]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/ddr/fsl/lc_common_dimm_params.c
Merge branch 'master' of git://git.denx.de/u-boot-mips
[people/ms/u-boot.git] / drivers / ddr / fsl / lc_common_dimm_params.c
1 /*
2 * Copyright 2008-2012 Freescale Semiconductor, Inc.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * Version 2 as published by the Free Software Foundation.
7 */
8
9 #include <common.h>
10 #include <fsl_ddr_sdram.h>
11
12 #include <fsl_ddr.h>
13
14 #if defined(CONFIG_SYS_FSL_DDR3)
15 static unsigned int
16 compute_cas_latency_ddr3(const dimm_params_t *dimm_params,
17 common_timing_params_t *outpdimm,
18 unsigned int number_of_dimms)
19 {
20 unsigned int i;
21 unsigned int taamin_ps = 0;
22 unsigned int tckmin_x_ps = 0;
23 unsigned int common_caslat;
24 unsigned int caslat_actual;
25 unsigned int retry = 16;
26 unsigned int tmp;
27 const unsigned int mclk_ps = get_memory_clk_period_ps();
28
29 /* compute the common CAS latency supported between slots */
30 tmp = dimm_params[0].caslat_x;
31 for (i = 1; i < number_of_dimms; i++) {
32 if (dimm_params[i].n_ranks)
33 tmp &= dimm_params[i].caslat_x;
34 }
35 common_caslat = tmp;
36
37 /* compute the max tAAmin tCKmin between slots */
38 for (i = 0; i < number_of_dimms; i++) {
39 taamin_ps = max(taamin_ps, dimm_params[i].taa_ps);
40 tckmin_x_ps = max(tckmin_x_ps, dimm_params[i].tckmin_x_ps);
41 }
42 /* validate if the memory clk is in the range of dimms */
43 if (mclk_ps < tckmin_x_ps) {
44 printf("DDR clock (MCLK cycle %u ps) is faster than "
45 "the slowest DIMM(s) (tCKmin %u ps) can support.\n",
46 mclk_ps, tckmin_x_ps);
47 }
48 /* determine the acutal cas latency */
49 caslat_actual = (taamin_ps + mclk_ps - 1) / mclk_ps;
50 /* check if the dimms support the CAS latency */
51 while (!(common_caslat & (1 << caslat_actual)) && retry > 0) {
52 caslat_actual++;
53 retry--;
54 }
55 /* once the caculation of caslat_actual is completed
56 * we must verify that this CAS latency value does not
57 * exceed tAAmax, which is 20 ns for all DDR3 speed grades
58 */
59 if (caslat_actual * mclk_ps > 20000) {
60 printf("The choosen cas latency %d is too large\n",
61 caslat_actual);
62 }
63 outpdimm->lowest_common_SPD_caslat = caslat_actual;
64
65 return 0;
66 }
67 #endif
68
69 /*
70 * compute_lowest_common_dimm_parameters()
71 *
72 * Determine the worst-case DIMM timing parameters from the set of DIMMs
73 * whose parameters have been computed into the array pointed to
74 * by dimm_params.
75 */
76 unsigned int
77 compute_lowest_common_dimm_parameters(const dimm_params_t *dimm_params,
78 common_timing_params_t *outpdimm,
79 const unsigned int number_of_dimms)
80 {
81 unsigned int i, j;
82
83 unsigned int tckmin_x_ps = 0;
84 unsigned int tckmax_ps = 0xFFFFFFFF;
85 unsigned int tckmax_max_ps = 0;
86 unsigned int trcd_ps = 0;
87 unsigned int trp_ps = 0;
88 unsigned int tras_ps = 0;
89 unsigned int twr_ps = 0;
90 unsigned int twtr_ps = 0;
91 unsigned int trfc_ps = 0;
92 unsigned int trrd_ps = 0;
93 unsigned int trc_ps = 0;
94 unsigned int refresh_rate_ps = 0;
95 unsigned int extended_op_srt = 1;
96 unsigned int tis_ps = 0;
97 unsigned int tih_ps = 0;
98 unsigned int tds_ps = 0;
99 unsigned int tdh_ps = 0;
100 unsigned int trtp_ps = 0;
101 unsigned int tdqsq_max_ps = 0;
102 unsigned int tqhs_ps = 0;
103
104 unsigned int temp1, temp2;
105 unsigned int additive_latency = 0;
106 #if !defined(CONFIG_SYS_FSL_DDR3)
107 const unsigned int mclk_ps = get_memory_clk_period_ps();
108 unsigned int lowest_good_caslat;
109 unsigned int not_ok;
110
111 debug("using mclk_ps = %u\n", mclk_ps);
112 #endif
113
114 temp1 = 0;
115 for (i = 0; i < number_of_dimms; i++) {
116 /*
117 * If there are no ranks on this DIMM,
118 * it probably doesn't exist, so skip it.
119 */
120 if (dimm_params[i].n_ranks == 0) {
121 temp1++;
122 continue;
123 }
124 if (dimm_params[i].n_ranks == 4 && i != 0) {
125 printf("Found Quad-rank DIMM in wrong bank, ignored."
126 " Software may not run as expected.\n");
127 temp1++;
128 continue;
129 }
130
131 /*
132 * check if quad-rank DIMM is plugged if
133 * CONFIG_CHIP_SELECT_QUAD_CAPABLE is not defined
134 * Only the board with proper design is capable
135 */
136 #ifndef CONFIG_FSL_DDR_FIRST_SLOT_QUAD_CAPABLE
137 if (dimm_params[i].n_ranks == 4 && \
138 CONFIG_CHIP_SELECTS_PER_CTRL/CONFIG_DIMM_SLOTS_PER_CTLR < 4) {
139 printf("Found Quad-rank DIMM, not able to support.");
140 temp1++;
141 continue;
142 }
143 #endif
144 /*
145 * Find minimum tckmax_ps to find fastest slow speed,
146 * i.e., this is the slowest the whole system can go.
147 */
148 tckmax_ps = min(tckmax_ps, dimm_params[i].tckmax_ps);
149
150 /* Either find maximum value to determine slowest
151 * speed, delay, time, period, etc */
152 tckmin_x_ps = max(tckmin_x_ps, dimm_params[i].tckmin_x_ps);
153 tckmax_max_ps = max(tckmax_max_ps, dimm_params[i].tckmax_ps);
154 trcd_ps = max(trcd_ps, dimm_params[i].trcd_ps);
155 trp_ps = max(trp_ps, dimm_params[i].trp_ps);
156 tras_ps = max(tras_ps, dimm_params[i].tras_ps);
157 twr_ps = max(twr_ps, dimm_params[i].twr_ps);
158 twtr_ps = max(twtr_ps, dimm_params[i].twtr_ps);
159 trfc_ps = max(trfc_ps, dimm_params[i].trfc_ps);
160 trrd_ps = max(trrd_ps, dimm_params[i].trrd_ps);
161 trc_ps = max(trc_ps, dimm_params[i].trc_ps);
162 tis_ps = max(tis_ps, dimm_params[i].tis_ps);
163 tih_ps = max(tih_ps, dimm_params[i].tih_ps);
164 tds_ps = max(tds_ps, dimm_params[i].tds_ps);
165 tdh_ps = max(tdh_ps, dimm_params[i].tdh_ps);
166 trtp_ps = max(trtp_ps, dimm_params[i].trtp_ps);
167 tqhs_ps = max(tqhs_ps, dimm_params[i].tqhs_ps);
168 refresh_rate_ps = max(refresh_rate_ps,
169 dimm_params[i].refresh_rate_ps);
170 /* extended_op_srt is either 0 or 1, 0 having priority */
171 extended_op_srt = min(extended_op_srt,
172 dimm_params[i].extended_op_srt);
173
174 /*
175 * Find maximum tdqsq_max_ps to find slowest.
176 *
177 * FIXME: is finding the slowest value the correct
178 * strategy for this parameter?
179 */
180 tdqsq_max_ps = max(tdqsq_max_ps, dimm_params[i].tdqsq_max_ps);
181 }
182
183 outpdimm->ndimms_present = number_of_dimms - temp1;
184
185 if (temp1 == number_of_dimms) {
186 debug("no dimms this memory controller\n");
187 return 0;
188 }
189
190 outpdimm->tckmin_x_ps = tckmin_x_ps;
191 outpdimm->tckmax_ps = tckmax_ps;
192 outpdimm->tckmax_max_ps = tckmax_max_ps;
193 outpdimm->trcd_ps = trcd_ps;
194 outpdimm->trp_ps = trp_ps;
195 outpdimm->tras_ps = tras_ps;
196 outpdimm->twr_ps = twr_ps;
197 outpdimm->twtr_ps = twtr_ps;
198 outpdimm->trfc_ps = trfc_ps;
199 outpdimm->trrd_ps = trrd_ps;
200 outpdimm->trc_ps = trc_ps;
201 outpdimm->refresh_rate_ps = refresh_rate_ps;
202 outpdimm->extended_op_srt = extended_op_srt;
203 outpdimm->tis_ps = tis_ps;
204 outpdimm->tih_ps = tih_ps;
205 outpdimm->tds_ps = tds_ps;
206 outpdimm->tdh_ps = tdh_ps;
207 outpdimm->trtp_ps = trtp_ps;
208 outpdimm->tdqsq_max_ps = tdqsq_max_ps;
209 outpdimm->tqhs_ps = tqhs_ps;
210
211 /* Determine common burst length for all DIMMs. */
212 temp1 = 0xff;
213 for (i = 0; i < number_of_dimms; i++) {
214 if (dimm_params[i].n_ranks) {
215 temp1 &= dimm_params[i].burst_lengths_bitmask;
216 }
217 }
218 outpdimm->all_dimms_burst_lengths_bitmask = temp1;
219
220 /* Determine if all DIMMs registered buffered. */
221 temp1 = temp2 = 0;
222 for (i = 0; i < number_of_dimms; i++) {
223 if (dimm_params[i].n_ranks) {
224 if (dimm_params[i].registered_dimm) {
225 temp1 = 1;
226 #ifndef CONFIG_SPL_BUILD
227 printf("Detected RDIMM %s\n",
228 dimm_params[i].mpart);
229 #endif
230 } else {
231 temp2 = 1;
232 #ifndef CONFIG_SPL_BUILD
233 printf("Detected UDIMM %s\n",
234 dimm_params[i].mpart);
235 #endif
236 }
237 }
238 }
239
240 outpdimm->all_dimms_registered = 0;
241 outpdimm->all_dimms_unbuffered = 0;
242 if (temp1 && !temp2) {
243 outpdimm->all_dimms_registered = 1;
244 } else if (!temp1 && temp2) {
245 outpdimm->all_dimms_unbuffered = 1;
246 } else {
247 printf("ERROR: Mix of registered buffered and unbuffered "
248 "DIMMs detected!\n");
249 }
250
251 temp1 = 0;
252 if (outpdimm->all_dimms_registered)
253 for (j = 0; j < 16; j++) {
254 outpdimm->rcw[j] = dimm_params[0].rcw[j];
255 for (i = 1; i < number_of_dimms; i++) {
256 if (!dimm_params[i].n_ranks)
257 continue;
258 if (dimm_params[i].rcw[j] != dimm_params[0].rcw[j]) {
259 temp1 = 1;
260 break;
261 }
262 }
263 }
264
265 if (temp1 != 0)
266 printf("ERROR: Mix different RDIMM detected!\n");
267
268 #if defined(CONFIG_SYS_FSL_DDR3)
269 if (compute_cas_latency_ddr3(dimm_params, outpdimm, number_of_dimms))
270 return 1;
271 #else
272 /*
273 * Compute a CAS latency suitable for all DIMMs
274 *
275 * Strategy for SPD-defined latencies: compute only
276 * CAS latency defined by all DIMMs.
277 */
278
279 /*
280 * Step 1: find CAS latency common to all DIMMs using bitwise
281 * operation.
282 */
283 temp1 = 0xFF;
284 for (i = 0; i < number_of_dimms; i++) {
285 if (dimm_params[i].n_ranks) {
286 temp2 = 0;
287 temp2 |= 1 << dimm_params[i].caslat_x;
288 temp2 |= 1 << dimm_params[i].caslat_x_minus_1;
289 temp2 |= 1 << dimm_params[i].caslat_x_minus_2;
290 /*
291 * FIXME: If there was no entry for X-2 (X-1) in
292 * the SPD, then caslat_x_minus_2
293 * (caslat_x_minus_1) contains either 255 or
294 * 0xFFFFFFFF because that's what the glorious
295 * __ilog2 function returns for an input of 0.
296 * On 32-bit PowerPC, left shift counts with bit
297 * 26 set (that the value of 255 or 0xFFFFFFFF
298 * will have), cause the destination register to
299 * be 0. That is why this works.
300 */
301 temp1 &= temp2;
302 }
303 }
304
305 /*
306 * Step 2: check each common CAS latency against tCK of each
307 * DIMM's SPD.
308 */
309 lowest_good_caslat = 0;
310 temp2 = 0;
311 while (temp1) {
312 not_ok = 0;
313 temp2 = __ilog2(temp1);
314 debug("checking common caslat = %u\n", temp2);
315
316 /* Check if this CAS latency will work on all DIMMs at tCK. */
317 for (i = 0; i < number_of_dimms; i++) {
318 if (!dimm_params[i].n_ranks) {
319 continue;
320 }
321 if (dimm_params[i].caslat_x == temp2) {
322 if (mclk_ps >= dimm_params[i].tckmin_x_ps) {
323 debug("CL = %u ok on DIMM %u at tCK=%u"
324 " ps with its tCKmin_X_ps of %u\n",
325 temp2, i, mclk_ps,
326 dimm_params[i].tckmin_x_ps);
327 continue;
328 } else {
329 not_ok++;
330 }
331 }
332
333 if (dimm_params[i].caslat_x_minus_1 == temp2) {
334 unsigned int tckmin_x_minus_1_ps
335 = dimm_params[i].tckmin_x_minus_1_ps;
336 if (mclk_ps >= tckmin_x_minus_1_ps) {
337 debug("CL = %u ok on DIMM %u at "
338 "tCK=%u ps with its "
339 "tckmin_x_minus_1_ps of %u\n",
340 temp2, i, mclk_ps,
341 tckmin_x_minus_1_ps);
342 continue;
343 } else {
344 not_ok++;
345 }
346 }
347
348 if (dimm_params[i].caslat_x_minus_2 == temp2) {
349 unsigned int tckmin_x_minus_2_ps
350 = dimm_params[i].tckmin_x_minus_2_ps;
351 if (mclk_ps >= tckmin_x_minus_2_ps) {
352 debug("CL = %u ok on DIMM %u at "
353 "tCK=%u ps with its "
354 "tckmin_x_minus_2_ps of %u\n",
355 temp2, i, mclk_ps,
356 tckmin_x_minus_2_ps);
357 continue;
358 } else {
359 not_ok++;
360 }
361 }
362 }
363
364 if (!not_ok) {
365 lowest_good_caslat = temp2;
366 }
367
368 temp1 &= ~(1 << temp2);
369 }
370
371 debug("lowest common SPD-defined CAS latency = %u\n",
372 lowest_good_caslat);
373 outpdimm->lowest_common_SPD_caslat = lowest_good_caslat;
374
375
376 /*
377 * Compute a common 'de-rated' CAS latency.
378 *
379 * The strategy here is to find the *highest* dereated cas latency
380 * with the assumption that all of the DIMMs will support a dereated
381 * CAS latency higher than or equal to their lowest dereated value.
382 */
383 temp1 = 0;
384 for (i = 0; i < number_of_dimms; i++) {
385 temp1 = max(temp1, dimm_params[i].caslat_lowest_derated);
386 }
387 outpdimm->highest_common_derated_caslat = temp1;
388 debug("highest common dereated CAS latency = %u\n", temp1);
389 #endif /* #if defined(CONFIG_SYS_FSL_DDR3) */
390
391 /* Determine if all DIMMs ECC capable. */
392 temp1 = 1;
393 for (i = 0; i < number_of_dimms; i++) {
394 if (dimm_params[i].n_ranks &&
395 !(dimm_params[i].edc_config & EDC_ECC)) {
396 temp1 = 0;
397 break;
398 }
399 }
400 if (temp1) {
401 debug("all DIMMs ECC capable\n");
402 } else {
403 debug("Warning: not all DIMMs ECC capable, cant enable ECC\n");
404 }
405 outpdimm->all_dimms_ecc_capable = temp1;
406
407 #ifndef CONFIG_SYS_FSL_DDR3
408 /* FIXME: move to somewhere else to validate. */
409 if (mclk_ps > tckmax_max_ps) {
410 printf("Warning: some of the installed DIMMs "
411 "can not operate this slowly.\n");
412 return 1;
413 }
414 #endif
415 /*
416 * Compute additive latency.
417 *
418 * For DDR1, additive latency should be 0.
419 *
420 * For DDR2, with ODT enabled, use "a value" less than ACTTORW,
421 * which comes from Trcd, and also note that:
422 * add_lat + caslat must be >= 4
423 *
424 * For DDR3, we use the AL=0
425 *
426 * When to use additive latency for DDR2:
427 *
428 * I. Because you are using CL=3 and need to do ODT on writes and
429 * want functionality.
430 * 1. Are you going to use ODT? (Does your board not have
431 * additional termination circuitry for DQ, DQS, DQS_,
432 * DM, RDQS, RDQS_ for x4/x8 configs?)
433 * 2. If so, is your lowest supported CL going to be 3?
434 * 3. If so, then you must set AL=1 because
435 *
436 * WL >= 3 for ODT on writes
437 * RL = AL + CL
438 * WL = RL - 1
439 * ->
440 * WL = AL + CL - 1
441 * AL + CL - 1 >= 3
442 * AL + CL >= 4
443 * QED
444 *
445 * RL >= 3 for ODT on reads
446 * RL = AL + CL
447 *
448 * Since CL aren't usually less than 2, AL=0 is a minimum,
449 * so the WL-derived AL should be the -- FIXME?
450 *
451 * II. Because you are using auto-precharge globally and want to
452 * use additive latency (posted CAS) to get more bandwidth.
453 * 1. Are you going to use auto-precharge mode globally?
454 *
455 * Use addtivie latency and compute AL to be 1 cycle less than
456 * tRCD, i.e. the READ or WRITE command is in the cycle
457 * immediately following the ACTIVATE command..
458 *
459 * III. Because you feel like it or want to do some sort of
460 * degraded-performance experiment.
461 * 1. Do you just want to use additive latency because you feel
462 * like it?
463 *
464 * Validation: AL is less than tRCD, and within the other
465 * read-to-precharge constraints.
466 */
467
468 additive_latency = 0;
469
470 #if defined(CONFIG_SYS_FSL_DDR2)
471 if (lowest_good_caslat < 4) {
472 additive_latency = (picos_to_mclk(trcd_ps) > lowest_good_caslat)
473 ? picos_to_mclk(trcd_ps) - lowest_good_caslat : 0;
474 if (mclk_to_picos(additive_latency) > trcd_ps) {
475 additive_latency = picos_to_mclk(trcd_ps);
476 debug("setting additive_latency to %u because it was "
477 " greater than tRCD_ps\n", additive_latency);
478 }
479 }
480
481 #elif defined(CONFIG_SYS_FSL_DDR3)
482 /*
483 * The system will not use the global auto-precharge mode.
484 * However, it uses the page mode, so we set AL=0
485 */
486 additive_latency = 0;
487 #endif
488
489 /*
490 * Validate additive latency
491 * FIXME: move to somewhere else to validate
492 *
493 * AL <= tRCD(min)
494 */
495 if (mclk_to_picos(additive_latency) > trcd_ps) {
496 printf("Error: invalid additive latency exceeds tRCD(min).\n");
497 return 1;
498 }
499
500 /*
501 * RL = CL + AL; RL >= 3 for ODT_RD_CFG to be enabled
502 * WL = RL - 1; WL >= 3 for ODT_WL_CFG to be enabled
503 * ADD_LAT (the register) must be set to a value less
504 * than ACTTORW if WL = 1, then AL must be set to 1
505 * RD_TO_PRE (the register) must be set to a minimum
506 * tRTP + AL if AL is nonzero
507 */
508
509 /*
510 * Additive latency will be applied only if the memctl option to
511 * use it.
512 */
513 outpdimm->additive_latency = additive_latency;
514
515 debug("tCKmin_ps = %u\n", outpdimm->tckmin_x_ps);
516 debug("trcd_ps = %u\n", outpdimm->trcd_ps);
517 debug("trp_ps = %u\n", outpdimm->trp_ps);
518 debug("tras_ps = %u\n", outpdimm->tras_ps);
519 debug("twr_ps = %u\n", outpdimm->twr_ps);
520 debug("twtr_ps = %u\n", outpdimm->twtr_ps);
521 debug("trfc_ps = %u\n", outpdimm->trfc_ps);
522 debug("trrd_ps = %u\n", outpdimm->trrd_ps);
523 debug("trc_ps = %u\n", outpdimm->trc_ps);
524
525 return 0;
526 }