]> git.ipfire.org Git - people/arne_f/kernel.git/blob - drivers/dma/imx-sdma.c
Merge tag 'v4.13-rc1' into k.o/for-4.13-rc
[people/arne_f/kernel.git] / drivers / dma / imx-sdma.c
1 /*
2 * drivers/dma/imx-sdma.c
3 *
4 * This file contains a driver for the Freescale Smart DMA engine
5 *
6 * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
7 *
8 * Based on code from Freescale:
9 *
10 * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
11 *
12 * The code contained herein is licensed under the GNU General Public
13 * License. You may obtain a copy of the GNU General Public License
14 * Version 2 or later at the following locations:
15 *
16 * http://www.opensource.org/licenses/gpl-license.html
17 * http://www.gnu.org/copyleft/gpl.html
18 */
19
20 #include <linux/init.h>
21 #include <linux/iopoll.h>
22 #include <linux/module.h>
23 #include <linux/types.h>
24 #include <linux/bitops.h>
25 #include <linux/mm.h>
26 #include <linux/interrupt.h>
27 #include <linux/clk.h>
28 #include <linux/delay.h>
29 #include <linux/sched.h>
30 #include <linux/semaphore.h>
31 #include <linux/spinlock.h>
32 #include <linux/device.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/firmware.h>
35 #include <linux/slab.h>
36 #include <linux/platform_device.h>
37 #include <linux/dmaengine.h>
38 #include <linux/of.h>
39 #include <linux/of_address.h>
40 #include <linux/of_device.h>
41 #include <linux/of_dma.h>
42
43 #include <asm/irq.h>
44 #include <linux/platform_data/dma-imx-sdma.h>
45 #include <linux/platform_data/dma-imx.h>
46 #include <linux/regmap.h>
47 #include <linux/mfd/syscon.h>
48 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
49
50 #include "dmaengine.h"
51
52 /* SDMA registers */
53 #define SDMA_H_C0PTR 0x000
54 #define SDMA_H_INTR 0x004
55 #define SDMA_H_STATSTOP 0x008
56 #define SDMA_H_START 0x00c
57 #define SDMA_H_EVTOVR 0x010
58 #define SDMA_H_DSPOVR 0x014
59 #define SDMA_H_HOSTOVR 0x018
60 #define SDMA_H_EVTPEND 0x01c
61 #define SDMA_H_DSPENBL 0x020
62 #define SDMA_H_RESET 0x024
63 #define SDMA_H_EVTERR 0x028
64 #define SDMA_H_INTRMSK 0x02c
65 #define SDMA_H_PSW 0x030
66 #define SDMA_H_EVTERRDBG 0x034
67 #define SDMA_H_CONFIG 0x038
68 #define SDMA_ONCE_ENB 0x040
69 #define SDMA_ONCE_DATA 0x044
70 #define SDMA_ONCE_INSTR 0x048
71 #define SDMA_ONCE_STAT 0x04c
72 #define SDMA_ONCE_CMD 0x050
73 #define SDMA_EVT_MIRROR 0x054
74 #define SDMA_ILLINSTADDR 0x058
75 #define SDMA_CHN0ADDR 0x05c
76 #define SDMA_ONCE_RTB 0x060
77 #define SDMA_XTRIG_CONF1 0x070
78 #define SDMA_XTRIG_CONF2 0x074
79 #define SDMA_CHNENBL0_IMX35 0x200
80 #define SDMA_CHNENBL0_IMX31 0x080
81 #define SDMA_CHNPRI_0 0x100
82
83 /*
84 * Buffer descriptor status values.
85 */
86 #define BD_DONE 0x01
87 #define BD_WRAP 0x02
88 #define BD_CONT 0x04
89 #define BD_INTR 0x08
90 #define BD_RROR 0x10
91 #define BD_LAST 0x20
92 #define BD_EXTD 0x80
93
94 /*
95 * Data Node descriptor status values.
96 */
97 #define DND_END_OF_FRAME 0x80
98 #define DND_END_OF_XFER 0x40
99 #define DND_DONE 0x20
100 #define DND_UNUSED 0x01
101
102 /*
103 * IPCV2 descriptor status values.
104 */
105 #define BD_IPCV2_END_OF_FRAME 0x40
106
107 #define IPCV2_MAX_NODES 50
108 /*
109 * Error bit set in the CCB status field by the SDMA,
110 * in setbd routine, in case of a transfer error
111 */
112 #define DATA_ERROR 0x10000000
113
114 /*
115 * Buffer descriptor commands.
116 */
117 #define C0_ADDR 0x01
118 #define C0_LOAD 0x02
119 #define C0_DUMP 0x03
120 #define C0_SETCTX 0x07
121 #define C0_GETCTX 0x03
122 #define C0_SETDM 0x01
123 #define C0_SETPM 0x04
124 #define C0_GETDM 0x02
125 #define C0_GETPM 0x08
126 /*
127 * Change endianness indicator in the BD command field
128 */
129 #define CHANGE_ENDIANNESS 0x80
130
131 /*
132 * p_2_p watermark_level description
133 * Bits Name Description
134 * 0-7 Lower WML Lower watermark level
135 * 8 PS 1: Pad Swallowing
136 * 0: No Pad Swallowing
137 * 9 PA 1: Pad Adding
138 * 0: No Pad Adding
139 * 10 SPDIF If this bit is set both source
140 * and destination are on SPBA
141 * 11 Source Bit(SP) 1: Source on SPBA
142 * 0: Source on AIPS
143 * 12 Destination Bit(DP) 1: Destination on SPBA
144 * 0: Destination on AIPS
145 * 13-15 --------- MUST BE 0
146 * 16-23 Higher WML HWML
147 * 24-27 N Total number of samples after
148 * which Pad adding/Swallowing
149 * must be done. It must be odd.
150 * 28 Lower WML Event(LWE) SDMA events reg to check for
151 * LWML event mask
152 * 0: LWE in EVENTS register
153 * 1: LWE in EVENTS2 register
154 * 29 Higher WML Event(HWE) SDMA events reg to check for
155 * HWML event mask
156 * 0: HWE in EVENTS register
157 * 1: HWE in EVENTS2 register
158 * 30 --------- MUST BE 0
159 * 31 CONT 1: Amount of samples to be
160 * transferred is unknown and
161 * script will keep on
162 * transferring samples as long as
163 * both events are detected and
164 * script must be manually stopped
165 * by the application
166 * 0: The amount of samples to be
167 * transferred is equal to the
168 * count field of mode word
169 */
170 #define SDMA_WATERMARK_LEVEL_LWML 0xFF
171 #define SDMA_WATERMARK_LEVEL_PS BIT(8)
172 #define SDMA_WATERMARK_LEVEL_PA BIT(9)
173 #define SDMA_WATERMARK_LEVEL_SPDIF BIT(10)
174 #define SDMA_WATERMARK_LEVEL_SP BIT(11)
175 #define SDMA_WATERMARK_LEVEL_DP BIT(12)
176 #define SDMA_WATERMARK_LEVEL_HWML (0xFF << 16)
177 #define SDMA_WATERMARK_LEVEL_LWE BIT(28)
178 #define SDMA_WATERMARK_LEVEL_HWE BIT(29)
179 #define SDMA_WATERMARK_LEVEL_CONT BIT(31)
180
181 /*
182 * Mode/Count of data node descriptors - IPCv2
183 */
184 struct sdma_mode_count {
185 u32 count : 16; /* size of the buffer pointed by this BD */
186 u32 status : 8; /* E,R,I,C,W,D status bits stored here */
187 u32 command : 8; /* command mostly used for channel 0 */
188 };
189
190 /*
191 * Buffer descriptor
192 */
193 struct sdma_buffer_descriptor {
194 struct sdma_mode_count mode;
195 u32 buffer_addr; /* address of the buffer described */
196 u32 ext_buffer_addr; /* extended buffer address */
197 } __attribute__ ((packed));
198
199 /**
200 * struct sdma_channel_control - Channel control Block
201 *
202 * @current_bd_ptr current buffer descriptor processed
203 * @base_bd_ptr first element of buffer descriptor array
204 * @unused padding. The SDMA engine expects an array of 128 byte
205 * control blocks
206 */
207 struct sdma_channel_control {
208 u32 current_bd_ptr;
209 u32 base_bd_ptr;
210 u32 unused[2];
211 } __attribute__ ((packed));
212
213 /**
214 * struct sdma_state_registers - SDMA context for a channel
215 *
216 * @pc: program counter
217 * @t: test bit: status of arithmetic & test instruction
218 * @rpc: return program counter
219 * @sf: source fault while loading data
220 * @spc: loop start program counter
221 * @df: destination fault while storing data
222 * @epc: loop end program counter
223 * @lm: loop mode
224 */
225 struct sdma_state_registers {
226 u32 pc :14;
227 u32 unused1: 1;
228 u32 t : 1;
229 u32 rpc :14;
230 u32 unused0: 1;
231 u32 sf : 1;
232 u32 spc :14;
233 u32 unused2: 1;
234 u32 df : 1;
235 u32 epc :14;
236 u32 lm : 2;
237 } __attribute__ ((packed));
238
239 /**
240 * struct sdma_context_data - sdma context specific to a channel
241 *
242 * @channel_state: channel state bits
243 * @gReg: general registers
244 * @mda: burst dma destination address register
245 * @msa: burst dma source address register
246 * @ms: burst dma status register
247 * @md: burst dma data register
248 * @pda: peripheral dma destination address register
249 * @psa: peripheral dma source address register
250 * @ps: peripheral dma status register
251 * @pd: peripheral dma data register
252 * @ca: CRC polynomial register
253 * @cs: CRC accumulator register
254 * @dda: dedicated core destination address register
255 * @dsa: dedicated core source address register
256 * @ds: dedicated core status register
257 * @dd: dedicated core data register
258 */
259 struct sdma_context_data {
260 struct sdma_state_registers channel_state;
261 u32 gReg[8];
262 u32 mda;
263 u32 msa;
264 u32 ms;
265 u32 md;
266 u32 pda;
267 u32 psa;
268 u32 ps;
269 u32 pd;
270 u32 ca;
271 u32 cs;
272 u32 dda;
273 u32 dsa;
274 u32 ds;
275 u32 dd;
276 u32 scratch0;
277 u32 scratch1;
278 u32 scratch2;
279 u32 scratch3;
280 u32 scratch4;
281 u32 scratch5;
282 u32 scratch6;
283 u32 scratch7;
284 } __attribute__ ((packed));
285
286 #define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))
287
288 struct sdma_engine;
289
290 /**
291 * struct sdma_channel - housekeeping for a SDMA channel
292 *
293 * @sdma pointer to the SDMA engine for this channel
294 * @channel the channel number, matches dmaengine chan_id + 1
295 * @direction transfer type. Needed for setting SDMA script
296 * @peripheral_type Peripheral type. Needed for setting SDMA script
297 * @event_id0 aka dma request line
298 * @event_id1 for channels that use 2 events
299 * @word_size peripheral access size
300 * @buf_tail ID of the buffer that was processed
301 * @buf_ptail ID of the previous buffer that was processed
302 * @num_bd max NUM_BD. number of descriptors currently handling
303 */
304 struct sdma_channel {
305 struct sdma_engine *sdma;
306 unsigned int channel;
307 enum dma_transfer_direction direction;
308 enum sdma_peripheral_type peripheral_type;
309 unsigned int event_id0;
310 unsigned int event_id1;
311 enum dma_slave_buswidth word_size;
312 unsigned int buf_tail;
313 unsigned int buf_ptail;
314 unsigned int num_bd;
315 unsigned int period_len;
316 struct sdma_buffer_descriptor *bd;
317 dma_addr_t bd_phys;
318 unsigned int pc_from_device, pc_to_device;
319 unsigned int device_to_device;
320 unsigned long flags;
321 dma_addr_t per_address, per_address2;
322 unsigned long event_mask[2];
323 unsigned long watermark_level;
324 u32 shp_addr, per_addr;
325 struct dma_chan chan;
326 spinlock_t lock;
327 struct dma_async_tx_descriptor desc;
328 enum dma_status status;
329 unsigned int chn_count;
330 unsigned int chn_real_count;
331 struct tasklet_struct tasklet;
332 struct imx_dma_data data;
333 };
334
335 #define IMX_DMA_SG_LOOP BIT(0)
336
337 #define MAX_DMA_CHANNELS 32
338 #define MXC_SDMA_DEFAULT_PRIORITY 1
339 #define MXC_SDMA_MIN_PRIORITY 1
340 #define MXC_SDMA_MAX_PRIORITY 7
341
342 #define SDMA_FIRMWARE_MAGIC 0x414d4453
343
344 /**
345 * struct sdma_firmware_header - Layout of the firmware image
346 *
347 * @magic "SDMA"
348 * @version_major increased whenever layout of struct sdma_script_start_addrs
349 * changes.
350 * @version_minor firmware minor version (for binary compatible changes)
351 * @script_addrs_start offset of struct sdma_script_start_addrs in this image
352 * @num_script_addrs Number of script addresses in this image
353 * @ram_code_start offset of SDMA ram image in this firmware image
354 * @ram_code_size size of SDMA ram image
355 * @script_addrs Stores the start address of the SDMA scripts
356 * (in SDMA memory space)
357 */
358 struct sdma_firmware_header {
359 u32 magic;
360 u32 version_major;
361 u32 version_minor;
362 u32 script_addrs_start;
363 u32 num_script_addrs;
364 u32 ram_code_start;
365 u32 ram_code_size;
366 };
367
368 struct sdma_driver_data {
369 int chnenbl0;
370 int num_events;
371 struct sdma_script_start_addrs *script_addrs;
372 };
373
374 struct sdma_engine {
375 struct device *dev;
376 struct device_dma_parameters dma_parms;
377 struct sdma_channel channel[MAX_DMA_CHANNELS];
378 struct sdma_channel_control *channel_control;
379 void __iomem *regs;
380 struct sdma_context_data *context;
381 dma_addr_t context_phys;
382 struct dma_device dma_device;
383 struct clk *clk_ipg;
384 struct clk *clk_ahb;
385 spinlock_t channel_0_lock;
386 u32 script_number;
387 struct sdma_script_start_addrs *script_addrs;
388 const struct sdma_driver_data *drvdata;
389 u32 spba_start_addr;
390 u32 spba_end_addr;
391 unsigned int irq;
392 };
393
394 static struct sdma_driver_data sdma_imx31 = {
395 .chnenbl0 = SDMA_CHNENBL0_IMX31,
396 .num_events = 32,
397 };
398
399 static struct sdma_script_start_addrs sdma_script_imx25 = {
400 .ap_2_ap_addr = 729,
401 .uart_2_mcu_addr = 904,
402 .per_2_app_addr = 1255,
403 .mcu_2_app_addr = 834,
404 .uartsh_2_mcu_addr = 1120,
405 .per_2_shp_addr = 1329,
406 .mcu_2_shp_addr = 1048,
407 .ata_2_mcu_addr = 1560,
408 .mcu_2_ata_addr = 1479,
409 .app_2_per_addr = 1189,
410 .app_2_mcu_addr = 770,
411 .shp_2_per_addr = 1407,
412 .shp_2_mcu_addr = 979,
413 };
414
415 static struct sdma_driver_data sdma_imx25 = {
416 .chnenbl0 = SDMA_CHNENBL0_IMX35,
417 .num_events = 48,
418 .script_addrs = &sdma_script_imx25,
419 };
420
421 static struct sdma_driver_data sdma_imx35 = {
422 .chnenbl0 = SDMA_CHNENBL0_IMX35,
423 .num_events = 48,
424 };
425
426 static struct sdma_script_start_addrs sdma_script_imx51 = {
427 .ap_2_ap_addr = 642,
428 .uart_2_mcu_addr = 817,
429 .mcu_2_app_addr = 747,
430 .mcu_2_shp_addr = 961,
431 .ata_2_mcu_addr = 1473,
432 .mcu_2_ata_addr = 1392,
433 .app_2_per_addr = 1033,
434 .app_2_mcu_addr = 683,
435 .shp_2_per_addr = 1251,
436 .shp_2_mcu_addr = 892,
437 };
438
439 static struct sdma_driver_data sdma_imx51 = {
440 .chnenbl0 = SDMA_CHNENBL0_IMX35,
441 .num_events = 48,
442 .script_addrs = &sdma_script_imx51,
443 };
444
445 static struct sdma_script_start_addrs sdma_script_imx53 = {
446 .ap_2_ap_addr = 642,
447 .app_2_mcu_addr = 683,
448 .mcu_2_app_addr = 747,
449 .uart_2_mcu_addr = 817,
450 .shp_2_mcu_addr = 891,
451 .mcu_2_shp_addr = 960,
452 .uartsh_2_mcu_addr = 1032,
453 .spdif_2_mcu_addr = 1100,
454 .mcu_2_spdif_addr = 1134,
455 .firi_2_mcu_addr = 1193,
456 .mcu_2_firi_addr = 1290,
457 };
458
459 static struct sdma_driver_data sdma_imx53 = {
460 .chnenbl0 = SDMA_CHNENBL0_IMX35,
461 .num_events = 48,
462 .script_addrs = &sdma_script_imx53,
463 };
464
465 static struct sdma_script_start_addrs sdma_script_imx6q = {
466 .ap_2_ap_addr = 642,
467 .uart_2_mcu_addr = 817,
468 .mcu_2_app_addr = 747,
469 .per_2_per_addr = 6331,
470 .uartsh_2_mcu_addr = 1032,
471 .mcu_2_shp_addr = 960,
472 .app_2_mcu_addr = 683,
473 .shp_2_mcu_addr = 891,
474 .spdif_2_mcu_addr = 1100,
475 .mcu_2_spdif_addr = 1134,
476 };
477
478 static struct sdma_driver_data sdma_imx6q = {
479 .chnenbl0 = SDMA_CHNENBL0_IMX35,
480 .num_events = 48,
481 .script_addrs = &sdma_script_imx6q,
482 };
483
484 static struct sdma_script_start_addrs sdma_script_imx7d = {
485 .ap_2_ap_addr = 644,
486 .uart_2_mcu_addr = 819,
487 .mcu_2_app_addr = 749,
488 .uartsh_2_mcu_addr = 1034,
489 .mcu_2_shp_addr = 962,
490 .app_2_mcu_addr = 685,
491 .shp_2_mcu_addr = 893,
492 .spdif_2_mcu_addr = 1102,
493 .mcu_2_spdif_addr = 1136,
494 };
495
496 static struct sdma_driver_data sdma_imx7d = {
497 .chnenbl0 = SDMA_CHNENBL0_IMX35,
498 .num_events = 48,
499 .script_addrs = &sdma_script_imx7d,
500 };
501
502 static const struct platform_device_id sdma_devtypes[] = {
503 {
504 .name = "imx25-sdma",
505 .driver_data = (unsigned long)&sdma_imx25,
506 }, {
507 .name = "imx31-sdma",
508 .driver_data = (unsigned long)&sdma_imx31,
509 }, {
510 .name = "imx35-sdma",
511 .driver_data = (unsigned long)&sdma_imx35,
512 }, {
513 .name = "imx51-sdma",
514 .driver_data = (unsigned long)&sdma_imx51,
515 }, {
516 .name = "imx53-sdma",
517 .driver_data = (unsigned long)&sdma_imx53,
518 }, {
519 .name = "imx6q-sdma",
520 .driver_data = (unsigned long)&sdma_imx6q,
521 }, {
522 .name = "imx7d-sdma",
523 .driver_data = (unsigned long)&sdma_imx7d,
524 }, {
525 /* sentinel */
526 }
527 };
528 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
529
530 static const struct of_device_id sdma_dt_ids[] = {
531 { .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
532 { .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
533 { .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
534 { .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
535 { .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
536 { .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
537 { .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, },
538 { /* sentinel */ }
539 };
540 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
541
542 #define SDMA_H_CONFIG_DSPDMA BIT(12) /* indicates if the DSPDMA is used */
543 #define SDMA_H_CONFIG_RTD_PINS BIT(11) /* indicates if Real-Time Debug pins are enabled */
544 #define SDMA_H_CONFIG_ACR BIT(4) /* indicates if AHB freq /core freq = 2 or 1 */
545 #define SDMA_H_CONFIG_CSM (3) /* indicates which context switch mode is selected*/
546
547 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
548 {
549 u32 chnenbl0 = sdma->drvdata->chnenbl0;
550 return chnenbl0 + event * 4;
551 }
552
553 static int sdma_config_ownership(struct sdma_channel *sdmac,
554 bool event_override, bool mcu_override, bool dsp_override)
555 {
556 struct sdma_engine *sdma = sdmac->sdma;
557 int channel = sdmac->channel;
558 unsigned long evt, mcu, dsp;
559
560 if (event_override && mcu_override && dsp_override)
561 return -EINVAL;
562
563 evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
564 mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
565 dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
566
567 if (dsp_override)
568 __clear_bit(channel, &dsp);
569 else
570 __set_bit(channel, &dsp);
571
572 if (event_override)
573 __clear_bit(channel, &evt);
574 else
575 __set_bit(channel, &evt);
576
577 if (mcu_override)
578 __clear_bit(channel, &mcu);
579 else
580 __set_bit(channel, &mcu);
581
582 writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
583 writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
584 writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
585
586 return 0;
587 }
588
589 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
590 {
591 writel(BIT(channel), sdma->regs + SDMA_H_START);
592 }
593
594 /*
595 * sdma_run_channel0 - run a channel and wait till it's done
596 */
597 static int sdma_run_channel0(struct sdma_engine *sdma)
598 {
599 int ret;
600 u32 reg;
601
602 sdma_enable_channel(sdma, 0);
603
604 ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP,
605 reg, !(reg & 1), 1, 500);
606 if (ret)
607 dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
608
609 /* Set bits of CONFIG register with dynamic context switching */
610 if (readl(sdma->regs + SDMA_H_CONFIG) == 0)
611 writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
612
613 return ret;
614 }
615
616 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
617 u32 address)
618 {
619 struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
620 void *buf_virt;
621 dma_addr_t buf_phys;
622 int ret;
623 unsigned long flags;
624
625 buf_virt = dma_alloc_coherent(NULL,
626 size,
627 &buf_phys, GFP_KERNEL);
628 if (!buf_virt) {
629 return -ENOMEM;
630 }
631
632 spin_lock_irqsave(&sdma->channel_0_lock, flags);
633
634 bd0->mode.command = C0_SETPM;
635 bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
636 bd0->mode.count = size / 2;
637 bd0->buffer_addr = buf_phys;
638 bd0->ext_buffer_addr = address;
639
640 memcpy(buf_virt, buf, size);
641
642 ret = sdma_run_channel0(sdma);
643
644 spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
645
646 dma_free_coherent(NULL, size, buf_virt, buf_phys);
647
648 return ret;
649 }
650
651 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
652 {
653 struct sdma_engine *sdma = sdmac->sdma;
654 int channel = sdmac->channel;
655 unsigned long val;
656 u32 chnenbl = chnenbl_ofs(sdma, event);
657
658 val = readl_relaxed(sdma->regs + chnenbl);
659 __set_bit(channel, &val);
660 writel_relaxed(val, sdma->regs + chnenbl);
661 }
662
663 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
664 {
665 struct sdma_engine *sdma = sdmac->sdma;
666 int channel = sdmac->channel;
667 u32 chnenbl = chnenbl_ofs(sdma, event);
668 unsigned long val;
669
670 val = readl_relaxed(sdma->regs + chnenbl);
671 __clear_bit(channel, &val);
672 writel_relaxed(val, sdma->regs + chnenbl);
673 }
674
675 static void sdma_update_channel_loop(struct sdma_channel *sdmac)
676 {
677 struct sdma_buffer_descriptor *bd;
678 int error = 0;
679 enum dma_status old_status = sdmac->status;
680
681 /*
682 * loop mode. Iterate over descriptors, re-setup them and
683 * call callback function.
684 */
685 while (1) {
686 bd = &sdmac->bd[sdmac->buf_tail];
687
688 if (bd->mode.status & BD_DONE)
689 break;
690
691 if (bd->mode.status & BD_RROR) {
692 bd->mode.status &= ~BD_RROR;
693 sdmac->status = DMA_ERROR;
694 error = -EIO;
695 }
696
697 /*
698 * We use bd->mode.count to calculate the residue, since contains
699 * the number of bytes present in the current buffer descriptor.
700 */
701
702 sdmac->chn_real_count = bd->mode.count;
703 bd->mode.status |= BD_DONE;
704 bd->mode.count = sdmac->period_len;
705 sdmac->buf_ptail = sdmac->buf_tail;
706 sdmac->buf_tail = (sdmac->buf_tail + 1) % sdmac->num_bd;
707
708 /*
709 * The callback is called from the interrupt context in order
710 * to reduce latency and to avoid the risk of altering the
711 * SDMA transaction status by the time the client tasklet is
712 * executed.
713 */
714
715 dmaengine_desc_get_callback_invoke(&sdmac->desc, NULL);
716
717 if (error)
718 sdmac->status = old_status;
719 }
720 }
721
722 static void mxc_sdma_handle_channel_normal(unsigned long data)
723 {
724 struct sdma_channel *sdmac = (struct sdma_channel *) data;
725 struct sdma_buffer_descriptor *bd;
726 int i, error = 0;
727
728 sdmac->chn_real_count = 0;
729 /*
730 * non loop mode. Iterate over all descriptors, collect
731 * errors and call callback function
732 */
733 for (i = 0; i < sdmac->num_bd; i++) {
734 bd = &sdmac->bd[i];
735
736 if (bd->mode.status & (BD_DONE | BD_RROR))
737 error = -EIO;
738 sdmac->chn_real_count += bd->mode.count;
739 }
740
741 if (error)
742 sdmac->status = DMA_ERROR;
743 else
744 sdmac->status = DMA_COMPLETE;
745
746 dma_cookie_complete(&sdmac->desc);
747
748 dmaengine_desc_get_callback_invoke(&sdmac->desc, NULL);
749 }
750
751 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
752 {
753 struct sdma_engine *sdma = dev_id;
754 unsigned long stat;
755
756 stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
757 writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
758 /* channel 0 is special and not handled here, see run_channel0() */
759 stat &= ~1;
760
761 while (stat) {
762 int channel = fls(stat) - 1;
763 struct sdma_channel *sdmac = &sdma->channel[channel];
764
765 if (sdmac->flags & IMX_DMA_SG_LOOP)
766 sdma_update_channel_loop(sdmac);
767 else
768 tasklet_schedule(&sdmac->tasklet);
769
770 __clear_bit(channel, &stat);
771 }
772
773 return IRQ_HANDLED;
774 }
775
776 /*
777 * sets the pc of SDMA script according to the peripheral type
778 */
779 static void sdma_get_pc(struct sdma_channel *sdmac,
780 enum sdma_peripheral_type peripheral_type)
781 {
782 struct sdma_engine *sdma = sdmac->sdma;
783 int per_2_emi = 0, emi_2_per = 0;
784 /*
785 * These are needed once we start to support transfers between
786 * two peripherals or memory-to-memory transfers
787 */
788 int per_2_per = 0;
789
790 sdmac->pc_from_device = 0;
791 sdmac->pc_to_device = 0;
792 sdmac->device_to_device = 0;
793
794 switch (peripheral_type) {
795 case IMX_DMATYPE_MEMORY:
796 break;
797 case IMX_DMATYPE_DSP:
798 emi_2_per = sdma->script_addrs->bp_2_ap_addr;
799 per_2_emi = sdma->script_addrs->ap_2_bp_addr;
800 break;
801 case IMX_DMATYPE_FIRI:
802 per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
803 emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
804 break;
805 case IMX_DMATYPE_UART:
806 per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
807 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
808 break;
809 case IMX_DMATYPE_UART_SP:
810 per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
811 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
812 break;
813 case IMX_DMATYPE_ATA:
814 per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
815 emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
816 break;
817 case IMX_DMATYPE_CSPI:
818 case IMX_DMATYPE_EXT:
819 case IMX_DMATYPE_SSI:
820 case IMX_DMATYPE_SAI:
821 per_2_emi = sdma->script_addrs->app_2_mcu_addr;
822 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
823 break;
824 case IMX_DMATYPE_SSI_DUAL:
825 per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
826 emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
827 break;
828 case IMX_DMATYPE_SSI_SP:
829 case IMX_DMATYPE_MMC:
830 case IMX_DMATYPE_SDHC:
831 case IMX_DMATYPE_CSPI_SP:
832 case IMX_DMATYPE_ESAI:
833 case IMX_DMATYPE_MSHC_SP:
834 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
835 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
836 break;
837 case IMX_DMATYPE_ASRC:
838 per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
839 emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
840 per_2_per = sdma->script_addrs->per_2_per_addr;
841 break;
842 case IMX_DMATYPE_ASRC_SP:
843 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
844 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
845 per_2_per = sdma->script_addrs->per_2_per_addr;
846 break;
847 case IMX_DMATYPE_MSHC:
848 per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
849 emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
850 break;
851 case IMX_DMATYPE_CCM:
852 per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
853 break;
854 case IMX_DMATYPE_SPDIF:
855 per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
856 emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
857 break;
858 case IMX_DMATYPE_IPU_MEMORY:
859 emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
860 break;
861 default:
862 break;
863 }
864
865 sdmac->pc_from_device = per_2_emi;
866 sdmac->pc_to_device = emi_2_per;
867 sdmac->device_to_device = per_2_per;
868 }
869
870 static int sdma_load_context(struct sdma_channel *sdmac)
871 {
872 struct sdma_engine *sdma = sdmac->sdma;
873 int channel = sdmac->channel;
874 int load_address;
875 struct sdma_context_data *context = sdma->context;
876 struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
877 int ret;
878 unsigned long flags;
879
880 if (sdmac->direction == DMA_DEV_TO_MEM)
881 load_address = sdmac->pc_from_device;
882 else if (sdmac->direction == DMA_DEV_TO_DEV)
883 load_address = sdmac->device_to_device;
884 else
885 load_address = sdmac->pc_to_device;
886
887 if (load_address < 0)
888 return load_address;
889
890 dev_dbg(sdma->dev, "load_address = %d\n", load_address);
891 dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
892 dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
893 dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
894 dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
895 dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
896
897 spin_lock_irqsave(&sdma->channel_0_lock, flags);
898
899 memset(context, 0, sizeof(*context));
900 context->channel_state.pc = load_address;
901
902 /* Send by context the event mask,base address for peripheral
903 * and watermark level
904 */
905 context->gReg[0] = sdmac->event_mask[1];
906 context->gReg[1] = sdmac->event_mask[0];
907 context->gReg[2] = sdmac->per_addr;
908 context->gReg[6] = sdmac->shp_addr;
909 context->gReg[7] = sdmac->watermark_level;
910
911 bd0->mode.command = C0_SETDM;
912 bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
913 bd0->mode.count = sizeof(*context) / 4;
914 bd0->buffer_addr = sdma->context_phys;
915 bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
916 ret = sdma_run_channel0(sdma);
917
918 spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
919
920 return ret;
921 }
922
923 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
924 {
925 return container_of(chan, struct sdma_channel, chan);
926 }
927
928 static int sdma_disable_channel(struct dma_chan *chan)
929 {
930 struct sdma_channel *sdmac = to_sdma_chan(chan);
931 struct sdma_engine *sdma = sdmac->sdma;
932 int channel = sdmac->channel;
933
934 writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
935 sdmac->status = DMA_ERROR;
936
937 return 0;
938 }
939
940 static int sdma_disable_channel_with_delay(struct dma_chan *chan)
941 {
942 sdma_disable_channel(chan);
943
944 /*
945 * According to NXP R&D team a delay of one BD SDMA cost time
946 * (maximum is 1ms) should be added after disable of the channel
947 * bit, to ensure SDMA core has really been stopped after SDMA
948 * clients call .device_terminate_all.
949 */
950 mdelay(1);
951
952 return 0;
953 }
954
955 static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
956 {
957 struct sdma_engine *sdma = sdmac->sdma;
958
959 int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
960 int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;
961
962 set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
963 set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);
964
965 if (sdmac->event_id0 > 31)
966 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;
967
968 if (sdmac->event_id1 > 31)
969 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;
970
971 /*
972 * If LWML(src_maxburst) > HWML(dst_maxburst), we need
973 * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
974 * r0(event_mask[1]) and r1(event_mask[0]).
975 */
976 if (lwml > hwml) {
977 sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
978 SDMA_WATERMARK_LEVEL_HWML);
979 sdmac->watermark_level |= hwml;
980 sdmac->watermark_level |= lwml << 16;
981 swap(sdmac->event_mask[0], sdmac->event_mask[1]);
982 }
983
984 if (sdmac->per_address2 >= sdma->spba_start_addr &&
985 sdmac->per_address2 <= sdma->spba_end_addr)
986 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;
987
988 if (sdmac->per_address >= sdma->spba_start_addr &&
989 sdmac->per_address <= sdma->spba_end_addr)
990 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;
991
992 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
993 }
994
995 static int sdma_config_channel(struct dma_chan *chan)
996 {
997 struct sdma_channel *sdmac = to_sdma_chan(chan);
998 int ret;
999
1000 sdma_disable_channel(chan);
1001
1002 sdmac->event_mask[0] = 0;
1003 sdmac->event_mask[1] = 0;
1004 sdmac->shp_addr = 0;
1005 sdmac->per_addr = 0;
1006
1007 if (sdmac->event_id0) {
1008 if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
1009 return -EINVAL;
1010 sdma_event_enable(sdmac, sdmac->event_id0);
1011 }
1012
1013 if (sdmac->event_id1) {
1014 if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
1015 return -EINVAL;
1016 sdma_event_enable(sdmac, sdmac->event_id1);
1017 }
1018
1019 switch (sdmac->peripheral_type) {
1020 case IMX_DMATYPE_DSP:
1021 sdma_config_ownership(sdmac, false, true, true);
1022 break;
1023 case IMX_DMATYPE_MEMORY:
1024 sdma_config_ownership(sdmac, false, true, false);
1025 break;
1026 default:
1027 sdma_config_ownership(sdmac, true, true, false);
1028 break;
1029 }
1030
1031 sdma_get_pc(sdmac, sdmac->peripheral_type);
1032
1033 if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
1034 (sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
1035 /* Handle multiple event channels differently */
1036 if (sdmac->event_id1) {
1037 if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
1038 sdmac->peripheral_type == IMX_DMATYPE_ASRC)
1039 sdma_set_watermarklevel_for_p2p(sdmac);
1040 } else
1041 __set_bit(sdmac->event_id0, sdmac->event_mask);
1042
1043 /* Address */
1044 sdmac->shp_addr = sdmac->per_address;
1045 sdmac->per_addr = sdmac->per_address2;
1046 } else {
1047 sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
1048 }
1049
1050 ret = sdma_load_context(sdmac);
1051
1052 return ret;
1053 }
1054
1055 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
1056 unsigned int priority)
1057 {
1058 struct sdma_engine *sdma = sdmac->sdma;
1059 int channel = sdmac->channel;
1060
1061 if (priority < MXC_SDMA_MIN_PRIORITY
1062 || priority > MXC_SDMA_MAX_PRIORITY) {
1063 return -EINVAL;
1064 }
1065
1066 writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
1067
1068 return 0;
1069 }
1070
1071 static int sdma_request_channel(struct sdma_channel *sdmac)
1072 {
1073 struct sdma_engine *sdma = sdmac->sdma;
1074 int channel = sdmac->channel;
1075 int ret = -EBUSY;
1076
1077 sdmac->bd = dma_zalloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys,
1078 GFP_KERNEL);
1079 if (!sdmac->bd) {
1080 ret = -ENOMEM;
1081 goto out;
1082 }
1083
1084 sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
1085 sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1086
1087 sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
1088 return 0;
1089 out:
1090
1091 return ret;
1092 }
1093
1094 static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
1095 {
1096 unsigned long flags;
1097 struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
1098 dma_cookie_t cookie;
1099
1100 spin_lock_irqsave(&sdmac->lock, flags);
1101
1102 cookie = dma_cookie_assign(tx);
1103
1104 spin_unlock_irqrestore(&sdmac->lock, flags);
1105
1106 return cookie;
1107 }
1108
1109 static int sdma_alloc_chan_resources(struct dma_chan *chan)
1110 {
1111 struct sdma_channel *sdmac = to_sdma_chan(chan);
1112 struct imx_dma_data *data = chan->private;
1113 int prio, ret;
1114
1115 if (!data)
1116 return -EINVAL;
1117
1118 switch (data->priority) {
1119 case DMA_PRIO_HIGH:
1120 prio = 3;
1121 break;
1122 case DMA_PRIO_MEDIUM:
1123 prio = 2;
1124 break;
1125 case DMA_PRIO_LOW:
1126 default:
1127 prio = 1;
1128 break;
1129 }
1130
1131 sdmac->peripheral_type = data->peripheral_type;
1132 sdmac->event_id0 = data->dma_request;
1133 sdmac->event_id1 = data->dma_request2;
1134
1135 ret = clk_enable(sdmac->sdma->clk_ipg);
1136 if (ret)
1137 return ret;
1138 ret = clk_enable(sdmac->sdma->clk_ahb);
1139 if (ret)
1140 goto disable_clk_ipg;
1141
1142 ret = sdma_request_channel(sdmac);
1143 if (ret)
1144 goto disable_clk_ahb;
1145
1146 ret = sdma_set_channel_priority(sdmac, prio);
1147 if (ret)
1148 goto disable_clk_ahb;
1149
1150 dma_async_tx_descriptor_init(&sdmac->desc, chan);
1151 sdmac->desc.tx_submit = sdma_tx_submit;
1152 /* txd.flags will be overwritten in prep funcs */
1153 sdmac->desc.flags = DMA_CTRL_ACK;
1154
1155 return 0;
1156
1157 disable_clk_ahb:
1158 clk_disable(sdmac->sdma->clk_ahb);
1159 disable_clk_ipg:
1160 clk_disable(sdmac->sdma->clk_ipg);
1161 return ret;
1162 }
1163
1164 static void sdma_free_chan_resources(struct dma_chan *chan)
1165 {
1166 struct sdma_channel *sdmac = to_sdma_chan(chan);
1167 struct sdma_engine *sdma = sdmac->sdma;
1168
1169 sdma_disable_channel(chan);
1170
1171 if (sdmac->event_id0)
1172 sdma_event_disable(sdmac, sdmac->event_id0);
1173 if (sdmac->event_id1)
1174 sdma_event_disable(sdmac, sdmac->event_id1);
1175
1176 sdmac->event_id0 = 0;
1177 sdmac->event_id1 = 0;
1178
1179 sdma_set_channel_priority(sdmac, 0);
1180
1181 dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);
1182
1183 clk_disable(sdma->clk_ipg);
1184 clk_disable(sdma->clk_ahb);
1185 }
1186
1187 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1188 struct dma_chan *chan, struct scatterlist *sgl,
1189 unsigned int sg_len, enum dma_transfer_direction direction,
1190 unsigned long flags, void *context)
1191 {
1192 struct sdma_channel *sdmac = to_sdma_chan(chan);
1193 struct sdma_engine *sdma = sdmac->sdma;
1194 int ret, i, count;
1195 int channel = sdmac->channel;
1196 struct scatterlist *sg;
1197
1198 if (sdmac->status == DMA_IN_PROGRESS)
1199 return NULL;
1200 sdmac->status = DMA_IN_PROGRESS;
1201
1202 sdmac->flags = 0;
1203
1204 sdmac->buf_tail = 0;
1205 sdmac->buf_ptail = 0;
1206 sdmac->chn_real_count = 0;
1207
1208 dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1209 sg_len, channel);
1210
1211 sdmac->direction = direction;
1212 ret = sdma_load_context(sdmac);
1213 if (ret)
1214 goto err_out;
1215
1216 if (sg_len > NUM_BD) {
1217 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1218 channel, sg_len, NUM_BD);
1219 ret = -EINVAL;
1220 goto err_out;
1221 }
1222
1223 sdmac->chn_count = 0;
1224 for_each_sg(sgl, sg, sg_len, i) {
1225 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1226 int param;
1227
1228 bd->buffer_addr = sg->dma_address;
1229
1230 count = sg_dma_len(sg);
1231
1232 if (count > 0xffff) {
1233 dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1234 channel, count, 0xffff);
1235 ret = -EINVAL;
1236 goto err_out;
1237 }
1238
1239 bd->mode.count = count;
1240 sdmac->chn_count += count;
1241
1242 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
1243 ret = -EINVAL;
1244 goto err_out;
1245 }
1246
1247 switch (sdmac->word_size) {
1248 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1249 bd->mode.command = 0;
1250 if (count & 3 || sg->dma_address & 3)
1251 return NULL;
1252 break;
1253 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1254 bd->mode.command = 2;
1255 if (count & 1 || sg->dma_address & 1)
1256 return NULL;
1257 break;
1258 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1259 bd->mode.command = 1;
1260 break;
1261 default:
1262 return NULL;
1263 }
1264
1265 param = BD_DONE | BD_EXTD | BD_CONT;
1266
1267 if (i + 1 == sg_len) {
1268 param |= BD_INTR;
1269 param |= BD_LAST;
1270 param &= ~BD_CONT;
1271 }
1272
1273 dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1274 i, count, (u64)sg->dma_address,
1275 param & BD_WRAP ? "wrap" : "",
1276 param & BD_INTR ? " intr" : "");
1277
1278 bd->mode.status = param;
1279 }
1280
1281 sdmac->num_bd = sg_len;
1282 sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1283
1284 return &sdmac->desc;
1285 err_out:
1286 sdmac->status = DMA_ERROR;
1287 return NULL;
1288 }
1289
1290 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1291 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1292 size_t period_len, enum dma_transfer_direction direction,
1293 unsigned long flags)
1294 {
1295 struct sdma_channel *sdmac = to_sdma_chan(chan);
1296 struct sdma_engine *sdma = sdmac->sdma;
1297 int num_periods = buf_len / period_len;
1298 int channel = sdmac->channel;
1299 int ret, i = 0, buf = 0;
1300
1301 dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1302
1303 if (sdmac->status == DMA_IN_PROGRESS)
1304 return NULL;
1305
1306 sdmac->status = DMA_IN_PROGRESS;
1307
1308 sdmac->buf_tail = 0;
1309 sdmac->buf_ptail = 0;
1310 sdmac->chn_real_count = 0;
1311 sdmac->period_len = period_len;
1312
1313 sdmac->flags |= IMX_DMA_SG_LOOP;
1314 sdmac->direction = direction;
1315 ret = sdma_load_context(sdmac);
1316 if (ret)
1317 goto err_out;
1318
1319 if (num_periods > NUM_BD) {
1320 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1321 channel, num_periods, NUM_BD);
1322 goto err_out;
1323 }
1324
1325 if (period_len > 0xffff) {
1326 dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %zu > %d\n",
1327 channel, period_len, 0xffff);
1328 goto err_out;
1329 }
1330
1331 while (buf < buf_len) {
1332 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1333 int param;
1334
1335 bd->buffer_addr = dma_addr;
1336
1337 bd->mode.count = period_len;
1338
1339 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1340 goto err_out;
1341 if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1342 bd->mode.command = 0;
1343 else
1344 bd->mode.command = sdmac->word_size;
1345
1346 param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1347 if (i + 1 == num_periods)
1348 param |= BD_WRAP;
1349
1350 dev_dbg(sdma->dev, "entry %d: count: %zu dma: %#llx %s%s\n",
1351 i, period_len, (u64)dma_addr,
1352 param & BD_WRAP ? "wrap" : "",
1353 param & BD_INTR ? " intr" : "");
1354
1355 bd->mode.status = param;
1356
1357 dma_addr += period_len;
1358 buf += period_len;
1359
1360 i++;
1361 }
1362
1363 sdmac->num_bd = num_periods;
1364 sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1365
1366 return &sdmac->desc;
1367 err_out:
1368 sdmac->status = DMA_ERROR;
1369 return NULL;
1370 }
1371
1372 static int sdma_config(struct dma_chan *chan,
1373 struct dma_slave_config *dmaengine_cfg)
1374 {
1375 struct sdma_channel *sdmac = to_sdma_chan(chan);
1376
1377 if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) {
1378 sdmac->per_address = dmaengine_cfg->src_addr;
1379 sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1380 dmaengine_cfg->src_addr_width;
1381 sdmac->word_size = dmaengine_cfg->src_addr_width;
1382 } else if (dmaengine_cfg->direction == DMA_DEV_TO_DEV) {
1383 sdmac->per_address2 = dmaengine_cfg->src_addr;
1384 sdmac->per_address = dmaengine_cfg->dst_addr;
1385 sdmac->watermark_level = dmaengine_cfg->src_maxburst &
1386 SDMA_WATERMARK_LEVEL_LWML;
1387 sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
1388 SDMA_WATERMARK_LEVEL_HWML;
1389 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1390 } else {
1391 sdmac->per_address = dmaengine_cfg->dst_addr;
1392 sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1393 dmaengine_cfg->dst_addr_width;
1394 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1395 }
1396 sdmac->direction = dmaengine_cfg->direction;
1397 return sdma_config_channel(chan);
1398 }
1399
1400 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1401 dma_cookie_t cookie,
1402 struct dma_tx_state *txstate)
1403 {
1404 struct sdma_channel *sdmac = to_sdma_chan(chan);
1405 u32 residue;
1406
1407 if (sdmac->flags & IMX_DMA_SG_LOOP)
1408 residue = (sdmac->num_bd - sdmac->buf_ptail) *
1409 sdmac->period_len - sdmac->chn_real_count;
1410 else
1411 residue = sdmac->chn_count - sdmac->chn_real_count;
1412
1413 dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1414 residue);
1415
1416 return sdmac->status;
1417 }
1418
1419 static void sdma_issue_pending(struct dma_chan *chan)
1420 {
1421 struct sdma_channel *sdmac = to_sdma_chan(chan);
1422 struct sdma_engine *sdma = sdmac->sdma;
1423
1424 if (sdmac->status == DMA_IN_PROGRESS)
1425 sdma_enable_channel(sdma, sdmac->channel);
1426 }
1427
1428 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34
1429 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2 38
1430 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3 41
1431 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4 42
1432
1433 static void sdma_add_scripts(struct sdma_engine *sdma,
1434 const struct sdma_script_start_addrs *addr)
1435 {
1436 s32 *addr_arr = (u32 *)addr;
1437 s32 *saddr_arr = (u32 *)sdma->script_addrs;
1438 int i;
1439
1440 /* use the default firmware in ROM if missing external firmware */
1441 if (!sdma->script_number)
1442 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1443
1444 for (i = 0; i < sdma->script_number; i++)
1445 if (addr_arr[i] > 0)
1446 saddr_arr[i] = addr_arr[i];
1447 }
1448
1449 static void sdma_load_firmware(const struct firmware *fw, void *context)
1450 {
1451 struct sdma_engine *sdma = context;
1452 const struct sdma_firmware_header *header;
1453 const struct sdma_script_start_addrs *addr;
1454 unsigned short *ram_code;
1455
1456 if (!fw) {
1457 dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
1458 /* In this case we just use the ROM firmware. */
1459 return;
1460 }
1461
1462 if (fw->size < sizeof(*header))
1463 goto err_firmware;
1464
1465 header = (struct sdma_firmware_header *)fw->data;
1466
1467 if (header->magic != SDMA_FIRMWARE_MAGIC)
1468 goto err_firmware;
1469 if (header->ram_code_start + header->ram_code_size > fw->size)
1470 goto err_firmware;
1471 switch (header->version_major) {
1472 case 1:
1473 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1474 break;
1475 case 2:
1476 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
1477 break;
1478 case 3:
1479 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
1480 break;
1481 case 4:
1482 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4;
1483 break;
1484 default:
1485 dev_err(sdma->dev, "unknown firmware version\n");
1486 goto err_firmware;
1487 }
1488
1489 addr = (void *)header + header->script_addrs_start;
1490 ram_code = (void *)header + header->ram_code_start;
1491
1492 clk_enable(sdma->clk_ipg);
1493 clk_enable(sdma->clk_ahb);
1494 /* download the RAM image for SDMA */
1495 sdma_load_script(sdma, ram_code,
1496 header->ram_code_size,
1497 addr->ram_code_start_addr);
1498 clk_disable(sdma->clk_ipg);
1499 clk_disable(sdma->clk_ahb);
1500
1501 sdma_add_scripts(sdma, addr);
1502
1503 dev_info(sdma->dev, "loaded firmware %d.%d\n",
1504 header->version_major,
1505 header->version_minor);
1506
1507 err_firmware:
1508 release_firmware(fw);
1509 }
1510
1511 #define EVENT_REMAP_CELLS 3
1512
1513 static int sdma_event_remap(struct sdma_engine *sdma)
1514 {
1515 struct device_node *np = sdma->dev->of_node;
1516 struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
1517 struct property *event_remap;
1518 struct regmap *gpr;
1519 char propname[] = "fsl,sdma-event-remap";
1520 u32 reg, val, shift, num_map, i;
1521 int ret = 0;
1522
1523 if (IS_ERR(np) || IS_ERR(gpr_np))
1524 goto out;
1525
1526 event_remap = of_find_property(np, propname, NULL);
1527 num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
1528 if (!num_map) {
1529 dev_dbg(sdma->dev, "no event needs to be remapped\n");
1530 goto out;
1531 } else if (num_map % EVENT_REMAP_CELLS) {
1532 dev_err(sdma->dev, "the property %s must modulo %d\n",
1533 propname, EVENT_REMAP_CELLS);
1534 ret = -EINVAL;
1535 goto out;
1536 }
1537
1538 gpr = syscon_node_to_regmap(gpr_np);
1539 if (IS_ERR(gpr)) {
1540 dev_err(sdma->dev, "failed to get gpr regmap\n");
1541 ret = PTR_ERR(gpr);
1542 goto out;
1543 }
1544
1545 for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
1546 ret = of_property_read_u32_index(np, propname, i, &reg);
1547 if (ret) {
1548 dev_err(sdma->dev, "failed to read property %s index %d\n",
1549 propname, i);
1550 goto out;
1551 }
1552
1553 ret = of_property_read_u32_index(np, propname, i + 1, &shift);
1554 if (ret) {
1555 dev_err(sdma->dev, "failed to read property %s index %d\n",
1556 propname, i + 1);
1557 goto out;
1558 }
1559
1560 ret = of_property_read_u32_index(np, propname, i + 2, &val);
1561 if (ret) {
1562 dev_err(sdma->dev, "failed to read property %s index %d\n",
1563 propname, i + 2);
1564 goto out;
1565 }
1566
1567 regmap_update_bits(gpr, reg, BIT(shift), val << shift);
1568 }
1569
1570 out:
1571 if (!IS_ERR(gpr_np))
1572 of_node_put(gpr_np);
1573
1574 return ret;
1575 }
1576
1577 static int sdma_get_firmware(struct sdma_engine *sdma,
1578 const char *fw_name)
1579 {
1580 int ret;
1581
1582 ret = request_firmware_nowait(THIS_MODULE,
1583 FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1584 GFP_KERNEL, sdma, sdma_load_firmware);
1585
1586 return ret;
1587 }
1588
1589 static int sdma_init(struct sdma_engine *sdma)
1590 {
1591 int i, ret;
1592 dma_addr_t ccb_phys;
1593
1594 ret = clk_enable(sdma->clk_ipg);
1595 if (ret)
1596 return ret;
1597 ret = clk_enable(sdma->clk_ahb);
1598 if (ret)
1599 goto disable_clk_ipg;
1600
1601 /* Be sure SDMA has not started yet */
1602 writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1603
1604 sdma->channel_control = dma_alloc_coherent(NULL,
1605 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1606 sizeof(struct sdma_context_data),
1607 &ccb_phys, GFP_KERNEL);
1608
1609 if (!sdma->channel_control) {
1610 ret = -ENOMEM;
1611 goto err_dma_alloc;
1612 }
1613
1614 sdma->context = (void *)sdma->channel_control +
1615 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1616 sdma->context_phys = ccb_phys +
1617 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1618
1619 /* Zero-out the CCB structures array just allocated */
1620 memset(sdma->channel_control, 0,
1621 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
1622
1623 /* disable all channels */
1624 for (i = 0; i < sdma->drvdata->num_events; i++)
1625 writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1626
1627 /* All channels have priority 0 */
1628 for (i = 0; i < MAX_DMA_CHANNELS; i++)
1629 writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1630
1631 ret = sdma_request_channel(&sdma->channel[0]);
1632 if (ret)
1633 goto err_dma_alloc;
1634
1635 sdma_config_ownership(&sdma->channel[0], false, true, false);
1636
1637 /* Set Command Channel (Channel Zero) */
1638 writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1639
1640 /* Set bits of CONFIG register but with static context switching */
1641 /* FIXME: Check whether to set ACR bit depending on clock ratios */
1642 writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1643
1644 writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1645
1646 /* Initializes channel's priorities */
1647 sdma_set_channel_priority(&sdma->channel[0], 7);
1648
1649 clk_disable(sdma->clk_ipg);
1650 clk_disable(sdma->clk_ahb);
1651
1652 return 0;
1653
1654 err_dma_alloc:
1655 clk_disable(sdma->clk_ahb);
1656 disable_clk_ipg:
1657 clk_disable(sdma->clk_ipg);
1658 dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1659 return ret;
1660 }
1661
1662 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
1663 {
1664 struct sdma_channel *sdmac = to_sdma_chan(chan);
1665 struct imx_dma_data *data = fn_param;
1666
1667 if (!imx_dma_is_general_purpose(chan))
1668 return false;
1669
1670 sdmac->data = *data;
1671 chan->private = &sdmac->data;
1672
1673 return true;
1674 }
1675
1676 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
1677 struct of_dma *ofdma)
1678 {
1679 struct sdma_engine *sdma = ofdma->of_dma_data;
1680 dma_cap_mask_t mask = sdma->dma_device.cap_mask;
1681 struct imx_dma_data data;
1682
1683 if (dma_spec->args_count != 3)
1684 return NULL;
1685
1686 data.dma_request = dma_spec->args[0];
1687 data.peripheral_type = dma_spec->args[1];
1688 data.priority = dma_spec->args[2];
1689 /*
1690 * init dma_request2 to zero, which is not used by the dts.
1691 * For P2P, dma_request2 is init from dma_request_channel(),
1692 * chan->private will point to the imx_dma_data, and in
1693 * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
1694 * be set to sdmac->event_id1.
1695 */
1696 data.dma_request2 = 0;
1697
1698 return dma_request_channel(mask, sdma_filter_fn, &data);
1699 }
1700
1701 static int sdma_probe(struct platform_device *pdev)
1702 {
1703 const struct of_device_id *of_id =
1704 of_match_device(sdma_dt_ids, &pdev->dev);
1705 struct device_node *np = pdev->dev.of_node;
1706 struct device_node *spba_bus;
1707 const char *fw_name;
1708 int ret;
1709 int irq;
1710 struct resource *iores;
1711 struct resource spba_res;
1712 struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1713 int i;
1714 struct sdma_engine *sdma;
1715 s32 *saddr_arr;
1716 const struct sdma_driver_data *drvdata = NULL;
1717
1718 if (of_id)
1719 drvdata = of_id->data;
1720 else if (pdev->id_entry)
1721 drvdata = (void *)pdev->id_entry->driver_data;
1722
1723 if (!drvdata) {
1724 dev_err(&pdev->dev, "unable to find driver data\n");
1725 return -EINVAL;
1726 }
1727
1728 ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1729 if (ret)
1730 return ret;
1731
1732 sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
1733 if (!sdma)
1734 return -ENOMEM;
1735
1736 spin_lock_init(&sdma->channel_0_lock);
1737
1738 sdma->dev = &pdev->dev;
1739 sdma->drvdata = drvdata;
1740
1741 irq = platform_get_irq(pdev, 0);
1742 if (irq < 0)
1743 return irq;
1744
1745 iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1746 sdma->regs = devm_ioremap_resource(&pdev->dev, iores);
1747 if (IS_ERR(sdma->regs))
1748 return PTR_ERR(sdma->regs);
1749
1750 sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1751 if (IS_ERR(sdma->clk_ipg))
1752 return PTR_ERR(sdma->clk_ipg);
1753
1754 sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
1755 if (IS_ERR(sdma->clk_ahb))
1756 return PTR_ERR(sdma->clk_ahb);
1757
1758 ret = clk_prepare(sdma->clk_ipg);
1759 if (ret)
1760 return ret;
1761
1762 ret = clk_prepare(sdma->clk_ahb);
1763 if (ret)
1764 goto err_clk;
1765
1766 ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0, "sdma",
1767 sdma);
1768 if (ret)
1769 goto err_irq;
1770
1771 sdma->irq = irq;
1772
1773 sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1774 if (!sdma->script_addrs) {
1775 ret = -ENOMEM;
1776 goto err_irq;
1777 }
1778
1779 /* initially no scripts available */
1780 saddr_arr = (s32 *)sdma->script_addrs;
1781 for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1782 saddr_arr[i] = -EINVAL;
1783
1784 dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
1785 dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
1786
1787 INIT_LIST_HEAD(&sdma->dma_device.channels);
1788 /* Initialize channel parameters */
1789 for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1790 struct sdma_channel *sdmac = &sdma->channel[i];
1791
1792 sdmac->sdma = sdma;
1793 spin_lock_init(&sdmac->lock);
1794
1795 sdmac->chan.device = &sdma->dma_device;
1796 dma_cookie_init(&sdmac->chan);
1797 sdmac->channel = i;
1798
1799 tasklet_init(&sdmac->tasklet, mxc_sdma_handle_channel_normal,
1800 (unsigned long) sdmac);
1801 /*
1802 * Add the channel to the DMAC list. Do not add channel 0 though
1803 * because we need it internally in the SDMA driver. This also means
1804 * that channel 0 in dmaengine counting matches sdma channel 1.
1805 */
1806 if (i)
1807 list_add_tail(&sdmac->chan.device_node,
1808 &sdma->dma_device.channels);
1809 }
1810
1811 ret = sdma_init(sdma);
1812 if (ret)
1813 goto err_init;
1814
1815 ret = sdma_event_remap(sdma);
1816 if (ret)
1817 goto err_init;
1818
1819 if (sdma->drvdata->script_addrs)
1820 sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
1821 if (pdata && pdata->script_addrs)
1822 sdma_add_scripts(sdma, pdata->script_addrs);
1823
1824 if (pdata) {
1825 ret = sdma_get_firmware(sdma, pdata->fw_name);
1826 if (ret)
1827 dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
1828 } else {
1829 /*
1830 * Because that device tree does not encode ROM script address,
1831 * the RAM script in firmware is mandatory for device tree
1832 * probe, otherwise it fails.
1833 */
1834 ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
1835 &fw_name);
1836 if (ret)
1837 dev_warn(&pdev->dev, "failed to get firmware name\n");
1838 else {
1839 ret = sdma_get_firmware(sdma, fw_name);
1840 if (ret)
1841 dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
1842 }
1843 }
1844
1845 sdma->dma_device.dev = &pdev->dev;
1846
1847 sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
1848 sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
1849 sdma->dma_device.device_tx_status = sdma_tx_status;
1850 sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
1851 sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
1852 sdma->dma_device.device_config = sdma_config;
1853 sdma->dma_device.device_terminate_all = sdma_disable_channel_with_delay;
1854 sdma->dma_device.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1855 sdma->dma_device.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1856 sdma->dma_device.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1857 sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
1858 sdma->dma_device.device_issue_pending = sdma_issue_pending;
1859 sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
1860 dma_set_max_seg_size(sdma->dma_device.dev, 65535);
1861
1862 platform_set_drvdata(pdev, sdma);
1863
1864 ret = dma_async_device_register(&sdma->dma_device);
1865 if (ret) {
1866 dev_err(&pdev->dev, "unable to register\n");
1867 goto err_init;
1868 }
1869
1870 if (np) {
1871 ret = of_dma_controller_register(np, sdma_xlate, sdma);
1872 if (ret) {
1873 dev_err(&pdev->dev, "failed to register controller\n");
1874 goto err_register;
1875 }
1876
1877 spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
1878 ret = of_address_to_resource(spba_bus, 0, &spba_res);
1879 if (!ret) {
1880 sdma->spba_start_addr = spba_res.start;
1881 sdma->spba_end_addr = spba_res.end;
1882 }
1883 of_node_put(spba_bus);
1884 }
1885
1886 return 0;
1887
1888 err_register:
1889 dma_async_device_unregister(&sdma->dma_device);
1890 err_init:
1891 kfree(sdma->script_addrs);
1892 err_irq:
1893 clk_unprepare(sdma->clk_ahb);
1894 err_clk:
1895 clk_unprepare(sdma->clk_ipg);
1896 return ret;
1897 }
1898
1899 static int sdma_remove(struct platform_device *pdev)
1900 {
1901 struct sdma_engine *sdma = platform_get_drvdata(pdev);
1902 int i;
1903
1904 devm_free_irq(&pdev->dev, sdma->irq, sdma);
1905 dma_async_device_unregister(&sdma->dma_device);
1906 kfree(sdma->script_addrs);
1907 clk_unprepare(sdma->clk_ahb);
1908 clk_unprepare(sdma->clk_ipg);
1909 /* Kill the tasklet */
1910 for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1911 struct sdma_channel *sdmac = &sdma->channel[i];
1912
1913 tasklet_kill(&sdmac->tasklet);
1914 }
1915
1916 platform_set_drvdata(pdev, NULL);
1917 return 0;
1918 }
1919
1920 static struct platform_driver sdma_driver = {
1921 .driver = {
1922 .name = "imx-sdma",
1923 .of_match_table = sdma_dt_ids,
1924 },
1925 .id_table = sdma_devtypes,
1926 .remove = sdma_remove,
1927 .probe = sdma_probe,
1928 };
1929
1930 module_platform_driver(sdma_driver);
1931
1932 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
1933 MODULE_DESCRIPTION("i.MX SDMA driver");
1934 MODULE_LICENSE("GPL");