]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - drivers/firewire/core-transaction.c
drm/i915/dp: revert back to max link rate and lane count on eDP
[thirdparty/kernel/stable.git] / drivers / firewire / core-transaction.c
1 /*
2 * Core IEEE1394 transaction logic
3 *
4 * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 #include <linux/bug.h>
22 #include <linux/completion.h>
23 #include <linux/device.h>
24 #include <linux/errno.h>
25 #include <linux/firewire.h>
26 #include <linux/firewire-constants.h>
27 #include <linux/fs.h>
28 #include <linux/init.h>
29 #include <linux/idr.h>
30 #include <linux/jiffies.h>
31 #include <linux/kernel.h>
32 #include <linux/list.h>
33 #include <linux/module.h>
34 #include <linux/rculist.h>
35 #include <linux/slab.h>
36 #include <linux/spinlock.h>
37 #include <linux/string.h>
38 #include <linux/timer.h>
39 #include <linux/types.h>
40 #include <linux/workqueue.h>
41
42 #include <asm/byteorder.h>
43
44 #include "core.h"
45
46 #define HEADER_PRI(pri) ((pri) << 0)
47 #define HEADER_TCODE(tcode) ((tcode) << 4)
48 #define HEADER_RETRY(retry) ((retry) << 8)
49 #define HEADER_TLABEL(tlabel) ((tlabel) << 10)
50 #define HEADER_DESTINATION(destination) ((destination) << 16)
51 #define HEADER_SOURCE(source) ((source) << 16)
52 #define HEADER_RCODE(rcode) ((rcode) << 12)
53 #define HEADER_OFFSET_HIGH(offset_high) ((offset_high) << 0)
54 #define HEADER_DATA_LENGTH(length) ((length) << 16)
55 #define HEADER_EXTENDED_TCODE(tcode) ((tcode) << 0)
56
57 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
58 #define HEADER_GET_TLABEL(q) (((q) >> 10) & 0x3f)
59 #define HEADER_GET_RCODE(q) (((q) >> 12) & 0x0f)
60 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
61 #define HEADER_GET_SOURCE(q) (((q) >> 16) & 0xffff)
62 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
63 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
64 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
65
66 #define HEADER_DESTINATION_IS_BROADCAST(q) \
67 (((q) & HEADER_DESTINATION(0x3f)) == HEADER_DESTINATION(0x3f))
68
69 #define PHY_PACKET_CONFIG 0x0
70 #define PHY_PACKET_LINK_ON 0x1
71 #define PHY_PACKET_SELF_ID 0x2
72
73 #define PHY_CONFIG_GAP_COUNT(gap_count) (((gap_count) << 16) | (1 << 22))
74 #define PHY_CONFIG_ROOT_ID(node_id) ((((node_id) & 0x3f) << 24) | (1 << 23))
75 #define PHY_IDENTIFIER(id) ((id) << 30)
76
77 /* returns 0 if the split timeout handler is already running */
78 static int try_cancel_split_timeout(struct fw_transaction *t)
79 {
80 if (t->is_split_transaction)
81 return del_timer(&t->split_timeout_timer);
82 else
83 return 1;
84 }
85
86 static int close_transaction(struct fw_transaction *transaction,
87 struct fw_card *card, int rcode)
88 {
89 struct fw_transaction *t;
90 unsigned long flags;
91
92 spin_lock_irqsave(&card->lock, flags);
93 list_for_each_entry(t, &card->transaction_list, link) {
94 if (t == transaction) {
95 if (!try_cancel_split_timeout(t)) {
96 spin_unlock_irqrestore(&card->lock, flags);
97 goto timed_out;
98 }
99 list_del_init(&t->link);
100 card->tlabel_mask &= ~(1ULL << t->tlabel);
101 break;
102 }
103 }
104 spin_unlock_irqrestore(&card->lock, flags);
105
106 if (&t->link != &card->transaction_list) {
107 t->callback(card, rcode, NULL, 0, t->callback_data);
108 return 0;
109 }
110
111 timed_out:
112 return -ENOENT;
113 }
114
115 /*
116 * Only valid for transactions that are potentially pending (ie have
117 * been sent).
118 */
119 int fw_cancel_transaction(struct fw_card *card,
120 struct fw_transaction *transaction)
121 {
122 /*
123 * Cancel the packet transmission if it's still queued. That
124 * will call the packet transmission callback which cancels
125 * the transaction.
126 */
127
128 if (card->driver->cancel_packet(card, &transaction->packet) == 0)
129 return 0;
130
131 /*
132 * If the request packet has already been sent, we need to see
133 * if the transaction is still pending and remove it in that case.
134 */
135
136 return close_transaction(transaction, card, RCODE_CANCELLED);
137 }
138 EXPORT_SYMBOL(fw_cancel_transaction);
139
140 static void split_transaction_timeout_callback(struct timer_list *timer)
141 {
142 struct fw_transaction *t = from_timer(t, timer, split_timeout_timer);
143 struct fw_card *card = t->card;
144 unsigned long flags;
145
146 spin_lock_irqsave(&card->lock, flags);
147 if (list_empty(&t->link)) {
148 spin_unlock_irqrestore(&card->lock, flags);
149 return;
150 }
151 list_del(&t->link);
152 card->tlabel_mask &= ~(1ULL << t->tlabel);
153 spin_unlock_irqrestore(&card->lock, flags);
154
155 t->callback(card, RCODE_CANCELLED, NULL, 0, t->callback_data);
156 }
157
158 static void start_split_transaction_timeout(struct fw_transaction *t,
159 struct fw_card *card)
160 {
161 unsigned long flags;
162
163 spin_lock_irqsave(&card->lock, flags);
164
165 if (list_empty(&t->link) || WARN_ON(t->is_split_transaction)) {
166 spin_unlock_irqrestore(&card->lock, flags);
167 return;
168 }
169
170 t->is_split_transaction = true;
171 mod_timer(&t->split_timeout_timer,
172 jiffies + card->split_timeout_jiffies);
173
174 spin_unlock_irqrestore(&card->lock, flags);
175 }
176
177 static void transmit_complete_callback(struct fw_packet *packet,
178 struct fw_card *card, int status)
179 {
180 struct fw_transaction *t =
181 container_of(packet, struct fw_transaction, packet);
182
183 switch (status) {
184 case ACK_COMPLETE:
185 close_transaction(t, card, RCODE_COMPLETE);
186 break;
187 case ACK_PENDING:
188 start_split_transaction_timeout(t, card);
189 break;
190 case ACK_BUSY_X:
191 case ACK_BUSY_A:
192 case ACK_BUSY_B:
193 close_transaction(t, card, RCODE_BUSY);
194 break;
195 case ACK_DATA_ERROR:
196 close_transaction(t, card, RCODE_DATA_ERROR);
197 break;
198 case ACK_TYPE_ERROR:
199 close_transaction(t, card, RCODE_TYPE_ERROR);
200 break;
201 default:
202 /*
203 * In this case the ack is really a juju specific
204 * rcode, so just forward that to the callback.
205 */
206 close_transaction(t, card, status);
207 break;
208 }
209 }
210
211 static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
212 int destination_id, int source_id, int generation, int speed,
213 unsigned long long offset, void *payload, size_t length)
214 {
215 int ext_tcode;
216
217 if (tcode == TCODE_STREAM_DATA) {
218 packet->header[0] =
219 HEADER_DATA_LENGTH(length) |
220 destination_id |
221 HEADER_TCODE(TCODE_STREAM_DATA);
222 packet->header_length = 4;
223 packet->payload = payload;
224 packet->payload_length = length;
225
226 goto common;
227 }
228
229 if (tcode > 0x10) {
230 ext_tcode = tcode & ~0x10;
231 tcode = TCODE_LOCK_REQUEST;
232 } else
233 ext_tcode = 0;
234
235 packet->header[0] =
236 HEADER_RETRY(RETRY_X) |
237 HEADER_TLABEL(tlabel) |
238 HEADER_TCODE(tcode) |
239 HEADER_DESTINATION(destination_id);
240 packet->header[1] =
241 HEADER_OFFSET_HIGH(offset >> 32) | HEADER_SOURCE(source_id);
242 packet->header[2] =
243 offset;
244
245 switch (tcode) {
246 case TCODE_WRITE_QUADLET_REQUEST:
247 packet->header[3] = *(u32 *)payload;
248 packet->header_length = 16;
249 packet->payload_length = 0;
250 break;
251
252 case TCODE_LOCK_REQUEST:
253 case TCODE_WRITE_BLOCK_REQUEST:
254 packet->header[3] =
255 HEADER_DATA_LENGTH(length) |
256 HEADER_EXTENDED_TCODE(ext_tcode);
257 packet->header_length = 16;
258 packet->payload = payload;
259 packet->payload_length = length;
260 break;
261
262 case TCODE_READ_QUADLET_REQUEST:
263 packet->header_length = 12;
264 packet->payload_length = 0;
265 break;
266
267 case TCODE_READ_BLOCK_REQUEST:
268 packet->header[3] =
269 HEADER_DATA_LENGTH(length) |
270 HEADER_EXTENDED_TCODE(ext_tcode);
271 packet->header_length = 16;
272 packet->payload_length = 0;
273 break;
274
275 default:
276 WARN(1, "wrong tcode %d\n", tcode);
277 }
278 common:
279 packet->speed = speed;
280 packet->generation = generation;
281 packet->ack = 0;
282 packet->payload_mapped = false;
283 }
284
285 static int allocate_tlabel(struct fw_card *card)
286 {
287 int tlabel;
288
289 tlabel = card->current_tlabel;
290 while (card->tlabel_mask & (1ULL << tlabel)) {
291 tlabel = (tlabel + 1) & 0x3f;
292 if (tlabel == card->current_tlabel)
293 return -EBUSY;
294 }
295
296 card->current_tlabel = (tlabel + 1) & 0x3f;
297 card->tlabel_mask |= 1ULL << tlabel;
298
299 return tlabel;
300 }
301
302 /**
303 * fw_send_request() - submit a request packet for transmission
304 * @card: interface to send the request at
305 * @t: transaction instance to which the request belongs
306 * @tcode: transaction code
307 * @destination_id: destination node ID, consisting of bus_ID and phy_ID
308 * @generation: bus generation in which request and response are valid
309 * @speed: transmission speed
310 * @offset: 48bit wide offset into destination's address space
311 * @payload: data payload for the request subaction
312 * @length: length of the payload, in bytes
313 * @callback: function to be called when the transaction is completed
314 * @callback_data: data to be passed to the transaction completion callback
315 *
316 * Submit a request packet into the asynchronous request transmission queue.
317 * Can be called from atomic context. If you prefer a blocking API, use
318 * fw_run_transaction() in a context that can sleep.
319 *
320 * In case of lock requests, specify one of the firewire-core specific %TCODE_
321 * constants instead of %TCODE_LOCK_REQUEST in @tcode.
322 *
323 * Make sure that the value in @destination_id is not older than the one in
324 * @generation. Otherwise the request is in danger to be sent to a wrong node.
325 *
326 * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller
327 * needs to synthesize @destination_id with fw_stream_packet_destination_id().
328 * It will contain tag, channel, and sy data instead of a node ID then.
329 *
330 * The payload buffer at @data is going to be DMA-mapped except in case of
331 * @length <= 8 or of local (loopback) requests. Hence make sure that the
332 * buffer complies with the restrictions of the streaming DMA mapping API.
333 * @payload must not be freed before the @callback is called.
334 *
335 * In case of request types without payload, @data is NULL and @length is 0.
336 *
337 * After the transaction is completed successfully or unsuccessfully, the
338 * @callback will be called. Among its parameters is the response code which
339 * is either one of the rcodes per IEEE 1394 or, in case of internal errors,
340 * the firewire-core specific %RCODE_SEND_ERROR. The other firewire-core
341 * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION,
342 * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request
343 * generation, or missing ACK respectively.
344 *
345 * Note some timing corner cases: fw_send_request() may complete much earlier
346 * than when the request packet actually hits the wire. On the other hand,
347 * transaction completion and hence execution of @callback may happen even
348 * before fw_send_request() returns.
349 */
350 void fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
351 int destination_id, int generation, int speed,
352 unsigned long long offset, void *payload, size_t length,
353 fw_transaction_callback_t callback, void *callback_data)
354 {
355 unsigned long flags;
356 int tlabel;
357
358 /*
359 * Allocate tlabel from the bitmap and put the transaction on
360 * the list while holding the card spinlock.
361 */
362
363 spin_lock_irqsave(&card->lock, flags);
364
365 tlabel = allocate_tlabel(card);
366 if (tlabel < 0) {
367 spin_unlock_irqrestore(&card->lock, flags);
368 callback(card, RCODE_SEND_ERROR, NULL, 0, callback_data);
369 return;
370 }
371
372 t->node_id = destination_id;
373 t->tlabel = tlabel;
374 t->card = card;
375 t->is_split_transaction = false;
376 timer_setup(&t->split_timeout_timer,
377 split_transaction_timeout_callback, 0);
378 t->callback = callback;
379 t->callback_data = callback_data;
380
381 fw_fill_request(&t->packet, tcode, t->tlabel,
382 destination_id, card->node_id, generation,
383 speed, offset, payload, length);
384 t->packet.callback = transmit_complete_callback;
385
386 list_add_tail(&t->link, &card->transaction_list);
387
388 spin_unlock_irqrestore(&card->lock, flags);
389
390 card->driver->send_request(card, &t->packet);
391 }
392 EXPORT_SYMBOL(fw_send_request);
393
394 struct transaction_callback_data {
395 struct completion done;
396 void *payload;
397 int rcode;
398 };
399
400 static void transaction_callback(struct fw_card *card, int rcode,
401 void *payload, size_t length, void *data)
402 {
403 struct transaction_callback_data *d = data;
404
405 if (rcode == RCODE_COMPLETE)
406 memcpy(d->payload, payload, length);
407 d->rcode = rcode;
408 complete(&d->done);
409 }
410
411 /**
412 * fw_run_transaction() - send request and sleep until transaction is completed
413 * @card: card interface for this request
414 * @tcode: transaction code
415 * @destination_id: destination node ID, consisting of bus_ID and phy_ID
416 * @generation: bus generation in which request and response are valid
417 * @speed: transmission speed
418 * @offset: 48bit wide offset into destination's address space
419 * @payload: data payload for the request subaction
420 * @length: length of the payload, in bytes
421 *
422 * Returns the RCODE. See fw_send_request() for parameter documentation.
423 * Unlike fw_send_request(), @data points to the payload of the request or/and
424 * to the payload of the response. DMA mapping restrictions apply to outbound
425 * request payloads of >= 8 bytes but not to inbound response payloads.
426 */
427 int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
428 int generation, int speed, unsigned long long offset,
429 void *payload, size_t length)
430 {
431 struct transaction_callback_data d;
432 struct fw_transaction t;
433
434 timer_setup_on_stack(&t.split_timeout_timer, NULL, 0);
435 init_completion(&d.done);
436 d.payload = payload;
437 fw_send_request(card, &t, tcode, destination_id, generation, speed,
438 offset, payload, length, transaction_callback, &d);
439 wait_for_completion(&d.done);
440 destroy_timer_on_stack(&t.split_timeout_timer);
441
442 return d.rcode;
443 }
444 EXPORT_SYMBOL(fw_run_transaction);
445
446 static DEFINE_MUTEX(phy_config_mutex);
447 static DECLARE_COMPLETION(phy_config_done);
448
449 static void transmit_phy_packet_callback(struct fw_packet *packet,
450 struct fw_card *card, int status)
451 {
452 complete(&phy_config_done);
453 }
454
455 static struct fw_packet phy_config_packet = {
456 .header_length = 12,
457 .header[0] = TCODE_LINK_INTERNAL << 4,
458 .payload_length = 0,
459 .speed = SCODE_100,
460 .callback = transmit_phy_packet_callback,
461 };
462
463 void fw_send_phy_config(struct fw_card *card,
464 int node_id, int generation, int gap_count)
465 {
466 long timeout = DIV_ROUND_UP(HZ, 10);
467 u32 data = PHY_IDENTIFIER(PHY_PACKET_CONFIG);
468
469 if (node_id != FW_PHY_CONFIG_NO_NODE_ID)
470 data |= PHY_CONFIG_ROOT_ID(node_id);
471
472 if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) {
473 gap_count = card->driver->read_phy_reg(card, 1);
474 if (gap_count < 0)
475 return;
476
477 gap_count &= 63;
478 if (gap_count == 63)
479 return;
480 }
481 data |= PHY_CONFIG_GAP_COUNT(gap_count);
482
483 mutex_lock(&phy_config_mutex);
484
485 phy_config_packet.header[1] = data;
486 phy_config_packet.header[2] = ~data;
487 phy_config_packet.generation = generation;
488 reinit_completion(&phy_config_done);
489
490 card->driver->send_request(card, &phy_config_packet);
491 wait_for_completion_timeout(&phy_config_done, timeout);
492
493 mutex_unlock(&phy_config_mutex);
494 }
495
496 static struct fw_address_handler *lookup_overlapping_address_handler(
497 struct list_head *list, unsigned long long offset, size_t length)
498 {
499 struct fw_address_handler *handler;
500
501 list_for_each_entry_rcu(handler, list, link) {
502 if (handler->offset < offset + length &&
503 offset < handler->offset + handler->length)
504 return handler;
505 }
506
507 return NULL;
508 }
509
510 static bool is_enclosing_handler(struct fw_address_handler *handler,
511 unsigned long long offset, size_t length)
512 {
513 return handler->offset <= offset &&
514 offset + length <= handler->offset + handler->length;
515 }
516
517 static struct fw_address_handler *lookup_enclosing_address_handler(
518 struct list_head *list, unsigned long long offset, size_t length)
519 {
520 struct fw_address_handler *handler;
521
522 list_for_each_entry_rcu(handler, list, link) {
523 if (is_enclosing_handler(handler, offset, length))
524 return handler;
525 }
526
527 return NULL;
528 }
529
530 static DEFINE_SPINLOCK(address_handler_list_lock);
531 static LIST_HEAD(address_handler_list);
532
533 const struct fw_address_region fw_high_memory_region =
534 { .start = FW_MAX_PHYSICAL_RANGE, .end = 0xffffe0000000ULL, };
535 EXPORT_SYMBOL(fw_high_memory_region);
536
537 static const struct fw_address_region low_memory_region =
538 { .start = 0x000000000000ULL, .end = FW_MAX_PHYSICAL_RANGE, };
539
540 #if 0
541 const struct fw_address_region fw_private_region =
542 { .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL, };
543 const struct fw_address_region fw_csr_region =
544 { .start = CSR_REGISTER_BASE,
545 .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END, };
546 const struct fw_address_region fw_unit_space_region =
547 { .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, };
548 #endif /* 0 */
549
550 static bool is_in_fcp_region(u64 offset, size_t length)
551 {
552 return offset >= (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
553 offset + length <= (CSR_REGISTER_BASE | CSR_FCP_END);
554 }
555
556 /**
557 * fw_core_add_address_handler() - register for incoming requests
558 * @handler: callback
559 * @region: region in the IEEE 1212 node space address range
560 *
561 * region->start, ->end, and handler->length have to be quadlet-aligned.
562 *
563 * When a request is received that falls within the specified address range,
564 * the specified callback is invoked. The parameters passed to the callback
565 * give the details of the particular request.
566 *
567 * To be called in process context.
568 * Return value: 0 on success, non-zero otherwise.
569 *
570 * The start offset of the handler's address region is determined by
571 * fw_core_add_address_handler() and is returned in handler->offset.
572 *
573 * Address allocations are exclusive, except for the FCP registers.
574 */
575 int fw_core_add_address_handler(struct fw_address_handler *handler,
576 const struct fw_address_region *region)
577 {
578 struct fw_address_handler *other;
579 int ret = -EBUSY;
580
581 if (region->start & 0xffff000000000003ULL ||
582 region->start >= region->end ||
583 region->end > 0x0001000000000000ULL ||
584 handler->length & 3 ||
585 handler->length == 0)
586 return -EINVAL;
587
588 spin_lock(&address_handler_list_lock);
589
590 handler->offset = region->start;
591 while (handler->offset + handler->length <= region->end) {
592 if (is_in_fcp_region(handler->offset, handler->length))
593 other = NULL;
594 else
595 other = lookup_overlapping_address_handler
596 (&address_handler_list,
597 handler->offset, handler->length);
598 if (other != NULL) {
599 handler->offset += other->length;
600 } else {
601 list_add_tail_rcu(&handler->link, &address_handler_list);
602 ret = 0;
603 break;
604 }
605 }
606
607 spin_unlock(&address_handler_list_lock);
608
609 return ret;
610 }
611 EXPORT_SYMBOL(fw_core_add_address_handler);
612
613 /**
614 * fw_core_remove_address_handler() - unregister an address handler
615 * @handler: callback
616 *
617 * To be called in process context.
618 *
619 * When fw_core_remove_address_handler() returns, @handler->callback() is
620 * guaranteed to not run on any CPU anymore.
621 */
622 void fw_core_remove_address_handler(struct fw_address_handler *handler)
623 {
624 spin_lock(&address_handler_list_lock);
625 list_del_rcu(&handler->link);
626 spin_unlock(&address_handler_list_lock);
627 synchronize_rcu();
628 }
629 EXPORT_SYMBOL(fw_core_remove_address_handler);
630
631 struct fw_request {
632 struct fw_packet response;
633 u32 request_header[4];
634 int ack;
635 u32 length;
636 u32 data[0];
637 };
638
639 static void free_response_callback(struct fw_packet *packet,
640 struct fw_card *card, int status)
641 {
642 struct fw_request *request;
643
644 request = container_of(packet, struct fw_request, response);
645 kfree(request);
646 }
647
648 int fw_get_response_length(struct fw_request *r)
649 {
650 int tcode, ext_tcode, data_length;
651
652 tcode = HEADER_GET_TCODE(r->request_header[0]);
653
654 switch (tcode) {
655 case TCODE_WRITE_QUADLET_REQUEST:
656 case TCODE_WRITE_BLOCK_REQUEST:
657 return 0;
658
659 case TCODE_READ_QUADLET_REQUEST:
660 return 4;
661
662 case TCODE_READ_BLOCK_REQUEST:
663 data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
664 return data_length;
665
666 case TCODE_LOCK_REQUEST:
667 ext_tcode = HEADER_GET_EXTENDED_TCODE(r->request_header[3]);
668 data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
669 switch (ext_tcode) {
670 case EXTCODE_FETCH_ADD:
671 case EXTCODE_LITTLE_ADD:
672 return data_length;
673 default:
674 return data_length / 2;
675 }
676
677 default:
678 WARN(1, "wrong tcode %d\n", tcode);
679 return 0;
680 }
681 }
682
683 void fw_fill_response(struct fw_packet *response, u32 *request_header,
684 int rcode, void *payload, size_t length)
685 {
686 int tcode, tlabel, extended_tcode, source, destination;
687
688 tcode = HEADER_GET_TCODE(request_header[0]);
689 tlabel = HEADER_GET_TLABEL(request_header[0]);
690 source = HEADER_GET_DESTINATION(request_header[0]);
691 destination = HEADER_GET_SOURCE(request_header[1]);
692 extended_tcode = HEADER_GET_EXTENDED_TCODE(request_header[3]);
693
694 response->header[0] =
695 HEADER_RETRY(RETRY_1) |
696 HEADER_TLABEL(tlabel) |
697 HEADER_DESTINATION(destination);
698 response->header[1] =
699 HEADER_SOURCE(source) |
700 HEADER_RCODE(rcode);
701 response->header[2] = 0;
702
703 switch (tcode) {
704 case TCODE_WRITE_QUADLET_REQUEST:
705 case TCODE_WRITE_BLOCK_REQUEST:
706 response->header[0] |= HEADER_TCODE(TCODE_WRITE_RESPONSE);
707 response->header_length = 12;
708 response->payload_length = 0;
709 break;
710
711 case TCODE_READ_QUADLET_REQUEST:
712 response->header[0] |=
713 HEADER_TCODE(TCODE_READ_QUADLET_RESPONSE);
714 if (payload != NULL)
715 response->header[3] = *(u32 *)payload;
716 else
717 response->header[3] = 0;
718 response->header_length = 16;
719 response->payload_length = 0;
720 break;
721
722 case TCODE_READ_BLOCK_REQUEST:
723 case TCODE_LOCK_REQUEST:
724 response->header[0] |= HEADER_TCODE(tcode + 2);
725 response->header[3] =
726 HEADER_DATA_LENGTH(length) |
727 HEADER_EXTENDED_TCODE(extended_tcode);
728 response->header_length = 16;
729 response->payload = payload;
730 response->payload_length = length;
731 break;
732
733 default:
734 WARN(1, "wrong tcode %d\n", tcode);
735 }
736
737 response->payload_mapped = false;
738 }
739 EXPORT_SYMBOL(fw_fill_response);
740
741 static u32 compute_split_timeout_timestamp(struct fw_card *card,
742 u32 request_timestamp)
743 {
744 unsigned int cycles;
745 u32 timestamp;
746
747 cycles = card->split_timeout_cycles;
748 cycles += request_timestamp & 0x1fff;
749
750 timestamp = request_timestamp & ~0x1fff;
751 timestamp += (cycles / 8000) << 13;
752 timestamp |= cycles % 8000;
753
754 return timestamp;
755 }
756
757 static struct fw_request *allocate_request(struct fw_card *card,
758 struct fw_packet *p)
759 {
760 struct fw_request *request;
761 u32 *data, length;
762 int request_tcode;
763
764 request_tcode = HEADER_GET_TCODE(p->header[0]);
765 switch (request_tcode) {
766 case TCODE_WRITE_QUADLET_REQUEST:
767 data = &p->header[3];
768 length = 4;
769 break;
770
771 case TCODE_WRITE_BLOCK_REQUEST:
772 case TCODE_LOCK_REQUEST:
773 data = p->payload;
774 length = HEADER_GET_DATA_LENGTH(p->header[3]);
775 break;
776
777 case TCODE_READ_QUADLET_REQUEST:
778 data = NULL;
779 length = 4;
780 break;
781
782 case TCODE_READ_BLOCK_REQUEST:
783 data = NULL;
784 length = HEADER_GET_DATA_LENGTH(p->header[3]);
785 break;
786
787 default:
788 fw_notice(card, "ERROR - corrupt request received - %08x %08x %08x\n",
789 p->header[0], p->header[1], p->header[2]);
790 return NULL;
791 }
792
793 request = kmalloc(sizeof(*request) + length, GFP_ATOMIC);
794 if (request == NULL)
795 return NULL;
796
797 request->response.speed = p->speed;
798 request->response.timestamp =
799 compute_split_timeout_timestamp(card, p->timestamp);
800 request->response.generation = p->generation;
801 request->response.ack = 0;
802 request->response.callback = free_response_callback;
803 request->ack = p->ack;
804 request->length = length;
805 if (data)
806 memcpy(request->data, data, length);
807
808 memcpy(request->request_header, p->header, sizeof(p->header));
809
810 return request;
811 }
812
813 void fw_send_response(struct fw_card *card,
814 struct fw_request *request, int rcode)
815 {
816 if (WARN_ONCE(!request, "invalid for FCP address handlers"))
817 return;
818
819 /* unified transaction or broadcast transaction: don't respond */
820 if (request->ack != ACK_PENDING ||
821 HEADER_DESTINATION_IS_BROADCAST(request->request_header[0])) {
822 kfree(request);
823 return;
824 }
825
826 if (rcode == RCODE_COMPLETE)
827 fw_fill_response(&request->response, request->request_header,
828 rcode, request->data,
829 fw_get_response_length(request));
830 else
831 fw_fill_response(&request->response, request->request_header,
832 rcode, NULL, 0);
833
834 card->driver->send_response(card, &request->response);
835 }
836 EXPORT_SYMBOL(fw_send_response);
837
838 /**
839 * fw_get_request_speed() - returns speed at which the @request was received
840 * @request: firewire request data
841 */
842 int fw_get_request_speed(struct fw_request *request)
843 {
844 return request->response.speed;
845 }
846 EXPORT_SYMBOL(fw_get_request_speed);
847
848 static void handle_exclusive_region_request(struct fw_card *card,
849 struct fw_packet *p,
850 struct fw_request *request,
851 unsigned long long offset)
852 {
853 struct fw_address_handler *handler;
854 int tcode, destination, source;
855
856 destination = HEADER_GET_DESTINATION(p->header[0]);
857 source = HEADER_GET_SOURCE(p->header[1]);
858 tcode = HEADER_GET_TCODE(p->header[0]);
859 if (tcode == TCODE_LOCK_REQUEST)
860 tcode = 0x10 + HEADER_GET_EXTENDED_TCODE(p->header[3]);
861
862 rcu_read_lock();
863 handler = lookup_enclosing_address_handler(&address_handler_list,
864 offset, request->length);
865 if (handler)
866 handler->address_callback(card, request,
867 tcode, destination, source,
868 p->generation, offset,
869 request->data, request->length,
870 handler->callback_data);
871 rcu_read_unlock();
872
873 if (!handler)
874 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
875 }
876
877 static void handle_fcp_region_request(struct fw_card *card,
878 struct fw_packet *p,
879 struct fw_request *request,
880 unsigned long long offset)
881 {
882 struct fw_address_handler *handler;
883 int tcode, destination, source;
884
885 if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
886 offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) ||
887 request->length > 0x200) {
888 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
889
890 return;
891 }
892
893 tcode = HEADER_GET_TCODE(p->header[0]);
894 destination = HEADER_GET_DESTINATION(p->header[0]);
895 source = HEADER_GET_SOURCE(p->header[1]);
896
897 if (tcode != TCODE_WRITE_QUADLET_REQUEST &&
898 tcode != TCODE_WRITE_BLOCK_REQUEST) {
899 fw_send_response(card, request, RCODE_TYPE_ERROR);
900
901 return;
902 }
903
904 rcu_read_lock();
905 list_for_each_entry_rcu(handler, &address_handler_list, link) {
906 if (is_enclosing_handler(handler, offset, request->length))
907 handler->address_callback(card, NULL, tcode,
908 destination, source,
909 p->generation, offset,
910 request->data,
911 request->length,
912 handler->callback_data);
913 }
914 rcu_read_unlock();
915
916 fw_send_response(card, request, RCODE_COMPLETE);
917 }
918
919 void fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
920 {
921 struct fw_request *request;
922 unsigned long long offset;
923
924 if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE)
925 return;
926
927 if (TCODE_IS_LINK_INTERNAL(HEADER_GET_TCODE(p->header[0]))) {
928 fw_cdev_handle_phy_packet(card, p);
929 return;
930 }
931
932 request = allocate_request(card, p);
933 if (request == NULL) {
934 /* FIXME: send statically allocated busy packet. */
935 return;
936 }
937
938 offset = ((u64)HEADER_GET_OFFSET_HIGH(p->header[1]) << 32) |
939 p->header[2];
940
941 if (!is_in_fcp_region(offset, request->length))
942 handle_exclusive_region_request(card, p, request, offset);
943 else
944 handle_fcp_region_request(card, p, request, offset);
945
946 }
947 EXPORT_SYMBOL(fw_core_handle_request);
948
949 void fw_core_handle_response(struct fw_card *card, struct fw_packet *p)
950 {
951 struct fw_transaction *t;
952 unsigned long flags;
953 u32 *data;
954 size_t data_length;
955 int tcode, tlabel, source, rcode;
956
957 tcode = HEADER_GET_TCODE(p->header[0]);
958 tlabel = HEADER_GET_TLABEL(p->header[0]);
959 source = HEADER_GET_SOURCE(p->header[1]);
960 rcode = HEADER_GET_RCODE(p->header[1]);
961
962 spin_lock_irqsave(&card->lock, flags);
963 list_for_each_entry(t, &card->transaction_list, link) {
964 if (t->node_id == source && t->tlabel == tlabel) {
965 if (!try_cancel_split_timeout(t)) {
966 spin_unlock_irqrestore(&card->lock, flags);
967 goto timed_out;
968 }
969 list_del_init(&t->link);
970 card->tlabel_mask &= ~(1ULL << t->tlabel);
971 break;
972 }
973 }
974 spin_unlock_irqrestore(&card->lock, flags);
975
976 if (&t->link == &card->transaction_list) {
977 timed_out:
978 fw_notice(card, "unsolicited response (source %x, tlabel %x)\n",
979 source, tlabel);
980 return;
981 }
982
983 /*
984 * FIXME: sanity check packet, is length correct, does tcodes
985 * and addresses match.
986 */
987
988 switch (tcode) {
989 case TCODE_READ_QUADLET_RESPONSE:
990 data = (u32 *) &p->header[3];
991 data_length = 4;
992 break;
993
994 case TCODE_WRITE_RESPONSE:
995 data = NULL;
996 data_length = 0;
997 break;
998
999 case TCODE_READ_BLOCK_RESPONSE:
1000 case TCODE_LOCK_RESPONSE:
1001 data = p->payload;
1002 data_length = HEADER_GET_DATA_LENGTH(p->header[3]);
1003 break;
1004
1005 default:
1006 /* Should never happen, this is just to shut up gcc. */
1007 data = NULL;
1008 data_length = 0;
1009 break;
1010 }
1011
1012 /*
1013 * The response handler may be executed while the request handler
1014 * is still pending. Cancel the request handler.
1015 */
1016 card->driver->cancel_packet(card, &t->packet);
1017
1018 t->callback(card, rcode, data, data_length, t->callback_data);
1019 }
1020 EXPORT_SYMBOL(fw_core_handle_response);
1021
1022 /**
1023 * fw_rcode_string - convert a firewire result code to an error description
1024 * @rcode: the result code
1025 */
1026 const char *fw_rcode_string(int rcode)
1027 {
1028 static const char *const names[] = {
1029 [RCODE_COMPLETE] = "no error",
1030 [RCODE_CONFLICT_ERROR] = "conflict error",
1031 [RCODE_DATA_ERROR] = "data error",
1032 [RCODE_TYPE_ERROR] = "type error",
1033 [RCODE_ADDRESS_ERROR] = "address error",
1034 [RCODE_SEND_ERROR] = "send error",
1035 [RCODE_CANCELLED] = "timeout",
1036 [RCODE_BUSY] = "busy",
1037 [RCODE_GENERATION] = "bus reset",
1038 [RCODE_NO_ACK] = "no ack",
1039 };
1040
1041 if ((unsigned int)rcode < ARRAY_SIZE(names) && names[rcode])
1042 return names[rcode];
1043 else
1044 return "unknown";
1045 }
1046 EXPORT_SYMBOL(fw_rcode_string);
1047
1048 static const struct fw_address_region topology_map_region =
1049 { .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP,
1050 .end = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, };
1051
1052 static void handle_topology_map(struct fw_card *card, struct fw_request *request,
1053 int tcode, int destination, int source, int generation,
1054 unsigned long long offset, void *payload, size_t length,
1055 void *callback_data)
1056 {
1057 int start;
1058
1059 if (!TCODE_IS_READ_REQUEST(tcode)) {
1060 fw_send_response(card, request, RCODE_TYPE_ERROR);
1061 return;
1062 }
1063
1064 if ((offset & 3) > 0 || (length & 3) > 0) {
1065 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
1066 return;
1067 }
1068
1069 start = (offset - topology_map_region.start) / 4;
1070 memcpy(payload, &card->topology_map[start], length);
1071
1072 fw_send_response(card, request, RCODE_COMPLETE);
1073 }
1074
1075 static struct fw_address_handler topology_map = {
1076 .length = 0x400,
1077 .address_callback = handle_topology_map,
1078 };
1079
1080 static const struct fw_address_region registers_region =
1081 { .start = CSR_REGISTER_BASE,
1082 .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM, };
1083
1084 static void update_split_timeout(struct fw_card *card)
1085 {
1086 unsigned int cycles;
1087
1088 cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19);
1089
1090 /* minimum per IEEE 1394, maximum which doesn't overflow OHCI */
1091 cycles = clamp(cycles, 800u, 3u * 8000u);
1092
1093 card->split_timeout_cycles = cycles;
1094 card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000);
1095 }
1096
1097 static void handle_registers(struct fw_card *card, struct fw_request *request,
1098 int tcode, int destination, int source, int generation,
1099 unsigned long long offset, void *payload, size_t length,
1100 void *callback_data)
1101 {
1102 int reg = offset & ~CSR_REGISTER_BASE;
1103 __be32 *data = payload;
1104 int rcode = RCODE_COMPLETE;
1105 unsigned long flags;
1106
1107 switch (reg) {
1108 case CSR_PRIORITY_BUDGET:
1109 if (!card->priority_budget_implemented) {
1110 rcode = RCODE_ADDRESS_ERROR;
1111 break;
1112 }
1113 /* else fall through */
1114
1115 case CSR_NODE_IDS:
1116 /*
1117 * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8
1118 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges
1119 */
1120 /* fall through */
1121
1122 case CSR_STATE_CLEAR:
1123 case CSR_STATE_SET:
1124 case CSR_CYCLE_TIME:
1125 case CSR_BUS_TIME:
1126 case CSR_BUSY_TIMEOUT:
1127 if (tcode == TCODE_READ_QUADLET_REQUEST)
1128 *data = cpu_to_be32(card->driver->read_csr(card, reg));
1129 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1130 card->driver->write_csr(card, reg, be32_to_cpu(*data));
1131 else
1132 rcode = RCODE_TYPE_ERROR;
1133 break;
1134
1135 case CSR_RESET_START:
1136 if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1137 card->driver->write_csr(card, CSR_STATE_CLEAR,
1138 CSR_STATE_BIT_ABDICATE);
1139 else
1140 rcode = RCODE_TYPE_ERROR;
1141 break;
1142
1143 case CSR_SPLIT_TIMEOUT_HI:
1144 if (tcode == TCODE_READ_QUADLET_REQUEST) {
1145 *data = cpu_to_be32(card->split_timeout_hi);
1146 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1147 spin_lock_irqsave(&card->lock, flags);
1148 card->split_timeout_hi = be32_to_cpu(*data) & 7;
1149 update_split_timeout(card);
1150 spin_unlock_irqrestore(&card->lock, flags);
1151 } else {
1152 rcode = RCODE_TYPE_ERROR;
1153 }
1154 break;
1155
1156 case CSR_SPLIT_TIMEOUT_LO:
1157 if (tcode == TCODE_READ_QUADLET_REQUEST) {
1158 *data = cpu_to_be32(card->split_timeout_lo);
1159 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1160 spin_lock_irqsave(&card->lock, flags);
1161 card->split_timeout_lo =
1162 be32_to_cpu(*data) & 0xfff80000;
1163 update_split_timeout(card);
1164 spin_unlock_irqrestore(&card->lock, flags);
1165 } else {
1166 rcode = RCODE_TYPE_ERROR;
1167 }
1168 break;
1169
1170 case CSR_MAINT_UTILITY:
1171 if (tcode == TCODE_READ_QUADLET_REQUEST)
1172 *data = card->maint_utility_register;
1173 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1174 card->maint_utility_register = *data;
1175 else
1176 rcode = RCODE_TYPE_ERROR;
1177 break;
1178
1179 case CSR_BROADCAST_CHANNEL:
1180 if (tcode == TCODE_READ_QUADLET_REQUEST)
1181 *data = cpu_to_be32(card->broadcast_channel);
1182 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1183 card->broadcast_channel =
1184 (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) |
1185 BROADCAST_CHANNEL_INITIAL;
1186 else
1187 rcode = RCODE_TYPE_ERROR;
1188 break;
1189
1190 case CSR_BUS_MANAGER_ID:
1191 case CSR_BANDWIDTH_AVAILABLE:
1192 case CSR_CHANNELS_AVAILABLE_HI:
1193 case CSR_CHANNELS_AVAILABLE_LO:
1194 /*
1195 * FIXME: these are handled by the OHCI hardware and
1196 * the stack never sees these request. If we add
1197 * support for a new type of controller that doesn't
1198 * handle this in hardware we need to deal with these
1199 * transactions.
1200 */
1201 BUG();
1202 break;
1203
1204 default:
1205 rcode = RCODE_ADDRESS_ERROR;
1206 break;
1207 }
1208
1209 fw_send_response(card, request, rcode);
1210 }
1211
1212 static struct fw_address_handler registers = {
1213 .length = 0x400,
1214 .address_callback = handle_registers,
1215 };
1216
1217 static void handle_low_memory(struct fw_card *card, struct fw_request *request,
1218 int tcode, int destination, int source, int generation,
1219 unsigned long long offset, void *payload, size_t length,
1220 void *callback_data)
1221 {
1222 /*
1223 * This catches requests not handled by the physical DMA unit,
1224 * i.e., wrong transaction types or unauthorized source nodes.
1225 */
1226 fw_send_response(card, request, RCODE_TYPE_ERROR);
1227 }
1228
1229 static struct fw_address_handler low_memory = {
1230 .length = FW_MAX_PHYSICAL_RANGE,
1231 .address_callback = handle_low_memory,
1232 };
1233
1234 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1235 MODULE_DESCRIPTION("Core IEEE1394 transaction logic");
1236 MODULE_LICENSE("GPL");
1237
1238 static const u32 vendor_textual_descriptor[] = {
1239 /* textual descriptor leaf () */
1240 0x00060000,
1241 0x00000000,
1242 0x00000000,
1243 0x4c696e75, /* L i n u */
1244 0x78204669, /* x F i */
1245 0x72657769, /* r e w i */
1246 0x72650000, /* r e */
1247 };
1248
1249 static const u32 model_textual_descriptor[] = {
1250 /* model descriptor leaf () */
1251 0x00030000,
1252 0x00000000,
1253 0x00000000,
1254 0x4a756a75, /* J u j u */
1255 };
1256
1257 static struct fw_descriptor vendor_id_descriptor = {
1258 .length = ARRAY_SIZE(vendor_textual_descriptor),
1259 .immediate = 0x03001f11,
1260 .key = 0x81000000,
1261 .data = vendor_textual_descriptor,
1262 };
1263
1264 static struct fw_descriptor model_id_descriptor = {
1265 .length = ARRAY_SIZE(model_textual_descriptor),
1266 .immediate = 0x17023901,
1267 .key = 0x81000000,
1268 .data = model_textual_descriptor,
1269 };
1270
1271 static int __init fw_core_init(void)
1272 {
1273 int ret;
1274
1275 fw_workqueue = alloc_workqueue("firewire", WQ_MEM_RECLAIM, 0);
1276 if (!fw_workqueue)
1277 return -ENOMEM;
1278
1279 ret = bus_register(&fw_bus_type);
1280 if (ret < 0) {
1281 destroy_workqueue(fw_workqueue);
1282 return ret;
1283 }
1284
1285 fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops);
1286 if (fw_cdev_major < 0) {
1287 bus_unregister(&fw_bus_type);
1288 destroy_workqueue(fw_workqueue);
1289 return fw_cdev_major;
1290 }
1291
1292 fw_core_add_address_handler(&topology_map, &topology_map_region);
1293 fw_core_add_address_handler(&registers, &registers_region);
1294 fw_core_add_address_handler(&low_memory, &low_memory_region);
1295 fw_core_add_descriptor(&vendor_id_descriptor);
1296 fw_core_add_descriptor(&model_id_descriptor);
1297
1298 return 0;
1299 }
1300
1301 static void __exit fw_core_cleanup(void)
1302 {
1303 unregister_chrdev(fw_cdev_major, "firewire");
1304 bus_unregister(&fw_bus_type);
1305 destroy_workqueue(fw_workqueue);
1306 idr_destroy(&fw_device_idr);
1307 }
1308
1309 module_init(fw_core_init);
1310 module_exit(fw_core_cleanup);