]> git.ipfire.org Git - thirdparty/u-boot.git/blob - drivers/ddr/fsl/ddr2_dimm_params.c
062c849075356afd15de7fb223c5927862efe07e
[thirdparty/u-boot.git] / drivers / ddr / fsl / ddr2_dimm_params.c
1 /*
2 * Copyright 2008 Freescale Semiconductor, Inc.
3 *
4 * SPDX-License-Identifier: GPL-2.0
5 */
6
7 #include <common.h>
8 #include <fsl_ddr_sdram.h>
9
10 #include <fsl_ddr.h>
11 /*
12 * Calculate the Density of each Physical Rank.
13 * Returned size is in bytes.
14 *
15 * Study these table from Byte 31 of JEDEC SPD Spec.
16 *
17 * DDR I DDR II
18 * Bit Size Size
19 * --- ----- ------
20 * 7 high 512MB 512MB
21 * 6 256MB 256MB
22 * 5 128MB 128MB
23 * 4 64MB 16GB
24 * 3 32MB 8GB
25 * 2 16MB 4GB
26 * 1 2GB 2GB
27 * 0 low 1GB 1GB
28 *
29 * Reorder Table to be linear by stripping the bottom
30 * 2 or 5 bits off and shifting them up to the top.
31 *
32 */
33 static unsigned long long
34 compute_ranksize(unsigned int mem_type, unsigned char row_dens)
35 {
36 unsigned long long bsize;
37
38 /* Bottom 5 bits up to the top. */
39 bsize = ((row_dens >> 5) | ((row_dens & 31) << 3));
40 bsize <<= 27ULL;
41 debug("DDR: DDR II rank density = 0x%16llx\n", bsize);
42
43 return bsize;
44 }
45
46 /*
47 * Convert a two-nibble BCD value into a cycle time.
48 * While the spec calls for nano-seconds, picos are returned.
49 *
50 * This implements the tables for bytes 9, 23 and 25 for both
51 * DDR I and II. No allowance for distinguishing the invalid
52 * fields absent for DDR I yet present in DDR II is made.
53 * (That is, cycle times of .25, .33, .66 and .75 ns are
54 * allowed for both DDR II and I.)
55 */
56 static unsigned int
57 convert_bcd_tenths_to_cycle_time_ps(unsigned int spd_val)
58 {
59 /* Table look up the lower nibble, allow DDR I & II. */
60 unsigned int tenths_ps[16] = {
61 0,
62 100,
63 200,
64 300,
65 400,
66 500,
67 600,
68 700,
69 800,
70 900,
71 250, /* This and the next 3 entries valid ... */
72 330, /* ... only for tCK calculations. */
73 660,
74 750,
75 0, /* undefined */
76 0 /* undefined */
77 };
78
79 unsigned int whole_ns = (spd_val & 0xF0) >> 4;
80 unsigned int tenth_ns = spd_val & 0x0F;
81 unsigned int ps = whole_ns * 1000 + tenths_ps[tenth_ns];
82
83 return ps;
84 }
85
86 static unsigned int
87 convert_bcd_hundredths_to_cycle_time_ps(unsigned int spd_val)
88 {
89 unsigned int tenth_ns = (spd_val & 0xF0) >> 4;
90 unsigned int hundredth_ns = spd_val & 0x0F;
91 unsigned int ps = tenth_ns * 100 + hundredth_ns * 10;
92
93 return ps;
94 }
95
96 static unsigned int byte40_table_ps[8] = {
97 0,
98 250,
99 330,
100 500,
101 660,
102 750,
103 0, /* supposed to be RFC, but not sure what that means */
104 0 /* Undefined */
105 };
106
107 static unsigned int
108 compute_trfc_ps_from_spd(unsigned char trctrfc_ext, unsigned char trfc)
109 {
110 return (((trctrfc_ext & 0x1) * 256) + trfc) * 1000
111 + byte40_table_ps[(trctrfc_ext >> 1) & 0x7];
112 }
113
114 static unsigned int
115 compute_trc_ps_from_spd(unsigned char trctrfc_ext, unsigned char trc)
116 {
117 return trc * 1000 + byte40_table_ps[(trctrfc_ext >> 4) & 0x7];
118 }
119
120 /*
121 * Determine Refresh Rate. Ignore self refresh bit on DDR I.
122 * Table from SPD Spec, Byte 12, converted to picoseconds and
123 * filled in with "default" normal values.
124 */
125 static unsigned int
126 determine_refresh_rate_ps(const unsigned int spd_refresh)
127 {
128 unsigned int refresh_time_ps[8] = {
129 15625000, /* 0 Normal 1.00x */
130 3900000, /* 1 Reduced .25x */
131 7800000, /* 2 Extended .50x */
132 31300000, /* 3 Extended 2.00x */
133 62500000, /* 4 Extended 4.00x */
134 125000000, /* 5 Extended 8.00x */
135 15625000, /* 6 Normal 1.00x filler */
136 15625000, /* 7 Normal 1.00x filler */
137 };
138
139 return refresh_time_ps[spd_refresh & 0x7];
140 }
141
142 /*
143 * The purpose of this function is to compute a suitable
144 * CAS latency given the DRAM clock period. The SPD only
145 * defines at most 3 CAS latencies. Typically the slower in
146 * frequency the DIMM runs at, the shorter its CAS latency can.
147 * be. If the DIMM is operating at a sufficiently low frequency,
148 * it may be able to run at a CAS latency shorter than the
149 * shortest SPD-defined CAS latency.
150 *
151 * If a CAS latency is not found, 0 is returned.
152 *
153 * Do this by finding in the standard speed bin table the longest
154 * tCKmin that doesn't exceed the value of mclk_ps (tCK).
155 *
156 * An assumption made is that the SDRAM device allows the
157 * CL to be programmed for a value that is lower than those
158 * advertised by the SPD. This is not always the case,
159 * as those modes not defined in the SPD are optional.
160 *
161 * CAS latency de-rating based upon values JEDEC Standard No. 79-2C
162 * Table 40, "DDR2 SDRAM stanadard speed bins and tCK, tRCD, tRP, tRAS,
163 * and tRC for corresponding bin"
164 *
165 * ordinal 2, ddr2_speed_bins[1] contains tCK for CL=3
166 * Not certain if any good value exists for CL=2
167 */
168 /* CL2 CL3 CL4 CL5 CL6 CL7*/
169 unsigned short ddr2_speed_bins[] = { 0, 5000, 3750, 3000, 2500, 1875 };
170
171 unsigned int
172 compute_derated_DDR2_CAS_latency(unsigned int mclk_ps)
173 {
174 const unsigned int num_speed_bins = ARRAY_SIZE(ddr2_speed_bins);
175 unsigned int lowest_tCKmin_found = 0;
176 unsigned int lowest_tCKmin_CL = 0;
177 unsigned int i;
178
179 debug("mclk_ps = %u\n", mclk_ps);
180
181 for (i = 0; i < num_speed_bins; i++) {
182 unsigned int x = ddr2_speed_bins[i];
183 debug("i=%u, x = %u, lowest_tCKmin_found = %u\n",
184 i, x, lowest_tCKmin_found);
185 if (x && x <= mclk_ps && x >= lowest_tCKmin_found ) {
186 lowest_tCKmin_found = x;
187 lowest_tCKmin_CL = i + 2;
188 }
189 }
190
191 debug("lowest_tCKmin_CL = %u\n", lowest_tCKmin_CL);
192
193 return lowest_tCKmin_CL;
194 }
195
196 /*
197 * ddr_compute_dimm_parameters for DDR2 SPD
198 *
199 * Compute DIMM parameters based upon the SPD information in spd.
200 * Writes the results to the dimm_params_t structure pointed by pdimm.
201 *
202 * FIXME: use #define for the retvals
203 */
204 unsigned int ddr_compute_dimm_parameters(const unsigned int ctrl_num,
205 const ddr2_spd_eeprom_t *spd,
206 dimm_params_t *pdimm,
207 unsigned int dimm_number)
208 {
209 unsigned int retval;
210
211 if (spd->mem_type) {
212 if (spd->mem_type != SPD_MEMTYPE_DDR2) {
213 printf("DIMM %u: is not a DDR2 SPD.\n", dimm_number);
214 return 1;
215 }
216 } else {
217 memset(pdimm, 0, sizeof(dimm_params_t));
218 return 1;
219 }
220
221 retval = ddr2_spd_check(spd);
222 if (retval) {
223 printf("DIMM %u: failed checksum\n", dimm_number);
224 return 2;
225 }
226
227 /*
228 * The part name in ASCII in the SPD EEPROM is not null terminated.
229 * Guarantee null termination here by presetting all bytes to 0
230 * and copying the part name in ASCII from the SPD onto it
231 */
232 memset(pdimm->mpart, 0, sizeof(pdimm->mpart));
233 memcpy(pdimm->mpart, spd->mpart, sizeof(pdimm->mpart) - 1);
234
235 /* DIMM organization parameters */
236 pdimm->n_ranks = (spd->mod_ranks & 0x7) + 1;
237 pdimm->rank_density = compute_ranksize(spd->mem_type, spd->rank_dens);
238 pdimm->capacity = pdimm->n_ranks * pdimm->rank_density;
239 pdimm->data_width = spd->dataw;
240 pdimm->primary_sdram_width = spd->primw;
241 pdimm->ec_sdram_width = spd->ecw;
242
243 /* These are all the types defined by the JEDEC DDR2 SPD 1.3 spec */
244 switch (spd->dimm_type) {
245 case DDR2_SPD_DIMMTYPE_RDIMM:
246 case DDR2_SPD_DIMMTYPE_72B_SO_RDIMM:
247 case DDR2_SPD_DIMMTYPE_MINI_RDIMM:
248 /* Registered/buffered DIMMs */
249 pdimm->registered_dimm = 1;
250 break;
251
252 case DDR2_SPD_DIMMTYPE_UDIMM:
253 case DDR2_SPD_DIMMTYPE_SO_DIMM:
254 case DDR2_SPD_DIMMTYPE_MICRO_DIMM:
255 case DDR2_SPD_DIMMTYPE_MINI_UDIMM:
256 /* Unbuffered DIMMs */
257 pdimm->registered_dimm = 0;
258 break;
259
260 case DDR2_SPD_DIMMTYPE_72B_SO_CDIMM:
261 default:
262 printf("unknown dimm_type 0x%02X\n", spd->dimm_type);
263 return 1;
264 }
265
266 /* SDRAM device parameters */
267 pdimm->n_row_addr = spd->nrow_addr;
268 pdimm->n_col_addr = spd->ncol_addr;
269 pdimm->n_banks_per_sdram_device = spd->nbanks;
270 pdimm->edc_config = spd->config;
271 pdimm->burst_lengths_bitmask = spd->burstl;
272
273 /*
274 * Calculate the Maximum Data Rate based on the Minimum Cycle time.
275 * The SPD clk_cycle field (tCKmin) is measured in tenths of
276 * nanoseconds and represented as BCD.
277 */
278 pdimm->tckmin_x_ps
279 = convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle);
280 pdimm->tckmin_x_minus_1_ps
281 = convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle2);
282 pdimm->tckmin_x_minus_2_ps
283 = convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle3);
284
285 pdimm->tckmax_ps = convert_bcd_tenths_to_cycle_time_ps(spd->tckmax);
286
287 /*
288 * Compute CAS latencies defined by SPD
289 * The SPD caslat_x should have at least 1 and at most 3 bits set.
290 *
291 * If cas_lat after masking is 0, the __ilog2 function returns
292 * 255 into the variable. This behavior is abused once.
293 */
294 pdimm->caslat_x = __ilog2(spd->cas_lat);
295 pdimm->caslat_x_minus_1 = __ilog2(spd->cas_lat
296 & ~(1 << pdimm->caslat_x));
297 pdimm->caslat_x_minus_2 = __ilog2(spd->cas_lat
298 & ~(1 << pdimm->caslat_x)
299 & ~(1 << pdimm->caslat_x_minus_1));
300
301 /* Compute CAS latencies below that defined by SPD */
302 pdimm->caslat_lowest_derated = compute_derated_DDR2_CAS_latency(
303 get_memory_clk_period_ps(ctrl_num));
304
305 /* Compute timing parameters */
306 pdimm->trcd_ps = spd->trcd * 250;
307 pdimm->trp_ps = spd->trp * 250;
308 pdimm->tras_ps = spd->tras * 1000;
309
310 pdimm->twr_ps = spd->twr * 250;
311 pdimm->twtr_ps = spd->twtr * 250;
312 pdimm->trfc_ps = compute_trfc_ps_from_spd(spd->trctrfc_ext, spd->trfc);
313
314 pdimm->trrd_ps = spd->trrd * 250;
315 pdimm->trc_ps = compute_trc_ps_from_spd(spd->trctrfc_ext, spd->trc);
316
317 pdimm->refresh_rate_ps = determine_refresh_rate_ps(spd->refresh);
318
319 pdimm->tis_ps = convert_bcd_hundredths_to_cycle_time_ps(spd->ca_setup);
320 pdimm->tih_ps = convert_bcd_hundredths_to_cycle_time_ps(spd->ca_hold);
321 pdimm->tds_ps
322 = convert_bcd_hundredths_to_cycle_time_ps(spd->data_setup);
323 pdimm->tdh_ps
324 = convert_bcd_hundredths_to_cycle_time_ps(spd->data_hold);
325
326 pdimm->trtp_ps = spd->trtp * 250;
327 pdimm->tdqsq_max_ps = spd->tdqsq * 10;
328 pdimm->tqhs_ps = spd->tqhs * 10;
329
330 return 0;
331 }