]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/ddr/altera/sequencer.c
ddr: altera: Clean up sdr_*_phase() part 2
[people/ms/u-boot.git] / drivers / ddr / altera / sequencer.c
1 /*
2 * Copyright Altera Corporation (C) 2012-2015
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include <errno.h>
11 #include "sequencer.h"
12 #include "sequencer_auto.h"
13 #include "sequencer_auto_ac_init.h"
14 #include "sequencer_auto_inst_init.h"
15 #include "sequencer_defines.h"
16
17 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
18 (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
19
20 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
21 (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
22
23 static struct socfpga_sdr_reg_file *sdr_reg_file =
24 (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
25
26 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
27 (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
28
29 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
30 (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
31
32 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
33 (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
34
35 static struct socfpga_data_mgr *data_mgr =
36 (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
37
38 static struct socfpga_sdr_ctrl *sdr_ctrl =
39 (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
40
41 #define DELTA_D 1
42
43 /*
44 * In order to reduce ROM size, most of the selectable calibration steps are
45 * decided at compile time based on the user's calibration mode selection,
46 * as captured by the STATIC_CALIB_STEPS selection below.
47 *
48 * However, to support simulation-time selection of fast simulation mode, where
49 * we skip everything except the bare minimum, we need a few of the steps to
50 * be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the
51 * check, which is based on the rtl-supplied value, or we dynamically compute
52 * the value to use based on the dynamically-chosen calibration mode
53 */
54
55 #define DLEVEL 0
56 #define STATIC_IN_RTL_SIM 0
57 #define STATIC_SKIP_DELAY_LOOPS 0
58
59 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
60 STATIC_SKIP_DELAY_LOOPS)
61
62 /* calibration steps requested by the rtl */
63 uint16_t dyn_calib_steps;
64
65 /*
66 * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
67 * instead of static, we use boolean logic to select between
68 * non-skip and skip values
69 *
70 * The mask is set to include all bits when not-skipping, but is
71 * zero when skipping
72 */
73
74 uint16_t skip_delay_mask; /* mask off bits when skipping/not-skipping */
75
76 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
77 ((non_skip_value) & skip_delay_mask)
78
79 struct gbl_type *gbl;
80 struct param_type *param;
81 uint32_t curr_shadow_reg;
82
83 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
84 uint32_t write_group, uint32_t use_dm,
85 uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks);
86
87 static void set_failing_group_stage(uint32_t group, uint32_t stage,
88 uint32_t substage)
89 {
90 /*
91 * Only set the global stage if there was not been any other
92 * failing group
93 */
94 if (gbl->error_stage == CAL_STAGE_NIL) {
95 gbl->error_substage = substage;
96 gbl->error_stage = stage;
97 gbl->error_group = group;
98 }
99 }
100
101 static void reg_file_set_group(u16 set_group)
102 {
103 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
104 }
105
106 static void reg_file_set_stage(u8 set_stage)
107 {
108 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
109 }
110
111 static void reg_file_set_sub_stage(u8 set_sub_stage)
112 {
113 set_sub_stage &= 0xff;
114 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
115 }
116
117 /**
118 * phy_mgr_initialize() - Initialize PHY Manager
119 *
120 * Initialize PHY Manager.
121 */
122 static void phy_mgr_initialize(void)
123 {
124 u32 ratio;
125
126 debug("%s:%d\n", __func__, __LINE__);
127 /* Calibration has control over path to memory */
128 /*
129 * In Hard PHY this is a 2-bit control:
130 * 0: AFI Mux Select
131 * 1: DDIO Mux Select
132 */
133 writel(0x3, &phy_mgr_cfg->mux_sel);
134
135 /* USER memory clock is not stable we begin initialization */
136 writel(0, &phy_mgr_cfg->reset_mem_stbl);
137
138 /* USER calibration status all set to zero */
139 writel(0, &phy_mgr_cfg->cal_status);
140
141 writel(0, &phy_mgr_cfg->cal_debug_info);
142
143 /* Init params only if we do NOT skip calibration. */
144 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
145 return;
146
147 ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
148 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
149 param->read_correct_mask_vg = (1 << ratio) - 1;
150 param->write_correct_mask_vg = (1 << ratio) - 1;
151 param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
152 param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
153 ratio = RW_MGR_MEM_DATA_WIDTH /
154 RW_MGR_MEM_DATA_MASK_WIDTH;
155 param->dm_correct_mask = (1 << ratio) - 1;
156 }
157
158 /**
159 * set_rank_and_odt_mask() - Set Rank and ODT mask
160 * @rank: Rank mask
161 * @odt_mode: ODT mode, OFF or READ_WRITE
162 *
163 * Set Rank and ODT mask (On-Die Termination).
164 */
165 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode)
166 {
167 u32 odt_mask_0 = 0;
168 u32 odt_mask_1 = 0;
169 u32 cs_and_odt_mask;
170
171 if (odt_mode == RW_MGR_ODT_MODE_OFF) {
172 odt_mask_0 = 0x0;
173 odt_mask_1 = 0x0;
174 } else { /* RW_MGR_ODT_MODE_READ_WRITE */
175 switch (RW_MGR_MEM_NUMBER_OF_RANKS) {
176 case 1: /* 1 Rank */
177 /* Read: ODT = 0 ; Write: ODT = 1 */
178 odt_mask_0 = 0x0;
179 odt_mask_1 = 0x1;
180 break;
181 case 2: /* 2 Ranks */
182 if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
183 /*
184 * - Dual-Slot , Single-Rank (1 CS per DIMM)
185 * OR
186 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
187 *
188 * Since MEM_NUMBER_OF_RANKS is 2, they
189 * are both single rank with 2 CS each
190 * (special for RDIMM).
191 *
192 * Read: Turn on ODT on the opposite rank
193 * Write: Turn on ODT on all ranks
194 */
195 odt_mask_0 = 0x3 & ~(1 << rank);
196 odt_mask_1 = 0x3;
197 } else {
198 /*
199 * - Single-Slot , Dual-Rank (2 CS per DIMM)
200 *
201 * Read: Turn on ODT off on all ranks
202 * Write: Turn on ODT on active rank
203 */
204 odt_mask_0 = 0x0;
205 odt_mask_1 = 0x3 & (1 << rank);
206 }
207 break;
208 case 4: /* 4 Ranks */
209 /* Read:
210 * ----------+-----------------------+
211 * | ODT |
212 * Read From +-----------------------+
213 * Rank | 3 | 2 | 1 | 0 |
214 * ----------+-----+-----+-----+-----+
215 * 0 | 0 | 1 | 0 | 0 |
216 * 1 | 1 | 0 | 0 | 0 |
217 * 2 | 0 | 0 | 0 | 1 |
218 * 3 | 0 | 0 | 1 | 0 |
219 * ----------+-----+-----+-----+-----+
220 *
221 * Write:
222 * ----------+-----------------------+
223 * | ODT |
224 * Write To +-----------------------+
225 * Rank | 3 | 2 | 1 | 0 |
226 * ----------+-----+-----+-----+-----+
227 * 0 | 0 | 1 | 0 | 1 |
228 * 1 | 1 | 0 | 1 | 0 |
229 * 2 | 0 | 1 | 0 | 1 |
230 * 3 | 1 | 0 | 1 | 0 |
231 * ----------+-----+-----+-----+-----+
232 */
233 switch (rank) {
234 case 0:
235 odt_mask_0 = 0x4;
236 odt_mask_1 = 0x5;
237 break;
238 case 1:
239 odt_mask_0 = 0x8;
240 odt_mask_1 = 0xA;
241 break;
242 case 2:
243 odt_mask_0 = 0x1;
244 odt_mask_1 = 0x5;
245 break;
246 case 3:
247 odt_mask_0 = 0x2;
248 odt_mask_1 = 0xA;
249 break;
250 }
251 break;
252 }
253 }
254
255 cs_and_odt_mask = (0xFF & ~(1 << rank)) |
256 ((0xFF & odt_mask_0) << 8) |
257 ((0xFF & odt_mask_1) << 16);
258 writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
259 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
260 }
261
262 /**
263 * scc_mgr_set() - Set SCC Manager register
264 * @off: Base offset in SCC Manager space
265 * @grp: Read/Write group
266 * @val: Value to be set
267 *
268 * This function sets the SCC Manager (Scan Chain Control Manager) register.
269 */
270 static void scc_mgr_set(u32 off, u32 grp, u32 val)
271 {
272 writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
273 }
274
275 /**
276 * scc_mgr_initialize() - Initialize SCC Manager registers
277 *
278 * Initialize SCC Manager registers.
279 */
280 static void scc_mgr_initialize(void)
281 {
282 /*
283 * Clear register file for HPS. 16 (2^4) is the size of the
284 * full register file in the scc mgr:
285 * RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
286 * MEM_IF_READ_DQS_WIDTH - 1);
287 */
288 int i;
289
290 for (i = 0; i < 16; i++) {
291 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
292 __func__, __LINE__, i);
293 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
294 }
295 }
296
297 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
298 {
299 scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
300 }
301
302 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
303 {
304 scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
305 }
306
307 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
308 {
309 scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
310 }
311
312 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
313 {
314 scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
315 }
316
317 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
318 {
319 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
320 delay);
321 }
322
323 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
324 {
325 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
326 }
327
328 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
329 {
330 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
331 }
332
333 static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
334 {
335 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
336 delay);
337 }
338
339 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
340 {
341 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
342 RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm,
343 delay);
344 }
345
346 /* load up dqs config settings */
347 static void scc_mgr_load_dqs(uint32_t dqs)
348 {
349 writel(dqs, &sdr_scc_mgr->dqs_ena);
350 }
351
352 /* load up dqs io config settings */
353 static void scc_mgr_load_dqs_io(void)
354 {
355 writel(0, &sdr_scc_mgr->dqs_io_ena);
356 }
357
358 /* load up dq config settings */
359 static void scc_mgr_load_dq(uint32_t dq_in_group)
360 {
361 writel(dq_in_group, &sdr_scc_mgr->dq_ena);
362 }
363
364 /* load up dm config settings */
365 static void scc_mgr_load_dm(uint32_t dm)
366 {
367 writel(dm, &sdr_scc_mgr->dm_ena);
368 }
369
370 /**
371 * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
372 * @off: Base offset in SCC Manager space
373 * @grp: Read/Write group
374 * @val: Value to be set
375 * @update: If non-zero, trigger SCC Manager update for all ranks
376 *
377 * This function sets the SCC Manager (Scan Chain Control Manager) register
378 * and optionally triggers the SCC update for all ranks.
379 */
380 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
381 const int update)
382 {
383 u32 r;
384
385 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
386 r += NUM_RANKS_PER_SHADOW_REG) {
387 scc_mgr_set(off, grp, val);
388
389 if (update || (r == 0)) {
390 writel(grp, &sdr_scc_mgr->dqs_ena);
391 writel(0, &sdr_scc_mgr->update);
392 }
393 }
394 }
395
396 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
397 {
398 /*
399 * USER although the h/w doesn't support different phases per
400 * shadow register, for simplicity our scc manager modeling
401 * keeps different phase settings per shadow reg, and it's
402 * important for us to keep them in sync to match h/w.
403 * for efficiency, the scan chain update should occur only
404 * once to sr0.
405 */
406 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
407 read_group, phase, 0);
408 }
409
410 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
411 uint32_t phase)
412 {
413 /*
414 * USER although the h/w doesn't support different phases per
415 * shadow register, for simplicity our scc manager modeling
416 * keeps different phase settings per shadow reg, and it's
417 * important for us to keep them in sync to match h/w.
418 * for efficiency, the scan chain update should occur only
419 * once to sr0.
420 */
421 scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
422 write_group, phase, 0);
423 }
424
425 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
426 uint32_t delay)
427 {
428 /*
429 * In shadow register mode, the T11 settings are stored in
430 * registers in the core, which are updated by the DQS_ENA
431 * signals. Not issuing the SCC_MGR_UPD command allows us to
432 * save lots of rank switching overhead, by calling
433 * select_shadow_regs_for_update with update_scan_chains
434 * set to 0.
435 */
436 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
437 read_group, delay, 1);
438 writel(0, &sdr_scc_mgr->update);
439 }
440
441 /**
442 * scc_mgr_set_oct_out1_delay() - Set OCT output delay
443 * @write_group: Write group
444 * @delay: Delay value
445 *
446 * This function sets the OCT output delay in SCC manager.
447 */
448 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
449 {
450 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
451 RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
452 const int base = write_group * ratio;
453 int i;
454 /*
455 * Load the setting in the SCC manager
456 * Although OCT affects only write data, the OCT delay is controlled
457 * by the DQS logic block which is instantiated once per read group.
458 * For protocols where a write group consists of multiple read groups,
459 * the setting must be set multiple times.
460 */
461 for (i = 0; i < ratio; i++)
462 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
463 }
464
465 /**
466 * scc_mgr_set_hhp_extras() - Set HHP extras.
467 *
468 * Load the fixed setting in the SCC manager HHP extras.
469 */
470 static void scc_mgr_set_hhp_extras(void)
471 {
472 /*
473 * Load the fixed setting in the SCC manager
474 * bits: 0:0 = 1'b1 - DQS bypass
475 * bits: 1:1 = 1'b1 - DQ bypass
476 * bits: 4:2 = 3'b001 - rfifo_mode
477 * bits: 6:5 = 2'b01 - rfifo clock_select
478 * bits: 7:7 = 1'b0 - separate gating from ungating setting
479 * bits: 8:8 = 1'b0 - separate OE from Output delay setting
480 */
481 const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
482 (1 << 2) | (1 << 1) | (1 << 0);
483 const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
484 SCC_MGR_HHP_GLOBALS_OFFSET |
485 SCC_MGR_HHP_EXTRAS_OFFSET;
486
487 debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
488 __func__, __LINE__);
489 writel(value, addr);
490 debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
491 __func__, __LINE__);
492 }
493
494 /**
495 * scc_mgr_zero_all() - Zero all DQS config
496 *
497 * Zero all DQS config.
498 */
499 static void scc_mgr_zero_all(void)
500 {
501 int i, r;
502
503 /*
504 * USER Zero all DQS config settings, across all groups and all
505 * shadow registers
506 */
507 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
508 r += NUM_RANKS_PER_SHADOW_REG) {
509 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
510 /*
511 * The phases actually don't exist on a per-rank basis,
512 * but there's no harm updating them several times, so
513 * let's keep the code simple.
514 */
515 scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
516 scc_mgr_set_dqs_en_phase(i, 0);
517 scc_mgr_set_dqs_en_delay(i, 0);
518 }
519
520 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
521 scc_mgr_set_dqdqs_output_phase(i, 0);
522 /* Arria V/Cyclone V don't have out2. */
523 scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
524 }
525 }
526
527 /* Multicast to all DQS group enables. */
528 writel(0xff, &sdr_scc_mgr->dqs_ena);
529 writel(0, &sdr_scc_mgr->update);
530 }
531
532 /**
533 * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
534 * @write_group: Write group
535 *
536 * Set bypass mode and trigger SCC update.
537 */
538 static void scc_set_bypass_mode(const u32 write_group)
539 {
540 /* Multicast to all DQ enables. */
541 writel(0xff, &sdr_scc_mgr->dq_ena);
542 writel(0xff, &sdr_scc_mgr->dm_ena);
543
544 /* Update current DQS IO enable. */
545 writel(0, &sdr_scc_mgr->dqs_io_ena);
546
547 /* Update the DQS logic. */
548 writel(write_group, &sdr_scc_mgr->dqs_ena);
549
550 /* Hit update. */
551 writel(0, &sdr_scc_mgr->update);
552 }
553
554 /**
555 * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
556 * @write_group: Write group
557 *
558 * Load DQS settings for Write Group, do not trigger SCC update.
559 */
560 static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
561 {
562 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
563 RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
564 const int base = write_group * ratio;
565 int i;
566 /*
567 * Load the setting in the SCC manager
568 * Although OCT affects only write data, the OCT delay is controlled
569 * by the DQS logic block which is instantiated once per read group.
570 * For protocols where a write group consists of multiple read groups,
571 * the setting must be set multiple times.
572 */
573 for (i = 0; i < ratio; i++)
574 writel(base + i, &sdr_scc_mgr->dqs_ena);
575 }
576
577 /**
578 * scc_mgr_zero_group() - Zero all configs for a group
579 *
580 * Zero DQ, DM, DQS and OCT configs for a group.
581 */
582 static void scc_mgr_zero_group(const u32 write_group, const int out_only)
583 {
584 int i, r;
585
586 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
587 r += NUM_RANKS_PER_SHADOW_REG) {
588 /* Zero all DQ config settings. */
589 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
590 scc_mgr_set_dq_out1_delay(i, 0);
591 if (!out_only)
592 scc_mgr_set_dq_in_delay(i, 0);
593 }
594
595 /* Multicast to all DQ enables. */
596 writel(0xff, &sdr_scc_mgr->dq_ena);
597
598 /* Zero all DM config settings. */
599 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
600 scc_mgr_set_dm_out1_delay(i, 0);
601
602 /* Multicast to all DM enables. */
603 writel(0xff, &sdr_scc_mgr->dm_ena);
604
605 /* Zero all DQS IO settings. */
606 if (!out_only)
607 scc_mgr_set_dqs_io_in_delay(0);
608
609 /* Arria V/Cyclone V don't have out2. */
610 scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE);
611 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
612 scc_mgr_load_dqs_for_write_group(write_group);
613
614 /* Multicast to all DQS IO enables (only 1 in total). */
615 writel(0, &sdr_scc_mgr->dqs_io_ena);
616
617 /* Hit update to zero everything. */
618 writel(0, &sdr_scc_mgr->update);
619 }
620 }
621
622 /*
623 * apply and load a particular input delay for the DQ pins in a group
624 * group_bgn is the index of the first dq pin (in the write group)
625 */
626 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
627 {
628 uint32_t i, p;
629
630 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
631 scc_mgr_set_dq_in_delay(p, delay);
632 scc_mgr_load_dq(p);
633 }
634 }
635
636 /**
637 * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
638 * @delay: Delay value
639 *
640 * Apply and load a particular output delay for the DQ pins in a group.
641 */
642 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
643 {
644 int i;
645
646 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
647 scc_mgr_set_dq_out1_delay(i, delay);
648 scc_mgr_load_dq(i);
649 }
650 }
651
652 /* apply and load a particular output delay for the DM pins in a group */
653 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
654 {
655 uint32_t i;
656
657 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
658 scc_mgr_set_dm_out1_delay(i, delay1);
659 scc_mgr_load_dm(i);
660 }
661 }
662
663
664 /* apply and load delay on both DQS and OCT out1 */
665 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
666 uint32_t delay)
667 {
668 scc_mgr_set_dqs_out1_delay(delay);
669 scc_mgr_load_dqs_io();
670
671 scc_mgr_set_oct_out1_delay(write_group, delay);
672 scc_mgr_load_dqs_for_write_group(write_group);
673 }
674
675 /**
676 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
677 * @write_group: Write group
678 * @delay: Delay value
679 *
680 * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
681 */
682 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
683 const u32 delay)
684 {
685 u32 i, new_delay;
686
687 /* DQ shift */
688 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++)
689 scc_mgr_load_dq(i);
690
691 /* DM shift */
692 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
693 scc_mgr_load_dm(i);
694
695 /* DQS shift */
696 new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
697 if (new_delay > IO_IO_OUT2_DELAY_MAX) {
698 debug_cond(DLEVEL == 1,
699 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
700 __func__, __LINE__, write_group, delay, new_delay,
701 IO_IO_OUT2_DELAY_MAX,
702 new_delay - IO_IO_OUT2_DELAY_MAX);
703 new_delay -= IO_IO_OUT2_DELAY_MAX;
704 scc_mgr_set_dqs_out1_delay(new_delay);
705 }
706
707 scc_mgr_load_dqs_io();
708
709 /* OCT shift */
710 new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
711 if (new_delay > IO_IO_OUT2_DELAY_MAX) {
712 debug_cond(DLEVEL == 1,
713 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
714 __func__, __LINE__, write_group, delay,
715 new_delay, IO_IO_OUT2_DELAY_MAX,
716 new_delay - IO_IO_OUT2_DELAY_MAX);
717 new_delay -= IO_IO_OUT2_DELAY_MAX;
718 scc_mgr_set_oct_out1_delay(write_group, new_delay);
719 }
720
721 scc_mgr_load_dqs_for_write_group(write_group);
722 }
723
724 /**
725 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
726 * @write_group: Write group
727 * @delay: Delay value
728 *
729 * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
730 */
731 static void
732 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
733 const u32 delay)
734 {
735 int r;
736
737 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
738 r += NUM_RANKS_PER_SHADOW_REG) {
739 scc_mgr_apply_group_all_out_delay_add(write_group, delay);
740 writel(0, &sdr_scc_mgr->update);
741 }
742 }
743
744 /**
745 * set_jump_as_return() - Return instruction optimization
746 *
747 * Optimization used to recover some slots in ddr3 inst_rom could be
748 * applied to other protocols if we wanted to
749 */
750 static void set_jump_as_return(void)
751 {
752 /*
753 * To save space, we replace return with jump to special shared
754 * RETURN instruction so we set the counter to large value so that
755 * we always jump.
756 */
757 writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
758 writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
759 }
760
761 /*
762 * should always use constants as argument to ensure all computations are
763 * performed at compile time
764 */
765 static void delay_for_n_mem_clocks(const uint32_t clocks)
766 {
767 uint32_t afi_clocks;
768 uint8_t inner = 0;
769 uint8_t outer = 0;
770 uint16_t c_loop = 0;
771
772 debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
773
774
775 afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
776 /* scale (rounding up) to get afi clocks */
777
778 /*
779 * Note, we don't bother accounting for being off a little bit
780 * because of a few extra instructions in outer loops
781 * Note, the loops have a test at the end, and do the test before
782 * the decrement, and so always perform the loop
783 * 1 time more than the counter value
784 */
785 if (afi_clocks == 0) {
786 ;
787 } else if (afi_clocks <= 0x100) {
788 inner = afi_clocks-1;
789 outer = 0;
790 c_loop = 0;
791 } else if (afi_clocks <= 0x10000) {
792 inner = 0xff;
793 outer = (afi_clocks-1) >> 8;
794 c_loop = 0;
795 } else {
796 inner = 0xff;
797 outer = 0xff;
798 c_loop = (afi_clocks-1) >> 16;
799 }
800
801 /*
802 * rom instructions are structured as follows:
803 *
804 * IDLE_LOOP2: jnz cntr0, TARGET_A
805 * IDLE_LOOP1: jnz cntr1, TARGET_B
806 * return
807 *
808 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
809 * TARGET_B is set to IDLE_LOOP2 as well
810 *
811 * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
812 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
813 *
814 * a little confusing, but it helps save precious space in the inst_rom
815 * and sequencer rom and keeps the delays more accurate and reduces
816 * overhead
817 */
818 if (afi_clocks <= 0x100) {
819 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
820 &sdr_rw_load_mgr_regs->load_cntr1);
821
822 writel(RW_MGR_IDLE_LOOP1,
823 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
824
825 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
826 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
827 } else {
828 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
829 &sdr_rw_load_mgr_regs->load_cntr0);
830
831 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
832 &sdr_rw_load_mgr_regs->load_cntr1);
833
834 writel(RW_MGR_IDLE_LOOP2,
835 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
836
837 writel(RW_MGR_IDLE_LOOP2,
838 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
839
840 /* hack to get around compiler not being smart enough */
841 if (afi_clocks <= 0x10000) {
842 /* only need to run once */
843 writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS |
844 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
845 } else {
846 do {
847 writel(RW_MGR_IDLE_LOOP2,
848 SDR_PHYGRP_RWMGRGRP_ADDRESS |
849 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
850 } while (c_loop-- != 0);
851 }
852 }
853 debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
854 }
855
856 /**
857 * rw_mgr_mem_init_load_regs() - Load instruction registers
858 * @cntr0: Counter 0 value
859 * @cntr1: Counter 1 value
860 * @cntr2: Counter 2 value
861 * @jump: Jump instruction value
862 *
863 * Load instruction registers.
864 */
865 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
866 {
867 uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
868 RW_MGR_RUN_SINGLE_GROUP_OFFSET;
869
870 /* Load counters */
871 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
872 &sdr_rw_load_mgr_regs->load_cntr0);
873 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
874 &sdr_rw_load_mgr_regs->load_cntr1);
875 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
876 &sdr_rw_load_mgr_regs->load_cntr2);
877
878 /* Load jump address */
879 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
880 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
881 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
882
883 /* Execute count instruction */
884 writel(jump, grpaddr);
885 }
886
887 /**
888 * rw_mgr_mem_load_user() - Load user calibration values
889 * @fin1: Final instruction 1
890 * @fin2: Final instruction 2
891 * @precharge: If 1, precharge the banks at the end
892 *
893 * Load user calibration values and optionally precharge the banks.
894 */
895 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
896 const int precharge)
897 {
898 u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
899 RW_MGR_RUN_SINGLE_GROUP_OFFSET;
900 u32 r;
901
902 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
903 if (param->skip_ranks[r]) {
904 /* request to skip the rank */
905 continue;
906 }
907
908 /* set rank */
909 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
910
911 /* precharge all banks ... */
912 if (precharge)
913 writel(RW_MGR_PRECHARGE_ALL, grpaddr);
914
915 /*
916 * USER Use Mirror-ed commands for odd ranks if address
917 * mirrorring is on
918 */
919 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
920 set_jump_as_return();
921 writel(RW_MGR_MRS2_MIRR, grpaddr);
922 delay_for_n_mem_clocks(4);
923 set_jump_as_return();
924 writel(RW_MGR_MRS3_MIRR, grpaddr);
925 delay_for_n_mem_clocks(4);
926 set_jump_as_return();
927 writel(RW_MGR_MRS1_MIRR, grpaddr);
928 delay_for_n_mem_clocks(4);
929 set_jump_as_return();
930 writel(fin1, grpaddr);
931 } else {
932 set_jump_as_return();
933 writel(RW_MGR_MRS2, grpaddr);
934 delay_for_n_mem_clocks(4);
935 set_jump_as_return();
936 writel(RW_MGR_MRS3, grpaddr);
937 delay_for_n_mem_clocks(4);
938 set_jump_as_return();
939 writel(RW_MGR_MRS1, grpaddr);
940 set_jump_as_return();
941 writel(fin2, grpaddr);
942 }
943
944 if (precharge)
945 continue;
946
947 set_jump_as_return();
948 writel(RW_MGR_ZQCL, grpaddr);
949
950 /* tZQinit = tDLLK = 512 ck cycles */
951 delay_for_n_mem_clocks(512);
952 }
953 }
954
955 /**
956 * rw_mgr_mem_initialize() - Initialize RW Manager
957 *
958 * Initialize RW Manager.
959 */
960 static void rw_mgr_mem_initialize(void)
961 {
962 debug("%s:%d\n", __func__, __LINE__);
963
964 /* The reset / cke part of initialization is broadcasted to all ranks */
965 writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
966 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
967
968 /*
969 * Here's how you load register for a loop
970 * Counters are located @ 0x800
971 * Jump address are located @ 0xC00
972 * For both, registers 0 to 3 are selected using bits 3 and 2, like
973 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
974 * I know this ain't pretty, but Avalon bus throws away the 2 least
975 * significant bits
976 */
977
978 /* Start with memory RESET activated */
979
980 /* tINIT = 200us */
981
982 /*
983 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
984 * If a and b are the number of iteration in 2 nested loops
985 * it takes the following number of cycles to complete the operation:
986 * number_of_cycles = ((2 + n) * a + 2) * b
987 * where n is the number of instruction in the inner loop
988 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
989 * b = 6A
990 */
991 rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL,
992 SEQ_TINIT_CNTR2_VAL,
993 RW_MGR_INIT_RESET_0_CKE_0);
994
995 /* Indicate that memory is stable. */
996 writel(1, &phy_mgr_cfg->reset_mem_stbl);
997
998 /*
999 * transition the RESET to high
1000 * Wait for 500us
1001 */
1002
1003 /*
1004 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
1005 * If a and b are the number of iteration in 2 nested loops
1006 * it takes the following number of cycles to complete the operation
1007 * number_of_cycles = ((2 + n) * a + 2) * b
1008 * where n is the number of instruction in the inner loop
1009 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
1010 * b = FF
1011 */
1012 rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL,
1013 SEQ_TRESET_CNTR2_VAL,
1014 RW_MGR_INIT_RESET_1_CKE_0);
1015
1016 /* Bring up clock enable. */
1017
1018 /* tXRP < 250 ck cycles */
1019 delay_for_n_mem_clocks(250);
1020
1021 rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET,
1022 0);
1023 }
1024
1025 /*
1026 * At the end of calibration we have to program the user settings in, and
1027 * USER hand off the memory to the user.
1028 */
1029 static void rw_mgr_mem_handoff(void)
1030 {
1031 rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1);
1032 /*
1033 * USER need to wait tMOD (12CK or 15ns) time before issuing
1034 * other commands, but we will have plenty of NIOS cycles before
1035 * actual handoff so its okay.
1036 */
1037 }
1038
1039 /**
1040 * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns
1041 * @rank_bgn: Rank number
1042 * @group: Read/Write Group
1043 * @all_ranks: Test all ranks
1044 *
1045 * Performs a guaranteed read on the patterns we are going to use during a
1046 * read test to ensure memory works.
1047 */
1048 static int
1049 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group,
1050 const u32 all_ranks)
1051 {
1052 const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1053 RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1054 const u32 addr_offset =
1055 (group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS) << 2;
1056 const u32 rank_end = all_ranks ?
1057 RW_MGR_MEM_NUMBER_OF_RANKS :
1058 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1059 const u32 shift_ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
1060 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
1061 const u32 correct_mask_vg = param->read_correct_mask_vg;
1062
1063 u32 tmp_bit_chk, base_rw_mgr, bit_chk;
1064 int vg, r;
1065 int ret = 0;
1066
1067 bit_chk = param->read_correct_mask;
1068
1069 for (r = rank_bgn; r < rank_end; r++) {
1070 /* Request to skip the rank */
1071 if (param->skip_ranks[r])
1072 continue;
1073
1074 /* Set rank */
1075 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1076
1077 /* Load up a constant bursts of read commands */
1078 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1079 writel(RW_MGR_GUARANTEED_READ,
1080 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1081
1082 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1083 writel(RW_MGR_GUARANTEED_READ_CONT,
1084 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1085
1086 tmp_bit_chk = 0;
1087 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1;
1088 vg >= 0; vg--) {
1089 /* Reset the FIFOs to get pointers to known state. */
1090 writel(0, &phy_mgr_cmd->fifo_reset);
1091 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1092 RW_MGR_RESET_READ_DATAPATH_OFFSET);
1093 writel(RW_MGR_GUARANTEED_READ,
1094 addr + addr_offset + (vg << 2));
1095
1096 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1097 tmp_bit_chk <<= shift_ratio;
1098 tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr;
1099 }
1100
1101 bit_chk &= tmp_bit_chk;
1102 }
1103
1104 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1105
1106 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1107
1108 if (bit_chk != param->read_correct_mask)
1109 ret = -EIO;
1110
1111 debug_cond(DLEVEL == 1,
1112 "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n",
1113 __func__, __LINE__, group, bit_chk,
1114 param->read_correct_mask, ret);
1115
1116 return ret;
1117 }
1118
1119 /**
1120 * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test
1121 * @rank_bgn: Rank number
1122 * @all_ranks: Test all ranks
1123 *
1124 * Load up the patterns we are going to use during a read test.
1125 */
1126 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn,
1127 const int all_ranks)
1128 {
1129 const u32 rank_end = all_ranks ?
1130 RW_MGR_MEM_NUMBER_OF_RANKS :
1131 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1132 u32 r;
1133
1134 debug("%s:%d\n", __func__, __LINE__);
1135
1136 for (r = rank_bgn; r < rank_end; r++) {
1137 if (param->skip_ranks[r])
1138 /* request to skip the rank */
1139 continue;
1140
1141 /* set rank */
1142 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1143
1144 /* Load up a constant bursts */
1145 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1146
1147 writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
1148 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1149
1150 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1151
1152 writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
1153 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1154
1155 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1156
1157 writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
1158 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1159
1160 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1161
1162 writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
1163 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1164
1165 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1166 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1167 }
1168
1169 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1170 }
1171
1172 /*
1173 * try a read and see if it returns correct data back. has dummy reads
1174 * inserted into the mix used to align dqs enable. has more thorough checks
1175 * than the regular read test.
1176 */
1177 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group,
1178 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1179 uint32_t all_groups, uint32_t all_ranks)
1180 {
1181 uint32_t r, vg;
1182 uint32_t correct_mask_vg;
1183 uint32_t tmp_bit_chk;
1184 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1185 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1186 uint32_t addr;
1187 uint32_t base_rw_mgr;
1188
1189 *bit_chk = param->read_correct_mask;
1190 correct_mask_vg = param->read_correct_mask_vg;
1191
1192 uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) &
1193 CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION);
1194
1195 for (r = rank_bgn; r < rank_end; r++) {
1196 if (param->skip_ranks[r])
1197 /* request to skip the rank */
1198 continue;
1199
1200 /* set rank */
1201 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1202
1203 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1204
1205 writel(RW_MGR_READ_B2B_WAIT1,
1206 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1207
1208 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1209 writel(RW_MGR_READ_B2B_WAIT2,
1210 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1211
1212 if (quick_read_mode)
1213 writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1214 /* need at least two (1+1) reads to capture failures */
1215 else if (all_groups)
1216 writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1217 else
1218 writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1219
1220 writel(RW_MGR_READ_B2B,
1221 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1222 if (all_groups)
1223 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1224 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1225 &sdr_rw_load_mgr_regs->load_cntr3);
1226 else
1227 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1228
1229 writel(RW_MGR_READ_B2B,
1230 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1231
1232 tmp_bit_chk = 0;
1233 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1234 /* reset the fifos to get pointers to known state */
1235 writel(0, &phy_mgr_cmd->fifo_reset);
1236 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1237 RW_MGR_RESET_READ_DATAPATH_OFFSET);
1238
1239 tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1240 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1241
1242 if (all_groups)
1243 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET;
1244 else
1245 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1246
1247 writel(RW_MGR_READ_B2B, addr +
1248 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1249 vg) << 2));
1250
1251 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1252 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
1253
1254 if (vg == 0)
1255 break;
1256 }
1257 *bit_chk &= tmp_bit_chk;
1258 }
1259
1260 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1261 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1262
1263 if (all_correct) {
1264 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1265 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\
1266 (%u == %u) => %lu", __func__, __LINE__, group,
1267 all_groups, *bit_chk, param->read_correct_mask,
1268 (long unsigned int)(*bit_chk ==
1269 param->read_correct_mask));
1270 return *bit_chk == param->read_correct_mask;
1271 } else {
1272 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1273 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\
1274 (%u != %lu) => %lu\n", __func__, __LINE__,
1275 group, all_groups, *bit_chk, (long unsigned int)0,
1276 (long unsigned int)(*bit_chk != 0x00));
1277 return *bit_chk != 0x00;
1278 }
1279 }
1280
1281 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group,
1282 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1283 uint32_t all_groups)
1284 {
1285 return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct,
1286 bit_chk, all_groups, 1);
1287 }
1288
1289 static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v)
1290 {
1291 writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1292 (*v)++;
1293 }
1294
1295 static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v)
1296 {
1297 uint32_t i;
1298
1299 for (i = 0; i < VFIFO_SIZE-1; i++)
1300 rw_mgr_incr_vfifo(grp, v);
1301 }
1302
1303 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk)
1304 {
1305 uint32_t v;
1306 uint32_t fail_cnt = 0;
1307 uint32_t test_status;
1308
1309 for (v = 0; v < VFIFO_SIZE; ) {
1310 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n",
1311 __func__, __LINE__, v);
1312 test_status = rw_mgr_mem_calibrate_read_test_all_ranks
1313 (grp, 1, PASS_ONE_BIT, bit_chk, 0);
1314 if (!test_status) {
1315 fail_cnt++;
1316
1317 if (fail_cnt == 2)
1318 break;
1319 }
1320
1321 /* fiddle with FIFO */
1322 rw_mgr_incr_vfifo(grp, &v);
1323 }
1324
1325 if (v >= VFIFO_SIZE) {
1326 /* no failing read found!! Something must have gone wrong */
1327 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n",
1328 __func__, __LINE__);
1329 return 0;
1330 } else {
1331 return v;
1332 }
1333 }
1334
1335 static int sdr_working_phase(uint32_t grp, uint32_t *bit_chk,
1336 uint32_t dtaps_per_ptap, uint32_t *work_bgn,
1337 uint32_t *v, uint32_t *d, uint32_t *p,
1338 uint32_t *i, uint32_t *max_working_cnt)
1339 {
1340 uint32_t found_begin = 0;
1341 uint32_t tmp_delay = 0;
1342 uint32_t test_status;
1343
1344 for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay +=
1345 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1346 *work_bgn = tmp_delay;
1347 scc_mgr_set_dqs_en_delay_all_ranks(grp, *d);
1348
1349 for (*i = 0; *i < VFIFO_SIZE; (*i)++) {
1350 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn +=
1351 IO_DELAY_PER_OPA_TAP) {
1352 scc_mgr_set_dqs_en_phase_all_ranks(grp, *p);
1353
1354 test_status =
1355 rw_mgr_mem_calibrate_read_test_all_ranks
1356 (grp, 1, PASS_ONE_BIT, bit_chk, 0);
1357
1358 if (test_status) {
1359 *max_working_cnt = 1;
1360 found_begin = 1;
1361 break;
1362 }
1363 }
1364
1365 if (found_begin)
1366 break;
1367
1368 if (*p > IO_DQS_EN_PHASE_MAX)
1369 /* fiddle with FIFO */
1370 rw_mgr_incr_vfifo(grp, v);
1371 }
1372
1373 if (found_begin)
1374 break;
1375 }
1376
1377 if (*i >= VFIFO_SIZE) {
1378 /* cannot find working solution */
1379 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\
1380 ptap/dtap\n", __func__, __LINE__);
1381 return 0;
1382 } else {
1383 return 1;
1384 }
1385 }
1386
1387 static void sdr_backup_phase(uint32_t grp, uint32_t *bit_chk,
1388 uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1389 uint32_t *p, uint32_t *max_working_cnt)
1390 {
1391 uint32_t found_begin = 0;
1392 uint32_t tmp_delay;
1393
1394 /* Special case code for backing up a phase */
1395 if (*p == 0) {
1396 *p = IO_DQS_EN_PHASE_MAX;
1397 rw_mgr_decr_vfifo(grp, v);
1398 } else {
1399 (*p)--;
1400 }
1401 tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
1402 scc_mgr_set_dqs_en_phase_all_ranks(grp, *p);
1403
1404 for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn;
1405 (*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1406 scc_mgr_set_dqs_en_delay_all_ranks(grp, *d);
1407
1408 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1409 PASS_ONE_BIT,
1410 bit_chk, 0)) {
1411 found_begin = 1;
1412 *work_bgn = tmp_delay;
1413 break;
1414 }
1415 }
1416
1417 /* We have found a working dtap before the ptap found above */
1418 if (found_begin == 1)
1419 (*max_working_cnt)++;
1420
1421 /*
1422 * Restore VFIFO to old state before we decremented it
1423 * (if needed).
1424 */
1425 (*p)++;
1426 if (*p > IO_DQS_EN_PHASE_MAX) {
1427 *p = 0;
1428 rw_mgr_incr_vfifo(grp, v);
1429 }
1430
1431 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1432 }
1433
1434 static int sdr_nonworking_phase(uint32_t grp, uint32_t *bit_chk,
1435 uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1436 uint32_t *p, uint32_t *i, uint32_t *max_working_cnt,
1437 uint32_t *work_end)
1438 {
1439 uint32_t found_end = 0;
1440
1441 (*p)++;
1442 *work_end += IO_DELAY_PER_OPA_TAP;
1443 if (*p > IO_DQS_EN_PHASE_MAX) {
1444 /* fiddle with FIFO */
1445 *p = 0;
1446 rw_mgr_incr_vfifo(grp, v);
1447 }
1448
1449 for (; *i < VFIFO_SIZE + 1; (*i)++) {
1450 for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end
1451 += IO_DELAY_PER_OPA_TAP) {
1452 scc_mgr_set_dqs_en_phase_all_ranks(grp, *p);
1453
1454 if (!rw_mgr_mem_calibrate_read_test_all_ranks
1455 (grp, 1, PASS_ONE_BIT, bit_chk, 0)) {
1456 found_end = 1;
1457 break;
1458 } else {
1459 (*max_working_cnt)++;
1460 }
1461 }
1462
1463 if (found_end)
1464 break;
1465
1466 if (*p > IO_DQS_EN_PHASE_MAX) {
1467 /* fiddle with FIFO */
1468 rw_mgr_incr_vfifo(grp, v);
1469 *p = 0;
1470 }
1471 }
1472
1473 if (*i >= VFIFO_SIZE + 1) {
1474 /* cannot see edge of failing read */
1475 debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\
1476 failed\n", __func__, __LINE__);
1477 return 0;
1478 } else {
1479 return 1;
1480 }
1481 }
1482
1483 /**
1484 * sdr_find_window_center() - Find center of the working DQS window.
1485 * @grp: Read/Write group
1486 * @work_bgn: First working settings
1487 * @work_end: Last working settings
1488 * @val: VFIFO value
1489 *
1490 * Find center of the working DQS enable window.
1491 */
1492 static int sdr_find_window_center(const u32 grp, const u32 work_bgn,
1493 const u32 work_end, const u32 val)
1494 {
1495 u32 bit_chk, work_mid, v = val;
1496 int tmp_delay = 0;
1497 int i, p, d;
1498
1499 work_mid = (work_bgn + work_end) / 2;
1500
1501 debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1502 work_bgn, work_end, work_mid);
1503 /* Get the middle delay to be less than a VFIFO delay */
1504 tmp_delay = (IO_DQS_EN_PHASE_MAX + 1) * IO_DELAY_PER_OPA_TAP;
1505
1506 debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1507 work_mid %= tmp_delay;
1508 debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid);
1509
1510 tmp_delay = rounddown(work_mid, IO_DELAY_PER_OPA_TAP);
1511 if (tmp_delay > IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP)
1512 tmp_delay = IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP;
1513 p = tmp_delay / IO_DELAY_PER_OPA_TAP;
1514
1515 debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay);
1516
1517 d = DIV_ROUND_UP(work_mid - tmp_delay, IO_DELAY_PER_DQS_EN_DCHAIN_TAP);
1518 if (d > IO_DQS_EN_DELAY_MAX)
1519 d = IO_DQS_EN_DELAY_MAX;
1520 tmp_delay += d * IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1521
1522 debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay);
1523
1524 scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1525 scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1526
1527 /*
1528 * push vfifo until we can successfully calibrate. We can do this
1529 * because the largest possible margin in 1 VFIFO cycle.
1530 */
1531 for (i = 0; i < VFIFO_SIZE; i++) {
1532 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n",
1533 v);
1534 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1535 PASS_ONE_BIT,
1536 &bit_chk, 0)) {
1537 debug_cond(DLEVEL == 2,
1538 "%s:%d center: found: vfifo=%u ptap=%u dtap=%u\n",
1539 __func__, __LINE__, v, p, d);
1540 return 0;
1541 }
1542
1543 /* Fiddle with FIFO. */
1544 rw_mgr_incr_vfifo(grp, &v);
1545 }
1546
1547 debug_cond(DLEVEL == 2, "%s:%d center: failed.\n",
1548 __func__, __LINE__);
1549 return -EINVAL;
1550 }
1551
1552 /* find a good dqs enable to use */
1553 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp)
1554 {
1555 uint32_t v, d, p, i;
1556 uint32_t max_working_cnt;
1557 uint32_t bit_chk;
1558 uint32_t dtaps_per_ptap;
1559 uint32_t work_bgn, work_end;
1560 uint32_t found_passing_read, found_failing_read, initial_failing_dtap;
1561
1562 debug("%s:%d %u\n", __func__, __LINE__, grp);
1563
1564 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1565
1566 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1567 scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1568
1569 /* ************************************************************** */
1570 /* * Step 0 : Determine number of delay taps for each phase tap * */
1571 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1572
1573 /* ********************************************************* */
1574 /* * Step 1 : First push vfifo until we get a failing read * */
1575 v = find_vfifo_read(grp, &bit_chk);
1576
1577 max_working_cnt = 0;
1578
1579 /* ******************************************************** */
1580 /* * step 2: find first working phase, increment in ptaps * */
1581 work_bgn = 0;
1582 if (sdr_working_phase(grp, &bit_chk, dtaps_per_ptap, &work_bgn, &v, &d,
1583 &p, &i, &max_working_cnt) == 0)
1584 return 0;
1585
1586 work_end = work_bgn;
1587
1588 /*
1589 * If d is 0 then the working window covers a phase tap and
1590 * we can follow the old procedure otherwise, we've found the beginning,
1591 * and we need to increment the dtaps until we find the end.
1592 */
1593 if (d == 0) {
1594 /* ********************************************************* */
1595 /* * step 3a: if we have room, back off by one and
1596 increment in dtaps * */
1597
1598 sdr_backup_phase(grp, &bit_chk, &work_bgn, &v, &d, &p,
1599 &max_working_cnt);
1600
1601 /* ********************************************************* */
1602 /* * step 4a: go forward from working phase to non working
1603 phase, increment in ptaps * */
1604 if (sdr_nonworking_phase(grp, &bit_chk, &work_bgn, &v, &d, &p,
1605 &i, &max_working_cnt, &work_end) == 0)
1606 return 0;
1607
1608 /* ********************************************************* */
1609 /* * step 5a: back off one from last, increment in dtaps * */
1610
1611 /* Special case code for backing up a phase */
1612 if (p == 0) {
1613 p = IO_DQS_EN_PHASE_MAX;
1614 rw_mgr_decr_vfifo(grp, &v);
1615 } else {
1616 p = p - 1;
1617 }
1618
1619 work_end -= IO_DELAY_PER_OPA_TAP;
1620 scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1621
1622 /* * The actual increment of dtaps is done outside of
1623 the if/else loop to share code */
1624 d = 0;
1625
1626 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \
1627 vfifo=%u ptap=%u\n", __func__, __LINE__,
1628 v, p);
1629 } else {
1630 /* ******************************************************* */
1631 /* * step 3-5b: Find the right edge of the window using
1632 delay taps * */
1633 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \
1634 ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__,
1635 v, p, d, work_bgn);
1636
1637 work_end = work_bgn;
1638
1639 /* * The actual increment of dtaps is done outside of the
1640 if/else loop to share code */
1641
1642 /* Only here to counterbalance a subtract later on which is
1643 not needed if this branch of the algorithm is taken */
1644 max_working_cnt++;
1645 }
1646
1647 /* The dtap increment to find the failing edge is done here */
1648 for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end +=
1649 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1650 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1651 end-2: dtap=%u\n", __func__, __LINE__, d);
1652 scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1653
1654 if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1655 PASS_ONE_BIT,
1656 &bit_chk, 0)) {
1657 break;
1658 }
1659 }
1660
1661 /* Go back to working dtap */
1662 if (d != 0)
1663 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1664
1665 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \
1666 ptap=%u dtap=%u end=%u\n", __func__, __LINE__,
1667 v, p, d-1, work_end);
1668
1669 if (work_end < work_bgn) {
1670 /* nil range */
1671 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \
1672 failed\n", __func__, __LINE__);
1673 return 0;
1674 }
1675
1676 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n",
1677 __func__, __LINE__, work_bgn, work_end);
1678
1679 /* *************************************************************** */
1680 /*
1681 * * We need to calculate the number of dtaps that equal a ptap
1682 * * To do that we'll back up a ptap and re-find the edge of the
1683 * * window using dtaps
1684 */
1685
1686 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \
1687 for tracking\n", __func__, __LINE__);
1688
1689 /* Special case code for backing up a phase */
1690 if (p == 0) {
1691 p = IO_DQS_EN_PHASE_MAX;
1692 rw_mgr_decr_vfifo(grp, &v);
1693 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1694 cycle/phase: v=%u p=%u\n", __func__, __LINE__,
1695 v, p);
1696 } else {
1697 p = p - 1;
1698 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1699 phase only: v=%u p=%u", __func__, __LINE__,
1700 v, p);
1701 }
1702
1703 scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1704
1705 /*
1706 * Increase dtap until we first see a passing read (in case the
1707 * window is smaller than a ptap),
1708 * and then a failing read to mark the edge of the window again
1709 */
1710
1711 /* Find a passing read */
1712 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n",
1713 __func__, __LINE__);
1714 found_passing_read = 0;
1715 found_failing_read = 0;
1716 initial_failing_dtap = d;
1717 for (; d <= IO_DQS_EN_DELAY_MAX; d++) {
1718 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \
1719 read d=%u\n", __func__, __LINE__, d);
1720 scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1721
1722 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1723 PASS_ONE_BIT,
1724 &bit_chk, 0)) {
1725 found_passing_read = 1;
1726 break;
1727 }
1728 }
1729
1730 if (found_passing_read) {
1731 /* Find a failing read */
1732 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \
1733 read\n", __func__, __LINE__);
1734 for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) {
1735 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1736 testing read d=%u\n", __func__, __LINE__, d);
1737 scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1738
1739 if (!rw_mgr_mem_calibrate_read_test_all_ranks
1740 (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
1741 found_failing_read = 1;
1742 break;
1743 }
1744 }
1745 } else {
1746 debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \
1747 calculate dtaps", __func__, __LINE__);
1748 debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n");
1749 }
1750
1751 /*
1752 * The dynamically calculated dtaps_per_ptap is only valid if we
1753 * found a passing/failing read. If we didn't, it means d hit the max
1754 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1755 * statically calculated value.
1756 */
1757 if (found_passing_read && found_failing_read)
1758 dtaps_per_ptap = d - initial_failing_dtap;
1759
1760 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1761 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \
1762 - %u = %u", __func__, __LINE__, d,
1763 initial_failing_dtap, dtaps_per_ptap);
1764
1765 /* ******************************************** */
1766 /* * step 6: Find the centre of the window * */
1767 if (sdr_find_window_centre(grp, work_bgn, work_end, v))
1768 return 0; /* FIXME: Old code, return 0 means failure :-( */
1769
1770 return 1;
1771 }
1772
1773 /* per-bit deskew DQ and center */
1774 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn,
1775 uint32_t write_group, uint32_t read_group, uint32_t test_bgn,
1776 uint32_t use_read_test, uint32_t update_fom)
1777 {
1778 uint32_t i, p, d, min_index;
1779 /*
1780 * Store these as signed since there are comparisons with
1781 * signed numbers.
1782 */
1783 uint32_t bit_chk;
1784 uint32_t sticky_bit_chk;
1785 int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1786 int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1787 int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
1788 int32_t mid;
1789 int32_t orig_mid_min, mid_min;
1790 int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs,
1791 final_dqs_en;
1792 int32_t dq_margin, dqs_margin;
1793 uint32_t stop;
1794 uint32_t temp_dq_in_delay1, temp_dq_in_delay2;
1795 uint32_t addr;
1796
1797 debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn);
1798
1799 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET;
1800 start_dqs = readl(addr + (read_group << 2));
1801 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
1802 start_dqs_en = readl(addr + ((read_group << 2)
1803 - IO_DQS_EN_DELAY_OFFSET));
1804
1805 /* set the left and right edge of each bit to an illegal value */
1806 /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
1807 sticky_bit_chk = 0;
1808 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1809 left_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1810 right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1811 }
1812
1813 /* Search for the left edge of the window for each bit */
1814 for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) {
1815 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d);
1816
1817 writel(0, &sdr_scc_mgr->update);
1818
1819 /*
1820 * Stop searching when the read test doesn't pass AND when
1821 * we've seen a passing read on every bit.
1822 */
1823 if (use_read_test) {
1824 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1825 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1826 &bit_chk, 0, 0);
1827 } else {
1828 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1829 0, PASS_ONE_BIT,
1830 &bit_chk, 0);
1831 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1832 (read_group - (write_group *
1833 RW_MGR_MEM_IF_READ_DQS_WIDTH /
1834 RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1835 stop = (bit_chk == 0);
1836 }
1837 sticky_bit_chk = sticky_bit_chk | bit_chk;
1838 stop = stop && (sticky_bit_chk == param->read_correct_mask);
1839 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \
1840 && %u", __func__, __LINE__, d,
1841 sticky_bit_chk,
1842 param->read_correct_mask, stop);
1843
1844 if (stop == 1) {
1845 break;
1846 } else {
1847 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1848 if (bit_chk & 1) {
1849 /* Remember a passing test as the
1850 left_edge */
1851 left_edge[i] = d;
1852 } else {
1853 /* If a left edge has not been seen yet,
1854 then a future passing test will mark
1855 this edge as the right edge */
1856 if (left_edge[i] ==
1857 IO_IO_IN_DELAY_MAX + 1) {
1858 right_edge[i] = -(d + 1);
1859 }
1860 }
1861 bit_chk = bit_chk >> 1;
1862 }
1863 }
1864 }
1865
1866 /* Reset DQ delay chains to 0 */
1867 scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
1868 sticky_bit_chk = 0;
1869 for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) {
1870 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
1871 %d right_edge[%u]: %d\n", __func__, __LINE__,
1872 i, left_edge[i], i, right_edge[i]);
1873
1874 /*
1875 * Check for cases where we haven't found the left edge,
1876 * which makes our assignment of the the right edge invalid.
1877 * Reset it to the illegal value.
1878 */
1879 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && (
1880 right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1881 right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1882 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \
1883 right_edge[%u]: %d\n", __func__, __LINE__,
1884 i, right_edge[i]);
1885 }
1886
1887 /*
1888 * Reset sticky bit (except for bits where we have seen
1889 * both the left and right edge).
1890 */
1891 sticky_bit_chk = sticky_bit_chk << 1;
1892 if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) &&
1893 (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1894 sticky_bit_chk = sticky_bit_chk | 1;
1895 }
1896
1897 if (i == 0)
1898 break;
1899 }
1900
1901 /* Search for the right edge of the window for each bit */
1902 for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) {
1903 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
1904 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
1905 uint32_t delay = d + start_dqs_en;
1906 if (delay > IO_DQS_EN_DELAY_MAX)
1907 delay = IO_DQS_EN_DELAY_MAX;
1908 scc_mgr_set_dqs_en_delay(read_group, delay);
1909 }
1910 scc_mgr_load_dqs(read_group);
1911
1912 writel(0, &sdr_scc_mgr->update);
1913
1914 /*
1915 * Stop searching when the read test doesn't pass AND when
1916 * we've seen a passing read on every bit.
1917 */
1918 if (use_read_test) {
1919 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1920 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1921 &bit_chk, 0, 0);
1922 } else {
1923 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1924 0, PASS_ONE_BIT,
1925 &bit_chk, 0);
1926 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1927 (read_group - (write_group *
1928 RW_MGR_MEM_IF_READ_DQS_WIDTH /
1929 RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1930 stop = (bit_chk == 0);
1931 }
1932 sticky_bit_chk = sticky_bit_chk | bit_chk;
1933 stop = stop && (sticky_bit_chk == param->read_correct_mask);
1934
1935 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \
1936 %u && %u", __func__, __LINE__, d,
1937 sticky_bit_chk, param->read_correct_mask, stop);
1938
1939 if (stop == 1) {
1940 break;
1941 } else {
1942 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1943 if (bit_chk & 1) {
1944 /* Remember a passing test as
1945 the right_edge */
1946 right_edge[i] = d;
1947 } else {
1948 if (d != 0) {
1949 /* If a right edge has not been
1950 seen yet, then a future passing
1951 test will mark this edge as the
1952 left edge */
1953 if (right_edge[i] ==
1954 IO_IO_IN_DELAY_MAX + 1) {
1955 left_edge[i] = -(d + 1);
1956 }
1957 } else {
1958 /* d = 0 failed, but it passed
1959 when testing the left edge,
1960 so it must be marginal,
1961 set it to -1 */
1962 if (right_edge[i] ==
1963 IO_IO_IN_DELAY_MAX + 1 &&
1964 left_edge[i] !=
1965 IO_IO_IN_DELAY_MAX
1966 + 1) {
1967 right_edge[i] = -1;
1968 }
1969 /* If a right edge has not been
1970 seen yet, then a future passing
1971 test will mark this edge as the
1972 left edge */
1973 else if (right_edge[i] ==
1974 IO_IO_IN_DELAY_MAX +
1975 1) {
1976 left_edge[i] = -(d + 1);
1977 }
1978 }
1979 }
1980
1981 debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\
1982 d=%u]: ", __func__, __LINE__, d);
1983 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ",
1984 (int)(bit_chk & 1), i, left_edge[i]);
1985 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
1986 right_edge[i]);
1987 bit_chk = bit_chk >> 1;
1988 }
1989 }
1990 }
1991
1992 /* Check that all bits have a window */
1993 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1994 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
1995 %d right_edge[%u]: %d", __func__, __LINE__,
1996 i, left_edge[i], i, right_edge[i]);
1997 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i]
1998 == IO_IO_IN_DELAY_MAX + 1)) {
1999 /*
2000 * Restore delay chain settings before letting the loop
2001 * in rw_mgr_mem_calibrate_vfifo to retry different
2002 * dqs/ck relationships.
2003 */
2004 scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs);
2005 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2006 scc_mgr_set_dqs_en_delay(read_group,
2007 start_dqs_en);
2008 }
2009 scc_mgr_load_dqs(read_group);
2010 writel(0, &sdr_scc_mgr->update);
2011
2012 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \
2013 find edge [%u]: %d %d", __func__, __LINE__,
2014 i, left_edge[i], right_edge[i]);
2015 if (use_read_test) {
2016 set_failing_group_stage(read_group *
2017 RW_MGR_MEM_DQ_PER_READ_DQS + i,
2018 CAL_STAGE_VFIFO,
2019 CAL_SUBSTAGE_VFIFO_CENTER);
2020 } else {
2021 set_failing_group_stage(read_group *
2022 RW_MGR_MEM_DQ_PER_READ_DQS + i,
2023 CAL_STAGE_VFIFO_AFTER_WRITES,
2024 CAL_SUBSTAGE_VFIFO_CENTER);
2025 }
2026 return 0;
2027 }
2028 }
2029
2030 /* Find middle of window for each DQ bit */
2031 mid_min = left_edge[0] - right_edge[0];
2032 min_index = 0;
2033 for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2034 mid = left_edge[i] - right_edge[i];
2035 if (mid < mid_min) {
2036 mid_min = mid;
2037 min_index = i;
2038 }
2039 }
2040
2041 /*
2042 * -mid_min/2 represents the amount that we need to move DQS.
2043 * If mid_min is odd and positive we'll need to add one to
2044 * make sure the rounding in further calculations is correct
2045 * (always bias to the right), so just add 1 for all positive values.
2046 */
2047 if (mid_min > 0)
2048 mid_min++;
2049
2050 mid_min = mid_min / 2;
2051
2052 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n",
2053 __func__, __LINE__, mid_min, min_index);
2054
2055 /* Determine the amount we can change DQS (which is -mid_min) */
2056 orig_mid_min = mid_min;
2057 new_dqs = start_dqs - mid_min;
2058 if (new_dqs > IO_DQS_IN_DELAY_MAX)
2059 new_dqs = IO_DQS_IN_DELAY_MAX;
2060 else if (new_dqs < 0)
2061 new_dqs = 0;
2062
2063 mid_min = start_dqs - new_dqs;
2064 debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2065 mid_min, new_dqs);
2066
2067 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2068 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2069 mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2070 else if (start_dqs_en - mid_min < 0)
2071 mid_min += start_dqs_en - mid_min;
2072 }
2073 new_dqs = start_dqs - mid_min;
2074
2075 debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \
2076 new_dqs=%d mid_min=%d\n", start_dqs,
2077 IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2078 new_dqs, mid_min);
2079
2080 /* Initialize data for export structures */
2081 dqs_margin = IO_IO_IN_DELAY_MAX + 1;
2082 dq_margin = IO_IO_IN_DELAY_MAX + 1;
2083
2084 /* add delay to bring centre of all DQ windows to the same "level" */
2085 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
2086 /* Use values before divide by 2 to reduce round off error */
2087 shift_dq = (left_edge[i] - right_edge[i] -
2088 (left_edge[min_index] - right_edge[min_index]))/2 +
2089 (orig_mid_min - mid_min);
2090
2091 debug_cond(DLEVEL == 2, "vfifo_center: before: \
2092 shift_dq[%u]=%d\n", i, shift_dq);
2093
2094 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET;
2095 temp_dq_in_delay1 = readl(addr + (p << 2));
2096 temp_dq_in_delay2 = readl(addr + (i << 2));
2097
2098 if (shift_dq + (int32_t)temp_dq_in_delay1 >
2099 (int32_t)IO_IO_IN_DELAY_MAX) {
2100 shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2;
2101 } else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) {
2102 shift_dq = -(int32_t)temp_dq_in_delay1;
2103 }
2104 debug_cond(DLEVEL == 2, "vfifo_center: after: \
2105 shift_dq[%u]=%d\n", i, shift_dq);
2106 final_dq[i] = temp_dq_in_delay1 + shift_dq;
2107 scc_mgr_set_dq_in_delay(p, final_dq[i]);
2108 scc_mgr_load_dq(p);
2109
2110 debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i,
2111 left_edge[i] - shift_dq + (-mid_min),
2112 right_edge[i] + shift_dq - (-mid_min));
2113 /* To determine values for export structures */
2114 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2115 dq_margin = left_edge[i] - shift_dq + (-mid_min);
2116
2117 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2118 dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2119 }
2120
2121 final_dqs = new_dqs;
2122 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2123 final_dqs_en = start_dqs_en - mid_min;
2124
2125 /* Move DQS-en */
2126 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2127 scc_mgr_set_dqs_en_delay(read_group, final_dqs_en);
2128 scc_mgr_load_dqs(read_group);
2129 }
2130
2131 /* Move DQS */
2132 scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs);
2133 scc_mgr_load_dqs(read_group);
2134 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \
2135 dqs_margin=%d", __func__, __LINE__,
2136 dq_margin, dqs_margin);
2137
2138 /*
2139 * Do not remove this line as it makes sure all of our decisions
2140 * have been applied. Apply the update bit.
2141 */
2142 writel(0, &sdr_scc_mgr->update);
2143
2144 return (dq_margin >= 0) && (dqs_margin >= 0);
2145 }
2146
2147 /**
2148 * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device
2149 * @rw_group: Read/Write Group
2150 * @phase: DQ/DQS phase
2151 *
2152 * Because initially no communication ca be reliably performed with the memory
2153 * device, the sequencer uses a guaranteed write mechanism to write data into
2154 * the memory device.
2155 */
2156 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group,
2157 const u32 phase)
2158 {
2159 int ret;
2160
2161 /* Set a particular DQ/DQS phase. */
2162 scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase);
2163
2164 debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n",
2165 __func__, __LINE__, rw_group, phase);
2166
2167 /*
2168 * Altera EMI_RM 2015.05.04 :: Figure 1-25
2169 * Load up the patterns used by read calibration using the
2170 * current DQDQS phase.
2171 */
2172 rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2173
2174 if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)
2175 return 0;
2176
2177 /*
2178 * Altera EMI_RM 2015.05.04 :: Figure 1-26
2179 * Back-to-Back reads of the patterns used for calibration.
2180 */
2181 ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1);
2182 if (ret)
2183 debug_cond(DLEVEL == 1,
2184 "%s:%d Guaranteed read test failed: g=%u p=%u\n",
2185 __func__, __LINE__, rw_group, phase);
2186 return ret;
2187 }
2188
2189 /**
2190 * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration
2191 * @rw_group: Read/Write Group
2192 * @test_bgn: Rank at which the test begins
2193 *
2194 * DQS enable calibration ensures reliable capture of the DQ signal without
2195 * glitches on the DQS line.
2196 */
2197 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group,
2198 const u32 test_bgn)
2199 {
2200 /*
2201 * Altera EMI_RM 2015.05.04 :: Figure 1-27
2202 * DQS and DQS Eanble Signal Relationships.
2203 */
2204
2205 /* We start at zero, so have one less dq to devide among */
2206 const u32 delay_step = IO_IO_IN_DELAY_MAX /
2207 (RW_MGR_MEM_DQ_PER_READ_DQS - 1);
2208 int found;
2209 u32 i, p, d, r;
2210
2211 debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn);
2212
2213 /* Try different dq_in_delays since the DQ path is shorter than DQS. */
2214 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2215 r += NUM_RANKS_PER_SHADOW_REG) {
2216 for (i = 0, p = test_bgn, d = 0;
2217 i < RW_MGR_MEM_DQ_PER_READ_DQS;
2218 i++, p++, d += delay_step) {
2219 debug_cond(DLEVEL == 1,
2220 "%s:%d: g=%u r=%u i=%u p=%u d=%u\n",
2221 __func__, __LINE__, rw_group, r, i, p, d);
2222
2223 scc_mgr_set_dq_in_delay(p, d);
2224 scc_mgr_load_dq(p);
2225 }
2226
2227 writel(0, &sdr_scc_mgr->update);
2228 }
2229
2230 /*
2231 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
2232 * dq_in_delay values
2233 */
2234 found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group);
2235
2236 debug_cond(DLEVEL == 1,
2237 "%s:%d: g=%u found=%u; Reseting delay chain to zero\n",
2238 __func__, __LINE__, rw_group, found);
2239
2240 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2241 r += NUM_RANKS_PER_SHADOW_REG) {
2242 scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2243 writel(0, &sdr_scc_mgr->update);
2244 }
2245
2246 if (!found)
2247 return -EINVAL;
2248
2249 return 0;
2250
2251 }
2252
2253 /**
2254 * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS
2255 * @rw_group: Read/Write Group
2256 * @test_bgn: Rank at which the test begins
2257 * @use_read_test: Perform a read test
2258 * @update_fom: Update FOM
2259 *
2260 * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads
2261 * within a group.
2262 */
2263 static int
2264 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn,
2265 const int use_read_test,
2266 const int update_fom)
2267
2268 {
2269 int ret, grp_calibrated;
2270 u32 rank_bgn, sr;
2271
2272 /*
2273 * Altera EMI_RM 2015.05.04 :: Figure 1-28
2274 * Read per-bit deskew can be done on a per shadow register basis.
2275 */
2276 grp_calibrated = 1;
2277 for (rank_bgn = 0, sr = 0;
2278 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2279 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
2280 /* Check if this set of ranks should be skipped entirely. */
2281 if (param->skip_shadow_regs[sr])
2282 continue;
2283
2284 ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group,
2285 rw_group, test_bgn,
2286 use_read_test,
2287 update_fom);
2288 if (ret)
2289 continue;
2290
2291 grp_calibrated = 0;
2292 }
2293
2294 if (!grp_calibrated)
2295 return -EIO;
2296
2297 return 0;
2298 }
2299
2300 /**
2301 * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
2302 * @rw_group: Read/Write Group
2303 * @test_bgn: Rank at which the test begins
2304 *
2305 * Stage 1: Calibrate the read valid prediction FIFO.
2306 *
2307 * This function implements UniPHY calibration Stage 1, as explained in
2308 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2309 *
2310 * - read valid prediction will consist of finding:
2311 * - DQS enable phase and DQS enable delay (DQS Enable Calibration)
2312 * - DQS input phase and DQS input delay (DQ/DQS Centering)
2313 * - we also do a per-bit deskew on the DQ lines.
2314 */
2315 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn)
2316 {
2317 uint32_t p, d;
2318 uint32_t dtaps_per_ptap;
2319 uint32_t failed_substage;
2320
2321 int ret;
2322
2323 debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn);
2324
2325 /* Update info for sims */
2326 reg_file_set_group(rw_group);
2327 reg_file_set_stage(CAL_STAGE_VFIFO);
2328 reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2329
2330 failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2331
2332 /* USER Determine number of delay taps for each phase tap. */
2333 dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP,
2334 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1;
2335
2336 for (d = 0; d <= dtaps_per_ptap; d += 2) {
2337 /*
2338 * In RLDRAMX we may be messing the delay of pins in
2339 * the same write rw_group but outside of the current read
2340 * the rw_group, but that's ok because we haven't calibrated
2341 * output side yet.
2342 */
2343 if (d > 0) {
2344 scc_mgr_apply_group_all_out_delay_add_all_ranks(
2345 rw_group, d);
2346 }
2347
2348 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) {
2349 /* 1) Guaranteed Write */
2350 ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p);
2351 if (ret)
2352 break;
2353
2354 /* 2) DQS Enable Calibration */
2355 ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group,
2356 test_bgn);
2357 if (ret) {
2358 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2359 continue;
2360 }
2361
2362 /* 3) Centering DQ/DQS */
2363 /*
2364 * If doing read after write calibration, do not update
2365 * FOM now. Do it then.
2366 */
2367 ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group,
2368 test_bgn, 1, 0);
2369 if (ret) {
2370 failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
2371 continue;
2372 }
2373
2374 /* All done. */
2375 goto cal_done_ok;
2376 }
2377 }
2378
2379 /* Calibration Stage 1 failed. */
2380 set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage);
2381 return 0;
2382
2383 /* Calibration Stage 1 completed OK. */
2384 cal_done_ok:
2385 /*
2386 * Reset the delay chains back to zero if they have moved > 1
2387 * (check for > 1 because loop will increase d even when pass in
2388 * first case).
2389 */
2390 if (d > 2)
2391 scc_mgr_zero_group(rw_group, 1);
2392
2393 return 1;
2394 }
2395
2396 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */
2397 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group,
2398 uint32_t test_bgn)
2399 {
2400 uint32_t rank_bgn, sr;
2401 uint32_t grp_calibrated;
2402 uint32_t write_group;
2403
2404 debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn);
2405
2406 /* update info for sims */
2407
2408 reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2409 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2410
2411 write_group = read_group;
2412
2413 /* update info for sims */
2414 reg_file_set_group(read_group);
2415
2416 grp_calibrated = 1;
2417 /* Read per-bit deskew can be done on a per shadow register basis */
2418 for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2419 rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
2420 /* Determine if this set of ranks should be skipped entirely */
2421 if (!param->skip_shadow_regs[sr]) {
2422 /* This is the last calibration round, update FOM here */
2423 if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn,
2424 write_group,
2425 read_group,
2426 test_bgn, 0,
2427 1)) {
2428 grp_calibrated = 0;
2429 }
2430 }
2431 }
2432
2433
2434 if (grp_calibrated == 0) {
2435 set_failing_group_stage(write_group,
2436 CAL_STAGE_VFIFO_AFTER_WRITES,
2437 CAL_SUBSTAGE_VFIFO_CENTER);
2438 return 0;
2439 }
2440
2441 return 1;
2442 }
2443
2444 /* Calibrate LFIFO to find smallest read latency */
2445 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2446 {
2447 uint32_t found_one;
2448 uint32_t bit_chk;
2449
2450 debug("%s:%d\n", __func__, __LINE__);
2451
2452 /* update info for sims */
2453 reg_file_set_stage(CAL_STAGE_LFIFO);
2454 reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2455
2456 /* Load up the patterns used by read calibration for all ranks */
2457 rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2458 found_one = 0;
2459
2460 do {
2461 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2462 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2463 __func__, __LINE__, gbl->curr_read_lat);
2464
2465 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0,
2466 NUM_READ_TESTS,
2467 PASS_ALL_BITS,
2468 &bit_chk, 1)) {
2469 break;
2470 }
2471
2472 found_one = 1;
2473 /* reduce read latency and see if things are working */
2474 /* correctly */
2475 gbl->curr_read_lat--;
2476 } while (gbl->curr_read_lat > 0);
2477
2478 /* reset the fifos to get pointers to known state */
2479
2480 writel(0, &phy_mgr_cmd->fifo_reset);
2481
2482 if (found_one) {
2483 /* add a fudge factor to the read latency that was determined */
2484 gbl->curr_read_lat += 2;
2485 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2486 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \
2487 read_lat=%u\n", __func__, __LINE__,
2488 gbl->curr_read_lat);
2489 return 1;
2490 } else {
2491 set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2492 CAL_SUBSTAGE_READ_LATENCY);
2493
2494 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \
2495 read_lat=%u\n", __func__, __LINE__,
2496 gbl->curr_read_lat);
2497 return 0;
2498 }
2499 }
2500
2501 /*
2502 * issue write test command.
2503 * two variants are provided. one that just tests a write pattern and
2504 * another that tests datamask functionality.
2505 */
2506 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group,
2507 uint32_t test_dm)
2508 {
2509 uint32_t mcc_instruction;
2510 uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) &&
2511 ENABLE_SUPER_QUICK_CALIBRATION);
2512 uint32_t rw_wl_nop_cycles;
2513 uint32_t addr;
2514
2515 /*
2516 * Set counter and jump addresses for the right
2517 * number of NOP cycles.
2518 * The number of supported NOP cycles can range from -1 to infinity
2519 * Three different cases are handled:
2520 *
2521 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
2522 * mechanism will be used to insert the right number of NOPs
2523 *
2524 * 2. For a number of NOP cycles equals to 0, the micro-instruction
2525 * issuing the write command will jump straight to the
2526 * micro-instruction that turns on DQS (for DDRx), or outputs write
2527 * data (for RLD), skipping
2528 * the NOP micro-instruction all together
2529 *
2530 * 3. A number of NOP cycles equal to -1 indicates that DQS must be
2531 * turned on in the same micro-instruction that issues the write
2532 * command. Then we need
2533 * to directly jump to the micro-instruction that sends out the data
2534 *
2535 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
2536 * (2 and 3). One jump-counter (0) is used to perform multiple
2537 * write-read operations.
2538 * one counter left to issue this command in "multiple-group" mode
2539 */
2540
2541 rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
2542
2543 if (rw_wl_nop_cycles == -1) {
2544 /*
2545 * CNTR 2 - We want to execute the special write operation that
2546 * turns on DQS right away and then skip directly to the
2547 * instruction that sends out the data. We set the counter to a
2548 * large number so that the jump is always taken.
2549 */
2550 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2551
2552 /* CNTR 3 - Not used */
2553 if (test_dm) {
2554 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
2555 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
2556 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2557 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2558 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2559 } else {
2560 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
2561 writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
2562 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2563 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2564 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2565 }
2566 } else if (rw_wl_nop_cycles == 0) {
2567 /*
2568 * CNTR 2 - We want to skip the NOP operation and go straight
2569 * to the DQS enable instruction. We set the counter to a large
2570 * number so that the jump is always taken.
2571 */
2572 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2573
2574 /* CNTR 3 - Not used */
2575 if (test_dm) {
2576 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2577 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
2578 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2579 } else {
2580 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2581 writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
2582 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2583 }
2584 } else {
2585 /*
2586 * CNTR 2 - In this case we want to execute the next instruction
2587 * and NOT take the jump. So we set the counter to 0. The jump
2588 * address doesn't count.
2589 */
2590 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
2591 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2592
2593 /*
2594 * CNTR 3 - Set the nop counter to the number of cycles we
2595 * need to loop for, minus 1.
2596 */
2597 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
2598 if (test_dm) {
2599 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2600 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2601 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2602 } else {
2603 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2604 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2605 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2606 }
2607 }
2608
2609 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
2610 RW_MGR_RESET_READ_DATAPATH_OFFSET);
2611
2612 if (quick_write_mode)
2613 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
2614 else
2615 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
2616
2617 writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
2618
2619 /*
2620 * CNTR 1 - This is used to ensure enough time elapses
2621 * for read data to come back.
2622 */
2623 writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
2624
2625 if (test_dm) {
2626 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
2627 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
2628 } else {
2629 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
2630 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
2631 }
2632
2633 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
2634 writel(mcc_instruction, addr + (group << 2));
2635 }
2636
2637 /* Test writes, can check for a single bit pass or multiple bit pass */
2638 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
2639 uint32_t write_group, uint32_t use_dm, uint32_t all_correct,
2640 uint32_t *bit_chk, uint32_t all_ranks)
2641 {
2642 uint32_t r;
2643 uint32_t correct_mask_vg;
2644 uint32_t tmp_bit_chk;
2645 uint32_t vg;
2646 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
2647 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
2648 uint32_t addr_rw_mgr;
2649 uint32_t base_rw_mgr;
2650
2651 *bit_chk = param->write_correct_mask;
2652 correct_mask_vg = param->write_correct_mask_vg;
2653
2654 for (r = rank_bgn; r < rank_end; r++) {
2655 if (param->skip_ranks[r]) {
2656 /* request to skip the rank */
2657 continue;
2658 }
2659
2660 /* set rank */
2661 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
2662
2663 tmp_bit_chk = 0;
2664 addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
2665 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) {
2666 /* reset the fifos to get pointers to known state */
2667 writel(0, &phy_mgr_cmd->fifo_reset);
2668
2669 tmp_bit_chk = tmp_bit_chk <<
2670 (RW_MGR_MEM_DQ_PER_WRITE_DQS /
2671 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
2672 rw_mgr_mem_calibrate_write_test_issue(write_group *
2673 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg,
2674 use_dm);
2675
2676 base_rw_mgr = readl(addr_rw_mgr);
2677 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
2678 if (vg == 0)
2679 break;
2680 }
2681 *bit_chk &= tmp_bit_chk;
2682 }
2683
2684 if (all_correct) {
2685 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2686 debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \
2687 %u => %lu", write_group, use_dm,
2688 *bit_chk, param->write_correct_mask,
2689 (long unsigned int)(*bit_chk ==
2690 param->write_correct_mask));
2691 return *bit_chk == param->write_correct_mask;
2692 } else {
2693 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2694 debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ",
2695 write_group, use_dm, *bit_chk);
2696 debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0,
2697 (long unsigned int)(*bit_chk != 0));
2698 return *bit_chk != 0x00;
2699 }
2700 }
2701
2702 /*
2703 * center all windows. do per-bit-deskew to possibly increase size of
2704 * certain windows.
2705 */
2706 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn,
2707 uint32_t write_group, uint32_t test_bgn)
2708 {
2709 uint32_t i, p, min_index;
2710 int32_t d;
2711 /*
2712 * Store these as signed since there are comparisons with
2713 * signed numbers.
2714 */
2715 uint32_t bit_chk;
2716 uint32_t sticky_bit_chk;
2717 int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2718 int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2719 int32_t mid;
2720 int32_t mid_min, orig_mid_min;
2721 int32_t new_dqs, start_dqs, shift_dq;
2722 int32_t dq_margin, dqs_margin, dm_margin;
2723 uint32_t stop;
2724 uint32_t temp_dq_out1_delay;
2725 uint32_t addr;
2726
2727 debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2728
2729 dm_margin = 0;
2730
2731 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2732 start_dqs = readl(addr +
2733 (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
2734
2735 /* per-bit deskew */
2736
2737 /*
2738 * set the left and right edge of each bit to an illegal value
2739 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
2740 */
2741 sticky_bit_chk = 0;
2742 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2743 left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2744 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2745 }
2746
2747 /* Search for the left edge of the window for each bit */
2748 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
2749 scc_mgr_apply_group_dq_out1_delay(write_group, d);
2750
2751 writel(0, &sdr_scc_mgr->update);
2752
2753 /*
2754 * Stop searching when the read test doesn't pass AND when
2755 * we've seen a passing read on every bit.
2756 */
2757 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2758 0, PASS_ONE_BIT, &bit_chk, 0);
2759 sticky_bit_chk = sticky_bit_chk | bit_chk;
2760 stop = stop && (sticky_bit_chk == param->write_correct_mask);
2761 debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \
2762 == %u && %u [bit_chk= %u ]\n",
2763 d, sticky_bit_chk, param->write_correct_mask,
2764 stop, bit_chk);
2765
2766 if (stop == 1) {
2767 break;
2768 } else {
2769 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2770 if (bit_chk & 1) {
2771 /*
2772 * Remember a passing test as the
2773 * left_edge.
2774 */
2775 left_edge[i] = d;
2776 } else {
2777 /*
2778 * If a left edge has not been seen
2779 * yet, then a future passing test will
2780 * mark this edge as the right edge.
2781 */
2782 if (left_edge[i] ==
2783 IO_IO_OUT1_DELAY_MAX + 1) {
2784 right_edge[i] = -(d + 1);
2785 }
2786 }
2787 debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d);
2788 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2789 (int)(bit_chk & 1), i, left_edge[i]);
2790 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2791 right_edge[i]);
2792 bit_chk = bit_chk >> 1;
2793 }
2794 }
2795 }
2796
2797 /* Reset DQ delay chains to 0 */
2798 scc_mgr_apply_group_dq_out1_delay(0);
2799 sticky_bit_chk = 0;
2800 for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) {
2801 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2802 %d right_edge[%u]: %d\n", __func__, __LINE__,
2803 i, left_edge[i], i, right_edge[i]);
2804
2805 /*
2806 * Check for cases where we haven't found the left edge,
2807 * which makes our assignment of the the right edge invalid.
2808 * Reset it to the illegal value.
2809 */
2810 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) &&
2811 (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
2812 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2813 debug_cond(DLEVEL == 2, "%s:%d write_center: reset \
2814 right_edge[%u]: %d\n", __func__, __LINE__,
2815 i, right_edge[i]);
2816 }
2817
2818 /*
2819 * Reset sticky bit (except for bits where we have
2820 * seen the left edge).
2821 */
2822 sticky_bit_chk = sticky_bit_chk << 1;
2823 if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1))
2824 sticky_bit_chk = sticky_bit_chk | 1;
2825
2826 if (i == 0)
2827 break;
2828 }
2829
2830 /* Search for the right edge of the window for each bit */
2831 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) {
2832 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2833 d + start_dqs);
2834
2835 writel(0, &sdr_scc_mgr->update);
2836
2837 /*
2838 * Stop searching when the read test doesn't pass AND when
2839 * we've seen a passing read on every bit.
2840 */
2841 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2842 0, PASS_ONE_BIT, &bit_chk, 0);
2843
2844 sticky_bit_chk = sticky_bit_chk | bit_chk;
2845 stop = stop && (sticky_bit_chk == param->write_correct_mask);
2846
2847 debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \
2848 %u && %u\n", d, sticky_bit_chk,
2849 param->write_correct_mask, stop);
2850
2851 if (stop == 1) {
2852 if (d == 0) {
2853 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS;
2854 i++) {
2855 /* d = 0 failed, but it passed when
2856 testing the left edge, so it must be
2857 marginal, set it to -1 */
2858 if (right_edge[i] ==
2859 IO_IO_OUT1_DELAY_MAX + 1 &&
2860 left_edge[i] !=
2861 IO_IO_OUT1_DELAY_MAX + 1) {
2862 right_edge[i] = -1;
2863 }
2864 }
2865 }
2866 break;
2867 } else {
2868 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2869 if (bit_chk & 1) {
2870 /*
2871 * Remember a passing test as
2872 * the right_edge.
2873 */
2874 right_edge[i] = d;
2875 } else {
2876 if (d != 0) {
2877 /*
2878 * If a right edge has not
2879 * been seen yet, then a future
2880 * passing test will mark this
2881 * edge as the left edge.
2882 */
2883 if (right_edge[i] ==
2884 IO_IO_OUT1_DELAY_MAX + 1)
2885 left_edge[i] = -(d + 1);
2886 } else {
2887 /*
2888 * d = 0 failed, but it passed
2889 * when testing the left edge,
2890 * so it must be marginal, set
2891 * it to -1.
2892 */
2893 if (right_edge[i] ==
2894 IO_IO_OUT1_DELAY_MAX + 1 &&
2895 left_edge[i] !=
2896 IO_IO_OUT1_DELAY_MAX + 1)
2897 right_edge[i] = -1;
2898 /*
2899 * If a right edge has not been
2900 * seen yet, then a future
2901 * passing test will mark this
2902 * edge as the left edge.
2903 */
2904 else if (right_edge[i] ==
2905 IO_IO_OUT1_DELAY_MAX +
2906 1)
2907 left_edge[i] = -(d + 1);
2908 }
2909 }
2910 debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d);
2911 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2912 (int)(bit_chk & 1), i, left_edge[i]);
2913 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2914 right_edge[i]);
2915 bit_chk = bit_chk >> 1;
2916 }
2917 }
2918 }
2919
2920 /* Check that all bits have a window */
2921 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2922 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2923 %d right_edge[%u]: %d", __func__, __LINE__,
2924 i, left_edge[i], i, right_edge[i]);
2925 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) ||
2926 (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) {
2927 set_failing_group_stage(test_bgn + i,
2928 CAL_STAGE_WRITES,
2929 CAL_SUBSTAGE_WRITES_CENTER);
2930 return 0;
2931 }
2932 }
2933
2934 /* Find middle of window for each DQ bit */
2935 mid_min = left_edge[0] - right_edge[0];
2936 min_index = 0;
2937 for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2938 mid = left_edge[i] - right_edge[i];
2939 if (mid < mid_min) {
2940 mid_min = mid;
2941 min_index = i;
2942 }
2943 }
2944
2945 /*
2946 * -mid_min/2 represents the amount that we need to move DQS.
2947 * If mid_min is odd and positive we'll need to add one to
2948 * make sure the rounding in further calculations is correct
2949 * (always bias to the right), so just add 1 for all positive values.
2950 */
2951 if (mid_min > 0)
2952 mid_min++;
2953 mid_min = mid_min / 2;
2954 debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__,
2955 __LINE__, mid_min);
2956
2957 /* Determine the amount we can change DQS (which is -mid_min) */
2958 orig_mid_min = mid_min;
2959 new_dqs = start_dqs;
2960 mid_min = 0;
2961 debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \
2962 mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min);
2963 /* Initialize data for export structures */
2964 dqs_margin = IO_IO_OUT1_DELAY_MAX + 1;
2965 dq_margin = IO_IO_OUT1_DELAY_MAX + 1;
2966
2967 /* add delay to bring centre of all DQ windows to the same "level" */
2968 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
2969 /* Use values before divide by 2 to reduce round off error */
2970 shift_dq = (left_edge[i] - right_edge[i] -
2971 (left_edge[min_index] - right_edge[min_index]))/2 +
2972 (orig_mid_min - mid_min);
2973
2974 debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \
2975 [%u]=%d\n", __func__, __LINE__, i, shift_dq);
2976
2977 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2978 temp_dq_out1_delay = readl(addr + (i << 2));
2979 if (shift_dq + (int32_t)temp_dq_out1_delay >
2980 (int32_t)IO_IO_OUT1_DELAY_MAX) {
2981 shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay;
2982 } else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) {
2983 shift_dq = -(int32_t)temp_dq_out1_delay;
2984 }
2985 debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n",
2986 i, shift_dq);
2987 scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq);
2988 scc_mgr_load_dq(i);
2989
2990 debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i,
2991 left_edge[i] - shift_dq + (-mid_min),
2992 right_edge[i] + shift_dq - (-mid_min));
2993 /* To determine values for export structures */
2994 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2995 dq_margin = left_edge[i] - shift_dq + (-mid_min);
2996
2997 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2998 dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2999 }
3000
3001 /* Move DQS */
3002 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3003 writel(0, &sdr_scc_mgr->update);
3004
3005 /* Centre DM */
3006 debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
3007
3008 /*
3009 * set the left and right edge of each bit to an illegal value,
3010 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value,
3011 */
3012 left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
3013 right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
3014 int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3015 int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3016 int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
3017 int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1;
3018 int32_t win_best = 0;
3019
3020 /* Search for the/part of the window with DM shift */
3021 for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) {
3022 scc_mgr_apply_group_dm_out1_delay(d);
3023 writel(0, &sdr_scc_mgr->update);
3024
3025 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3026 PASS_ALL_BITS, &bit_chk,
3027 0)) {
3028 /* USE Set current end of the window */
3029 end_curr = -d;
3030 /*
3031 * If a starting edge of our window has not been seen
3032 * this is our current start of the DM window.
3033 */
3034 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3035 bgn_curr = -d;
3036
3037 /*
3038 * If current window is bigger than best seen.
3039 * Set best seen to be current window.
3040 */
3041 if ((end_curr-bgn_curr+1) > win_best) {
3042 win_best = end_curr-bgn_curr+1;
3043 bgn_best = bgn_curr;
3044 end_best = end_curr;
3045 }
3046 } else {
3047 /* We just saw a failing test. Reset temp edge */
3048 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3049 end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3050 }
3051 }
3052
3053
3054 /* Reset DM delay chains to 0 */
3055 scc_mgr_apply_group_dm_out1_delay(0);
3056
3057 /*
3058 * Check to see if the current window nudges up aganist 0 delay.
3059 * If so we need to continue the search by shifting DQS otherwise DQS
3060 * search begins as a new search. */
3061 if (end_curr != 0) {
3062 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3063 end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3064 }
3065
3066 /* Search for the/part of the window with DQS shifts */
3067 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) {
3068 /*
3069 * Note: This only shifts DQS, so are we limiting ourselve to
3070 * width of DQ unnecessarily.
3071 */
3072 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
3073 d + new_dqs);
3074
3075 writel(0, &sdr_scc_mgr->update);
3076 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3077 PASS_ALL_BITS, &bit_chk,
3078 0)) {
3079 /* USE Set current end of the window */
3080 end_curr = d;
3081 /*
3082 * If a beginning edge of our window has not been seen
3083 * this is our current begin of the DM window.
3084 */
3085 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3086 bgn_curr = d;
3087
3088 /*
3089 * If current window is bigger than best seen. Set best
3090 * seen to be current window.
3091 */
3092 if ((end_curr-bgn_curr+1) > win_best) {
3093 win_best = end_curr-bgn_curr+1;
3094 bgn_best = bgn_curr;
3095 end_best = end_curr;
3096 }
3097 } else {
3098 /* We just saw a failing test. Reset temp edge */
3099 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3100 end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3101
3102 /* Early exit optimization: if ther remaining delay
3103 chain space is less than already seen largest window
3104 we can exit */
3105 if ((win_best-1) >
3106 (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) {
3107 break;
3108 }
3109 }
3110 }
3111
3112 /* assign left and right edge for cal and reporting; */
3113 left_edge[0] = -1*bgn_best;
3114 right_edge[0] = end_best;
3115
3116 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__,
3117 __LINE__, left_edge[0], right_edge[0]);
3118
3119 /* Move DQS (back to orig) */
3120 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3121
3122 /* Move DM */
3123
3124 /* Find middle of window for the DM bit */
3125 mid = (left_edge[0] - right_edge[0]) / 2;
3126
3127 /* only move right, since we are not moving DQS/DQ */
3128 if (mid < 0)
3129 mid = 0;
3130
3131 /* dm_marign should fail if we never find a window */
3132 if (win_best == 0)
3133 dm_margin = -1;
3134 else
3135 dm_margin = left_edge[0] - mid;
3136
3137 scc_mgr_apply_group_dm_out1_delay(mid);
3138 writel(0, &sdr_scc_mgr->update);
3139
3140 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \
3141 dm_margin=%d\n", __func__, __LINE__, left_edge[0],
3142 right_edge[0], mid, dm_margin);
3143 /* Export values */
3144 gbl->fom_out += dq_margin + dqs_margin;
3145
3146 debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \
3147 dqs_margin=%d dm_margin=%d\n", __func__, __LINE__,
3148 dq_margin, dqs_margin, dm_margin);
3149
3150 /*
3151 * Do not remove this line as it makes sure all of our
3152 * decisions have been applied.
3153 */
3154 writel(0, &sdr_scc_mgr->update);
3155 return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0);
3156 }
3157
3158 /* calibrate the write operations */
3159 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g,
3160 uint32_t test_bgn)
3161 {
3162 /* update info for sims */
3163 debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn);
3164
3165 reg_file_set_stage(CAL_STAGE_WRITES);
3166 reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3167
3168 reg_file_set_group(g);
3169
3170 if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) {
3171 set_failing_group_stage(g, CAL_STAGE_WRITES,
3172 CAL_SUBSTAGE_WRITES_CENTER);
3173 return 0;
3174 }
3175
3176 return 1;
3177 }
3178
3179 /**
3180 * mem_precharge_and_activate() - Precharge all banks and activate
3181 *
3182 * Precharge all banks and activate row 0 in bank "000..." and bank "111...".
3183 */
3184 static void mem_precharge_and_activate(void)
3185 {
3186 int r;
3187
3188 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
3189 /* Test if the rank should be skipped. */
3190 if (param->skip_ranks[r])
3191 continue;
3192
3193 /* Set rank. */
3194 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3195
3196 /* Precharge all banks. */
3197 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3198 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3199
3200 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3201 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
3202 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3203
3204 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3205 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
3206 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3207
3208 /* Activate rows. */
3209 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3210 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3211 }
3212 }
3213
3214 /**
3215 * mem_init_latency() - Configure memory RLAT and WLAT settings
3216 *
3217 * Configure memory RLAT and WLAT parameters.
3218 */
3219 static void mem_init_latency(void)
3220 {
3221 /*
3222 * For AV/CV, LFIFO is hardened and always runs at full rate
3223 * so max latency in AFI clocks, used here, is correspondingly
3224 * smaller.
3225 */
3226 const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1;
3227 u32 rlat, wlat;
3228
3229 debug("%s:%d\n", __func__, __LINE__);
3230
3231 /*
3232 * Read in write latency.
3233 * WL for Hard PHY does not include additive latency.
3234 */
3235 wlat = readl(&data_mgr->t_wl_add);
3236 wlat += readl(&data_mgr->mem_t_add);
3237
3238 gbl->rw_wl_nop_cycles = wlat - 1;
3239
3240 /* Read in readl latency. */
3241 rlat = readl(&data_mgr->t_rl_add);
3242
3243 /* Set a pretty high read latency initially. */
3244 gbl->curr_read_lat = rlat + 16;
3245 if (gbl->curr_read_lat > max_latency)
3246 gbl->curr_read_lat = max_latency;
3247
3248 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3249
3250 /* Advertise write latency. */
3251 writel(wlat, &phy_mgr_cfg->afi_wlat);
3252 }
3253
3254 /**
3255 * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
3256 *
3257 * Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
3258 */
3259 static void mem_skip_calibrate(void)
3260 {
3261 uint32_t vfifo_offset;
3262 uint32_t i, j, r;
3263
3264 debug("%s:%d\n", __func__, __LINE__);
3265 /* Need to update every shadow register set used by the interface */
3266 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
3267 r += NUM_RANKS_PER_SHADOW_REG) {
3268 /*
3269 * Set output phase alignment settings appropriate for
3270 * skip calibration.
3271 */
3272 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3273 scc_mgr_set_dqs_en_phase(i, 0);
3274 #if IO_DLL_CHAIN_LENGTH == 6
3275 scc_mgr_set_dqdqs_output_phase(i, 6);
3276 #else
3277 scc_mgr_set_dqdqs_output_phase(i, 7);
3278 #endif
3279 /*
3280 * Case:33398
3281 *
3282 * Write data arrives to the I/O two cycles before write
3283 * latency is reached (720 deg).
3284 * -> due to bit-slip in a/c bus
3285 * -> to allow board skew where dqs is longer than ck
3286 * -> how often can this happen!?
3287 * -> can claim back some ptaps for high freq
3288 * support if we can relax this, but i digress...
3289 *
3290 * The write_clk leads mem_ck by 90 deg
3291 * The minimum ptap of the OPA is 180 deg
3292 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3293 * The write_clk is always delayed by 2 ptaps
3294 *
3295 * Hence, to make DQS aligned to CK, we need to delay
3296 * DQS by:
3297 * (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3298 *
3299 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3300 * gives us the number of ptaps, which simplies to:
3301 *
3302 * (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3303 */
3304 scc_mgr_set_dqdqs_output_phase(i,
3305 1.25 * IO_DLL_CHAIN_LENGTH - 2);
3306 }
3307 writel(0xff, &sdr_scc_mgr->dqs_ena);
3308 writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3309
3310 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
3311 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3312 SCC_MGR_GROUP_COUNTER_OFFSET);
3313 }
3314 writel(0xff, &sdr_scc_mgr->dq_ena);
3315 writel(0xff, &sdr_scc_mgr->dm_ena);
3316 writel(0, &sdr_scc_mgr->update);
3317 }
3318
3319 /* Compensate for simulation model behaviour */
3320 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3321 scc_mgr_set_dqs_bus_in_delay(i, 10);
3322 scc_mgr_load_dqs(i);
3323 }
3324 writel(0, &sdr_scc_mgr->update);
3325
3326 /*
3327 * ArriaV has hard FIFOs that can only be initialized by incrementing
3328 * in sequencer.
3329 */
3330 vfifo_offset = CALIB_VFIFO_OFFSET;
3331 for (j = 0; j < vfifo_offset; j++)
3332 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3333 writel(0, &phy_mgr_cmd->fifo_reset);
3334
3335 /*
3336 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
3337 * setting from generation-time constant.
3338 */
3339 gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3340 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3341 }
3342
3343 /**
3344 * mem_calibrate() - Memory calibration entry point.
3345 *
3346 * Perform memory calibration.
3347 */
3348 static uint32_t mem_calibrate(void)
3349 {
3350 uint32_t i;
3351 uint32_t rank_bgn, sr;
3352 uint32_t write_group, write_test_bgn;
3353 uint32_t read_group, read_test_bgn;
3354 uint32_t run_groups, current_run;
3355 uint32_t failing_groups = 0;
3356 uint32_t group_failed = 0;
3357
3358 const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
3359 RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
3360
3361 debug("%s:%d\n", __func__, __LINE__);
3362
3363 /* Initialize the data settings */
3364 gbl->error_substage = CAL_SUBSTAGE_NIL;
3365 gbl->error_stage = CAL_STAGE_NIL;
3366 gbl->error_group = 0xff;
3367 gbl->fom_in = 0;
3368 gbl->fom_out = 0;
3369
3370 /* Initialize WLAT and RLAT. */
3371 mem_init_latency();
3372
3373 /* Initialize bit slips. */
3374 mem_precharge_and_activate();
3375
3376 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3377 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3378 SCC_MGR_GROUP_COUNTER_OFFSET);
3379 /* Only needed once to set all groups, pins, DQ, DQS, DM. */
3380 if (i == 0)
3381 scc_mgr_set_hhp_extras();
3382
3383 scc_set_bypass_mode(i);
3384 }
3385
3386 /* Calibration is skipped. */
3387 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3388 /*
3389 * Set VFIFO and LFIFO to instant-on settings in skip
3390 * calibration mode.
3391 */
3392 mem_skip_calibrate();
3393
3394 /*
3395 * Do not remove this line as it makes sure all of our
3396 * decisions have been applied.
3397 */
3398 writel(0, &sdr_scc_mgr->update);
3399 return 1;
3400 }
3401
3402 /* Calibration is not skipped. */
3403 for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3404 /*
3405 * Zero all delay chain/phase settings for all
3406 * groups and all shadow register sets.
3407 */
3408 scc_mgr_zero_all();
3409
3410 run_groups = ~param->skip_groups;
3411
3412 for (write_group = 0, write_test_bgn = 0; write_group
3413 < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3414 write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
3415
3416 /* Initialize the group failure */
3417 group_failed = 0;
3418
3419 current_run = run_groups & ((1 <<
3420 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3421 run_groups = run_groups >>
3422 RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3423
3424 if (current_run == 0)
3425 continue;
3426
3427 writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3428 SCC_MGR_GROUP_COUNTER_OFFSET);
3429 scc_mgr_zero_group(write_group, 0);
3430
3431 for (read_group = write_group * rwdqs_ratio,
3432 read_test_bgn = 0;
3433 read_group < (write_group + 1) * rwdqs_ratio;
3434 read_group++,
3435 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3436 if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO)
3437 continue;
3438
3439 /* Calibrate the VFIFO */
3440 if (rw_mgr_mem_calibrate_vfifo(read_group,
3441 read_test_bgn))
3442 continue;
3443
3444 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3445 return 0;
3446
3447 /* The group failed, we're done. */
3448 goto grp_failed;
3449 }
3450
3451 /* Calibrate the output side */
3452 for (rank_bgn = 0, sr = 0;
3453 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
3454 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
3455 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3456 continue;
3457
3458 /* Not needed in quick mode! */
3459 if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS)
3460 continue;
3461
3462 /*
3463 * Determine if this set of ranks
3464 * should be skipped entirely.
3465 */
3466 if (param->skip_shadow_regs[sr])
3467 continue;
3468
3469 /* Calibrate WRITEs */
3470 if (rw_mgr_mem_calibrate_writes(rank_bgn,
3471 write_group, write_test_bgn))
3472 continue;
3473
3474 group_failed = 1;
3475 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3476 return 0;
3477 }
3478
3479 /* Some group failed, we're done. */
3480 if (group_failed)
3481 goto grp_failed;
3482
3483 for (read_group = write_group * rwdqs_ratio,
3484 read_test_bgn = 0;
3485 read_group < (write_group + 1) * rwdqs_ratio;
3486 read_group++,
3487 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3488 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3489 continue;
3490
3491 if (rw_mgr_mem_calibrate_vfifo_end(read_group,
3492 read_test_bgn))
3493 continue;
3494
3495 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3496 return 0;
3497
3498 /* The group failed, we're done. */
3499 goto grp_failed;
3500 }
3501
3502 /* No group failed, continue as usual. */
3503 continue;
3504
3505 grp_failed: /* A group failed, increment the counter. */
3506 failing_groups++;
3507 }
3508
3509 /*
3510 * USER If there are any failing groups then report
3511 * the failure.
3512 */
3513 if (failing_groups != 0)
3514 return 0;
3515
3516 if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO)
3517 continue;
3518
3519 /*
3520 * If we're skipping groups as part of debug,
3521 * don't calibrate LFIFO.
3522 */
3523 if (param->skip_groups != 0)
3524 continue;
3525
3526 /* Calibrate the LFIFO */
3527 if (!rw_mgr_mem_calibrate_lfifo())
3528 return 0;
3529 }
3530
3531 /*
3532 * Do not remove this line as it makes sure all of our decisions
3533 * have been applied.
3534 */
3535 writel(0, &sdr_scc_mgr->update);
3536 return 1;
3537 }
3538
3539 /**
3540 * run_mem_calibrate() - Perform memory calibration
3541 *
3542 * This function triggers the entire memory calibration procedure.
3543 */
3544 static int run_mem_calibrate(void)
3545 {
3546 int pass;
3547
3548 debug("%s:%d\n", __func__, __LINE__);
3549
3550 /* Reset pass/fail status shown on afi_cal_success/fail */
3551 writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3552
3553 /* Stop tracking manager. */
3554 clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3555
3556 phy_mgr_initialize();
3557 rw_mgr_mem_initialize();
3558
3559 /* Perform the actual memory calibration. */
3560 pass = mem_calibrate();
3561
3562 mem_precharge_and_activate();
3563 writel(0, &phy_mgr_cmd->fifo_reset);
3564
3565 /* Handoff. */
3566 rw_mgr_mem_handoff();
3567 /*
3568 * In Hard PHY this is a 2-bit control:
3569 * 0: AFI Mux Select
3570 * 1: DDIO Mux Select
3571 */
3572 writel(0x2, &phy_mgr_cfg->mux_sel);
3573
3574 /* Start tracking manager. */
3575 setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3576
3577 return pass;
3578 }
3579
3580 /**
3581 * debug_mem_calibrate() - Report result of memory calibration
3582 * @pass: Value indicating whether calibration passed or failed
3583 *
3584 * This function reports the results of the memory calibration
3585 * and writes debug information into the register file.
3586 */
3587 static void debug_mem_calibrate(int pass)
3588 {
3589 uint32_t debug_info;
3590
3591 if (pass) {
3592 printf("%s: CALIBRATION PASSED\n", __FILE__);
3593
3594 gbl->fom_in /= 2;
3595 gbl->fom_out /= 2;
3596
3597 if (gbl->fom_in > 0xff)
3598 gbl->fom_in = 0xff;
3599
3600 if (gbl->fom_out > 0xff)
3601 gbl->fom_out = 0xff;
3602
3603 /* Update the FOM in the register file */
3604 debug_info = gbl->fom_in;
3605 debug_info |= gbl->fom_out << 8;
3606 writel(debug_info, &sdr_reg_file->fom);
3607
3608 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3609 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3610 } else {
3611 printf("%s: CALIBRATION FAILED\n", __FILE__);
3612
3613 debug_info = gbl->error_stage;
3614 debug_info |= gbl->error_substage << 8;
3615 debug_info |= gbl->error_group << 16;
3616
3617 writel(debug_info, &sdr_reg_file->failing_stage);
3618 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3619 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3620
3621 /* Update the failing group/stage in the register file */
3622 debug_info = gbl->error_stage;
3623 debug_info |= gbl->error_substage << 8;
3624 debug_info |= gbl->error_group << 16;
3625 writel(debug_info, &sdr_reg_file->failing_stage);
3626 }
3627
3628 printf("%s: Calibration complete\n", __FILE__);
3629 }
3630
3631 /**
3632 * hc_initialize_rom_data() - Initialize ROM data
3633 *
3634 * Initialize ROM data.
3635 */
3636 static void hc_initialize_rom_data(void)
3637 {
3638 u32 i, addr;
3639
3640 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3641 for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++)
3642 writel(inst_rom_init[i], addr + (i << 2));
3643
3644 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3645 for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++)
3646 writel(ac_rom_init[i], addr + (i << 2));
3647 }
3648
3649 /**
3650 * initialize_reg_file() - Initialize SDR register file
3651 *
3652 * Initialize SDR register file.
3653 */
3654 static void initialize_reg_file(void)
3655 {
3656 /* Initialize the register file with the correct data */
3657 writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3658 writel(0, &sdr_reg_file->debug_data_addr);
3659 writel(0, &sdr_reg_file->cur_stage);
3660 writel(0, &sdr_reg_file->fom);
3661 writel(0, &sdr_reg_file->failing_stage);
3662 writel(0, &sdr_reg_file->debug1);
3663 writel(0, &sdr_reg_file->debug2);
3664 }
3665
3666 /**
3667 * initialize_hps_phy() - Initialize HPS PHY
3668 *
3669 * Initialize HPS PHY.
3670 */
3671 static void initialize_hps_phy(void)
3672 {
3673 uint32_t reg;
3674 /*
3675 * Tracking also gets configured here because it's in the
3676 * same register.
3677 */
3678 uint32_t trk_sample_count = 7500;
3679 uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3680 /*
3681 * Format is number of outer loops in the 16 MSB, sample
3682 * count in 16 LSB.
3683 */
3684
3685 reg = 0;
3686 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3687 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3688 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3689 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3690 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3691 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3692 /*
3693 * This field selects the intrinsic latency to RDATA_EN/FULL path.
3694 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3695 */
3696 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3697 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3698 trk_sample_count);
3699 writel(reg, &sdr_ctrl->phy_ctrl0);
3700
3701 reg = 0;
3702 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3703 trk_sample_count >>
3704 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3705 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3706 trk_long_idle_sample_count);
3707 writel(reg, &sdr_ctrl->phy_ctrl1);
3708
3709 reg = 0;
3710 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3711 trk_long_idle_sample_count >>
3712 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3713 writel(reg, &sdr_ctrl->phy_ctrl2);
3714 }
3715
3716 /**
3717 * initialize_tracking() - Initialize tracking
3718 *
3719 * Initialize the register file with usable initial data.
3720 */
3721 static void initialize_tracking(void)
3722 {
3723 /*
3724 * Initialize the register file with the correct data.
3725 * Compute usable version of value in case we skip full
3726 * computation later.
3727 */
3728 writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1,
3729 &sdr_reg_file->dtaps_per_ptap);
3730
3731 /* trk_sample_count */
3732 writel(7500, &sdr_reg_file->trk_sample_count);
3733
3734 /* longidle outer loop [15:0] */
3735 writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
3736
3737 /*
3738 * longidle sample count [31:24]
3739 * trfc, worst case of 933Mhz 4Gb [23:16]
3740 * trcd, worst case [15:8]
3741 * vfifo wait [7:0]
3742 */
3743 writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
3744 &sdr_reg_file->delays);
3745
3746 /* mux delay */
3747 writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) |
3748 (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0),
3749 &sdr_reg_file->trk_rw_mgr_addr);
3750
3751 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH,
3752 &sdr_reg_file->trk_read_dqs_width);
3753
3754 /* trefi [7:0] */
3755 writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0),
3756 &sdr_reg_file->trk_rfsh);
3757 }
3758
3759 int sdram_calibration_full(void)
3760 {
3761 struct param_type my_param;
3762 struct gbl_type my_gbl;
3763 uint32_t pass;
3764
3765 memset(&my_param, 0, sizeof(my_param));
3766 memset(&my_gbl, 0, sizeof(my_gbl));
3767
3768 param = &my_param;
3769 gbl = &my_gbl;
3770
3771 /* Set the calibration enabled by default */
3772 gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3773 /*
3774 * Only sweep all groups (regardless of fail state) by default
3775 * Set enabled read test by default.
3776 */
3777 #if DISABLE_GUARANTEED_READ
3778 gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3779 #endif
3780 /* Initialize the register file */
3781 initialize_reg_file();
3782
3783 /* Initialize any PHY CSR */
3784 initialize_hps_phy();
3785
3786 scc_mgr_initialize();
3787
3788 initialize_tracking();
3789
3790 printf("%s: Preparing to start memory calibration\n", __FILE__);
3791
3792 debug("%s:%d\n", __func__, __LINE__);
3793 debug_cond(DLEVEL == 1,
3794 "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3795 RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
3796 RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
3797 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
3798 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
3799 debug_cond(DLEVEL == 1,
3800 "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3801 RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3802 RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
3803 IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
3804 debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3805 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
3806 debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3807 IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
3808 IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
3809 debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3810 IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
3811 IO_IO_OUT2_DELAY_MAX);
3812 debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3813 IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3814
3815 hc_initialize_rom_data();
3816
3817 /* update info for sims */
3818 reg_file_set_stage(CAL_STAGE_NIL);
3819 reg_file_set_group(0);
3820
3821 /*
3822 * Load global needed for those actions that require
3823 * some dynamic calibration support.
3824 */
3825 dyn_calib_steps = STATIC_CALIB_STEPS;
3826 /*
3827 * Load global to allow dynamic selection of delay loop settings
3828 * based on calibration mode.
3829 */
3830 if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3831 skip_delay_mask = 0xff;
3832 else
3833 skip_delay_mask = 0x0;
3834
3835 pass = run_mem_calibrate();
3836 debug_mem_calibrate(pass);
3837 return pass;
3838 }