]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/eepro100.c
Files include/linux/byteorder/{big,little}_endian.h define
[people/ms/u-boot.git] / drivers / eepro100.c
1 /*
2 * (C) Copyright 2002
3 * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
4 *
5 * See file CREDITS for list of people who contributed to this
6 * project.
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 of
11 * the License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
21 * MA 02111-1307 USA
22 */
23
24 #include <common.h>
25 #include <malloc.h>
26 #include <net.h>
27 #include <asm/io.h>
28 #include <pci.h>
29 #include <miiphy.h>
30
31 #undef DEBUG
32
33 #if (CONFIG_COMMANDS & CFG_CMD_NET) && defined(CONFIG_NET_MULTI) && \
34 defined(CONFIG_EEPRO100)
35
36 /* Ethernet chip registers.
37 */
38 #define SCBStatus 0 /* Rx/Command Unit Status *Word* */
39 #define SCBIntAckByte 1 /* Rx/Command Unit STAT/ACK byte */
40 #define SCBCmd 2 /* Rx/Command Unit Command *Word* */
41 #define SCBIntrCtlByte 3 /* Rx/Command Unit Intr.Control Byte */
42 #define SCBPointer 4 /* General purpose pointer. */
43 #define SCBPort 8 /* Misc. commands and operands. */
44 #define SCBflash 12 /* Flash memory control. */
45 #define SCBeeprom 14 /* EEPROM memory control. */
46 #define SCBCtrlMDI 16 /* MDI interface control. */
47 #define SCBEarlyRx 20 /* Early receive byte count. */
48 #define SCBGenControl 28 /* 82559 General Control Register */
49 #define SCBGenStatus 29 /* 82559 General Status register */
50
51 /* 82559 SCB status word defnitions
52 */
53 #define SCB_STATUS_CX 0x8000 /* CU finished command (transmit) */
54 #define SCB_STATUS_FR 0x4000 /* frame received */
55 #define SCB_STATUS_CNA 0x2000 /* CU left active state */
56 #define SCB_STATUS_RNR 0x1000 /* receiver left ready state */
57 #define SCB_STATUS_MDI 0x0800 /* MDI read/write cycle done */
58 #define SCB_STATUS_SWI 0x0400 /* software generated interrupt */
59 #define SCB_STATUS_FCP 0x0100 /* flow control pause interrupt */
60
61 #define SCB_INTACK_MASK 0xFD00 /* all the above */
62
63 #define SCB_INTACK_TX (SCB_STATUS_CX | SCB_STATUS_CNA)
64 #define SCB_INTACK_RX (SCB_STATUS_FR | SCB_STATUS_RNR)
65
66 /* System control block commands
67 */
68 /* CU Commands */
69 #define CU_NOP 0x0000
70 #define CU_START 0x0010
71 #define CU_RESUME 0x0020
72 #define CU_STATSADDR 0x0040 /* Load Dump Statistics ctrs addr */
73 #define CU_SHOWSTATS 0x0050 /* Dump statistics counters. */
74 #define CU_ADDR_LOAD 0x0060 /* Base address to add to CU commands */
75 #define CU_DUMPSTATS 0x0070 /* Dump then reset stats counters. */
76
77 /* RUC Commands */
78 #define RUC_NOP 0x0000
79 #define RUC_START 0x0001
80 #define RUC_RESUME 0x0002
81 #define RUC_ABORT 0x0004
82 #define RUC_ADDR_LOAD 0x0006 /* (seems not to clear on acceptance) */
83 #define RUC_RESUMENR 0x0007
84
85 #define CU_CMD_MASK 0x00f0
86 #define RU_CMD_MASK 0x0007
87
88 #define SCB_M 0x0100 /* 0 = enable interrupt, 1 = disable */
89 #define SCB_SWI 0x0200 /* 1 - cause device to interrupt */
90
91 #define CU_STATUS_MASK 0x00C0
92 #define RU_STATUS_MASK 0x003C
93
94 #define RU_STATUS_IDLE (0<<2)
95 #define RU_STATUS_SUS (1<<2)
96 #define RU_STATUS_NORES (2<<2)
97 #define RU_STATUS_READY (4<<2)
98 #define RU_STATUS_NO_RBDS_SUS ((1<<2)|(8<<2))
99 #define RU_STATUS_NO_RBDS_NORES ((2<<2)|(8<<2))
100 #define RU_STATUS_NO_RBDS_READY ((4<<2)|(8<<2))
101
102 /* 82559 Port interface commands.
103 */
104 #define I82559_RESET 0x00000000 /* Software reset */
105 #define I82559_SELFTEST 0x00000001 /* 82559 Selftest command */
106 #define I82559_SELECTIVE_RESET 0x00000002
107 #define I82559_DUMP 0x00000003
108 #define I82559_DUMP_WAKEUP 0x00000007
109
110 /* 82559 Eeprom interface.
111 */
112 #define EE_SHIFT_CLK 0x01 /* EEPROM shift clock. */
113 #define EE_CS 0x02 /* EEPROM chip select. */
114 #define EE_DATA_WRITE 0x04 /* EEPROM chip data in. */
115 #define EE_WRITE_0 0x01
116 #define EE_WRITE_1 0x05
117 #define EE_DATA_READ 0x08 /* EEPROM chip data out. */
118 #define EE_ENB (0x4800 | EE_CS)
119 #define EE_CMD_BITS 3
120 #define EE_DATA_BITS 16
121
122 /* The EEPROM commands include the alway-set leading bit.
123 */
124 #define EE_EWENB_CMD (4 << addr_len)
125 #define EE_WRITE_CMD (5 << addr_len)
126 #define EE_READ_CMD (6 << addr_len)
127 #define EE_ERASE_CMD (7 << addr_len)
128
129 /* Receive frame descriptors.
130 */
131 struct RxFD {
132 volatile u16 status;
133 volatile u16 control;
134 volatile u32 link; /* struct RxFD * */
135 volatile u32 rx_buf_addr; /* void * */
136 volatile u32 count;
137
138 volatile u8 data[PKTSIZE_ALIGN];
139 };
140
141 #define RFD_STATUS_C 0x8000 /* completion of received frame */
142 #define RFD_STATUS_OK 0x2000 /* frame received with no errors */
143
144 #define RFD_CONTROL_EL 0x8000 /* 1=last RFD in RFA */
145 #define RFD_CONTROL_S 0x4000 /* 1=suspend RU after receiving frame */
146 #define RFD_CONTROL_H 0x0010 /* 1=RFD is a header RFD */
147 #define RFD_CONTROL_SF 0x0008 /* 0=simplified, 1=flexible mode */
148
149 #define RFD_COUNT_MASK 0x3fff
150 #define RFD_COUNT_F 0x4000
151 #define RFD_COUNT_EOF 0x8000
152
153 #define RFD_RX_CRC 0x0800 /* crc error */
154 #define RFD_RX_ALIGNMENT 0x0400 /* alignment error */
155 #define RFD_RX_RESOURCE 0x0200 /* out of space, no resources */
156 #define RFD_RX_DMA_OVER 0x0100 /* DMA overrun */
157 #define RFD_RX_SHORT 0x0080 /* short frame error */
158 #define RFD_RX_LENGTH 0x0020
159 #define RFD_RX_ERROR 0x0010 /* receive error */
160 #define RFD_RX_NO_ADR_MATCH 0x0004 /* no address match */
161 #define RFD_RX_IA_MATCH 0x0002 /* individual address does not match */
162 #define RFD_RX_TCO 0x0001 /* TCO indication */
163
164 /* Transmit frame descriptors
165 */
166 struct TxFD { /* Transmit frame descriptor set. */
167 volatile u16 status;
168 volatile u16 command;
169 volatile u32 link; /* void * */
170 volatile u32 tx_desc_addr; /* Always points to the tx_buf_addr element. */
171 volatile s32 count;
172
173 volatile u32 tx_buf_addr0; /* void *, frame to be transmitted. */
174 volatile s32 tx_buf_size0; /* Length of Tx frame. */
175 volatile u32 tx_buf_addr1; /* void *, frame to be transmitted. */
176 volatile s32 tx_buf_size1; /* Length of Tx frame. */
177 };
178
179 #define TxCB_CMD_TRANSMIT 0x0004 /* transmit command */
180 #define TxCB_CMD_SF 0x0008 /* 0=simplified, 1=flexible mode */
181 #define TxCB_CMD_NC 0x0010 /* 0=CRC insert by controller */
182 #define TxCB_CMD_I 0x2000 /* generate interrupt on completion */
183 #define TxCB_CMD_S 0x4000 /* suspend on completion */
184 #define TxCB_CMD_EL 0x8000 /* last command block in CBL */
185
186 #define TxCB_COUNT_MASK 0x3fff
187 #define TxCB_COUNT_EOF 0x8000
188
189 /* The Speedo3 Rx and Tx frame/buffer descriptors.
190 */
191 struct descriptor { /* A generic descriptor. */
192 volatile u16 status;
193 volatile u16 command;
194 volatile u32 link; /* struct descriptor * */
195
196 unsigned char params[0];
197 };
198
199 #define CFG_CMD_EL 0x8000
200 #define CFG_CMD_SUSPEND 0x4000
201 #define CFG_CMD_INT 0x2000
202 #define CFG_CMD_IAS 0x0001 /* individual address setup */
203 #define CFG_CMD_CONFIGURE 0x0002 /* configure */
204
205 #define CFG_STATUS_C 0x8000
206 #define CFG_STATUS_OK 0x2000
207
208 /* Misc.
209 */
210 #define NUM_RX_DESC PKTBUFSRX
211 #define NUM_TX_DESC 1 /* Number of TX descriptors */
212
213 #define TOUT_LOOP 1000000
214
215 #define ETH_ALEN 6
216
217 static struct RxFD rx_ring[NUM_RX_DESC]; /* RX descriptor ring */
218 static struct TxFD tx_ring[NUM_TX_DESC]; /* TX descriptor ring */
219 static int rx_next; /* RX descriptor ring pointer */
220 static int tx_next; /* TX descriptor ring pointer */
221 static int tx_threshold;
222
223 /*
224 * The parameters for a CmdConfigure operation.
225 * There are so many options that it would be difficult to document
226 * each bit. We mostly use the default or recommended settings.
227 */
228 static const char i82557_config_cmd[] = {
229 22, 0x08, 0, 0, 0, 0, 0x32, 0x03, 1, /* 1=Use MII 0=Use AUI */
230 0, 0x2E, 0, 0x60, 0,
231 0xf2, 0x48, 0, 0x40, 0xf2, 0x80, /* 0x40=Force full-duplex */
232 0x3f, 0x05,
233 };
234 static const char i82558_config_cmd[] = {
235 22, 0x08, 0, 1, 0, 0, 0x22, 0x03, 1, /* 1=Use MII 0=Use AUI */
236 0, 0x2E, 0, 0x60, 0x08, 0x88,
237 0x68, 0, 0x40, 0xf2, 0x84, /* Disable FC */
238 0x31, 0x05,
239 };
240
241 static void init_rx_ring (struct eth_device *dev);
242 static void purge_tx_ring (struct eth_device *dev);
243
244 static void read_hw_addr (struct eth_device *dev, bd_t * bis);
245
246 static int eepro100_init (struct eth_device *dev, bd_t * bis);
247 static int eepro100_send (struct eth_device *dev, volatile void *packet,
248 int length);
249 static int eepro100_recv (struct eth_device *dev);
250 static void eepro100_halt (struct eth_device *dev);
251
252 #if defined(CONFIG_E500) || defined(CONFIG_DB64360) || defined(CONFIG_DB64460)
253 #define bus_to_phys(a) (a)
254 #define phys_to_bus(a) (a)
255 #else
256 #define bus_to_phys(a) pci_mem_to_phys((pci_dev_t)dev->priv, a)
257 #define phys_to_bus(a) pci_phys_to_mem((pci_dev_t)dev->priv, a)
258 #endif
259
260 static inline int INW (struct eth_device *dev, u_long addr)
261 {
262 return le16_to_cpu (*(volatile u16 *) (addr + dev->iobase));
263 }
264
265 static inline void OUTW (struct eth_device *dev, int command, u_long addr)
266 {
267 *(volatile u16 *) ((addr + dev->iobase)) = cpu_to_le16 (command);
268 }
269
270 static inline void OUTL (struct eth_device *dev, int command, u_long addr)
271 {
272 *(volatile u32 *) ((addr + dev->iobase)) = cpu_to_le32 (command);
273 }
274
275 #if defined(CONFIG_MII) || (CONFIG_COMMANDS & CFG_CMD_MII)
276 static inline int INL (struct eth_device *dev, u_long addr)
277 {
278 return le32_to_cpu (*(volatile u32 *) (addr + dev->iobase));
279 }
280
281 static int get_phyreg (struct eth_device *dev, unsigned char addr,
282 unsigned char reg, unsigned short *value)
283 {
284 int cmd;
285 int timeout = 50;
286
287 /* read requested data */
288 cmd = (2 << 26) | ((addr & 0x1f) << 21) | ((reg & 0x1f) << 16);
289 OUTL (dev, cmd, SCBCtrlMDI);
290
291 do {
292 udelay(1000);
293 cmd = INL (dev, SCBCtrlMDI);
294 } while (!(cmd & (1 << 28)) && (--timeout));
295
296 if (timeout == 0)
297 return -1;
298
299 *value = (unsigned short) (cmd & 0xffff);
300
301 return 0;
302 }
303
304 static int set_phyreg (struct eth_device *dev, unsigned char addr,
305 unsigned char reg, unsigned short value)
306 {
307 int cmd;
308 int timeout = 50;
309
310 /* write requested data */
311 cmd = (1 << 26) | ((addr & 0x1f) << 21) | ((reg & 0x1f) << 16);
312 OUTL (dev, cmd | value, SCBCtrlMDI);
313
314 while (!(INL (dev, SCBCtrlMDI) & (1 << 28)) && (--timeout))
315 udelay(1000);
316
317 if (timeout == 0)
318 return -1;
319
320 return 0;
321 }
322
323 /* Check if given phyaddr is valid, i.e. there is a PHY connected.
324 * Do this by checking model value field from ID2 register.
325 */
326 static struct eth_device* verify_phyaddr (char *devname, unsigned char addr)
327 {
328 struct eth_device *dev;
329 unsigned short value;
330 unsigned char model;
331
332 dev = eth_get_dev_by_name(devname);
333 if (dev == NULL) {
334 printf("%s: no such device\n", devname);
335 return NULL;
336 }
337
338 /* read id2 register */
339 if (get_phyreg(dev, addr, PHY_PHYIDR2, &value) != 0) {
340 printf("%s: mii read timeout!\n", devname);
341 return NULL;
342 }
343
344 /* get model */
345 model = (unsigned char)((value >> 4) & 0x003f);
346
347 if (model == 0) {
348 printf("%s: no PHY at address %d\n", devname, addr);
349 return NULL;
350 }
351
352 return dev;
353 }
354
355 static int eepro100_miiphy_read (char *devname, unsigned char addr,
356 unsigned char reg, unsigned short *value)
357 {
358 struct eth_device *dev;
359
360 dev = verify_phyaddr(devname, addr);
361 if (dev == NULL)
362 return -1;
363
364 if (get_phyreg(dev, addr, reg, value) != 0) {
365 printf("%s: mii read timeout!\n", devname);
366 return -1;
367 }
368
369 return 0;
370 }
371
372 static int eepro100_miiphy_write (char *devname, unsigned char addr,
373 unsigned char reg, unsigned short value)
374 {
375 struct eth_device *dev;
376
377 dev = verify_phyaddr(devname, addr);
378 if (dev == NULL)
379 return -1;
380
381 if (set_phyreg(dev, addr, reg, value) != 0) {
382 printf("%s: mii write timeout!\n", devname);
383 return -1;
384 }
385
386 return 0;
387 }
388
389 #endif /* defined(CONFIG_MII) || (CONFIG_COMMANDS & CFG_CMD_MII) */
390
391 /* Wait for the chip get the command.
392 */
393 static int wait_for_eepro100 (struct eth_device *dev)
394 {
395 int i;
396
397 for (i = 0; INW (dev, SCBCmd) & (CU_CMD_MASK | RU_CMD_MASK); i++) {
398 if (i >= TOUT_LOOP) {
399 return 0;
400 }
401 }
402
403 return 1;
404 }
405
406 static struct pci_device_id supported[] = {
407 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82557},
408 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82559},
409 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82559ER},
410 {}
411 };
412
413 int eepro100_initialize (bd_t * bis)
414 {
415 pci_dev_t devno;
416 int card_number = 0;
417 struct eth_device *dev;
418 u32 iobase, status;
419 int idx = 0;
420
421 while (1) {
422 /* Find PCI device
423 */
424 if ((devno = pci_find_devices (supported, idx++)) < 0) {
425 break;
426 }
427
428 pci_read_config_dword (devno, PCI_BASE_ADDRESS_0, &iobase);
429 iobase &= ~0xf;
430
431 #ifdef DEBUG
432 printf ("eepro100: Intel i82559 PCI EtherExpressPro @0x%x\n",
433 iobase);
434 #endif
435
436 pci_write_config_dword (devno,
437 PCI_COMMAND,
438 PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
439
440 /* Check if I/O accesses and Bus Mastering are enabled.
441 */
442 pci_read_config_dword (devno, PCI_COMMAND, &status);
443 if (!(status & PCI_COMMAND_MEMORY)) {
444 printf ("Error: Can not enable MEM access.\n");
445 continue;
446 }
447
448 if (!(status & PCI_COMMAND_MASTER)) {
449 printf ("Error: Can not enable Bus Mastering.\n");
450 continue;
451 }
452
453 dev = (struct eth_device *) malloc (sizeof *dev);
454
455 sprintf (dev->name, "i82559#%d", card_number);
456 dev->priv = (void *) devno; /* this have to come before bus_to_phys() */
457 dev->iobase = bus_to_phys (iobase);
458 dev->init = eepro100_init;
459 dev->halt = eepro100_halt;
460 dev->send = eepro100_send;
461 dev->recv = eepro100_recv;
462
463 eth_register (dev);
464
465 #if defined (CONFIG_MII) || (CONFIG_COMMANDS & CFG_CMD_MII)
466 /* register mii command access routines */
467 miiphy_register(dev->name,
468 eepro100_miiphy_read, eepro100_miiphy_write);
469 #endif
470
471 card_number++;
472
473 /* Set the latency timer for value.
474 */
475 pci_write_config_byte (devno, PCI_LATENCY_TIMER, 0x20);
476
477 udelay (10 * 1000);
478
479 read_hw_addr (dev, bis);
480 }
481
482 return card_number;
483 }
484
485
486 static int eepro100_init (struct eth_device *dev, bd_t * bis)
487 {
488 int i, status = 0;
489 int tx_cur;
490 struct descriptor *ias_cmd, *cfg_cmd;
491
492 /* Reset the ethernet controller
493 */
494 OUTL (dev, I82559_SELECTIVE_RESET, SCBPort);
495 udelay (20);
496
497 OUTL (dev, I82559_RESET, SCBPort);
498 udelay (20);
499
500 if (!wait_for_eepro100 (dev)) {
501 printf ("Error: Can not reset ethernet controller.\n");
502 goto Done;
503 }
504 OUTL (dev, 0, SCBPointer);
505 OUTW (dev, SCB_M | RUC_ADDR_LOAD, SCBCmd);
506
507 if (!wait_for_eepro100 (dev)) {
508 printf ("Error: Can not reset ethernet controller.\n");
509 goto Done;
510 }
511 OUTL (dev, 0, SCBPointer);
512 OUTW (dev, SCB_M | CU_ADDR_LOAD, SCBCmd);
513
514 /* Initialize Rx and Tx rings.
515 */
516 init_rx_ring (dev);
517 purge_tx_ring (dev);
518
519 /* Tell the adapter where the RX ring is located.
520 */
521 if (!wait_for_eepro100 (dev)) {
522 printf ("Error: Can not reset ethernet controller.\n");
523 goto Done;
524 }
525
526 OUTL (dev, phys_to_bus ((u32) & rx_ring[rx_next]), SCBPointer);
527 OUTW (dev, SCB_M | RUC_START, SCBCmd);
528
529 /* Send the Configure frame */
530 tx_cur = tx_next;
531 tx_next = ((tx_next + 1) % NUM_TX_DESC);
532
533 cfg_cmd = (struct descriptor *) &tx_ring[tx_cur];
534 cfg_cmd->command = cpu_to_le16 ((CFG_CMD_SUSPEND | CFG_CMD_CONFIGURE));
535 cfg_cmd->status = 0;
536 cfg_cmd->link = cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_next]));
537
538 memcpy (cfg_cmd->params, i82558_config_cmd,
539 sizeof (i82558_config_cmd));
540
541 if (!wait_for_eepro100 (dev)) {
542 printf ("Error---CFG_CMD_CONFIGURE: Can not reset ethernet controller.\n");
543 goto Done;
544 }
545
546 OUTL (dev, phys_to_bus ((u32) & tx_ring[tx_cur]), SCBPointer);
547 OUTW (dev, SCB_M | CU_START, SCBCmd);
548
549 for (i = 0;
550 !(le16_to_cpu (tx_ring[tx_cur].status) & CFG_STATUS_C);
551 i++) {
552 if (i >= TOUT_LOOP) {
553 printf ("%s: Tx error buffer not ready\n", dev->name);
554 goto Done;
555 }
556 }
557
558 if (!(le16_to_cpu (tx_ring[tx_cur].status) & CFG_STATUS_OK)) {
559 printf ("TX error status = 0x%08X\n",
560 le16_to_cpu (tx_ring[tx_cur].status));
561 goto Done;
562 }
563
564 /* Send the Individual Address Setup frame
565 */
566 tx_cur = tx_next;
567 tx_next = ((tx_next + 1) % NUM_TX_DESC);
568
569 ias_cmd = (struct descriptor *) &tx_ring[tx_cur];
570 ias_cmd->command = cpu_to_le16 ((CFG_CMD_SUSPEND | CFG_CMD_IAS));
571 ias_cmd->status = 0;
572 ias_cmd->link = cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_next]));
573
574 memcpy (ias_cmd->params, dev->enetaddr, 6);
575
576 /* Tell the adapter where the TX ring is located.
577 */
578 if (!wait_for_eepro100 (dev)) {
579 printf ("Error: Can not reset ethernet controller.\n");
580 goto Done;
581 }
582
583 OUTL (dev, phys_to_bus ((u32) & tx_ring[tx_cur]), SCBPointer);
584 OUTW (dev, SCB_M | CU_START, SCBCmd);
585
586 for (i = 0; !(le16_to_cpu (tx_ring[tx_cur].status) & CFG_STATUS_C);
587 i++) {
588 if (i >= TOUT_LOOP) {
589 printf ("%s: Tx error buffer not ready\n",
590 dev->name);
591 goto Done;
592 }
593 }
594
595 if (!(le16_to_cpu (tx_ring[tx_cur].status) & CFG_STATUS_OK)) {
596 printf ("TX error status = 0x%08X\n",
597 le16_to_cpu (tx_ring[tx_cur].status));
598 goto Done;
599 }
600
601 status = 1;
602
603 Done:
604 return status;
605 }
606
607 static int eepro100_send (struct eth_device *dev, volatile void *packet, int length)
608 {
609 int i, status = -1;
610 int tx_cur;
611
612 if (length <= 0) {
613 printf ("%s: bad packet size: %d\n", dev->name, length);
614 goto Done;
615 }
616
617 tx_cur = tx_next;
618 tx_next = (tx_next + 1) % NUM_TX_DESC;
619
620 tx_ring[tx_cur].command = cpu_to_le16 ( TxCB_CMD_TRANSMIT |
621 TxCB_CMD_SF |
622 TxCB_CMD_S |
623 TxCB_CMD_EL );
624 tx_ring[tx_cur].status = 0;
625 tx_ring[tx_cur].count = cpu_to_le32 (tx_threshold);
626 tx_ring[tx_cur].link =
627 cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_next]));
628 tx_ring[tx_cur].tx_desc_addr =
629 cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_cur].tx_buf_addr0));
630 tx_ring[tx_cur].tx_buf_addr0 =
631 cpu_to_le32 (phys_to_bus ((u_long) packet));
632 tx_ring[tx_cur].tx_buf_size0 = cpu_to_le32 (length);
633
634 if (!wait_for_eepro100 (dev)) {
635 printf ("%s: Tx error ethernet controller not ready.\n",
636 dev->name);
637 goto Done;
638 }
639
640 /* Send the packet.
641 */
642 OUTL (dev, phys_to_bus ((u32) & tx_ring[tx_cur]), SCBPointer);
643 OUTW (dev, SCB_M | CU_START, SCBCmd);
644
645 for (i = 0; !(le16_to_cpu (tx_ring[tx_cur].status) & CFG_STATUS_C);
646 i++) {
647 if (i >= TOUT_LOOP) {
648 printf ("%s: Tx error buffer not ready\n", dev->name);
649 goto Done;
650 }
651 }
652
653 if (!(le16_to_cpu (tx_ring[tx_cur].status) & CFG_STATUS_OK)) {
654 printf ("TX error status = 0x%08X\n",
655 le16_to_cpu (tx_ring[tx_cur].status));
656 goto Done;
657 }
658
659 status = length;
660
661 Done:
662 return status;
663 }
664
665 static int eepro100_recv (struct eth_device *dev)
666 {
667 u16 status, stat;
668 int rx_prev, length = 0;
669
670 stat = INW (dev, SCBStatus);
671 OUTW (dev, stat & SCB_STATUS_RNR, SCBStatus);
672
673 for (;;) {
674 status = le16_to_cpu (rx_ring[rx_next].status);
675
676 if (!(status & RFD_STATUS_C)) {
677 break;
678 }
679
680 /* Valid frame status.
681 */
682 if ((status & RFD_STATUS_OK)) {
683 /* A valid frame received.
684 */
685 length = le32_to_cpu (rx_ring[rx_next].count) & 0x3fff;
686
687 /* Pass the packet up to the protocol
688 * layers.
689 */
690 NetReceive (rx_ring[rx_next].data, length);
691 } else {
692 /* There was an error.
693 */
694 printf ("RX error status = 0x%08X\n", status);
695 }
696
697 rx_ring[rx_next].control = cpu_to_le16 (RFD_CONTROL_S);
698 rx_ring[rx_next].status = 0;
699 rx_ring[rx_next].count = cpu_to_le32 (PKTSIZE_ALIGN << 16);
700
701 rx_prev = (rx_next + NUM_RX_DESC - 1) % NUM_RX_DESC;
702 rx_ring[rx_prev].control = 0;
703
704 /* Update entry information.
705 */
706 rx_next = (rx_next + 1) % NUM_RX_DESC;
707 }
708
709 if (stat & SCB_STATUS_RNR) {
710
711 printf ("%s: Receiver is not ready, restart it !\n", dev->name);
712
713 /* Reinitialize Rx ring.
714 */
715 init_rx_ring (dev);
716
717 if (!wait_for_eepro100 (dev)) {
718 printf ("Error: Can not restart ethernet controller.\n");
719 goto Done;
720 }
721
722 OUTL (dev, phys_to_bus ((u32) & rx_ring[rx_next]), SCBPointer);
723 OUTW (dev, SCB_M | RUC_START, SCBCmd);
724 }
725
726 Done:
727 return length;
728 }
729
730 static void eepro100_halt (struct eth_device *dev)
731 {
732 /* Reset the ethernet controller
733 */
734 OUTL (dev, I82559_SELECTIVE_RESET, SCBPort);
735 udelay (20);
736
737 OUTL (dev, I82559_RESET, SCBPort);
738 udelay (20);
739
740 if (!wait_for_eepro100 (dev)) {
741 printf ("Error: Can not reset ethernet controller.\n");
742 goto Done;
743 }
744 OUTL (dev, 0, SCBPointer);
745 OUTW (dev, SCB_M | RUC_ADDR_LOAD, SCBCmd);
746
747 if (!wait_for_eepro100 (dev)) {
748 printf ("Error: Can not reset ethernet controller.\n");
749 goto Done;
750 }
751 OUTL (dev, 0, SCBPointer);
752 OUTW (dev, SCB_M | CU_ADDR_LOAD, SCBCmd);
753
754 Done:
755 return;
756 }
757
758 /* SROM Read.
759 */
760 static int read_eeprom (struct eth_device *dev, int location, int addr_len)
761 {
762 unsigned short retval = 0;
763 int read_cmd = location | EE_READ_CMD;
764 int i;
765
766 OUTW (dev, EE_ENB & ~EE_CS, SCBeeprom);
767 OUTW (dev, EE_ENB, SCBeeprom);
768
769 /* Shift the read command bits out. */
770 for (i = 12; i >= 0; i--) {
771 short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
772
773 OUTW (dev, EE_ENB | dataval, SCBeeprom);
774 udelay (1);
775 OUTW (dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
776 udelay (1);
777 }
778 OUTW (dev, EE_ENB, SCBeeprom);
779
780 for (i = 15; i >= 0; i--) {
781 OUTW (dev, EE_ENB | EE_SHIFT_CLK, SCBeeprom);
782 udelay (1);
783 retval = (retval << 1) |
784 ((INW (dev, SCBeeprom) & EE_DATA_READ) ? 1 : 0);
785 OUTW (dev, EE_ENB, SCBeeprom);
786 udelay (1);
787 }
788
789 /* Terminate the EEPROM access. */
790 OUTW (dev, EE_ENB & ~EE_CS, SCBeeprom);
791 return retval;
792 }
793
794 #ifdef CONFIG_EEPRO100_SROM_WRITE
795 int eepro100_write_eeprom (struct eth_device* dev, int location, int addr_len, unsigned short data)
796 {
797 unsigned short dataval;
798 int enable_cmd = 0x3f | EE_EWENB_CMD;
799 int write_cmd = location | EE_WRITE_CMD;
800 int i;
801 unsigned long datalong, tmplong;
802
803 OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
804 udelay(1);
805 OUTW(dev, EE_ENB, SCBeeprom);
806
807 /* Shift the enable command bits out. */
808 for (i = (addr_len+EE_CMD_BITS-1); i >= 0; i--)
809 {
810 dataval = (enable_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
811 OUTW(dev, EE_ENB | dataval, SCBeeprom);
812 udelay(1);
813 OUTW(dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
814 udelay(1);
815 }
816
817 OUTW(dev, EE_ENB, SCBeeprom);
818 udelay(1);
819 OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
820 udelay(1);
821 OUTW(dev, EE_ENB, SCBeeprom);
822
823
824 /* Shift the write command bits out. */
825 for (i = (addr_len+EE_CMD_BITS-1); i >= 0; i--)
826 {
827 dataval = (write_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
828 OUTW(dev, EE_ENB | dataval, SCBeeprom);
829 udelay(1);
830 OUTW(dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
831 udelay(1);
832 }
833
834 /* Write the data */
835 datalong= (unsigned long) ((((data) & 0x00ff) << 8) | ( (data) >> 8));
836
837 for (i = 0; i< EE_DATA_BITS; i++)
838 {
839 /* Extract and move data bit to bit DI */
840 dataval = ((datalong & 0x8000)>>13) ? EE_DATA_WRITE : 0;
841
842 OUTW(dev, EE_ENB | dataval, SCBeeprom);
843 udelay(1);
844 OUTW(dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
845 udelay(1);
846 OUTW(dev, EE_ENB | dataval, SCBeeprom);
847 udelay(1);
848
849 datalong = datalong << 1; /* Adjust significant data bit*/
850 }
851
852 /* Finish up command (toggle CS) */
853 OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
854 udelay(1); /* delay for more than 250 ns */
855 OUTW(dev, EE_ENB, SCBeeprom);
856
857 /* Wait for programming ready (D0 = 1) */
858 tmplong = 10;
859 do
860 {
861 dataval = INW(dev, SCBeeprom);
862 if (dataval & EE_DATA_READ)
863 break;
864 udelay(10000);
865 }
866 while (-- tmplong);
867
868 if (tmplong == 0)
869 {
870 printf ("Write i82559 eeprom timed out (100 ms waiting for data ready.\n");
871 return -1;
872 }
873
874 /* Terminate the EEPROM access. */
875 OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
876
877 return 0;
878 }
879 #endif
880
881 static void init_rx_ring (struct eth_device *dev)
882 {
883 int i;
884
885 for (i = 0; i < NUM_RX_DESC; i++) {
886 rx_ring[i].status = 0;
887 rx_ring[i].control =
888 (i == NUM_RX_DESC - 1) ? cpu_to_le16 (RFD_CONTROL_S) : 0;
889 rx_ring[i].link =
890 cpu_to_le32 (phys_to_bus
891 ((u32) & rx_ring[(i + 1) % NUM_RX_DESC]));
892 rx_ring[i].rx_buf_addr = 0xffffffff;
893 rx_ring[i].count = cpu_to_le32 (PKTSIZE_ALIGN << 16);
894 }
895
896 rx_next = 0;
897 }
898
899 static void purge_tx_ring (struct eth_device *dev)
900 {
901 int i;
902
903 tx_next = 0;
904 tx_threshold = 0x01208000;
905
906 for (i = 0; i < NUM_TX_DESC; i++) {
907 tx_ring[i].status = 0;
908 tx_ring[i].command = 0;
909 tx_ring[i].link = 0;
910 tx_ring[i].tx_desc_addr = 0;
911 tx_ring[i].count = 0;
912
913 tx_ring[i].tx_buf_addr0 = 0;
914 tx_ring[i].tx_buf_size0 = 0;
915 tx_ring[i].tx_buf_addr1 = 0;
916 tx_ring[i].tx_buf_size1 = 0;
917 }
918 }
919
920 static void read_hw_addr (struct eth_device *dev, bd_t * bis)
921 {
922 u16 eeprom[0x40];
923 u16 sum = 0;
924 int i, j;
925 int addr_len = read_eeprom (dev, 0, 6) == 0xffff ? 8 : 6;
926
927 for (j = 0, i = 0; i < 0x40; i++) {
928 u16 value = read_eeprom (dev, i, addr_len);
929
930 eeprom[i] = value;
931 sum += value;
932 if (i < 3) {
933 dev->enetaddr[j++] = value;
934 dev->enetaddr[j++] = value >> 8;
935 }
936 }
937
938 if (sum != 0xBABA) {
939 memset (dev->enetaddr, 0, ETH_ALEN);
940 #ifdef DEBUG
941 printf ("%s: Invalid EEPROM checksum %#4.4x, "
942 "check settings before activating this device!\n",
943 dev->name, sum);
944 #endif
945 }
946 }
947
948 #endif