample_count);
3630 writel(reg, &sdr_ctrl->phy_ctrl0);
3631
3632 reg = 0;
3633 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3634 trk_sample_count >>
3635 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3636 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3637 trk_long_idle_sample_count);
3638 writel(reg, &sdr_ctrl->phy_ctrl1);
3639
3640 reg = 0;
3641 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3642 trk_long_idle_sample_count >>
3643 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3644 writel(reg, &sdr_ctrl->phy_ctrl2);
3645 }
3646
3647 /**
3648 * initialize_tracking() - Initialize tracking
3649 *
3650 * Initialize the register file with usable initial data.
3651 */
3652 static void initialize_tracking(void)
3653 {
3654 /*
3655 * Initialize the register file with the correct data.
3656 * Compute usable version of value in case we skip full
3657 * computation later.
3658 */
3659 writel(DIV_ROUND_UP(iocfg->delay_per_opa_tap, iocfg->delay_per_dchain_tap) - 1,
3660 &sdr_reg_file->dtaps_per_ptap);
3661
3662 /* trk_sample_count */
3663 writel(7500, &sdr_reg_file->trk_sample_count);
3664
3665 /* longidle outer loop [15:0] */
3666 writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
3667
3668 /*
3669 * longidle sample count [31:24]
3670 * trfc, worst case of 933Mhz 4Gb [23:16]
3671 * trcd, worst case [15:8]
3672 * vfifo wait [7:0]
3673 */
3674 writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
3675 &sdr_reg_file->delays);
3676
3677 /* mux delay */
3678 writel((rwcfg->idle << 24) | (rwcfg->activate_1 << 16) |
3679 (rwcfg->sgle_read << 8) | (rwcfg->precharge_all << 0),
3680 &sdr_reg_file->trk_rw_mgr_addr);
3681
3682 writel(rwcfg->mem_if_read_dqs_width,
3683 &sdr_reg_file->trk_read_dqs_width);
3684
3685 /* trefi [7:0] */
3686 writel((rwcfg->refresh_all << 24) | (1000 << 0),
3687 &sdr_reg_file->trk_rfsh);
3688 }
3689
3690 int sdram_calibration_full(void)
3691 {
3692 struct param_type my_param;
3693 struct gbl_type my_gbl;
3694 uint32_t pass;
3695
3696 memset(&my_param, 0, sizeof(my_param));
3697 memset(&my_gbl, 0, sizeof(my_gbl));
3698
3699 param = &my_param;
3700 gbl = &my_gbl;
3701
3702 rwcfg = socfpga_get_sdram_rwmgr_config();
3703 iocfg = socfpga_get_sdram_io_config();
3704 misccfg = socfpga_get_sdram_misc_config();
3705
3706 /* Set the calibration enabled by default */
3707 gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3708 /*
3709 * Only sweep all groups (regardless of fail state) by default
3710 * Set enabled read test by default.
3711 */
3712 #if DISABLE_GUARANTEED_READ
3713 gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3714 #endif
3715 /* Initialize the register file */
3716 initialize_reg_file();
3717
3718 /* Initialize any PHY CSR */
3719 initialize_hps_phy();
3720
3721 scc_mgr_initialize();
3722
3723 initialize_tracking();
3724
3725 printf("%s: Preparing to start memory calibration\n", __FILE__);
3726
3727 debug("%s:%d\n", __func__, __LINE__);
3728 debug_cond(DLEVEL == 1,
3729 "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3730 rwcfg->mem_number_of_ranks, rwcfg->mem_number_of_cs_per_dimm,
3731 rwcfg->mem_dq_per_read_dqs, rwcfg->mem_dq_per_write_dqs,
3732 rwcfg->mem_virtual_groups_per_read_dqs,
3733 rwcfg->mem_virtual_groups_per_write_dqs);
3734 debug_cond(DLEVEL == 1,
3735 "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3736 rwcfg->mem_if_read_dqs_width, rwcfg->mem_if_write_dqs_width,
3737 rwcfg->mem_data_width, rwcfg->mem_data_mask_width,
3738 iocfg->delay_per_opa_tap, iocfg->delay_per_dchain_tap);
3739 debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3740 iocfg->delay_per_dqs_en_dchain_tap, iocfg->dll_chain_length);
3741 debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3742 iocfg->dqs_en_phase_max, iocfg->dqdqs_out_phase_max,
3743 iocfg->dqs_en_delay_max, iocfg->dqs_in_delay_max);
3744 debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3745 iocfg->io_in_delay_max, iocfg->io_out1_delay_max,
3746 iocfg->io_out2_delay_max);
3747 debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3748 iocfg->dqs_in_reserve, iocfg->dqs_out_reserve);
3749
3750 hc_initialize_rom_data();
3751
3752 /* update info for sims */
3753 reg_file_set_stage(CAL_STAGE_NIL);
3754 reg_file_set_group(0);
3755
3756 /*
3757 * Load global needed for those actions that require
3758 * some dynamic calibration support.
3759 */
3760 dyn_calib_steps = STATIC_CALIB_STEPS;
3761 /*
3762 * Load global to allow dynamic selection of delay loop settings
3763 * based on calibration mode.
3764 */
3765 if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3766 skip_delay_mask = 0xff;
3767 else
3768 skip_delay_mask = 0x0;
3769
3770 pass = run_mem_calibrate();
3771 debug_mem_calibrate(pass);
3772 return pass;
3773 }