]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/ddr/fsl/main.c
driver/ddr: Restruct driver to allow standalone memory space
[people/ms/u-boot.git] / drivers / ddr / fsl / main.c
1 /*
2 * Copyright 2008-2014 Freescale Semiconductor, Inc.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * Version 2 as published by the Free Software Foundation.
7 */
8
9 /*
10 * Generic driver for Freescale DDR/DDR2/DDR3 memory controller.
11 * Based on code from spd_sdram.c
12 * Author: James Yang [at freescale.com]
13 */
14
15 #include <common.h>
16 #include <i2c.h>
17 #include <fsl_ddr_sdram.h>
18 #include <fsl_ddr.h>
19
20 /*
21 * CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY is the physical address from the view
22 * of DDR controllers. It is the same as CONFIG_SYS_DDR_SDRAM_BASE for
23 * all Power SoCs. But it could be different for ARM SoCs. For example,
24 * fsl_lsch3 has a mapping mechanism to map DDR memory to ranges (in order) of
25 * 0x00_8000_0000 ~ 0x00_ffff_ffff
26 * 0x80_8000_0000 ~ 0xff_ffff_ffff
27 */
28 #ifndef CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY
29 #define CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY CONFIG_SYS_DDR_SDRAM_BASE
30 #endif
31
32 #ifdef CONFIG_PPC
33 #include <asm/fsl_law.h>
34
35 void fsl_ddr_set_lawbar(
36 const common_timing_params_t *memctl_common_params,
37 unsigned int memctl_interleaved,
38 unsigned int ctrl_num);
39 #endif
40
41 void fsl_ddr_set_intl3r(const unsigned int granule_size);
42 #if defined(SPD_EEPROM_ADDRESS) || \
43 defined(SPD_EEPROM_ADDRESS1) || defined(SPD_EEPROM_ADDRESS2) || \
44 defined(SPD_EEPROM_ADDRESS3) || defined(SPD_EEPROM_ADDRESS4)
45 #if (CONFIG_NUM_DDR_CONTROLLERS == 1) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
46 u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
47 [0][0] = SPD_EEPROM_ADDRESS,
48 };
49 #elif (CONFIG_NUM_DDR_CONTROLLERS == 1) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
50 u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
51 [0][0] = SPD_EEPROM_ADDRESS1, /* controller 1 */
52 [0][1] = SPD_EEPROM_ADDRESS2, /* controller 1 */
53 };
54 #elif (CONFIG_NUM_DDR_CONTROLLERS == 2) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
55 u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
56 [0][0] = SPD_EEPROM_ADDRESS1, /* controller 1 */
57 [1][0] = SPD_EEPROM_ADDRESS2, /* controller 2 */
58 };
59 #elif (CONFIG_NUM_DDR_CONTROLLERS == 2) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
60 u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
61 [0][0] = SPD_EEPROM_ADDRESS1, /* controller 1 */
62 [0][1] = SPD_EEPROM_ADDRESS2, /* controller 1 */
63 [1][0] = SPD_EEPROM_ADDRESS3, /* controller 2 */
64 [1][1] = SPD_EEPROM_ADDRESS4, /* controller 2 */
65 };
66 #elif (CONFIG_NUM_DDR_CONTROLLERS == 3) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
67 u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
68 [0][0] = SPD_EEPROM_ADDRESS1, /* controller 1 */
69 [1][0] = SPD_EEPROM_ADDRESS2, /* controller 2 */
70 [2][0] = SPD_EEPROM_ADDRESS3, /* controller 3 */
71 };
72 #elif (CONFIG_NUM_DDR_CONTROLLERS == 3) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
73 u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
74 [0][0] = SPD_EEPROM_ADDRESS1, /* controller 1 */
75 [0][1] = SPD_EEPROM_ADDRESS2, /* controller 1 */
76 [1][0] = SPD_EEPROM_ADDRESS3, /* controller 2 */
77 [1][1] = SPD_EEPROM_ADDRESS4, /* controller 2 */
78 [2][0] = SPD_EEPROM_ADDRESS5, /* controller 3 */
79 [2][1] = SPD_EEPROM_ADDRESS6, /* controller 3 */
80 };
81
82 #endif
83
84 #define SPD_SPA0_ADDRESS 0x36
85 #define SPD_SPA1_ADDRESS 0x37
86
87 static void __get_spd(generic_spd_eeprom_t *spd, u8 i2c_address)
88 {
89 int ret;
90 #ifdef CONFIG_SYS_FSL_DDR4
91 uint8_t dummy = 0;
92 #endif
93
94 i2c_set_bus_num(CONFIG_SYS_SPD_BUS_NUM);
95
96 #ifdef CONFIG_SYS_FSL_DDR4
97 /*
98 * DDR4 SPD has 384 to 512 bytes
99 * To access the lower 256 bytes, we need to set EE page address to 0
100 * To access the upper 256 bytes, we need to set EE page address to 1
101 * See Jedec standar No. 21-C for detail
102 */
103 i2c_write(SPD_SPA0_ADDRESS, 0, 1, &dummy, 1);
104 ret = i2c_read(i2c_address, 0, 1, (uchar *)spd, 256);
105 if (!ret) {
106 i2c_write(SPD_SPA1_ADDRESS, 0, 1, &dummy, 1);
107 ret = i2c_read(i2c_address, 0, 1,
108 (uchar *)((ulong)spd + 256),
109 min(256, sizeof(generic_spd_eeprom_t) - 256));
110 }
111 #else
112 ret = i2c_read(i2c_address, 0, 1, (uchar *)spd,
113 sizeof(generic_spd_eeprom_t));
114 #endif
115
116 if (ret) {
117 if (i2c_address ==
118 #ifdef SPD_EEPROM_ADDRESS
119 SPD_EEPROM_ADDRESS
120 #elif defined(SPD_EEPROM_ADDRESS1)
121 SPD_EEPROM_ADDRESS1
122 #endif
123 ) {
124 printf("DDR: failed to read SPD from address %u\n",
125 i2c_address);
126 } else {
127 debug("DDR: failed to read SPD from address %u\n",
128 i2c_address);
129 }
130 memset(spd, 0, sizeof(generic_spd_eeprom_t));
131 }
132 }
133
134 __attribute__((weak, alias("__get_spd")))
135 void get_spd(generic_spd_eeprom_t *spd, u8 i2c_address);
136
137 void fsl_ddr_get_spd(generic_spd_eeprom_t *ctrl_dimms_spd,
138 unsigned int ctrl_num, unsigned int dimm_slots_per_ctrl)
139 {
140 unsigned int i;
141 unsigned int i2c_address = 0;
142
143 if (ctrl_num >= CONFIG_NUM_DDR_CONTROLLERS) {
144 printf("%s unexpected ctrl_num = %u\n", __FUNCTION__, ctrl_num);
145 return;
146 }
147
148 for (i = 0; i < dimm_slots_per_ctrl; i++) {
149 i2c_address = spd_i2c_addr[ctrl_num][i];
150 get_spd(&(ctrl_dimms_spd[i]), i2c_address);
151 }
152 }
153 #else
154 void fsl_ddr_get_spd(generic_spd_eeprom_t *ctrl_dimms_spd,
155 unsigned int ctrl_num, unsigned int dimm_slots_per_ctrl)
156 {
157 }
158 #endif /* SPD_EEPROM_ADDRESSx */
159
160 /*
161 * ASSUMPTIONS:
162 * - Same number of CONFIG_DIMM_SLOTS_PER_CTLR on each controller
163 * - Same memory data bus width on all controllers
164 *
165 * NOTES:
166 *
167 * The memory controller and associated documentation use confusing
168 * terminology when referring to the orgranization of DRAM.
169 *
170 * Here is a terminology translation table:
171 *
172 * memory controller/documention |industry |this code |signals
173 * -------------------------------|-----------|-----------|-----------------
174 * physical bank/bank |rank |rank |chip select (CS)
175 * logical bank/sub-bank |bank |bank |bank address (BA)
176 * page/row |row |page |row address
177 * ??? |column |column |column address
178 *
179 * The naming confusion is further exacerbated by the descriptions of the
180 * memory controller interleaving feature, where accesses are interleaved
181 * _BETWEEN_ two seperate memory controllers. This is configured only in
182 * CS0_CONFIG[INTLV_CTL] of each memory controller.
183 *
184 * memory controller documentation | number of chip selects
185 * | per memory controller supported
186 * --------------------------------|-----------------------------------------
187 * cache line interleaving | 1 (CS0 only)
188 * page interleaving | 1 (CS0 only)
189 * bank interleaving | 1 (CS0 only)
190 * superbank interleraving | depends on bank (chip select)
191 * | interleraving [rank interleaving]
192 * | mode used on every memory controller
193 *
194 * Even further confusing is the existence of the interleaving feature
195 * _WITHIN_ each memory controller. The feature is referred to in
196 * documentation as chip select interleaving or bank interleaving,
197 * although it is configured in the DDR_SDRAM_CFG field.
198 *
199 * Name of field | documentation name | this code
200 * -----------------------------|-----------------------|------------------
201 * DDR_SDRAM_CFG[BA_INTLV_CTL] | Bank (chip select) | rank interleaving
202 * | interleaving
203 */
204
205 const char *step_string_tbl[] = {
206 "STEP_GET_SPD",
207 "STEP_COMPUTE_DIMM_PARMS",
208 "STEP_COMPUTE_COMMON_PARMS",
209 "STEP_GATHER_OPTS",
210 "STEP_ASSIGN_ADDRESSES",
211 "STEP_COMPUTE_REGS",
212 "STEP_PROGRAM_REGS",
213 "STEP_ALL"
214 };
215
216 const char * step_to_string(unsigned int step) {
217
218 unsigned int s = __ilog2(step);
219
220 if ((1 << s) != step)
221 return step_string_tbl[7];
222
223 if (s >= ARRAY_SIZE(step_string_tbl)) {
224 printf("Error for the step in %s\n", __func__);
225 s = 0;
226 }
227
228 return step_string_tbl[s];
229 }
230
231 static unsigned long long __step_assign_addresses(fsl_ddr_info_t *pinfo,
232 unsigned int dbw_cap_adj[])
233 {
234 unsigned int i, j;
235 unsigned long long total_mem, current_mem_base, total_ctlr_mem;
236 unsigned long long rank_density, ctlr_density = 0;
237 unsigned int first_ctrl = pinfo->first_ctrl;
238 unsigned int last_ctrl = first_ctrl + pinfo->num_ctrls - 1;
239
240 /*
241 * If a reduced data width is requested, but the SPD
242 * specifies a physically wider device, adjust the
243 * computed dimm capacities accordingly before
244 * assigning addresses.
245 */
246 for (i = first_ctrl; i <= last_ctrl; i++) {
247 unsigned int found = 0;
248
249 switch (pinfo->memctl_opts[i].data_bus_width) {
250 case 2:
251 /* 16-bit */
252 for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
253 unsigned int dw;
254 if (!pinfo->dimm_params[i][j].n_ranks)
255 continue;
256 dw = pinfo->dimm_params[i][j].primary_sdram_width;
257 if ((dw == 72 || dw == 64)) {
258 dbw_cap_adj[i] = 2;
259 break;
260 } else if ((dw == 40 || dw == 32)) {
261 dbw_cap_adj[i] = 1;
262 break;
263 }
264 }
265 break;
266
267 case 1:
268 /* 32-bit */
269 for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
270 unsigned int dw;
271 dw = pinfo->dimm_params[i][j].data_width;
272 if (pinfo->dimm_params[i][j].n_ranks
273 && (dw == 72 || dw == 64)) {
274 /*
275 * FIXME: can't really do it
276 * like this because this just
277 * further reduces the memory
278 */
279 found = 1;
280 break;
281 }
282 }
283 if (found) {
284 dbw_cap_adj[i] = 1;
285 }
286 break;
287
288 case 0:
289 /* 64-bit */
290 break;
291
292 default:
293 printf("unexpected data bus width "
294 "specified controller %u\n", i);
295 return 1;
296 }
297 debug("dbw_cap_adj[%d]=%d\n", i, dbw_cap_adj[i]);
298 }
299
300 current_mem_base = pinfo->mem_base;
301 total_mem = 0;
302 if (pinfo->memctl_opts[first_ctrl].memctl_interleaving) {
303 rank_density = pinfo->dimm_params[first_ctrl][0].rank_density >>
304 dbw_cap_adj[first_ctrl];
305 switch (pinfo->memctl_opts[first_ctrl].ba_intlv_ctl &
306 FSL_DDR_CS0_CS1_CS2_CS3) {
307 case FSL_DDR_CS0_CS1_CS2_CS3:
308 ctlr_density = 4 * rank_density;
309 break;
310 case FSL_DDR_CS0_CS1:
311 case FSL_DDR_CS0_CS1_AND_CS2_CS3:
312 ctlr_density = 2 * rank_density;
313 break;
314 case FSL_DDR_CS2_CS3:
315 default:
316 ctlr_density = rank_density;
317 break;
318 }
319 debug("rank density is 0x%llx, ctlr density is 0x%llx\n",
320 rank_density, ctlr_density);
321 for (i = first_ctrl; i <= last_ctrl; i++) {
322 if (pinfo->memctl_opts[i].memctl_interleaving) {
323 switch (pinfo->memctl_opts[i].memctl_interleaving_mode) {
324 case FSL_DDR_256B_INTERLEAVING:
325 case FSL_DDR_CACHE_LINE_INTERLEAVING:
326 case FSL_DDR_PAGE_INTERLEAVING:
327 case FSL_DDR_BANK_INTERLEAVING:
328 case FSL_DDR_SUPERBANK_INTERLEAVING:
329 total_ctlr_mem = 2 * ctlr_density;
330 break;
331 case FSL_DDR_3WAY_1KB_INTERLEAVING:
332 case FSL_DDR_3WAY_4KB_INTERLEAVING:
333 case FSL_DDR_3WAY_8KB_INTERLEAVING:
334 total_ctlr_mem = 3 * ctlr_density;
335 break;
336 case FSL_DDR_4WAY_1KB_INTERLEAVING:
337 case FSL_DDR_4WAY_4KB_INTERLEAVING:
338 case FSL_DDR_4WAY_8KB_INTERLEAVING:
339 total_ctlr_mem = 4 * ctlr_density;
340 break;
341 default:
342 panic("Unknown interleaving mode");
343 }
344 pinfo->common_timing_params[i].base_address =
345 current_mem_base;
346 pinfo->common_timing_params[i].total_mem =
347 total_ctlr_mem;
348 total_mem = current_mem_base + total_ctlr_mem;
349 debug("ctrl %d base 0x%llx\n", i, current_mem_base);
350 debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
351 } else {
352 /* when 3rd controller not interleaved */
353 current_mem_base = total_mem;
354 total_ctlr_mem = 0;
355 pinfo->common_timing_params[i].base_address =
356 current_mem_base;
357 for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
358 unsigned long long cap =
359 pinfo->dimm_params[i][j].capacity >> dbw_cap_adj[i];
360 pinfo->dimm_params[i][j].base_address =
361 current_mem_base;
362 debug("ctrl %d dimm %d base 0x%llx\n", i, j, current_mem_base);
363 current_mem_base += cap;
364 total_ctlr_mem += cap;
365 }
366 debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
367 pinfo->common_timing_params[i].total_mem =
368 total_ctlr_mem;
369 total_mem += total_ctlr_mem;
370 }
371 }
372 } else {
373 /*
374 * Simple linear assignment if memory
375 * controllers are not interleaved.
376 */
377 for (i = first_ctrl; i <= last_ctrl; i++) {
378 total_ctlr_mem = 0;
379 pinfo->common_timing_params[i].base_address =
380 current_mem_base;
381 for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
382 /* Compute DIMM base addresses. */
383 unsigned long long cap =
384 pinfo->dimm_params[i][j].capacity >> dbw_cap_adj[i];
385 pinfo->dimm_params[i][j].base_address =
386 current_mem_base;
387 debug("ctrl %d dimm %d base 0x%llx\n", i, j, current_mem_base);
388 current_mem_base += cap;
389 total_ctlr_mem += cap;
390 }
391 debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
392 pinfo->common_timing_params[i].total_mem =
393 total_ctlr_mem;
394 total_mem += total_ctlr_mem;
395 }
396 }
397 debug("Total mem by %s is 0x%llx\n", __func__, total_mem);
398
399 return total_mem;
400 }
401
402 /* Use weak function to allow board file to override the address assignment */
403 __attribute__((weak, alias("__step_assign_addresses")))
404 unsigned long long step_assign_addresses(fsl_ddr_info_t *pinfo,
405 unsigned int dbw_cap_adj[]);
406
407 unsigned long long
408 fsl_ddr_compute(fsl_ddr_info_t *pinfo, unsigned int start_step,
409 unsigned int size_only)
410 {
411 unsigned int i, j;
412 unsigned long long total_mem = 0;
413 int assert_reset = 0;
414 unsigned int first_ctrl = pinfo->first_ctrl;
415 unsigned int last_ctrl = first_ctrl + pinfo->num_ctrls - 1;
416 __maybe_unused int retval;
417 __maybe_unused bool goodspd = false;
418 __maybe_unused int dimm_slots_per_ctrl = pinfo->dimm_slots_per_ctrl;
419
420 fsl_ddr_cfg_regs_t *ddr_reg = pinfo->fsl_ddr_config_reg;
421 common_timing_params_t *timing_params = pinfo->common_timing_params;
422 if (pinfo->board_need_mem_reset)
423 assert_reset = pinfo->board_need_mem_reset();
424
425 /* data bus width capacity adjust shift amount */
426 unsigned int dbw_capacity_adjust[CONFIG_NUM_DDR_CONTROLLERS];
427
428 for (i = first_ctrl; i <= last_ctrl; i++)
429 dbw_capacity_adjust[i] = 0;
430
431 debug("starting at step %u (%s)\n",
432 start_step, step_to_string(start_step));
433
434 switch (start_step) {
435 case STEP_GET_SPD:
436 #if defined(CONFIG_DDR_SPD) || defined(CONFIG_SPD_EEPROM)
437 /* STEP 1: Gather all DIMM SPD data */
438 for (i = first_ctrl; i <= last_ctrl; i++) {
439 fsl_ddr_get_spd(pinfo->spd_installed_dimms[i], i,
440 dimm_slots_per_ctrl);
441 }
442
443 case STEP_COMPUTE_DIMM_PARMS:
444 /* STEP 2: Compute DIMM parameters from SPD data */
445
446 for (i = first_ctrl; i <= last_ctrl; i++) {
447 for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
448 generic_spd_eeprom_t *spd =
449 &(pinfo->spd_installed_dimms[i][j]);
450 dimm_params_t *pdimm =
451 &(pinfo->dimm_params[i][j]);
452 retval = compute_dimm_parameters(spd, pdimm, i);
453 #ifdef CONFIG_SYS_DDR_RAW_TIMING
454 if (!i && !j && retval) {
455 printf("SPD error on controller %d! "
456 "Trying fallback to raw timing "
457 "calculation\n", i);
458 retval = fsl_ddr_get_dimm_params(pdimm,
459 i, j);
460 }
461 #else
462 if (retval == 2) {
463 printf("Error: compute_dimm_parameters"
464 " non-zero returned FATAL value "
465 "for memctl=%u dimm=%u\n", i, j);
466 return 0;
467 }
468 #endif
469 if (retval) {
470 debug("Warning: compute_dimm_parameters"
471 " non-zero return value for memctl=%u "
472 "dimm=%u\n", i, j);
473 } else {
474 goodspd = true;
475 }
476 }
477 }
478 if (!goodspd) {
479 /*
480 * No valid SPD found
481 * Throw an error if this is for main memory, i.e.
482 * first_ctrl == 0. Otherwise, siliently return 0
483 * as the memory size.
484 */
485 if (first_ctrl == 0)
486 printf("Error: No valid SPD detected.\n");
487
488 return 0;
489 }
490 #elif defined(CONFIG_SYS_DDR_RAW_TIMING)
491 case STEP_COMPUTE_DIMM_PARMS:
492 for (i = first_ctrl; i <= last_ctrl; i++) {
493 for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
494 dimm_params_t *pdimm =
495 &(pinfo->dimm_params[i][j]);
496 fsl_ddr_get_dimm_params(pdimm, i, j);
497 }
498 }
499 debug("Filling dimm parameters from board specific file\n");
500 #endif
501 case STEP_COMPUTE_COMMON_PARMS:
502 /*
503 * STEP 3: Compute a common set of timing parameters
504 * suitable for all of the DIMMs on each memory controller
505 */
506 for (i = first_ctrl; i <= last_ctrl; i++) {
507 debug("Computing lowest common DIMM"
508 " parameters for memctl=%u\n", i);
509 compute_lowest_common_dimm_parameters(
510 pinfo->dimm_params[i],
511 &timing_params[i],
512 CONFIG_DIMM_SLOTS_PER_CTLR);
513 }
514
515 case STEP_GATHER_OPTS:
516 /* STEP 4: Gather configuration requirements from user */
517 for (i = first_ctrl; i <= last_ctrl; i++) {
518 debug("Reloading memory controller "
519 "configuration options for memctl=%u\n", i);
520 /*
521 * This "reloads" the memory controller options
522 * to defaults. If the user "edits" an option,
523 * next_step points to the step after this,
524 * which is currently STEP_ASSIGN_ADDRESSES.
525 */
526 populate_memctl_options(
527 timing_params[i].all_dimms_registered,
528 &pinfo->memctl_opts[i],
529 pinfo->dimm_params[i], i);
530 /*
531 * For RDIMMs, JEDEC spec requires clocks to be stable
532 * before reset signal is deasserted. For the boards
533 * using fixed parameters, this function should be
534 * be called from board init file.
535 */
536 if (timing_params[i].all_dimms_registered)
537 assert_reset = 1;
538 }
539 if (assert_reset && !size_only) {
540 if (pinfo->board_mem_reset) {
541 debug("Asserting mem reset\n");
542 pinfo->board_mem_reset();
543 } else {
544 debug("Asserting mem reset missing\n");
545 }
546 }
547
548 case STEP_ASSIGN_ADDRESSES:
549 /* STEP 5: Assign addresses to chip selects */
550 check_interleaving_options(pinfo);
551 total_mem = step_assign_addresses(pinfo, dbw_capacity_adjust);
552 debug("Total mem %llu assigned\n", total_mem);
553
554 case STEP_COMPUTE_REGS:
555 /* STEP 6: compute controller register values */
556 debug("FSL Memory ctrl register computation\n");
557 for (i = first_ctrl; i <= last_ctrl; i++) {
558 if (timing_params[i].ndimms_present == 0) {
559 memset(&ddr_reg[i], 0,
560 sizeof(fsl_ddr_cfg_regs_t));
561 continue;
562 }
563
564 compute_fsl_memctl_config_regs(
565 &pinfo->memctl_opts[i],
566 &ddr_reg[i], &timing_params[i],
567 pinfo->dimm_params[i],
568 dbw_capacity_adjust[i],
569 size_only);
570 }
571
572 default:
573 break;
574 }
575
576 {
577 /*
578 * Compute the amount of memory available just by
579 * looking for the highest valid CSn_BNDS value.
580 * This allows us to also experiment with using
581 * only CS0 when using dual-rank DIMMs.
582 */
583 unsigned int max_end = 0;
584
585 for (i = first_ctrl; i <= last_ctrl; i++) {
586 for (j = 0; j < CONFIG_CHIP_SELECTS_PER_CTRL; j++) {
587 fsl_ddr_cfg_regs_t *reg = &ddr_reg[i];
588 if (reg->cs[j].config & 0x80000000) {
589 unsigned int end;
590 /*
591 * 0xfffffff is a special value we put
592 * for unused bnds
593 */
594 if (reg->cs[j].bnds == 0xffffffff)
595 continue;
596 end = reg->cs[j].bnds & 0xffff;
597 if (end > max_end) {
598 max_end = end;
599 }
600 }
601 }
602 }
603
604 total_mem = 1 + (((unsigned long long)max_end << 24ULL) |
605 0xFFFFFFULL) - pinfo->mem_base;
606 }
607
608 return total_mem;
609 }
610
611 phys_size_t __fsl_ddr_sdram(fsl_ddr_info_t *pinfo)
612 {
613 unsigned int i, first_ctrl, last_ctrl;
614 #ifdef CONFIG_PPC
615 unsigned int law_memctl = LAW_TRGT_IF_DDR_1;
616 #endif
617 unsigned long long total_memory;
618 int deassert_reset = 0;
619
620 first_ctrl = pinfo->first_ctrl;
621 last_ctrl = first_ctrl + pinfo->num_ctrls - 1;
622
623 /* Compute it once normally. */
624 #ifdef CONFIG_FSL_DDR_INTERACTIVE
625 if (tstc() && (getc() == 'd')) { /* we got a key press of 'd' */
626 total_memory = fsl_ddr_interactive(pinfo, 0);
627 } else if (fsl_ddr_interactive_env_var_exists()) {
628 total_memory = fsl_ddr_interactive(pinfo, 1);
629 } else
630 #endif
631 total_memory = fsl_ddr_compute(pinfo, STEP_GET_SPD, 0);
632
633 /* setup 3-way interleaving before enabling DDRC */
634 switch (pinfo->memctl_opts[first_ctrl].memctl_interleaving_mode) {
635 case FSL_DDR_3WAY_1KB_INTERLEAVING:
636 case FSL_DDR_3WAY_4KB_INTERLEAVING:
637 case FSL_DDR_3WAY_8KB_INTERLEAVING:
638 fsl_ddr_set_intl3r(
639 pinfo->memctl_opts[first_ctrl].
640 memctl_interleaving_mode);
641 break;
642 default:
643 break;
644 }
645
646 /*
647 * Program configuration registers.
648 * JEDEC specs requires clocks to be stable before deasserting reset
649 * for RDIMMs. Clocks start after chip select is enabled and clock
650 * control register is set. During step 1, all controllers have their
651 * registers set but not enabled. Step 2 proceeds after deasserting
652 * reset through board FPGA or GPIO.
653 * For non-registered DIMMs, initialization can go through but it is
654 * also OK to follow the same flow.
655 */
656 if (pinfo->board_need_mem_reset)
657 deassert_reset = pinfo->board_need_mem_reset();
658 for (i = first_ctrl; i <= last_ctrl; i++) {
659 if (pinfo->common_timing_params[i].all_dimms_registered)
660 deassert_reset = 1;
661 }
662 for (i = first_ctrl; i <= last_ctrl; i++) {
663 debug("Programming controller %u\n", i);
664 if (pinfo->common_timing_params[i].ndimms_present == 0) {
665 debug("No dimms present on controller %u; "
666 "skipping programming\n", i);
667 continue;
668 }
669 /*
670 * The following call with step = 1 returns before enabling
671 * the controller. It has to finish with step = 2 later.
672 */
673 fsl_ddr_set_memctl_regs(&(pinfo->fsl_ddr_config_reg[i]), i,
674 deassert_reset ? 1 : 0);
675 }
676 if (deassert_reset) {
677 /* Use board FPGA or GPIO to deassert reset signal */
678 if (pinfo->board_mem_de_reset) {
679 debug("Deasserting mem reset\n");
680 pinfo->board_mem_de_reset();
681 } else {
682 debug("Deasserting mem reset missing\n");
683 }
684 for (i = first_ctrl; i <= last_ctrl; i++) {
685 /* Call with step = 2 to continue initialization */
686 fsl_ddr_set_memctl_regs(&(pinfo->fsl_ddr_config_reg[i]),
687 i, 2);
688 }
689 }
690
691 #ifdef CONFIG_PPC
692 /* program LAWs */
693 for (i = first_ctrl; i <= last_ctrl; i++) {
694 if (pinfo->memctl_opts[i].memctl_interleaving) {
695 switch (pinfo->memctl_opts[i].
696 memctl_interleaving_mode) {
697 case FSL_DDR_CACHE_LINE_INTERLEAVING:
698 case FSL_DDR_PAGE_INTERLEAVING:
699 case FSL_DDR_BANK_INTERLEAVING:
700 case FSL_DDR_SUPERBANK_INTERLEAVING:
701 if (i % 2)
702 break;
703 if (i == 0) {
704 law_memctl = LAW_TRGT_IF_DDR_INTRLV;
705 fsl_ddr_set_lawbar(
706 &pinfo->common_timing_params[i],
707 law_memctl, i);
708 }
709 #if CONFIG_NUM_DDR_CONTROLLERS > 3
710 else if (i == 2) {
711 law_memctl = LAW_TRGT_IF_DDR_INTLV_34;
712 fsl_ddr_set_lawbar(
713 &pinfo->common_timing_params[i],
714 law_memctl, i);
715 }
716 #endif
717 break;
718 case FSL_DDR_3WAY_1KB_INTERLEAVING:
719 case FSL_DDR_3WAY_4KB_INTERLEAVING:
720 case FSL_DDR_3WAY_8KB_INTERLEAVING:
721 law_memctl = LAW_TRGT_IF_DDR_INTLV_123;
722 if (i == 0) {
723 fsl_ddr_set_lawbar(
724 &pinfo->common_timing_params[i],
725 law_memctl, i);
726 }
727 break;
728 case FSL_DDR_4WAY_1KB_INTERLEAVING:
729 case FSL_DDR_4WAY_4KB_INTERLEAVING:
730 case FSL_DDR_4WAY_8KB_INTERLEAVING:
731 law_memctl = LAW_TRGT_IF_DDR_INTLV_1234;
732 if (i == 0)
733 fsl_ddr_set_lawbar(
734 &pinfo->common_timing_params[i],
735 law_memctl, i);
736 /* place holder for future 4-way interleaving */
737 break;
738 default:
739 break;
740 }
741 } else {
742 switch (i) {
743 case 0:
744 law_memctl = LAW_TRGT_IF_DDR_1;
745 break;
746 case 1:
747 law_memctl = LAW_TRGT_IF_DDR_2;
748 break;
749 case 2:
750 law_memctl = LAW_TRGT_IF_DDR_3;
751 break;
752 case 3:
753 law_memctl = LAW_TRGT_IF_DDR_4;
754 break;
755 default:
756 break;
757 }
758 fsl_ddr_set_lawbar(&pinfo->common_timing_params[i],
759 law_memctl, i);
760 }
761 }
762 #endif
763
764 debug("total_memory by %s = %llu\n", __func__, total_memory);
765
766 #if !defined(CONFIG_PHYS_64BIT)
767 /* Check for 4G or more. Bad. */
768 if ((first_ctrl == 0) && (total_memory >= (1ull << 32))) {
769 puts("Detected ");
770 print_size(total_memory, " of memory\n");
771 printf(" This U-Boot only supports < 4G of DDR\n");
772 printf(" You could rebuild it with CONFIG_PHYS_64BIT\n");
773 printf(" "); /* re-align to match init_func_ram print */
774 total_memory = CONFIG_MAX_MEM_MAPPED;
775 }
776 #endif
777
778 return total_memory;
779 }
780
781 /*
782 * fsl_ddr_sdram(void) -- this is the main function to be
783 * called by initdram() in the board file.
784 *
785 * It returns amount of memory configured in bytes.
786 */
787 phys_size_t fsl_ddr_sdram(void)
788 {
789 fsl_ddr_info_t info;
790
791 /* Reset info structure. */
792 memset(&info, 0, sizeof(fsl_ddr_info_t));
793 info.mem_base = CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY;
794 info.first_ctrl = 0;
795 info.num_ctrls = CONFIG_SYS_FSL_DDR_MAIN_NUM_CTRLS;
796 info.dimm_slots_per_ctrl = CONFIG_DIMM_SLOTS_PER_CTLR;
797 info.board_need_mem_reset = board_need_mem_reset;
798 info.board_mem_reset = board_assert_mem_reset;
799 info.board_mem_de_reset = board_deassert_mem_reset;
800
801 return __fsl_ddr_sdram(&info);
802 }
803
804 #ifdef CONFIG_SYS_FSL_OTHER_DDR_NUM_CTRLS
805 phys_size_t fsl_other_ddr_sdram(unsigned long long base,
806 unsigned int first_ctrl,
807 unsigned int num_ctrls,
808 unsigned int dimm_slots_per_ctrl,
809 int (*board_need_reset)(void),
810 void (*board_reset)(void),
811 void (*board_de_reset)(void))
812 {
813 fsl_ddr_info_t info;
814
815 /* Reset info structure. */
816 memset(&info, 0, sizeof(fsl_ddr_info_t));
817 info.mem_base = base;
818 info.first_ctrl = first_ctrl;
819 info.num_ctrls = num_ctrls;
820 info.dimm_slots_per_ctrl = dimm_slots_per_ctrl;
821 info.board_need_mem_reset = board_need_reset;
822 info.board_mem_reset = board_reset;
823 info.board_mem_de_reset = board_de_reset;
824
825 return __fsl_ddr_sdram(&info);
826 }
827 #endif
828
829 /*
830 * fsl_ddr_sdram_size(first_ctrl, last_intlv) - This function only returns the
831 * size of the total memory without setting ddr control registers.
832 */
833 phys_size_t
834 fsl_ddr_sdram_size(void)
835 {
836 fsl_ddr_info_t info;
837 unsigned long long total_memory = 0;
838
839 memset(&info, 0 , sizeof(fsl_ddr_info_t));
840 info.mem_base = CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY;
841 info.first_ctrl = 0;
842 info.num_ctrls = CONFIG_SYS_FSL_DDR_MAIN_NUM_CTRLS;
843 info.dimm_slots_per_ctrl = CONFIG_DIMM_SLOTS_PER_CTLR;
844 info.board_need_mem_reset = NULL;
845
846 /* Compute it once normally. */
847 total_memory = fsl_ddr_compute(&info, STEP_GET_SPD, 1);
848
849 return total_memory;
850 }