]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - drivers/firewire/ohci.c
Merge tag 'firewire-updates' of git://git.kernel.org/pub/scm/linux/kernel/git/ieee139...
[thirdparty/kernel/linux.git] / drivers / firewire / ohci.c
1 /*
2 * Driver for OHCI 1394 controllers
3 *
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 #include <linux/bitops.h>
22 #include <linux/bug.h>
23 #include <linux/compiler.h>
24 #include <linux/delay.h>
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firewire.h>
28 #include <linux/firewire-constants.h>
29 #include <linux/init.h>
30 #include <linux/interrupt.h>
31 #include <linux/io.h>
32 #include <linux/kernel.h>
33 #include <linux/list.h>
34 #include <linux/mm.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/mutex.h>
38 #include <linux/pci.h>
39 #include <linux/pci_ids.h>
40 #include <linux/slab.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/time.h>
44 #include <linux/vmalloc.h>
45 #include <linux/workqueue.h>
46
47 #include <asm/byteorder.h>
48 #include <asm/page.h>
49 #include <asm/system.h>
50
51 #ifdef CONFIG_PPC_PMAC
52 #include <asm/pmac_feature.h>
53 #endif
54
55 #include "core.h"
56 #include "ohci.h"
57
58 #define DESCRIPTOR_OUTPUT_MORE 0
59 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
60 #define DESCRIPTOR_INPUT_MORE (2 << 12)
61 #define DESCRIPTOR_INPUT_LAST (3 << 12)
62 #define DESCRIPTOR_STATUS (1 << 11)
63 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
64 #define DESCRIPTOR_PING (1 << 7)
65 #define DESCRIPTOR_YY (1 << 6)
66 #define DESCRIPTOR_NO_IRQ (0 << 4)
67 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
68 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
69 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
70 #define DESCRIPTOR_WAIT (3 << 0)
71
72 struct descriptor {
73 __le16 req_count;
74 __le16 control;
75 __le32 data_address;
76 __le32 branch_address;
77 __le16 res_count;
78 __le16 transfer_status;
79 } __attribute__((aligned(16)));
80
81 #define CONTROL_SET(regs) (regs)
82 #define CONTROL_CLEAR(regs) ((regs) + 4)
83 #define COMMAND_PTR(regs) ((regs) + 12)
84 #define CONTEXT_MATCH(regs) ((regs) + 16)
85
86 #define AR_BUFFER_SIZE (32*1024)
87 #define AR_BUFFERS_MIN DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
88 /* we need at least two pages for proper list management */
89 #define AR_BUFFERS (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
90
91 #define MAX_ASYNC_PAYLOAD 4096
92 #define MAX_AR_PACKET_SIZE (16 + MAX_ASYNC_PAYLOAD + 4)
93 #define AR_WRAPAROUND_PAGES DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
94
95 struct ar_context {
96 struct fw_ohci *ohci;
97 struct page *pages[AR_BUFFERS];
98 void *buffer;
99 struct descriptor *descriptors;
100 dma_addr_t descriptors_bus;
101 void *pointer;
102 unsigned int last_buffer_index;
103 u32 regs;
104 struct tasklet_struct tasklet;
105 };
106
107 struct context;
108
109 typedef int (*descriptor_callback_t)(struct context *ctx,
110 struct descriptor *d,
111 struct descriptor *last);
112
113 /*
114 * A buffer that contains a block of DMA-able coherent memory used for
115 * storing a portion of a DMA descriptor program.
116 */
117 struct descriptor_buffer {
118 struct list_head list;
119 dma_addr_t buffer_bus;
120 size_t buffer_size;
121 size_t used;
122 struct descriptor buffer[0];
123 };
124
125 struct context {
126 struct fw_ohci *ohci;
127 u32 regs;
128 int total_allocation;
129 u32 current_bus;
130 bool running;
131 bool flushing;
132
133 /*
134 * List of page-sized buffers for storing DMA descriptors.
135 * Head of list contains buffers in use and tail of list contains
136 * free buffers.
137 */
138 struct list_head buffer_list;
139
140 /*
141 * Pointer to a buffer inside buffer_list that contains the tail
142 * end of the current DMA program.
143 */
144 struct descriptor_buffer *buffer_tail;
145
146 /*
147 * The descriptor containing the branch address of the first
148 * descriptor that has not yet been filled by the device.
149 */
150 struct descriptor *last;
151
152 /*
153 * The last descriptor in the DMA program. It contains the branch
154 * address that must be updated upon appending a new descriptor.
155 */
156 struct descriptor *prev;
157
158 descriptor_callback_t callback;
159
160 struct tasklet_struct tasklet;
161 };
162
163 #define IT_HEADER_SY(v) ((v) << 0)
164 #define IT_HEADER_TCODE(v) ((v) << 4)
165 #define IT_HEADER_CHANNEL(v) ((v) << 8)
166 #define IT_HEADER_TAG(v) ((v) << 14)
167 #define IT_HEADER_SPEED(v) ((v) << 16)
168 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
169
170 struct iso_context {
171 struct fw_iso_context base;
172 struct context context;
173 void *header;
174 size_t header_length;
175 unsigned long flushing_completions;
176 u32 mc_buffer_bus;
177 u16 mc_completed;
178 u16 last_timestamp;
179 u8 sync;
180 u8 tags;
181 };
182
183 #define CONFIG_ROM_SIZE 1024
184
185 struct fw_ohci {
186 struct fw_card card;
187
188 __iomem char *registers;
189 int node_id;
190 int generation;
191 int request_generation; /* for timestamping incoming requests */
192 unsigned quirks;
193 unsigned int pri_req_max;
194 u32 bus_time;
195 bool is_root;
196 bool csr_state_setclear_abdicate;
197 int n_ir;
198 int n_it;
199 /*
200 * Spinlock for accessing fw_ohci data. Never call out of
201 * this driver with this lock held.
202 */
203 spinlock_t lock;
204
205 struct mutex phy_reg_mutex;
206
207 void *misc_buffer;
208 dma_addr_t misc_buffer_bus;
209
210 struct ar_context ar_request_ctx;
211 struct ar_context ar_response_ctx;
212 struct context at_request_ctx;
213 struct context at_response_ctx;
214
215 u32 it_context_support;
216 u32 it_context_mask; /* unoccupied IT contexts */
217 struct iso_context *it_context_list;
218 u64 ir_context_channels; /* unoccupied channels */
219 u32 ir_context_support;
220 u32 ir_context_mask; /* unoccupied IR contexts */
221 struct iso_context *ir_context_list;
222 u64 mc_channels; /* channels in use by the multichannel IR context */
223 bool mc_allocated;
224
225 __be32 *config_rom;
226 dma_addr_t config_rom_bus;
227 __be32 *next_config_rom;
228 dma_addr_t next_config_rom_bus;
229 __be32 next_header;
230
231 __le32 *self_id_cpu;
232 dma_addr_t self_id_bus;
233 struct work_struct bus_reset_work;
234
235 u32 self_id_buffer[512];
236 };
237
238 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
239 {
240 return container_of(card, struct fw_ohci, card);
241 }
242
243 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
244 #define IR_CONTEXT_BUFFER_FILL 0x80000000
245 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
246 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
247 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
248 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
249
250 #define CONTEXT_RUN 0x8000
251 #define CONTEXT_WAKE 0x1000
252 #define CONTEXT_DEAD 0x0800
253 #define CONTEXT_ACTIVE 0x0400
254
255 #define OHCI1394_MAX_AT_REQ_RETRIES 0xf
256 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
257 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
258
259 #define OHCI1394_REGISTER_SIZE 0x800
260 #define OHCI1394_PCI_HCI_Control 0x40
261 #define SELF_ID_BUF_SIZE 0x800
262 #define OHCI_TCODE_PHY_PACKET 0x0e
263 #define OHCI_VERSION_1_1 0x010010
264
265 static char ohci_driver_name[] = KBUILD_MODNAME;
266
267 #define PCI_DEVICE_ID_AGERE_FW643 0x5901
268 #define PCI_DEVICE_ID_CREATIVE_SB1394 0x4001
269 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
270 #define PCI_DEVICE_ID_TI_TSB12LV22 0x8009
271 #define PCI_DEVICE_ID_TI_TSB12LV26 0x8020
272 #define PCI_DEVICE_ID_TI_TSB82AA2 0x8025
273 #define PCI_VENDOR_ID_PINNACLE_SYSTEMS 0x11bd
274
275 #define QUIRK_CYCLE_TIMER 1
276 #define QUIRK_RESET_PACKET 2
277 #define QUIRK_BE_HEADERS 4
278 #define QUIRK_NO_1394A 8
279 #define QUIRK_NO_MSI 16
280 #define QUIRK_TI_SLLZ059 32
281
282 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
283 static const struct {
284 unsigned short vendor, device, revision, flags;
285 } ohci_quirks[] = {
286 {PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
287 QUIRK_CYCLE_TIMER},
288
289 {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
290 QUIRK_BE_HEADERS},
291
292 {PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
293 QUIRK_NO_MSI},
294
295 {PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
296 QUIRK_RESET_PACKET},
297
298 {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
299 QUIRK_NO_MSI},
300
301 {PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
302 QUIRK_CYCLE_TIMER},
303
304 {PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
305 QUIRK_NO_MSI},
306
307 {PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
308 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
309
310 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
311 QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
312
313 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
314 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
315
316 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
317 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
318
319 {PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
320 QUIRK_RESET_PACKET},
321
322 {PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
323 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
324 };
325
326 /* This overrides anything that was found in ohci_quirks[]. */
327 static int param_quirks;
328 module_param_named(quirks, param_quirks, int, 0644);
329 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
330 ", nonatomic cycle timer = " __stringify(QUIRK_CYCLE_TIMER)
331 ", reset packet generation = " __stringify(QUIRK_RESET_PACKET)
332 ", AR/selfID endianess = " __stringify(QUIRK_BE_HEADERS)
333 ", no 1394a enhancements = " __stringify(QUIRK_NO_1394A)
334 ", disable MSI = " __stringify(QUIRK_NO_MSI)
335 ", TI SLLZ059 erratum = " __stringify(QUIRK_TI_SLLZ059)
336 ")");
337
338 #define OHCI_PARAM_DEBUG_AT_AR 1
339 #define OHCI_PARAM_DEBUG_SELFIDS 2
340 #define OHCI_PARAM_DEBUG_IRQS 4
341 #define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */
342
343 static int param_debug;
344 module_param_named(debug, param_debug, int, 0644);
345 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
346 ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR)
347 ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS)
348 ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS)
349 ", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
350 ", or a combination, or all = -1)");
351
352 static void log_irqs(struct fw_ohci *ohci, u32 evt)
353 {
354 if (likely(!(param_debug &
355 (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
356 return;
357
358 if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
359 !(evt & OHCI1394_busReset))
360 return;
361
362 dev_notice(ohci->card.device,
363 "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
364 evt & OHCI1394_selfIDComplete ? " selfID" : "",
365 evt & OHCI1394_RQPkt ? " AR_req" : "",
366 evt & OHCI1394_RSPkt ? " AR_resp" : "",
367 evt & OHCI1394_reqTxComplete ? " AT_req" : "",
368 evt & OHCI1394_respTxComplete ? " AT_resp" : "",
369 evt & OHCI1394_isochRx ? " IR" : "",
370 evt & OHCI1394_isochTx ? " IT" : "",
371 evt & OHCI1394_postedWriteErr ? " postedWriteErr" : "",
372 evt & OHCI1394_cycleTooLong ? " cycleTooLong" : "",
373 evt & OHCI1394_cycle64Seconds ? " cycle64Seconds" : "",
374 evt & OHCI1394_cycleInconsistent ? " cycleInconsistent" : "",
375 evt & OHCI1394_regAccessFail ? " regAccessFail" : "",
376 evt & OHCI1394_unrecoverableError ? " unrecoverableError" : "",
377 evt & OHCI1394_busReset ? " busReset" : "",
378 evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
379 OHCI1394_RSPkt | OHCI1394_reqTxComplete |
380 OHCI1394_respTxComplete | OHCI1394_isochRx |
381 OHCI1394_isochTx | OHCI1394_postedWriteErr |
382 OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
383 OHCI1394_cycleInconsistent |
384 OHCI1394_regAccessFail | OHCI1394_busReset)
385 ? " ?" : "");
386 }
387
388 static const char *speed[] = {
389 [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
390 };
391 static const char *power[] = {
392 [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
393 [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
394 };
395 static const char port[] = { '.', '-', 'p', 'c', };
396
397 static char _p(u32 *s, int shift)
398 {
399 return port[*s >> shift & 3];
400 }
401
402 static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count)
403 {
404 u32 *s;
405
406 if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
407 return;
408
409 dev_notice(ohci->card.device,
410 "%d selfIDs, generation %d, local node ID %04x\n",
411 self_id_count, generation, ohci->node_id);
412
413 for (s = ohci->self_id_buffer; self_id_count--; ++s)
414 if ((*s & 1 << 23) == 0)
415 dev_notice(ohci->card.device,
416 "selfID 0: %08x, phy %d [%c%c%c] "
417 "%s gc=%d %s %s%s%s\n",
418 *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
419 speed[*s >> 14 & 3], *s >> 16 & 63,
420 power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
421 *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
422 else
423 dev_notice(ohci->card.device,
424 "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
425 *s, *s >> 24 & 63,
426 _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
427 _p(s, 8), _p(s, 6), _p(s, 4), _p(s, 2));
428 }
429
430 static const char *evts[] = {
431 [0x00] = "evt_no_status", [0x01] = "-reserved-",
432 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
433 [0x04] = "evt_underrun", [0x05] = "evt_overrun",
434 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
435 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
436 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
437 [0x0c] = "-reserved-", [0x0d] = "-reserved-",
438 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
439 [0x10] = "-reserved-", [0x11] = "ack_complete",
440 [0x12] = "ack_pending ", [0x13] = "-reserved-",
441 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
442 [0x16] = "ack_busy_B", [0x17] = "-reserved-",
443 [0x18] = "-reserved-", [0x19] = "-reserved-",
444 [0x1a] = "-reserved-", [0x1b] = "ack_tardy",
445 [0x1c] = "-reserved-", [0x1d] = "ack_data_error",
446 [0x1e] = "ack_type_error", [0x1f] = "-reserved-",
447 [0x20] = "pending/cancelled",
448 };
449 static const char *tcodes[] = {
450 [0x0] = "QW req", [0x1] = "BW req",
451 [0x2] = "W resp", [0x3] = "-reserved-",
452 [0x4] = "QR req", [0x5] = "BR req",
453 [0x6] = "QR resp", [0x7] = "BR resp",
454 [0x8] = "cycle start", [0x9] = "Lk req",
455 [0xa] = "async stream packet", [0xb] = "Lk resp",
456 [0xc] = "-reserved-", [0xd] = "-reserved-",
457 [0xe] = "link internal", [0xf] = "-reserved-",
458 };
459
460 static void log_ar_at_event(struct fw_ohci *ohci,
461 char dir, int speed, u32 *header, int evt)
462 {
463 int tcode = header[0] >> 4 & 0xf;
464 char specific[12];
465
466 if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
467 return;
468
469 if (unlikely(evt >= ARRAY_SIZE(evts)))
470 evt = 0x1f;
471
472 if (evt == OHCI1394_evt_bus_reset) {
473 dev_notice(ohci->card.device,
474 "A%c evt_bus_reset, generation %d\n",
475 dir, (header[2] >> 16) & 0xff);
476 return;
477 }
478
479 switch (tcode) {
480 case 0x0: case 0x6: case 0x8:
481 snprintf(specific, sizeof(specific), " = %08x",
482 be32_to_cpu((__force __be32)header[3]));
483 break;
484 case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
485 snprintf(specific, sizeof(specific), " %x,%x",
486 header[3] >> 16, header[3] & 0xffff);
487 break;
488 default:
489 specific[0] = '\0';
490 }
491
492 switch (tcode) {
493 case 0xa:
494 dev_notice(ohci->card.device,
495 "A%c %s, %s\n",
496 dir, evts[evt], tcodes[tcode]);
497 break;
498 case 0xe:
499 dev_notice(ohci->card.device,
500 "A%c %s, PHY %08x %08x\n",
501 dir, evts[evt], header[1], header[2]);
502 break;
503 case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
504 dev_notice(ohci->card.device,
505 "A%c spd %x tl %02x, "
506 "%04x -> %04x, %s, "
507 "%s, %04x%08x%s\n",
508 dir, speed, header[0] >> 10 & 0x3f,
509 header[1] >> 16, header[0] >> 16, evts[evt],
510 tcodes[tcode], header[1] & 0xffff, header[2], specific);
511 break;
512 default:
513 dev_notice(ohci->card.device,
514 "A%c spd %x tl %02x, "
515 "%04x -> %04x, %s, "
516 "%s%s\n",
517 dir, speed, header[0] >> 10 & 0x3f,
518 header[1] >> 16, header[0] >> 16, evts[evt],
519 tcodes[tcode], specific);
520 }
521 }
522
523 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
524 {
525 writel(data, ohci->registers + offset);
526 }
527
528 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
529 {
530 return readl(ohci->registers + offset);
531 }
532
533 static inline void flush_writes(const struct fw_ohci *ohci)
534 {
535 /* Do a dummy read to flush writes. */
536 reg_read(ohci, OHCI1394_Version);
537 }
538
539 /*
540 * Beware! read_phy_reg(), write_phy_reg(), update_phy_reg(), and
541 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
542 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
543 * directly. Exceptions are intrinsically serialized contexts like pci_probe.
544 */
545 static int read_phy_reg(struct fw_ohci *ohci, int addr)
546 {
547 u32 val;
548 int i;
549
550 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
551 for (i = 0; i < 3 + 100; i++) {
552 val = reg_read(ohci, OHCI1394_PhyControl);
553 if (!~val)
554 return -ENODEV; /* Card was ejected. */
555
556 if (val & OHCI1394_PhyControl_ReadDone)
557 return OHCI1394_PhyControl_ReadData(val);
558
559 /*
560 * Try a few times without waiting. Sleeping is necessary
561 * only when the link/PHY interface is busy.
562 */
563 if (i >= 3)
564 msleep(1);
565 }
566 dev_err(ohci->card.device, "failed to read phy reg\n");
567
568 return -EBUSY;
569 }
570
571 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
572 {
573 int i;
574
575 reg_write(ohci, OHCI1394_PhyControl,
576 OHCI1394_PhyControl_Write(addr, val));
577 for (i = 0; i < 3 + 100; i++) {
578 val = reg_read(ohci, OHCI1394_PhyControl);
579 if (!~val)
580 return -ENODEV; /* Card was ejected. */
581
582 if (!(val & OHCI1394_PhyControl_WritePending))
583 return 0;
584
585 if (i >= 3)
586 msleep(1);
587 }
588 dev_err(ohci->card.device, "failed to write phy reg\n");
589
590 return -EBUSY;
591 }
592
593 static int update_phy_reg(struct fw_ohci *ohci, int addr,
594 int clear_bits, int set_bits)
595 {
596 int ret = read_phy_reg(ohci, addr);
597 if (ret < 0)
598 return ret;
599
600 /*
601 * The interrupt status bits are cleared by writing a one bit.
602 * Avoid clearing them unless explicitly requested in set_bits.
603 */
604 if (addr == 5)
605 clear_bits |= PHY_INT_STATUS_BITS;
606
607 return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
608 }
609
610 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
611 {
612 int ret;
613
614 ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
615 if (ret < 0)
616 return ret;
617
618 return read_phy_reg(ohci, addr);
619 }
620
621 static int ohci_read_phy_reg(struct fw_card *card, int addr)
622 {
623 struct fw_ohci *ohci = fw_ohci(card);
624 int ret;
625
626 mutex_lock(&ohci->phy_reg_mutex);
627 ret = read_phy_reg(ohci, addr);
628 mutex_unlock(&ohci->phy_reg_mutex);
629
630 return ret;
631 }
632
633 static int ohci_update_phy_reg(struct fw_card *card, int addr,
634 int clear_bits, int set_bits)
635 {
636 struct fw_ohci *ohci = fw_ohci(card);
637 int ret;
638
639 mutex_lock(&ohci->phy_reg_mutex);
640 ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
641 mutex_unlock(&ohci->phy_reg_mutex);
642
643 return ret;
644 }
645
646 static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
647 {
648 return page_private(ctx->pages[i]);
649 }
650
651 static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
652 {
653 struct descriptor *d;
654
655 d = &ctx->descriptors[index];
656 d->branch_address &= cpu_to_le32(~0xf);
657 d->res_count = cpu_to_le16(PAGE_SIZE);
658 d->transfer_status = 0;
659
660 wmb(); /* finish init of new descriptors before branch_address update */
661 d = &ctx->descriptors[ctx->last_buffer_index];
662 d->branch_address |= cpu_to_le32(1);
663
664 ctx->last_buffer_index = index;
665
666 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
667 }
668
669 static void ar_context_release(struct ar_context *ctx)
670 {
671 unsigned int i;
672
673 if (ctx->buffer)
674 vm_unmap_ram(ctx->buffer, AR_BUFFERS + AR_WRAPAROUND_PAGES);
675
676 for (i = 0; i < AR_BUFFERS; i++)
677 if (ctx->pages[i]) {
678 dma_unmap_page(ctx->ohci->card.device,
679 ar_buffer_bus(ctx, i),
680 PAGE_SIZE, DMA_FROM_DEVICE);
681 __free_page(ctx->pages[i]);
682 }
683 }
684
685 static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
686 {
687 struct fw_ohci *ohci = ctx->ohci;
688
689 if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
690 reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
691 flush_writes(ohci);
692
693 dev_err(ohci->card.device, "AR error: %s; DMA stopped\n",
694 error_msg);
695 }
696 /* FIXME: restart? */
697 }
698
699 static inline unsigned int ar_next_buffer_index(unsigned int index)
700 {
701 return (index + 1) % AR_BUFFERS;
702 }
703
704 static inline unsigned int ar_prev_buffer_index(unsigned int index)
705 {
706 return (index - 1 + AR_BUFFERS) % AR_BUFFERS;
707 }
708
709 static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
710 {
711 return ar_next_buffer_index(ctx->last_buffer_index);
712 }
713
714 /*
715 * We search for the buffer that contains the last AR packet DMA data written
716 * by the controller.
717 */
718 static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
719 unsigned int *buffer_offset)
720 {
721 unsigned int i, next_i, last = ctx->last_buffer_index;
722 __le16 res_count, next_res_count;
723
724 i = ar_first_buffer_index(ctx);
725 res_count = ACCESS_ONCE(ctx->descriptors[i].res_count);
726
727 /* A buffer that is not yet completely filled must be the last one. */
728 while (i != last && res_count == 0) {
729
730 /* Peek at the next descriptor. */
731 next_i = ar_next_buffer_index(i);
732 rmb(); /* read descriptors in order */
733 next_res_count = ACCESS_ONCE(
734 ctx->descriptors[next_i].res_count);
735 /*
736 * If the next descriptor is still empty, we must stop at this
737 * descriptor.
738 */
739 if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
740 /*
741 * The exception is when the DMA data for one packet is
742 * split over three buffers; in this case, the middle
743 * buffer's descriptor might be never updated by the
744 * controller and look still empty, and we have to peek
745 * at the third one.
746 */
747 if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
748 next_i = ar_next_buffer_index(next_i);
749 rmb();
750 next_res_count = ACCESS_ONCE(
751 ctx->descriptors[next_i].res_count);
752 if (next_res_count != cpu_to_le16(PAGE_SIZE))
753 goto next_buffer_is_active;
754 }
755
756 break;
757 }
758
759 next_buffer_is_active:
760 i = next_i;
761 res_count = next_res_count;
762 }
763
764 rmb(); /* read res_count before the DMA data */
765
766 *buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
767 if (*buffer_offset > PAGE_SIZE) {
768 *buffer_offset = 0;
769 ar_context_abort(ctx, "corrupted descriptor");
770 }
771
772 return i;
773 }
774
775 static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
776 unsigned int end_buffer_index,
777 unsigned int end_buffer_offset)
778 {
779 unsigned int i;
780
781 i = ar_first_buffer_index(ctx);
782 while (i != end_buffer_index) {
783 dma_sync_single_for_cpu(ctx->ohci->card.device,
784 ar_buffer_bus(ctx, i),
785 PAGE_SIZE, DMA_FROM_DEVICE);
786 i = ar_next_buffer_index(i);
787 }
788 if (end_buffer_offset > 0)
789 dma_sync_single_for_cpu(ctx->ohci->card.device,
790 ar_buffer_bus(ctx, i),
791 end_buffer_offset, DMA_FROM_DEVICE);
792 }
793
794 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
795 #define cond_le32_to_cpu(v) \
796 (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
797 #else
798 #define cond_le32_to_cpu(v) le32_to_cpu(v)
799 #endif
800
801 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
802 {
803 struct fw_ohci *ohci = ctx->ohci;
804 struct fw_packet p;
805 u32 status, length, tcode;
806 int evt;
807
808 p.header[0] = cond_le32_to_cpu(buffer[0]);
809 p.header[1] = cond_le32_to_cpu(buffer[1]);
810 p.header[2] = cond_le32_to_cpu(buffer[2]);
811
812 tcode = (p.header[0] >> 4) & 0x0f;
813 switch (tcode) {
814 case TCODE_WRITE_QUADLET_REQUEST:
815 case TCODE_READ_QUADLET_RESPONSE:
816 p.header[3] = (__force __u32) buffer[3];
817 p.header_length = 16;
818 p.payload_length = 0;
819 break;
820
821 case TCODE_READ_BLOCK_REQUEST :
822 p.header[3] = cond_le32_to_cpu(buffer[3]);
823 p.header_length = 16;
824 p.payload_length = 0;
825 break;
826
827 case TCODE_WRITE_BLOCK_REQUEST:
828 case TCODE_READ_BLOCK_RESPONSE:
829 case TCODE_LOCK_REQUEST:
830 case TCODE_LOCK_RESPONSE:
831 p.header[3] = cond_le32_to_cpu(buffer[3]);
832 p.header_length = 16;
833 p.payload_length = p.header[3] >> 16;
834 if (p.payload_length > MAX_ASYNC_PAYLOAD) {
835 ar_context_abort(ctx, "invalid packet length");
836 return NULL;
837 }
838 break;
839
840 case TCODE_WRITE_RESPONSE:
841 case TCODE_READ_QUADLET_REQUEST:
842 case OHCI_TCODE_PHY_PACKET:
843 p.header_length = 12;
844 p.payload_length = 0;
845 break;
846
847 default:
848 ar_context_abort(ctx, "invalid tcode");
849 return NULL;
850 }
851
852 p.payload = (void *) buffer + p.header_length;
853
854 /* FIXME: What to do about evt_* errors? */
855 length = (p.header_length + p.payload_length + 3) / 4;
856 status = cond_le32_to_cpu(buffer[length]);
857 evt = (status >> 16) & 0x1f;
858
859 p.ack = evt - 16;
860 p.speed = (status >> 21) & 0x7;
861 p.timestamp = status & 0xffff;
862 p.generation = ohci->request_generation;
863
864 log_ar_at_event(ohci, 'R', p.speed, p.header, evt);
865
866 /*
867 * Several controllers, notably from NEC and VIA, forget to
868 * write ack_complete status at PHY packet reception.
869 */
870 if (evt == OHCI1394_evt_no_status &&
871 (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
872 p.ack = ACK_COMPLETE;
873
874 /*
875 * The OHCI bus reset handler synthesizes a PHY packet with
876 * the new generation number when a bus reset happens (see
877 * section 8.4.2.3). This helps us determine when a request
878 * was received and make sure we send the response in the same
879 * generation. We only need this for requests; for responses
880 * we use the unique tlabel for finding the matching
881 * request.
882 *
883 * Alas some chips sometimes emit bus reset packets with a
884 * wrong generation. We set the correct generation for these
885 * at a slightly incorrect time (in bus_reset_work).
886 */
887 if (evt == OHCI1394_evt_bus_reset) {
888 if (!(ohci->quirks & QUIRK_RESET_PACKET))
889 ohci->request_generation = (p.header[2] >> 16) & 0xff;
890 } else if (ctx == &ohci->ar_request_ctx) {
891 fw_core_handle_request(&ohci->card, &p);
892 } else {
893 fw_core_handle_response(&ohci->card, &p);
894 }
895
896 return buffer + length + 1;
897 }
898
899 static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
900 {
901 void *next;
902
903 while (p < end) {
904 next = handle_ar_packet(ctx, p);
905 if (!next)
906 return p;
907 p = next;
908 }
909
910 return p;
911 }
912
913 static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
914 {
915 unsigned int i;
916
917 i = ar_first_buffer_index(ctx);
918 while (i != end_buffer) {
919 dma_sync_single_for_device(ctx->ohci->card.device,
920 ar_buffer_bus(ctx, i),
921 PAGE_SIZE, DMA_FROM_DEVICE);
922 ar_context_link_page(ctx, i);
923 i = ar_next_buffer_index(i);
924 }
925 }
926
927 static void ar_context_tasklet(unsigned long data)
928 {
929 struct ar_context *ctx = (struct ar_context *)data;
930 unsigned int end_buffer_index, end_buffer_offset;
931 void *p, *end;
932
933 p = ctx->pointer;
934 if (!p)
935 return;
936
937 end_buffer_index = ar_search_last_active_buffer(ctx,
938 &end_buffer_offset);
939 ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
940 end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
941
942 if (end_buffer_index < ar_first_buffer_index(ctx)) {
943 /*
944 * The filled part of the overall buffer wraps around; handle
945 * all packets up to the buffer end here. If the last packet
946 * wraps around, its tail will be visible after the buffer end
947 * because the buffer start pages are mapped there again.
948 */
949 void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
950 p = handle_ar_packets(ctx, p, buffer_end);
951 if (p < buffer_end)
952 goto error;
953 /* adjust p to point back into the actual buffer */
954 p -= AR_BUFFERS * PAGE_SIZE;
955 }
956
957 p = handle_ar_packets(ctx, p, end);
958 if (p != end) {
959 if (p > end)
960 ar_context_abort(ctx, "inconsistent descriptor");
961 goto error;
962 }
963
964 ctx->pointer = p;
965 ar_recycle_buffers(ctx, end_buffer_index);
966
967 return;
968
969 error:
970 ctx->pointer = NULL;
971 }
972
973 static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
974 unsigned int descriptors_offset, u32 regs)
975 {
976 unsigned int i;
977 dma_addr_t dma_addr;
978 struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
979 struct descriptor *d;
980
981 ctx->regs = regs;
982 ctx->ohci = ohci;
983 tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
984
985 for (i = 0; i < AR_BUFFERS; i++) {
986 ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
987 if (!ctx->pages[i])
988 goto out_of_memory;
989 dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
990 0, PAGE_SIZE, DMA_FROM_DEVICE);
991 if (dma_mapping_error(ohci->card.device, dma_addr)) {
992 __free_page(ctx->pages[i]);
993 ctx->pages[i] = NULL;
994 goto out_of_memory;
995 }
996 set_page_private(ctx->pages[i], dma_addr);
997 }
998
999 for (i = 0; i < AR_BUFFERS; i++)
1000 pages[i] = ctx->pages[i];
1001 for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
1002 pages[AR_BUFFERS + i] = ctx->pages[i];
1003 ctx->buffer = vm_map_ram(pages, AR_BUFFERS + AR_WRAPAROUND_PAGES,
1004 -1, PAGE_KERNEL);
1005 if (!ctx->buffer)
1006 goto out_of_memory;
1007
1008 ctx->descriptors = ohci->misc_buffer + descriptors_offset;
1009 ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
1010
1011 for (i = 0; i < AR_BUFFERS; i++) {
1012 d = &ctx->descriptors[i];
1013 d->req_count = cpu_to_le16(PAGE_SIZE);
1014 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
1015 DESCRIPTOR_STATUS |
1016 DESCRIPTOR_BRANCH_ALWAYS);
1017 d->data_address = cpu_to_le32(ar_buffer_bus(ctx, i));
1018 d->branch_address = cpu_to_le32(ctx->descriptors_bus +
1019 ar_next_buffer_index(i) * sizeof(struct descriptor));
1020 }
1021
1022 return 0;
1023
1024 out_of_memory:
1025 ar_context_release(ctx);
1026
1027 return -ENOMEM;
1028 }
1029
1030 static void ar_context_run(struct ar_context *ctx)
1031 {
1032 unsigned int i;
1033
1034 for (i = 0; i < AR_BUFFERS; i++)
1035 ar_context_link_page(ctx, i);
1036
1037 ctx->pointer = ctx->buffer;
1038
1039 reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1040 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1041 }
1042
1043 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1044 {
1045 __le16 branch;
1046
1047 branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1048
1049 /* figure out which descriptor the branch address goes in */
1050 if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1051 return d;
1052 else
1053 return d + z - 1;
1054 }
1055
1056 static void context_tasklet(unsigned long data)
1057 {
1058 struct context *ctx = (struct context *) data;
1059 struct descriptor *d, *last;
1060 u32 address;
1061 int z;
1062 struct descriptor_buffer *desc;
1063
1064 desc = list_entry(ctx->buffer_list.next,
1065 struct descriptor_buffer, list);
1066 last = ctx->last;
1067 while (last->branch_address != 0) {
1068 struct descriptor_buffer *old_desc = desc;
1069 address = le32_to_cpu(last->branch_address);
1070 z = address & 0xf;
1071 address &= ~0xf;
1072 ctx->current_bus = address;
1073
1074 /* If the branch address points to a buffer outside of the
1075 * current buffer, advance to the next buffer. */
1076 if (address < desc->buffer_bus ||
1077 address >= desc->buffer_bus + desc->used)
1078 desc = list_entry(desc->list.next,
1079 struct descriptor_buffer, list);
1080 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1081 last = find_branch_descriptor(d, z);
1082
1083 if (!ctx->callback(ctx, d, last))
1084 break;
1085
1086 if (old_desc != desc) {
1087 /* If we've advanced to the next buffer, move the
1088 * previous buffer to the free list. */
1089 unsigned long flags;
1090 old_desc->used = 0;
1091 spin_lock_irqsave(&ctx->ohci->lock, flags);
1092 list_move_tail(&old_desc->list, &ctx->buffer_list);
1093 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1094 }
1095 ctx->last = last;
1096 }
1097 }
1098
1099 /*
1100 * Allocate a new buffer and add it to the list of free buffers for this
1101 * context. Must be called with ohci->lock held.
1102 */
1103 static int context_add_buffer(struct context *ctx)
1104 {
1105 struct descriptor_buffer *desc;
1106 dma_addr_t uninitialized_var(bus_addr);
1107 int offset;
1108
1109 /*
1110 * 16MB of descriptors should be far more than enough for any DMA
1111 * program. This will catch run-away userspace or DoS attacks.
1112 */
1113 if (ctx->total_allocation >= 16*1024*1024)
1114 return -ENOMEM;
1115
1116 desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
1117 &bus_addr, GFP_ATOMIC);
1118 if (!desc)
1119 return -ENOMEM;
1120
1121 offset = (void *)&desc->buffer - (void *)desc;
1122 desc->buffer_size = PAGE_SIZE - offset;
1123 desc->buffer_bus = bus_addr + offset;
1124 desc->used = 0;
1125
1126 list_add_tail(&desc->list, &ctx->buffer_list);
1127 ctx->total_allocation += PAGE_SIZE;
1128
1129 return 0;
1130 }
1131
1132 static int context_init(struct context *ctx, struct fw_ohci *ohci,
1133 u32 regs, descriptor_callback_t callback)
1134 {
1135 ctx->ohci = ohci;
1136 ctx->regs = regs;
1137 ctx->total_allocation = 0;
1138
1139 INIT_LIST_HEAD(&ctx->buffer_list);
1140 if (context_add_buffer(ctx) < 0)
1141 return -ENOMEM;
1142
1143 ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1144 struct descriptor_buffer, list);
1145
1146 tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1147 ctx->callback = callback;
1148
1149 /*
1150 * We put a dummy descriptor in the buffer that has a NULL
1151 * branch address and looks like it's been sent. That way we
1152 * have a descriptor to append DMA programs to.
1153 */
1154 memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1155 ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1156 ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1157 ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1158 ctx->last = ctx->buffer_tail->buffer;
1159 ctx->prev = ctx->buffer_tail->buffer;
1160
1161 return 0;
1162 }
1163
1164 static void context_release(struct context *ctx)
1165 {
1166 struct fw_card *card = &ctx->ohci->card;
1167 struct descriptor_buffer *desc, *tmp;
1168
1169 list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
1170 dma_free_coherent(card->device, PAGE_SIZE, desc,
1171 desc->buffer_bus -
1172 ((void *)&desc->buffer - (void *)desc));
1173 }
1174
1175 /* Must be called with ohci->lock held */
1176 static struct descriptor *context_get_descriptors(struct context *ctx,
1177 int z, dma_addr_t *d_bus)
1178 {
1179 struct descriptor *d = NULL;
1180 struct descriptor_buffer *desc = ctx->buffer_tail;
1181
1182 if (z * sizeof(*d) > desc->buffer_size)
1183 return NULL;
1184
1185 if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1186 /* No room for the descriptor in this buffer, so advance to the
1187 * next one. */
1188
1189 if (desc->list.next == &ctx->buffer_list) {
1190 /* If there is no free buffer next in the list,
1191 * allocate one. */
1192 if (context_add_buffer(ctx) < 0)
1193 return NULL;
1194 }
1195 desc = list_entry(desc->list.next,
1196 struct descriptor_buffer, list);
1197 ctx->buffer_tail = desc;
1198 }
1199
1200 d = desc->buffer + desc->used / sizeof(*d);
1201 memset(d, 0, z * sizeof(*d));
1202 *d_bus = desc->buffer_bus + desc->used;
1203
1204 return d;
1205 }
1206
1207 static void context_run(struct context *ctx, u32 extra)
1208 {
1209 struct fw_ohci *ohci = ctx->ohci;
1210
1211 reg_write(ohci, COMMAND_PTR(ctx->regs),
1212 le32_to_cpu(ctx->last->branch_address));
1213 reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1214 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1215 ctx->running = true;
1216 flush_writes(ohci);
1217 }
1218
1219 static void context_append(struct context *ctx,
1220 struct descriptor *d, int z, int extra)
1221 {
1222 dma_addr_t d_bus;
1223 struct descriptor_buffer *desc = ctx->buffer_tail;
1224
1225 d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1226
1227 desc->used += (z + extra) * sizeof(*d);
1228
1229 wmb(); /* finish init of new descriptors before branch_address update */
1230 ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1231 ctx->prev = find_branch_descriptor(d, z);
1232 }
1233
1234 static void context_stop(struct context *ctx)
1235 {
1236 struct fw_ohci *ohci = ctx->ohci;
1237 u32 reg;
1238 int i;
1239
1240 reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1241 ctx->running = false;
1242
1243 for (i = 0; i < 1000; i++) {
1244 reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1245 if ((reg & CONTEXT_ACTIVE) == 0)
1246 return;
1247
1248 if (i)
1249 udelay(10);
1250 }
1251 dev_err(ohci->card.device, "DMA context still active (0x%08x)\n", reg);
1252 }
1253
1254 struct driver_data {
1255 u8 inline_data[8];
1256 struct fw_packet *packet;
1257 };
1258
1259 /*
1260 * This function apppends a packet to the DMA queue for transmission.
1261 * Must always be called with the ochi->lock held to ensure proper
1262 * generation handling and locking around packet queue manipulation.
1263 */
1264 static int at_context_queue_packet(struct context *ctx,
1265 struct fw_packet *packet)
1266 {
1267 struct fw_ohci *ohci = ctx->ohci;
1268 dma_addr_t d_bus, uninitialized_var(payload_bus);
1269 struct driver_data *driver_data;
1270 struct descriptor *d, *last;
1271 __le32 *header;
1272 int z, tcode;
1273
1274 d = context_get_descriptors(ctx, 4, &d_bus);
1275 if (d == NULL) {
1276 packet->ack = RCODE_SEND_ERROR;
1277 return -1;
1278 }
1279
1280 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1281 d[0].res_count = cpu_to_le16(packet->timestamp);
1282
1283 /*
1284 * The DMA format for asyncronous link packets is different
1285 * from the IEEE1394 layout, so shift the fields around
1286 * accordingly.
1287 */
1288
1289 tcode = (packet->header[0] >> 4) & 0x0f;
1290 header = (__le32 *) &d[1];
1291 switch (tcode) {
1292 case TCODE_WRITE_QUADLET_REQUEST:
1293 case TCODE_WRITE_BLOCK_REQUEST:
1294 case TCODE_WRITE_RESPONSE:
1295 case TCODE_READ_QUADLET_REQUEST:
1296 case TCODE_READ_BLOCK_REQUEST:
1297 case TCODE_READ_QUADLET_RESPONSE:
1298 case TCODE_READ_BLOCK_RESPONSE:
1299 case TCODE_LOCK_REQUEST:
1300 case TCODE_LOCK_RESPONSE:
1301 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1302 (packet->speed << 16));
1303 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1304 (packet->header[0] & 0xffff0000));
1305 header[2] = cpu_to_le32(packet->header[2]);
1306
1307 if (TCODE_IS_BLOCK_PACKET(tcode))
1308 header[3] = cpu_to_le32(packet->header[3]);
1309 else
1310 header[3] = (__force __le32) packet->header[3];
1311
1312 d[0].req_count = cpu_to_le16(packet->header_length);
1313 break;
1314
1315 case TCODE_LINK_INTERNAL:
1316 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1317 (packet->speed << 16));
1318 header[1] = cpu_to_le32(packet->header[1]);
1319 header[2] = cpu_to_le32(packet->header[2]);
1320 d[0].req_count = cpu_to_le16(12);
1321
1322 if (is_ping_packet(&packet->header[1]))
1323 d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1324 break;
1325
1326 case TCODE_STREAM_DATA:
1327 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1328 (packet->speed << 16));
1329 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1330 d[0].req_count = cpu_to_le16(8);
1331 break;
1332
1333 default:
1334 /* BUG(); */
1335 packet->ack = RCODE_SEND_ERROR;
1336 return -1;
1337 }
1338
1339 BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1340 driver_data = (struct driver_data *) &d[3];
1341 driver_data->packet = packet;
1342 packet->driver_data = driver_data;
1343
1344 if (packet->payload_length > 0) {
1345 if (packet->payload_length > sizeof(driver_data->inline_data)) {
1346 payload_bus = dma_map_single(ohci->card.device,
1347 packet->payload,
1348 packet->payload_length,
1349 DMA_TO_DEVICE);
1350 if (dma_mapping_error(ohci->card.device, payload_bus)) {
1351 packet->ack = RCODE_SEND_ERROR;
1352 return -1;
1353 }
1354 packet->payload_bus = payload_bus;
1355 packet->payload_mapped = true;
1356 } else {
1357 memcpy(driver_data->inline_data, packet->payload,
1358 packet->payload_length);
1359 payload_bus = d_bus + 3 * sizeof(*d);
1360 }
1361
1362 d[2].req_count = cpu_to_le16(packet->payload_length);
1363 d[2].data_address = cpu_to_le32(payload_bus);
1364 last = &d[2];
1365 z = 3;
1366 } else {
1367 last = &d[0];
1368 z = 2;
1369 }
1370
1371 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1372 DESCRIPTOR_IRQ_ALWAYS |
1373 DESCRIPTOR_BRANCH_ALWAYS);
1374
1375 /* FIXME: Document how the locking works. */
1376 if (ohci->generation != packet->generation) {
1377 if (packet->payload_mapped)
1378 dma_unmap_single(ohci->card.device, payload_bus,
1379 packet->payload_length, DMA_TO_DEVICE);
1380 packet->ack = RCODE_GENERATION;
1381 return -1;
1382 }
1383
1384 context_append(ctx, d, z, 4 - z);
1385
1386 if (ctx->running)
1387 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1388 else
1389 context_run(ctx, 0);
1390
1391 return 0;
1392 }
1393
1394 static void at_context_flush(struct context *ctx)
1395 {
1396 tasklet_disable(&ctx->tasklet);
1397
1398 ctx->flushing = true;
1399 context_tasklet((unsigned long)ctx);
1400 ctx->flushing = false;
1401
1402 tasklet_enable(&ctx->tasklet);
1403 }
1404
1405 static int handle_at_packet(struct context *context,
1406 struct descriptor *d,
1407 struct descriptor *last)
1408 {
1409 struct driver_data *driver_data;
1410 struct fw_packet *packet;
1411 struct fw_ohci *ohci = context->ohci;
1412 int evt;
1413
1414 if (last->transfer_status == 0 && !context->flushing)
1415 /* This descriptor isn't done yet, stop iteration. */
1416 return 0;
1417
1418 driver_data = (struct driver_data *) &d[3];
1419 packet = driver_data->packet;
1420 if (packet == NULL)
1421 /* This packet was cancelled, just continue. */
1422 return 1;
1423
1424 if (packet->payload_mapped)
1425 dma_unmap_single(ohci->card.device, packet->payload_bus,
1426 packet->payload_length, DMA_TO_DEVICE);
1427
1428 evt = le16_to_cpu(last->transfer_status) & 0x1f;
1429 packet->timestamp = le16_to_cpu(last->res_count);
1430
1431 log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt);
1432
1433 switch (evt) {
1434 case OHCI1394_evt_timeout:
1435 /* Async response transmit timed out. */
1436 packet->ack = RCODE_CANCELLED;
1437 break;
1438
1439 case OHCI1394_evt_flushed:
1440 /*
1441 * The packet was flushed should give same error as
1442 * when we try to use a stale generation count.
1443 */
1444 packet->ack = RCODE_GENERATION;
1445 break;
1446
1447 case OHCI1394_evt_missing_ack:
1448 if (context->flushing)
1449 packet->ack = RCODE_GENERATION;
1450 else {
1451 /*
1452 * Using a valid (current) generation count, but the
1453 * node is not on the bus or not sending acks.
1454 */
1455 packet->ack = RCODE_NO_ACK;
1456 }
1457 break;
1458
1459 case ACK_COMPLETE + 0x10:
1460 case ACK_PENDING + 0x10:
1461 case ACK_BUSY_X + 0x10:
1462 case ACK_BUSY_A + 0x10:
1463 case ACK_BUSY_B + 0x10:
1464 case ACK_DATA_ERROR + 0x10:
1465 case ACK_TYPE_ERROR + 0x10:
1466 packet->ack = evt - 0x10;
1467 break;
1468
1469 case OHCI1394_evt_no_status:
1470 if (context->flushing) {
1471 packet->ack = RCODE_GENERATION;
1472 break;
1473 }
1474 /* fall through */
1475
1476 default:
1477 packet->ack = RCODE_SEND_ERROR;
1478 break;
1479 }
1480
1481 packet->callback(packet, &ohci->card, packet->ack);
1482
1483 return 1;
1484 }
1485
1486 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
1487 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
1488 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
1489 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
1490 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
1491
1492 static void handle_local_rom(struct fw_ohci *ohci,
1493 struct fw_packet *packet, u32 csr)
1494 {
1495 struct fw_packet response;
1496 int tcode, length, i;
1497
1498 tcode = HEADER_GET_TCODE(packet->header[0]);
1499 if (TCODE_IS_BLOCK_PACKET(tcode))
1500 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1501 else
1502 length = 4;
1503
1504 i = csr - CSR_CONFIG_ROM;
1505 if (i + length > CONFIG_ROM_SIZE) {
1506 fw_fill_response(&response, packet->header,
1507 RCODE_ADDRESS_ERROR, NULL, 0);
1508 } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1509 fw_fill_response(&response, packet->header,
1510 RCODE_TYPE_ERROR, NULL, 0);
1511 } else {
1512 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1513 (void *) ohci->config_rom + i, length);
1514 }
1515
1516 fw_core_handle_response(&ohci->card, &response);
1517 }
1518
1519 static void handle_local_lock(struct fw_ohci *ohci,
1520 struct fw_packet *packet, u32 csr)
1521 {
1522 struct fw_packet response;
1523 int tcode, length, ext_tcode, sel, try;
1524 __be32 *payload, lock_old;
1525 u32 lock_arg, lock_data;
1526
1527 tcode = HEADER_GET_TCODE(packet->header[0]);
1528 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1529 payload = packet->payload;
1530 ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1531
1532 if (tcode == TCODE_LOCK_REQUEST &&
1533 ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1534 lock_arg = be32_to_cpu(payload[0]);
1535 lock_data = be32_to_cpu(payload[1]);
1536 } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1537 lock_arg = 0;
1538 lock_data = 0;
1539 } else {
1540 fw_fill_response(&response, packet->header,
1541 RCODE_TYPE_ERROR, NULL, 0);
1542 goto out;
1543 }
1544
1545 sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1546 reg_write(ohci, OHCI1394_CSRData, lock_data);
1547 reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1548 reg_write(ohci, OHCI1394_CSRControl, sel);
1549
1550 for (try = 0; try < 20; try++)
1551 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1552 lock_old = cpu_to_be32(reg_read(ohci,
1553 OHCI1394_CSRData));
1554 fw_fill_response(&response, packet->header,
1555 RCODE_COMPLETE,
1556 &lock_old, sizeof(lock_old));
1557 goto out;
1558 }
1559
1560 dev_err(ohci->card.device, "swap not done (CSR lock timeout)\n");
1561 fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1562
1563 out:
1564 fw_core_handle_response(&ohci->card, &response);
1565 }
1566
1567 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1568 {
1569 u64 offset, csr;
1570
1571 if (ctx == &ctx->ohci->at_request_ctx) {
1572 packet->ack = ACK_PENDING;
1573 packet->callback(packet, &ctx->ohci->card, packet->ack);
1574 }
1575
1576 offset =
1577 ((unsigned long long)
1578 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1579 packet->header[2];
1580 csr = offset - CSR_REGISTER_BASE;
1581
1582 /* Handle config rom reads. */
1583 if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1584 handle_local_rom(ctx->ohci, packet, csr);
1585 else switch (csr) {
1586 case CSR_BUS_MANAGER_ID:
1587 case CSR_BANDWIDTH_AVAILABLE:
1588 case CSR_CHANNELS_AVAILABLE_HI:
1589 case CSR_CHANNELS_AVAILABLE_LO:
1590 handle_local_lock(ctx->ohci, packet, csr);
1591 break;
1592 default:
1593 if (ctx == &ctx->ohci->at_request_ctx)
1594 fw_core_handle_request(&ctx->ohci->card, packet);
1595 else
1596 fw_core_handle_response(&ctx->ohci->card, packet);
1597 break;
1598 }
1599
1600 if (ctx == &ctx->ohci->at_response_ctx) {
1601 packet->ack = ACK_COMPLETE;
1602 packet->callback(packet, &ctx->ohci->card, packet->ack);
1603 }
1604 }
1605
1606 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1607 {
1608 unsigned long flags;
1609 int ret;
1610
1611 spin_lock_irqsave(&ctx->ohci->lock, flags);
1612
1613 if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1614 ctx->ohci->generation == packet->generation) {
1615 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1616 handle_local_request(ctx, packet);
1617 return;
1618 }
1619
1620 ret = at_context_queue_packet(ctx, packet);
1621 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1622
1623 if (ret < 0)
1624 packet->callback(packet, &ctx->ohci->card, packet->ack);
1625
1626 }
1627
1628 static void detect_dead_context(struct fw_ohci *ohci,
1629 const char *name, unsigned int regs)
1630 {
1631 u32 ctl;
1632
1633 ctl = reg_read(ohci, CONTROL_SET(regs));
1634 if (ctl & CONTEXT_DEAD)
1635 dev_err(ohci->card.device,
1636 "DMA context %s has stopped, error code: %s\n",
1637 name, evts[ctl & 0x1f]);
1638 }
1639
1640 static void handle_dead_contexts(struct fw_ohci *ohci)
1641 {
1642 unsigned int i;
1643 char name[8];
1644
1645 detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1646 detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1647 detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1648 detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1649 for (i = 0; i < 32; ++i) {
1650 if (!(ohci->it_context_support & (1 << i)))
1651 continue;
1652 sprintf(name, "IT%u", i);
1653 detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1654 }
1655 for (i = 0; i < 32; ++i) {
1656 if (!(ohci->ir_context_support & (1 << i)))
1657 continue;
1658 sprintf(name, "IR%u", i);
1659 detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1660 }
1661 /* TODO: maybe try to flush and restart the dead contexts */
1662 }
1663
1664 static u32 cycle_timer_ticks(u32 cycle_timer)
1665 {
1666 u32 ticks;
1667
1668 ticks = cycle_timer & 0xfff;
1669 ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1670 ticks += (3072 * 8000) * (cycle_timer >> 25);
1671
1672 return ticks;
1673 }
1674
1675 /*
1676 * Some controllers exhibit one or more of the following bugs when updating the
1677 * iso cycle timer register:
1678 * - When the lowest six bits are wrapping around to zero, a read that happens
1679 * at the same time will return garbage in the lowest ten bits.
1680 * - When the cycleOffset field wraps around to zero, the cycleCount field is
1681 * not incremented for about 60 ns.
1682 * - Occasionally, the entire register reads zero.
1683 *
1684 * To catch these, we read the register three times and ensure that the
1685 * difference between each two consecutive reads is approximately the same, i.e.
1686 * less than twice the other. Furthermore, any negative difference indicates an
1687 * error. (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1688 * execute, so we have enough precision to compute the ratio of the differences.)
1689 */
1690 static u32 get_cycle_time(struct fw_ohci *ohci)
1691 {
1692 u32 c0, c1, c2;
1693 u32 t0, t1, t2;
1694 s32 diff01, diff12;
1695 int i;
1696
1697 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1698
1699 if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1700 i = 0;
1701 c1 = c2;
1702 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1703 do {
1704 c0 = c1;
1705 c1 = c2;
1706 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1707 t0 = cycle_timer_ticks(c0);
1708 t1 = cycle_timer_ticks(c1);
1709 t2 = cycle_timer_ticks(c2);
1710 diff01 = t1 - t0;
1711 diff12 = t2 - t1;
1712 } while ((diff01 <= 0 || diff12 <= 0 ||
1713 diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1714 && i++ < 20);
1715 }
1716
1717 return c2;
1718 }
1719
1720 /*
1721 * This function has to be called at least every 64 seconds. The bus_time
1722 * field stores not only the upper 25 bits of the BUS_TIME register but also
1723 * the most significant bit of the cycle timer in bit 6 so that we can detect
1724 * changes in this bit.
1725 */
1726 static u32 update_bus_time(struct fw_ohci *ohci)
1727 {
1728 u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1729
1730 if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1731 ohci->bus_time += 0x40;
1732
1733 return ohci->bus_time | cycle_time_seconds;
1734 }
1735
1736 static int get_status_for_port(struct fw_ohci *ohci, int port_index)
1737 {
1738 int reg;
1739
1740 mutex_lock(&ohci->phy_reg_mutex);
1741 reg = write_phy_reg(ohci, 7, port_index);
1742 if (reg >= 0)
1743 reg = read_phy_reg(ohci, 8);
1744 mutex_unlock(&ohci->phy_reg_mutex);
1745 if (reg < 0)
1746 return reg;
1747
1748 switch (reg & 0x0f) {
1749 case 0x06:
1750 return 2; /* is child node (connected to parent node) */
1751 case 0x0e:
1752 return 3; /* is parent node (connected to child node) */
1753 }
1754 return 1; /* not connected */
1755 }
1756
1757 static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1758 int self_id_count)
1759 {
1760 int i;
1761 u32 entry;
1762
1763 for (i = 0; i < self_id_count; i++) {
1764 entry = ohci->self_id_buffer[i];
1765 if ((self_id & 0xff000000) == (entry & 0xff000000))
1766 return -1;
1767 if ((self_id & 0xff000000) < (entry & 0xff000000))
1768 return i;
1769 }
1770 return i;
1771 }
1772
1773 /*
1774 * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1775 * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1776 * Construct the selfID from phy register contents.
1777 * FIXME: How to determine the selfID.i flag?
1778 */
1779 static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1780 {
1781 int reg, i, pos, status;
1782 /* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
1783 u32 self_id = 0x8040c800;
1784
1785 reg = reg_read(ohci, OHCI1394_NodeID);
1786 if (!(reg & OHCI1394_NodeID_idValid)) {
1787 dev_notice(ohci->card.device,
1788 "node ID not valid, new bus reset in progress\n");
1789 return -EBUSY;
1790 }
1791 self_id |= ((reg & 0x3f) << 24); /* phy ID */
1792
1793 reg = ohci_read_phy_reg(&ohci->card, 4);
1794 if (reg < 0)
1795 return reg;
1796 self_id |= ((reg & 0x07) << 8); /* power class */
1797
1798 reg = ohci_read_phy_reg(&ohci->card, 1);
1799 if (reg < 0)
1800 return reg;
1801 self_id |= ((reg & 0x3f) << 16); /* gap count */
1802
1803 for (i = 0; i < 3; i++) {
1804 status = get_status_for_port(ohci, i);
1805 if (status < 0)
1806 return status;
1807 self_id |= ((status & 0x3) << (6 - (i * 2)));
1808 }
1809
1810 pos = get_self_id_pos(ohci, self_id, self_id_count);
1811 if (pos >= 0) {
1812 memmove(&(ohci->self_id_buffer[pos+1]),
1813 &(ohci->self_id_buffer[pos]),
1814 (self_id_count - pos) * sizeof(*ohci->self_id_buffer));
1815 ohci->self_id_buffer[pos] = self_id;
1816 self_id_count++;
1817 }
1818 return self_id_count;
1819 }
1820
1821 static void bus_reset_work(struct work_struct *work)
1822 {
1823 struct fw_ohci *ohci =
1824 container_of(work, struct fw_ohci, bus_reset_work);
1825 int self_id_count, i, j, reg;
1826 int generation, new_generation;
1827 unsigned long flags;
1828 void *free_rom = NULL;
1829 dma_addr_t free_rom_bus = 0;
1830 bool is_new_root;
1831
1832 reg = reg_read(ohci, OHCI1394_NodeID);
1833 if (!(reg & OHCI1394_NodeID_idValid)) {
1834 dev_notice(ohci->card.device,
1835 "node ID not valid, new bus reset in progress\n");
1836 return;
1837 }
1838 if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1839 dev_notice(ohci->card.device, "malconfigured bus\n");
1840 return;
1841 }
1842 ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1843 OHCI1394_NodeID_nodeNumber);
1844
1845 is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1846 if (!(ohci->is_root && is_new_root))
1847 reg_write(ohci, OHCI1394_LinkControlSet,
1848 OHCI1394_LinkControl_cycleMaster);
1849 ohci->is_root = is_new_root;
1850
1851 reg = reg_read(ohci, OHCI1394_SelfIDCount);
1852 if (reg & OHCI1394_SelfIDCount_selfIDError) {
1853 dev_notice(ohci->card.device, "inconsistent self IDs\n");
1854 return;
1855 }
1856 /*
1857 * The count in the SelfIDCount register is the number of
1858 * bytes in the self ID receive buffer. Since we also receive
1859 * the inverted quadlets and a header quadlet, we shift one
1860 * bit extra to get the actual number of self IDs.
1861 */
1862 self_id_count = (reg >> 3) & 0xff;
1863
1864 if (self_id_count > 252) {
1865 dev_notice(ohci->card.device, "inconsistent self IDs\n");
1866 return;
1867 }
1868
1869 generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1870 rmb();
1871
1872 for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1873 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1874 /*
1875 * If the invalid data looks like a cycle start packet,
1876 * it's likely to be the result of the cycle master
1877 * having a wrong gap count. In this case, the self IDs
1878 * so far are valid and should be processed so that the
1879 * bus manager can then correct the gap count.
1880 */
1881 if (cond_le32_to_cpu(ohci->self_id_cpu[i])
1882 == 0xffff008f) {
1883 dev_notice(ohci->card.device,
1884 "ignoring spurious self IDs\n");
1885 self_id_count = j;
1886 break;
1887 } else {
1888 dev_notice(ohci->card.device,
1889 "inconsistent self IDs\n");
1890 return;
1891 }
1892 }
1893 ohci->self_id_buffer[j] =
1894 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1895 }
1896
1897 if (ohci->quirks & QUIRK_TI_SLLZ059) {
1898 self_id_count = find_and_insert_self_id(ohci, self_id_count);
1899 if (self_id_count < 0) {
1900 dev_notice(ohci->card.device,
1901 "could not construct local self ID\n");
1902 return;
1903 }
1904 }
1905
1906 if (self_id_count == 0) {
1907 dev_notice(ohci->card.device, "inconsistent self IDs\n");
1908 return;
1909 }
1910 rmb();
1911
1912 /*
1913 * Check the consistency of the self IDs we just read. The
1914 * problem we face is that a new bus reset can start while we
1915 * read out the self IDs from the DMA buffer. If this happens,
1916 * the DMA buffer will be overwritten with new self IDs and we
1917 * will read out inconsistent data. The OHCI specification
1918 * (section 11.2) recommends a technique similar to
1919 * linux/seqlock.h, where we remember the generation of the
1920 * self IDs in the buffer before reading them out and compare
1921 * it to the current generation after reading them out. If
1922 * the two generations match we know we have a consistent set
1923 * of self IDs.
1924 */
1925
1926 new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1927 if (new_generation != generation) {
1928 dev_notice(ohci->card.device,
1929 "new bus reset, discarding self ids\n");
1930 return;
1931 }
1932
1933 /* FIXME: Document how the locking works. */
1934 spin_lock_irqsave(&ohci->lock, flags);
1935
1936 ohci->generation = -1; /* prevent AT packet queueing */
1937 context_stop(&ohci->at_request_ctx);
1938 context_stop(&ohci->at_response_ctx);
1939
1940 spin_unlock_irqrestore(&ohci->lock, flags);
1941
1942 /*
1943 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
1944 * packets in the AT queues and software needs to drain them.
1945 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
1946 */
1947 at_context_flush(&ohci->at_request_ctx);
1948 at_context_flush(&ohci->at_response_ctx);
1949
1950 spin_lock_irqsave(&ohci->lock, flags);
1951
1952 ohci->generation = generation;
1953 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1954
1955 if (ohci->quirks & QUIRK_RESET_PACKET)
1956 ohci->request_generation = generation;
1957
1958 /*
1959 * This next bit is unrelated to the AT context stuff but we
1960 * have to do it under the spinlock also. If a new config rom
1961 * was set up before this reset, the old one is now no longer
1962 * in use and we can free it. Update the config rom pointers
1963 * to point to the current config rom and clear the
1964 * next_config_rom pointer so a new update can take place.
1965 */
1966
1967 if (ohci->next_config_rom != NULL) {
1968 if (ohci->next_config_rom != ohci->config_rom) {
1969 free_rom = ohci->config_rom;
1970 free_rom_bus = ohci->config_rom_bus;
1971 }
1972 ohci->config_rom = ohci->next_config_rom;
1973 ohci->config_rom_bus = ohci->next_config_rom_bus;
1974 ohci->next_config_rom = NULL;
1975
1976 /*
1977 * Restore config_rom image and manually update
1978 * config_rom registers. Writing the header quadlet
1979 * will indicate that the config rom is ready, so we
1980 * do that last.
1981 */
1982 reg_write(ohci, OHCI1394_BusOptions,
1983 be32_to_cpu(ohci->config_rom[2]));
1984 ohci->config_rom[0] = ohci->next_header;
1985 reg_write(ohci, OHCI1394_ConfigROMhdr,
1986 be32_to_cpu(ohci->next_header));
1987 }
1988
1989 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1990 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1991 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1992 #endif
1993
1994 spin_unlock_irqrestore(&ohci->lock, flags);
1995
1996 if (free_rom)
1997 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1998 free_rom, free_rom_bus);
1999
2000 log_selfids(ohci, generation, self_id_count);
2001
2002 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
2003 self_id_count, ohci->self_id_buffer,
2004 ohci->csr_state_setclear_abdicate);
2005 ohci->csr_state_setclear_abdicate = false;
2006 }
2007
2008 static irqreturn_t irq_handler(int irq, void *data)
2009 {
2010 struct fw_ohci *ohci = data;
2011 u32 event, iso_event;
2012 int i;
2013
2014 event = reg_read(ohci, OHCI1394_IntEventClear);
2015
2016 if (!event || !~event)
2017 return IRQ_NONE;
2018
2019 /*
2020 * busReset and postedWriteErr must not be cleared yet
2021 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2022 */
2023 reg_write(ohci, OHCI1394_IntEventClear,
2024 event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2025 log_irqs(ohci, event);
2026
2027 if (event & OHCI1394_selfIDComplete)
2028 queue_work(fw_workqueue, &ohci->bus_reset_work);
2029
2030 if (event & OHCI1394_RQPkt)
2031 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
2032
2033 if (event & OHCI1394_RSPkt)
2034 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
2035
2036 if (event & OHCI1394_reqTxComplete)
2037 tasklet_schedule(&ohci->at_request_ctx.tasklet);
2038
2039 if (event & OHCI1394_respTxComplete)
2040 tasklet_schedule(&ohci->at_response_ctx.tasklet);
2041
2042 if (event & OHCI1394_isochRx) {
2043 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2044 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2045
2046 while (iso_event) {
2047 i = ffs(iso_event) - 1;
2048 tasklet_schedule(
2049 &ohci->ir_context_list[i].context.tasklet);
2050 iso_event &= ~(1 << i);
2051 }
2052 }
2053
2054 if (event & OHCI1394_isochTx) {
2055 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2056 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2057
2058 while (iso_event) {
2059 i = ffs(iso_event) - 1;
2060 tasklet_schedule(
2061 &ohci->it_context_list[i].context.tasklet);
2062 iso_event &= ~(1 << i);
2063 }
2064 }
2065
2066 if (unlikely(event & OHCI1394_regAccessFail))
2067 dev_err(ohci->card.device, "register access failure\n");
2068
2069 if (unlikely(event & OHCI1394_postedWriteErr)) {
2070 reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2071 reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2072 reg_write(ohci, OHCI1394_IntEventClear,
2073 OHCI1394_postedWriteErr);
2074 if (printk_ratelimit())
2075 dev_err(ohci->card.device, "PCI posted write error\n");
2076 }
2077
2078 if (unlikely(event & OHCI1394_cycleTooLong)) {
2079 if (printk_ratelimit())
2080 dev_notice(ohci->card.device,
2081 "isochronous cycle too long\n");
2082 reg_write(ohci, OHCI1394_LinkControlSet,
2083 OHCI1394_LinkControl_cycleMaster);
2084 }
2085
2086 if (unlikely(event & OHCI1394_cycleInconsistent)) {
2087 /*
2088 * We need to clear this event bit in order to make
2089 * cycleMatch isochronous I/O work. In theory we should
2090 * stop active cycleMatch iso contexts now and restart
2091 * them at least two cycles later. (FIXME?)
2092 */
2093 if (printk_ratelimit())
2094 dev_notice(ohci->card.device,
2095 "isochronous cycle inconsistent\n");
2096 }
2097
2098 if (unlikely(event & OHCI1394_unrecoverableError))
2099 handle_dead_contexts(ohci);
2100
2101 if (event & OHCI1394_cycle64Seconds) {
2102 spin_lock(&ohci->lock);
2103 update_bus_time(ohci);
2104 spin_unlock(&ohci->lock);
2105 } else
2106 flush_writes(ohci);
2107
2108 return IRQ_HANDLED;
2109 }
2110
2111 static int software_reset(struct fw_ohci *ohci)
2112 {
2113 u32 val;
2114 int i;
2115
2116 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2117 for (i = 0; i < 500; i++) {
2118 val = reg_read(ohci, OHCI1394_HCControlSet);
2119 if (!~val)
2120 return -ENODEV; /* Card was ejected. */
2121
2122 if (!(val & OHCI1394_HCControl_softReset))
2123 return 0;
2124
2125 msleep(1);
2126 }
2127
2128 return -EBUSY;
2129 }
2130
2131 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2132 {
2133 size_t size = length * 4;
2134
2135 memcpy(dest, src, size);
2136 if (size < CONFIG_ROM_SIZE)
2137 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2138 }
2139
2140 static int configure_1394a_enhancements(struct fw_ohci *ohci)
2141 {
2142 bool enable_1394a;
2143 int ret, clear, set, offset;
2144
2145 /* Check if the driver should configure link and PHY. */
2146 if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2147 OHCI1394_HCControl_programPhyEnable))
2148 return 0;
2149
2150 /* Paranoia: check whether the PHY supports 1394a, too. */
2151 enable_1394a = false;
2152 ret = read_phy_reg(ohci, 2);
2153 if (ret < 0)
2154 return ret;
2155 if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2156 ret = read_paged_phy_reg(ohci, 1, 8);
2157 if (ret < 0)
2158 return ret;
2159 if (ret >= 1)
2160 enable_1394a = true;
2161 }
2162
2163 if (ohci->quirks & QUIRK_NO_1394A)
2164 enable_1394a = false;
2165
2166 /* Configure PHY and link consistently. */
2167 if (enable_1394a) {
2168 clear = 0;
2169 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2170 } else {
2171 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2172 set = 0;
2173 }
2174 ret = update_phy_reg(ohci, 5, clear, set);
2175 if (ret < 0)
2176 return ret;
2177
2178 if (enable_1394a)
2179 offset = OHCI1394_HCControlSet;
2180 else
2181 offset = OHCI1394_HCControlClear;
2182 reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2183
2184 /* Clean up: configuration has been taken care of. */
2185 reg_write(ohci, OHCI1394_HCControlClear,
2186 OHCI1394_HCControl_programPhyEnable);
2187
2188 return 0;
2189 }
2190
2191 static int probe_tsb41ba3d(struct fw_ohci *ohci)
2192 {
2193 /* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2194 static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2195 int reg, i;
2196
2197 reg = read_phy_reg(ohci, 2);
2198 if (reg < 0)
2199 return reg;
2200 if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2201 return 0;
2202
2203 for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2204 reg = read_paged_phy_reg(ohci, 1, i + 10);
2205 if (reg < 0)
2206 return reg;
2207 if (reg != id[i])
2208 return 0;
2209 }
2210 return 1;
2211 }
2212
2213 static int ohci_enable(struct fw_card *card,
2214 const __be32 *config_rom, size_t length)
2215 {
2216 struct fw_ohci *ohci = fw_ohci(card);
2217 struct pci_dev *dev = to_pci_dev(card->device);
2218 u32 lps, seconds, version, irqs;
2219 int i, ret;
2220
2221 if (software_reset(ohci)) {
2222 dev_err(card->device, "failed to reset ohci card\n");
2223 return -EBUSY;
2224 }
2225
2226 /*
2227 * Now enable LPS, which we need in order to start accessing
2228 * most of the registers. In fact, on some cards (ALI M5251),
2229 * accessing registers in the SClk domain without LPS enabled
2230 * will lock up the machine. Wait 50msec to make sure we have
2231 * full link enabled. However, with some cards (well, at least
2232 * a JMicron PCIe card), we have to try again sometimes.
2233 */
2234 reg_write(ohci, OHCI1394_HCControlSet,
2235 OHCI1394_HCControl_LPS |
2236 OHCI1394_HCControl_postedWriteEnable);
2237 flush_writes(ohci);
2238
2239 for (lps = 0, i = 0; !lps && i < 3; i++) {
2240 msleep(50);
2241 lps = reg_read(ohci, OHCI1394_HCControlSet) &
2242 OHCI1394_HCControl_LPS;
2243 }
2244
2245 if (!lps) {
2246 dev_err(card->device, "failed to set Link Power Status\n");
2247 return -EIO;
2248 }
2249
2250 if (ohci->quirks & QUIRK_TI_SLLZ059) {
2251 ret = probe_tsb41ba3d(ohci);
2252 if (ret < 0)
2253 return ret;
2254 if (ret)
2255 dev_notice(card->device, "local TSB41BA3D phy\n");
2256 else
2257 ohci->quirks &= ~QUIRK_TI_SLLZ059;
2258 }
2259
2260 reg_write(ohci, OHCI1394_HCControlClear,
2261 OHCI1394_HCControl_noByteSwapData);
2262
2263 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2264 reg_write(ohci, OHCI1394_LinkControlSet,
2265 OHCI1394_LinkControl_cycleTimerEnable |
2266 OHCI1394_LinkControl_cycleMaster);
2267
2268 reg_write(ohci, OHCI1394_ATRetries,
2269 OHCI1394_MAX_AT_REQ_RETRIES |
2270 (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2271 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2272 (200 << 16));
2273
2274 seconds = lower_32_bits(get_seconds());
2275 reg_write(ohci, OHCI1394_IsochronousCycleTimer, seconds << 25);
2276 ohci->bus_time = seconds & ~0x3f;
2277
2278 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2279 if (version >= OHCI_VERSION_1_1) {
2280 reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2281 0xfffffffe);
2282 card->broadcast_channel_auto_allocated = true;
2283 }
2284
2285 /* Get implemented bits of the priority arbitration request counter. */
2286 reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2287 ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2288 reg_write(ohci, OHCI1394_FairnessControl, 0);
2289 card->priority_budget_implemented = ohci->pri_req_max != 0;
2290
2291 reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
2292 reg_write(ohci, OHCI1394_IntEventClear, ~0);
2293 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2294
2295 ret = configure_1394a_enhancements(ohci);
2296 if (ret < 0)
2297 return ret;
2298
2299 /* Activate link_on bit and contender bit in our self ID packets.*/
2300 ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2301 if (ret < 0)
2302 return ret;
2303
2304 /*
2305 * When the link is not yet enabled, the atomic config rom
2306 * update mechanism described below in ohci_set_config_rom()
2307 * is not active. We have to update ConfigRomHeader and
2308 * BusOptions manually, and the write to ConfigROMmap takes
2309 * effect immediately. We tie this to the enabling of the
2310 * link, so we have a valid config rom before enabling - the
2311 * OHCI requires that ConfigROMhdr and BusOptions have valid
2312 * values before enabling.
2313 *
2314 * However, when the ConfigROMmap is written, some controllers
2315 * always read back quadlets 0 and 2 from the config rom to
2316 * the ConfigRomHeader and BusOptions registers on bus reset.
2317 * They shouldn't do that in this initial case where the link
2318 * isn't enabled. This means we have to use the same
2319 * workaround here, setting the bus header to 0 and then write
2320 * the right values in the bus reset tasklet.
2321 */
2322
2323 if (config_rom) {
2324 ohci->next_config_rom =
2325 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2326 &ohci->next_config_rom_bus,
2327 GFP_KERNEL);
2328 if (ohci->next_config_rom == NULL)
2329 return -ENOMEM;
2330
2331 copy_config_rom(ohci->next_config_rom, config_rom, length);
2332 } else {
2333 /*
2334 * In the suspend case, config_rom is NULL, which
2335 * means that we just reuse the old config rom.
2336 */
2337 ohci->next_config_rom = ohci->config_rom;
2338 ohci->next_config_rom_bus = ohci->config_rom_bus;
2339 }
2340
2341 ohci->next_header = ohci->next_config_rom[0];
2342 ohci->next_config_rom[0] = 0;
2343 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2344 reg_write(ohci, OHCI1394_BusOptions,
2345 be32_to_cpu(ohci->next_config_rom[2]));
2346 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2347
2348 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2349
2350 if (!(ohci->quirks & QUIRK_NO_MSI))
2351 pci_enable_msi(dev);
2352 if (request_irq(dev->irq, irq_handler,
2353 pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
2354 ohci_driver_name, ohci)) {
2355 dev_err(card->device, "failed to allocate interrupt %d\n",
2356 dev->irq);
2357 pci_disable_msi(dev);
2358
2359 if (config_rom) {
2360 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2361 ohci->next_config_rom,
2362 ohci->next_config_rom_bus);
2363 ohci->next_config_rom = NULL;
2364 }
2365 return -EIO;
2366 }
2367
2368 irqs = OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2369 OHCI1394_RQPkt | OHCI1394_RSPkt |
2370 OHCI1394_isochTx | OHCI1394_isochRx |
2371 OHCI1394_postedWriteErr |
2372 OHCI1394_selfIDComplete |
2373 OHCI1394_regAccessFail |
2374 OHCI1394_cycle64Seconds |
2375 OHCI1394_cycleInconsistent |
2376 OHCI1394_unrecoverableError |
2377 OHCI1394_cycleTooLong |
2378 OHCI1394_masterIntEnable;
2379 if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2380 irqs |= OHCI1394_busReset;
2381 reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2382
2383 reg_write(ohci, OHCI1394_HCControlSet,
2384 OHCI1394_HCControl_linkEnable |
2385 OHCI1394_HCControl_BIBimageValid);
2386
2387 reg_write(ohci, OHCI1394_LinkControlSet,
2388 OHCI1394_LinkControl_rcvSelfID |
2389 OHCI1394_LinkControl_rcvPhyPkt);
2390
2391 ar_context_run(&ohci->ar_request_ctx);
2392 ar_context_run(&ohci->ar_response_ctx);
2393
2394 flush_writes(ohci);
2395
2396 /* We are ready to go, reset bus to finish initialization. */
2397 fw_schedule_bus_reset(&ohci->card, false, true);
2398
2399 return 0;
2400 }
2401
2402 static int ohci_set_config_rom(struct fw_card *card,
2403 const __be32 *config_rom, size_t length)
2404 {
2405 struct fw_ohci *ohci;
2406 unsigned long flags;
2407 __be32 *next_config_rom;
2408 dma_addr_t uninitialized_var(next_config_rom_bus);
2409
2410 ohci = fw_ohci(card);
2411
2412 /*
2413 * When the OHCI controller is enabled, the config rom update
2414 * mechanism is a bit tricky, but easy enough to use. See
2415 * section 5.5.6 in the OHCI specification.
2416 *
2417 * The OHCI controller caches the new config rom address in a
2418 * shadow register (ConfigROMmapNext) and needs a bus reset
2419 * for the changes to take place. When the bus reset is
2420 * detected, the controller loads the new values for the
2421 * ConfigRomHeader and BusOptions registers from the specified
2422 * config rom and loads ConfigROMmap from the ConfigROMmapNext
2423 * shadow register. All automatically and atomically.
2424 *
2425 * Now, there's a twist to this story. The automatic load of
2426 * ConfigRomHeader and BusOptions doesn't honor the
2427 * noByteSwapData bit, so with a be32 config rom, the
2428 * controller will load be32 values in to these registers
2429 * during the atomic update, even on litte endian
2430 * architectures. The workaround we use is to put a 0 in the
2431 * header quadlet; 0 is endian agnostic and means that the
2432 * config rom isn't ready yet. In the bus reset tasklet we
2433 * then set up the real values for the two registers.
2434 *
2435 * We use ohci->lock to avoid racing with the code that sets
2436 * ohci->next_config_rom to NULL (see bus_reset_work).
2437 */
2438
2439 next_config_rom =
2440 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2441 &next_config_rom_bus, GFP_KERNEL);
2442 if (next_config_rom == NULL)
2443 return -ENOMEM;
2444
2445 spin_lock_irqsave(&ohci->lock, flags);
2446
2447 /*
2448 * If there is not an already pending config_rom update,
2449 * push our new allocation into the ohci->next_config_rom
2450 * and then mark the local variable as null so that we
2451 * won't deallocate the new buffer.
2452 *
2453 * OTOH, if there is a pending config_rom update, just
2454 * use that buffer with the new config_rom data, and
2455 * let this routine free the unused DMA allocation.
2456 */
2457
2458 if (ohci->next_config_rom == NULL) {
2459 ohci->next_config_rom = next_config_rom;
2460 ohci->next_config_rom_bus = next_config_rom_bus;
2461 next_config_rom = NULL;
2462 }
2463
2464 copy_config_rom(ohci->next_config_rom, config_rom, length);
2465
2466 ohci->next_header = config_rom[0];
2467 ohci->next_config_rom[0] = 0;
2468
2469 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2470
2471 spin_unlock_irqrestore(&ohci->lock, flags);
2472
2473 /* If we didn't use the DMA allocation, delete it. */
2474 if (next_config_rom != NULL)
2475 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2476 next_config_rom, next_config_rom_bus);
2477
2478 /*
2479 * Now initiate a bus reset to have the changes take
2480 * effect. We clean up the old config rom memory and DMA
2481 * mappings in the bus reset tasklet, since the OHCI
2482 * controller could need to access it before the bus reset
2483 * takes effect.
2484 */
2485
2486 fw_schedule_bus_reset(&ohci->card, true, true);
2487
2488 return 0;
2489 }
2490
2491 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2492 {
2493 struct fw_ohci *ohci = fw_ohci(card);
2494
2495 at_context_transmit(&ohci->at_request_ctx, packet);
2496 }
2497
2498 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2499 {
2500 struct fw_ohci *ohci = fw_ohci(card);
2501
2502 at_context_transmit(&ohci->at_response_ctx, packet);
2503 }
2504
2505 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2506 {
2507 struct fw_ohci *ohci = fw_ohci(card);
2508 struct context *ctx = &ohci->at_request_ctx;
2509 struct driver_data *driver_data = packet->driver_data;
2510 int ret = -ENOENT;
2511
2512 tasklet_disable(&ctx->tasklet);
2513
2514 if (packet->ack != 0)
2515 goto out;
2516
2517 if (packet->payload_mapped)
2518 dma_unmap_single(ohci->card.device, packet->payload_bus,
2519 packet->payload_length, DMA_TO_DEVICE);
2520
2521 log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20);
2522 driver_data->packet = NULL;
2523 packet->ack = RCODE_CANCELLED;
2524 packet->callback(packet, &ohci->card, packet->ack);
2525 ret = 0;
2526 out:
2527 tasklet_enable(&ctx->tasklet);
2528
2529 return ret;
2530 }
2531
2532 static int ohci_enable_phys_dma(struct fw_card *card,
2533 int node_id, int generation)
2534 {
2535 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
2536 return 0;
2537 #else
2538 struct fw_ohci *ohci = fw_ohci(card);
2539 unsigned long flags;
2540 int n, ret = 0;
2541
2542 /*
2543 * FIXME: Make sure this bitmask is cleared when we clear the busReset
2544 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
2545 */
2546
2547 spin_lock_irqsave(&ohci->lock, flags);
2548
2549 if (ohci->generation != generation) {
2550 ret = -ESTALE;
2551 goto out;
2552 }
2553
2554 /*
2555 * Note, if the node ID contains a non-local bus ID, physical DMA is
2556 * enabled for _all_ nodes on remote buses.
2557 */
2558
2559 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2560 if (n < 32)
2561 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2562 else
2563 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2564
2565 flush_writes(ohci);
2566 out:
2567 spin_unlock_irqrestore(&ohci->lock, flags);
2568
2569 return ret;
2570 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2571 }
2572
2573 static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2574 {
2575 struct fw_ohci *ohci = fw_ohci(card);
2576 unsigned long flags;
2577 u32 value;
2578
2579 switch (csr_offset) {
2580 case CSR_STATE_CLEAR:
2581 case CSR_STATE_SET:
2582 if (ohci->is_root &&
2583 (reg_read(ohci, OHCI1394_LinkControlSet) &
2584 OHCI1394_LinkControl_cycleMaster))
2585 value = CSR_STATE_BIT_CMSTR;
2586 else
2587 value = 0;
2588 if (ohci->csr_state_setclear_abdicate)
2589 value |= CSR_STATE_BIT_ABDICATE;
2590
2591 return value;
2592
2593 case CSR_NODE_IDS:
2594 return reg_read(ohci, OHCI1394_NodeID) << 16;
2595
2596 case CSR_CYCLE_TIME:
2597 return get_cycle_time(ohci);
2598
2599 case CSR_BUS_TIME:
2600 /*
2601 * We might be called just after the cycle timer has wrapped
2602 * around but just before the cycle64Seconds handler, so we
2603 * better check here, too, if the bus time needs to be updated.
2604 */
2605 spin_lock_irqsave(&ohci->lock, flags);
2606 value = update_bus_time(ohci);
2607 spin_unlock_irqrestore(&ohci->lock, flags);
2608 return value;
2609
2610 case CSR_BUSY_TIMEOUT:
2611 value = reg_read(ohci, OHCI1394_ATRetries);
2612 return (value >> 4) & 0x0ffff00f;
2613
2614 case CSR_PRIORITY_BUDGET:
2615 return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2616 (ohci->pri_req_max << 8);
2617
2618 default:
2619 WARN_ON(1);
2620 return 0;
2621 }
2622 }
2623
2624 static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2625 {
2626 struct fw_ohci *ohci = fw_ohci(card);
2627 unsigned long flags;
2628
2629 switch (csr_offset) {
2630 case CSR_STATE_CLEAR:
2631 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2632 reg_write(ohci, OHCI1394_LinkControlClear,
2633 OHCI1394_LinkControl_cycleMaster);
2634 flush_writes(ohci);
2635 }
2636 if (value & CSR_STATE_BIT_ABDICATE)
2637 ohci->csr_state_setclear_abdicate = false;
2638 break;
2639
2640 case CSR_STATE_SET:
2641 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2642 reg_write(ohci, OHCI1394_LinkControlSet,
2643 OHCI1394_LinkControl_cycleMaster);
2644 flush_writes(ohci);
2645 }
2646 if (value & CSR_STATE_BIT_ABDICATE)
2647 ohci->csr_state_setclear_abdicate = true;
2648 break;
2649
2650 case CSR_NODE_IDS:
2651 reg_write(ohci, OHCI1394_NodeID, value >> 16);
2652 flush_writes(ohci);
2653 break;
2654
2655 case CSR_CYCLE_TIME:
2656 reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2657 reg_write(ohci, OHCI1394_IntEventSet,
2658 OHCI1394_cycleInconsistent);
2659 flush_writes(ohci);
2660 break;
2661
2662 case CSR_BUS_TIME:
2663 spin_lock_irqsave(&ohci->lock, flags);
2664 ohci->bus_time = (ohci->bus_time & 0x7f) | (value & ~0x7f);
2665 spin_unlock_irqrestore(&ohci->lock, flags);
2666 break;
2667
2668 case CSR_BUSY_TIMEOUT:
2669 value = (value & 0xf) | ((value & 0xf) << 4) |
2670 ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2671 reg_write(ohci, OHCI1394_ATRetries, value);
2672 flush_writes(ohci);
2673 break;
2674
2675 case CSR_PRIORITY_BUDGET:
2676 reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2677 flush_writes(ohci);
2678 break;
2679
2680 default:
2681 WARN_ON(1);
2682 break;
2683 }
2684 }
2685
2686 static void flush_iso_completions(struct iso_context *ctx)
2687 {
2688 ctx->base.callback.sc(&ctx->base, ctx->last_timestamp,
2689 ctx->header_length, ctx->header,
2690 ctx->base.callback_data);
2691 ctx->header_length = 0;
2692 }
2693
2694 static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
2695 {
2696 u32 *ctx_hdr;
2697
2698 if (ctx->header_length + ctx->base.header_size > PAGE_SIZE)
2699 flush_iso_completions(ctx);
2700
2701 ctx_hdr = ctx->header + ctx->header_length;
2702 ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
2703
2704 /*
2705 * The two iso header quadlets are byteswapped to little
2706 * endian by the controller, but we want to present them
2707 * as big endian for consistency with the bus endianness.
2708 */
2709 if (ctx->base.header_size > 0)
2710 ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
2711 if (ctx->base.header_size > 4)
2712 ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
2713 if (ctx->base.header_size > 8)
2714 memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
2715 ctx->header_length += ctx->base.header_size;
2716 }
2717
2718 static int handle_ir_packet_per_buffer(struct context *context,
2719 struct descriptor *d,
2720 struct descriptor *last)
2721 {
2722 struct iso_context *ctx =
2723 container_of(context, struct iso_context, context);
2724 struct descriptor *pd;
2725 u32 buffer_dma;
2726
2727 for (pd = d; pd <= last; pd++)
2728 if (pd->transfer_status)
2729 break;
2730 if (pd > last)
2731 /* Descriptor(s) not done yet, stop iteration */
2732 return 0;
2733
2734 while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2735 d++;
2736 buffer_dma = le32_to_cpu(d->data_address);
2737 dma_sync_single_range_for_cpu(context->ohci->card.device,
2738 buffer_dma & PAGE_MASK,
2739 buffer_dma & ~PAGE_MASK,
2740 le16_to_cpu(d->req_count),
2741 DMA_FROM_DEVICE);
2742 }
2743
2744 copy_iso_headers(ctx, (u32 *) (last + 1));
2745
2746 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2747 flush_iso_completions(ctx);
2748
2749 return 1;
2750 }
2751
2752 /* d == last because each descriptor block is only a single descriptor. */
2753 static int handle_ir_buffer_fill(struct context *context,
2754 struct descriptor *d,
2755 struct descriptor *last)
2756 {
2757 struct iso_context *ctx =
2758 container_of(context, struct iso_context, context);
2759 unsigned int req_count, res_count, completed;
2760 u32 buffer_dma;
2761
2762 req_count = le16_to_cpu(last->req_count);
2763 res_count = le16_to_cpu(ACCESS_ONCE(last->res_count));
2764 completed = req_count - res_count;
2765 buffer_dma = le32_to_cpu(last->data_address);
2766
2767 if (completed > 0) {
2768 ctx->mc_buffer_bus = buffer_dma;
2769 ctx->mc_completed = completed;
2770 }
2771
2772 if (res_count != 0)
2773 /* Descriptor(s) not done yet, stop iteration */
2774 return 0;
2775
2776 dma_sync_single_range_for_cpu(context->ohci->card.device,
2777 buffer_dma & PAGE_MASK,
2778 buffer_dma & ~PAGE_MASK,
2779 completed, DMA_FROM_DEVICE);
2780
2781 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
2782 ctx->base.callback.mc(&ctx->base,
2783 buffer_dma + completed,
2784 ctx->base.callback_data);
2785 ctx->mc_completed = 0;
2786 }
2787
2788 return 1;
2789 }
2790
2791 static void flush_ir_buffer_fill(struct iso_context *ctx)
2792 {
2793 dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
2794 ctx->mc_buffer_bus & PAGE_MASK,
2795 ctx->mc_buffer_bus & ~PAGE_MASK,
2796 ctx->mc_completed, DMA_FROM_DEVICE);
2797
2798 ctx->base.callback.mc(&ctx->base,
2799 ctx->mc_buffer_bus + ctx->mc_completed,
2800 ctx->base.callback_data);
2801 ctx->mc_completed = 0;
2802 }
2803
2804 static inline void sync_it_packet_for_cpu(struct context *context,
2805 struct descriptor *pd)
2806 {
2807 __le16 control;
2808 u32 buffer_dma;
2809
2810 /* only packets beginning with OUTPUT_MORE* have data buffers */
2811 if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2812 return;
2813
2814 /* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
2815 pd += 2;
2816
2817 /*
2818 * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
2819 * data buffer is in the context program's coherent page and must not
2820 * be synced.
2821 */
2822 if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
2823 (context->current_bus & PAGE_MASK)) {
2824 if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2825 return;
2826 pd++;
2827 }
2828
2829 do {
2830 buffer_dma = le32_to_cpu(pd->data_address);
2831 dma_sync_single_range_for_cpu(context->ohci->card.device,
2832 buffer_dma & PAGE_MASK,
2833 buffer_dma & ~PAGE_MASK,
2834 le16_to_cpu(pd->req_count),
2835 DMA_TO_DEVICE);
2836 control = pd->control;
2837 pd++;
2838 } while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
2839 }
2840
2841 static int handle_it_packet(struct context *context,
2842 struct descriptor *d,
2843 struct descriptor *last)
2844 {
2845 struct iso_context *ctx =
2846 container_of(context, struct iso_context, context);
2847 struct descriptor *pd;
2848 __be32 *ctx_hdr;
2849
2850 for (pd = d; pd <= last; pd++)
2851 if (pd->transfer_status)
2852 break;
2853 if (pd > last)
2854 /* Descriptor(s) not done yet, stop iteration */
2855 return 0;
2856
2857 sync_it_packet_for_cpu(context, d);
2858
2859 if (ctx->header_length + 4 > PAGE_SIZE)
2860 flush_iso_completions(ctx);
2861
2862 ctx_hdr = ctx->header + ctx->header_length;
2863 ctx->last_timestamp = le16_to_cpu(last->res_count);
2864 /* Present this value as big-endian to match the receive code */
2865 *ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
2866 le16_to_cpu(pd->res_count));
2867 ctx->header_length += 4;
2868
2869 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2870 flush_iso_completions(ctx);
2871
2872 return 1;
2873 }
2874
2875 static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2876 {
2877 u32 hi = channels >> 32, lo = channels;
2878
2879 reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2880 reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2881 reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2882 reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2883 mmiowb();
2884 ohci->mc_channels = channels;
2885 }
2886
2887 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2888 int type, int channel, size_t header_size)
2889 {
2890 struct fw_ohci *ohci = fw_ohci(card);
2891 struct iso_context *uninitialized_var(ctx);
2892 descriptor_callback_t uninitialized_var(callback);
2893 u64 *uninitialized_var(channels);
2894 u32 *uninitialized_var(mask), uninitialized_var(regs);
2895 unsigned long flags;
2896 int index, ret = -EBUSY;
2897
2898 spin_lock_irqsave(&ohci->lock, flags);
2899
2900 switch (type) {
2901 case FW_ISO_CONTEXT_TRANSMIT:
2902 mask = &ohci->it_context_mask;
2903 callback = handle_it_packet;
2904 index = ffs(*mask) - 1;
2905 if (index >= 0) {
2906 *mask &= ~(1 << index);
2907 regs = OHCI1394_IsoXmitContextBase(index);
2908 ctx = &ohci->it_context_list[index];
2909 }
2910 break;
2911
2912 case FW_ISO_CONTEXT_RECEIVE:
2913 channels = &ohci->ir_context_channels;
2914 mask = &ohci->ir_context_mask;
2915 callback = handle_ir_packet_per_buffer;
2916 index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2917 if (index >= 0) {
2918 *channels &= ~(1ULL << channel);
2919 *mask &= ~(1 << index);
2920 regs = OHCI1394_IsoRcvContextBase(index);
2921 ctx = &ohci->ir_context_list[index];
2922 }
2923 break;
2924
2925 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2926 mask = &ohci->ir_context_mask;
2927 callback = handle_ir_buffer_fill;
2928 index = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2929 if (index >= 0) {
2930 ohci->mc_allocated = true;
2931 *mask &= ~(1 << index);
2932 regs = OHCI1394_IsoRcvContextBase(index);
2933 ctx = &ohci->ir_context_list[index];
2934 }
2935 break;
2936
2937 default:
2938 index = -1;
2939 ret = -ENOSYS;
2940 }
2941
2942 spin_unlock_irqrestore(&ohci->lock, flags);
2943
2944 if (index < 0)
2945 return ERR_PTR(ret);
2946
2947 memset(ctx, 0, sizeof(*ctx));
2948 ctx->header_length = 0;
2949 ctx->header = (void *) __get_free_page(GFP_KERNEL);
2950 if (ctx->header == NULL) {
2951 ret = -ENOMEM;
2952 goto out;
2953 }
2954 ret = context_init(&ctx->context, ohci, regs, callback);
2955 if (ret < 0)
2956 goto out_with_header;
2957
2958 if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
2959 set_multichannel_mask(ohci, 0);
2960 ctx->mc_completed = 0;
2961 }
2962
2963 return &ctx->base;
2964
2965 out_with_header:
2966 free_page((unsigned long)ctx->header);
2967 out:
2968 spin_lock_irqsave(&ohci->lock, flags);
2969
2970 switch (type) {
2971 case FW_ISO_CONTEXT_RECEIVE:
2972 *channels |= 1ULL << channel;
2973 break;
2974
2975 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2976 ohci->mc_allocated = false;
2977 break;
2978 }
2979 *mask |= 1 << index;
2980
2981 spin_unlock_irqrestore(&ohci->lock, flags);
2982
2983 return ERR_PTR(ret);
2984 }
2985
2986 static int ohci_start_iso(struct fw_iso_context *base,
2987 s32 cycle, u32 sync, u32 tags)
2988 {
2989 struct iso_context *ctx = container_of(base, struct iso_context, base);
2990 struct fw_ohci *ohci = ctx->context.ohci;
2991 u32 control = IR_CONTEXT_ISOCH_HEADER, match;
2992 int index;
2993
2994 /* the controller cannot start without any queued packets */
2995 if (ctx->context.last->branch_address == 0)
2996 return -ENODATA;
2997
2998 switch (ctx->base.type) {
2999 case FW_ISO_CONTEXT_TRANSMIT:
3000 index = ctx - ohci->it_context_list;
3001 match = 0;
3002 if (cycle >= 0)
3003 match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
3004 (cycle & 0x7fff) << 16;
3005
3006 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
3007 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
3008 context_run(&ctx->context, match);
3009 break;
3010
3011 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3012 control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
3013 /* fall through */
3014 case FW_ISO_CONTEXT_RECEIVE:
3015 index = ctx - ohci->ir_context_list;
3016 match = (tags << 28) | (sync << 8) | ctx->base.channel;
3017 if (cycle >= 0) {
3018 match |= (cycle & 0x07fff) << 12;
3019 control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
3020 }
3021
3022 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
3023 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3024 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3025 context_run(&ctx->context, control);
3026
3027 ctx->sync = sync;
3028 ctx->tags = tags;
3029
3030 break;
3031 }
3032
3033 return 0;
3034 }
3035
3036 static int ohci_stop_iso(struct fw_iso_context *base)
3037 {
3038 struct fw_ohci *ohci = fw_ohci(base->card);
3039 struct iso_context *ctx = container_of(base, struct iso_context, base);
3040 int index;
3041
3042 switch (ctx->base.type) {
3043 case FW_ISO_CONTEXT_TRANSMIT:
3044 index = ctx - ohci->it_context_list;
3045 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3046 break;
3047
3048 case FW_ISO_CONTEXT_RECEIVE:
3049 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3050 index = ctx - ohci->ir_context_list;
3051 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3052 break;
3053 }
3054 flush_writes(ohci);
3055 context_stop(&ctx->context);
3056 tasklet_kill(&ctx->context.tasklet);
3057
3058 return 0;
3059 }
3060
3061 static void ohci_free_iso_context(struct fw_iso_context *base)
3062 {
3063 struct fw_ohci *ohci = fw_ohci(base->card);
3064 struct iso_context *ctx = container_of(base, struct iso_context, base);
3065 unsigned long flags;
3066 int index;
3067
3068 ohci_stop_iso(base);
3069 context_release(&ctx->context);
3070 free_page((unsigned long)ctx->header);
3071
3072 spin_lock_irqsave(&ohci->lock, flags);
3073
3074 switch (base->type) {
3075 case FW_ISO_CONTEXT_TRANSMIT:
3076 index = ctx - ohci->it_context_list;
3077 ohci->it_context_mask |= 1 << index;
3078 break;
3079
3080 case FW_ISO_CONTEXT_RECEIVE:
3081 index = ctx - ohci->ir_context_list;
3082 ohci->ir_context_mask |= 1 << index;
3083 ohci->ir_context_channels |= 1ULL << base->channel;
3084 break;
3085
3086 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3087 index = ctx - ohci->ir_context_list;
3088 ohci->ir_context_mask |= 1 << index;
3089 ohci->ir_context_channels |= ohci->mc_channels;
3090 ohci->mc_channels = 0;
3091 ohci->mc_allocated = false;
3092 break;
3093 }
3094
3095 spin_unlock_irqrestore(&ohci->lock, flags);
3096 }
3097
3098 static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3099 {
3100 struct fw_ohci *ohci = fw_ohci(base->card);
3101 unsigned long flags;
3102 int ret;
3103
3104 switch (base->type) {
3105 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3106
3107 spin_lock_irqsave(&ohci->lock, flags);
3108
3109 /* Don't allow multichannel to grab other contexts' channels. */
3110 if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3111 *channels = ohci->ir_context_channels;
3112 ret = -EBUSY;
3113 } else {
3114 set_multichannel_mask(ohci, *channels);
3115 ret = 0;
3116 }
3117
3118 spin_unlock_irqrestore(&ohci->lock, flags);
3119
3120 break;
3121 default:
3122 ret = -EINVAL;
3123 }
3124
3125 return ret;
3126 }
3127
3128 #ifdef CONFIG_PM
3129 static void ohci_resume_iso_dma(struct fw_ohci *ohci)
3130 {
3131 int i;
3132 struct iso_context *ctx;
3133
3134 for (i = 0 ; i < ohci->n_ir ; i++) {
3135 ctx = &ohci->ir_context_list[i];
3136 if (ctx->context.running)
3137 ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3138 }
3139
3140 for (i = 0 ; i < ohci->n_it ; i++) {
3141 ctx = &ohci->it_context_list[i];
3142 if (ctx->context.running)
3143 ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3144 }
3145 }
3146 #endif
3147
3148 static int queue_iso_transmit(struct iso_context *ctx,
3149 struct fw_iso_packet *packet,
3150 struct fw_iso_buffer *buffer,
3151 unsigned long payload)
3152 {
3153 struct descriptor *d, *last, *pd;
3154 struct fw_iso_packet *p;
3155 __le32 *header;
3156 dma_addr_t d_bus, page_bus;
3157 u32 z, header_z, payload_z, irq;
3158 u32 payload_index, payload_end_index, next_page_index;
3159 int page, end_page, i, length, offset;
3160
3161 p = packet;
3162 payload_index = payload;
3163
3164 if (p->skip)
3165 z = 1;
3166 else
3167 z = 2;
3168 if (p->header_length > 0)
3169 z++;
3170
3171 /* Determine the first page the payload isn't contained in. */
3172 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3173 if (p->payload_length > 0)
3174 payload_z = end_page - (payload_index >> PAGE_SHIFT);
3175 else
3176 payload_z = 0;
3177
3178 z += payload_z;
3179
3180 /* Get header size in number of descriptors. */
3181 header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3182
3183 d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3184 if (d == NULL)
3185 return -ENOMEM;
3186
3187 if (!p->skip) {
3188 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3189 d[0].req_count = cpu_to_le16(8);
3190 /*
3191 * Link the skip address to this descriptor itself. This causes
3192 * a context to skip a cycle whenever lost cycles or FIFO
3193 * overruns occur, without dropping the data. The application
3194 * should then decide whether this is an error condition or not.
3195 * FIXME: Make the context's cycle-lost behaviour configurable?
3196 */
3197 d[0].branch_address = cpu_to_le32(d_bus | z);
3198
3199 header = (__le32 *) &d[1];
3200 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
3201 IT_HEADER_TAG(p->tag) |
3202 IT_HEADER_TCODE(TCODE_STREAM_DATA) |
3203 IT_HEADER_CHANNEL(ctx->base.channel) |
3204 IT_HEADER_SPEED(ctx->base.speed));
3205 header[1] =
3206 cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
3207 p->payload_length));
3208 }
3209
3210 if (p->header_length > 0) {
3211 d[2].req_count = cpu_to_le16(p->header_length);
3212 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3213 memcpy(&d[z], p->header, p->header_length);
3214 }
3215
3216 pd = d + z - payload_z;
3217 payload_end_index = payload_index + p->payload_length;
3218 for (i = 0; i < payload_z; i++) {
3219 page = payload_index >> PAGE_SHIFT;
3220 offset = payload_index & ~PAGE_MASK;
3221 next_page_index = (page + 1) << PAGE_SHIFT;
3222 length =
3223 min(next_page_index, payload_end_index) - payload_index;
3224 pd[i].req_count = cpu_to_le16(length);
3225
3226 page_bus = page_private(buffer->pages[page]);
3227 pd[i].data_address = cpu_to_le32(page_bus + offset);
3228
3229 dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3230 page_bus, offset, length,
3231 DMA_TO_DEVICE);
3232
3233 payload_index += length;
3234 }
3235
3236 if (p->interrupt)
3237 irq = DESCRIPTOR_IRQ_ALWAYS;
3238 else
3239 irq = DESCRIPTOR_NO_IRQ;
3240
3241 last = z == 2 ? d : d + z - 1;
3242 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3243 DESCRIPTOR_STATUS |
3244 DESCRIPTOR_BRANCH_ALWAYS |
3245 irq);
3246
3247 context_append(&ctx->context, d, z, header_z);
3248
3249 return 0;
3250 }
3251
3252 static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3253 struct fw_iso_packet *packet,
3254 struct fw_iso_buffer *buffer,
3255 unsigned long payload)
3256 {
3257 struct device *device = ctx->context.ohci->card.device;
3258 struct descriptor *d, *pd;
3259 dma_addr_t d_bus, page_bus;
3260 u32 z, header_z, rest;
3261 int i, j, length;
3262 int page, offset, packet_count, header_size, payload_per_buffer;
3263
3264 /*
3265 * The OHCI controller puts the isochronous header and trailer in the
3266 * buffer, so we need at least 8 bytes.
3267 */
3268 packet_count = packet->header_length / ctx->base.header_size;
3269 header_size = max(ctx->base.header_size, (size_t)8);
3270
3271 /* Get header size in number of descriptors. */
3272 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3273 page = payload >> PAGE_SHIFT;
3274 offset = payload & ~PAGE_MASK;
3275 payload_per_buffer = packet->payload_length / packet_count;
3276
3277 for (i = 0; i < packet_count; i++) {
3278 /* d points to the header descriptor */
3279 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3280 d = context_get_descriptors(&ctx->context,
3281 z + header_z, &d_bus);
3282 if (d == NULL)
3283 return -ENOMEM;
3284
3285 d->control = cpu_to_le16(DESCRIPTOR_STATUS |
3286 DESCRIPTOR_INPUT_MORE);
3287 if (packet->skip && i == 0)
3288 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3289 d->req_count = cpu_to_le16(header_size);
3290 d->res_count = d->req_count;
3291 d->transfer_status = 0;
3292 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3293
3294 rest = payload_per_buffer;
3295 pd = d;
3296 for (j = 1; j < z; j++) {
3297 pd++;
3298 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3299 DESCRIPTOR_INPUT_MORE);
3300
3301 if (offset + rest < PAGE_SIZE)
3302 length = rest;
3303 else
3304 length = PAGE_SIZE - offset;
3305 pd->req_count = cpu_to_le16(length);
3306 pd->res_count = pd->req_count;
3307 pd->transfer_status = 0;
3308
3309 page_bus = page_private(buffer->pages[page]);
3310 pd->data_address = cpu_to_le32(page_bus + offset);
3311
3312 dma_sync_single_range_for_device(device, page_bus,
3313 offset, length,
3314 DMA_FROM_DEVICE);
3315
3316 offset = (offset + length) & ~PAGE_MASK;
3317 rest -= length;
3318 if (offset == 0)
3319 page++;
3320 }
3321 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3322 DESCRIPTOR_INPUT_LAST |
3323 DESCRIPTOR_BRANCH_ALWAYS);
3324 if (packet->interrupt && i == packet_count - 1)
3325 pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3326
3327 context_append(&ctx->context, d, z, header_z);
3328 }
3329
3330 return 0;
3331 }
3332
3333 static int queue_iso_buffer_fill(struct iso_context *ctx,
3334 struct fw_iso_packet *packet,
3335 struct fw_iso_buffer *buffer,
3336 unsigned long payload)
3337 {
3338 struct descriptor *d;
3339 dma_addr_t d_bus, page_bus;
3340 int page, offset, rest, z, i, length;
3341
3342 page = payload >> PAGE_SHIFT;
3343 offset = payload & ~PAGE_MASK;
3344 rest = packet->payload_length;
3345
3346 /* We need one descriptor for each page in the buffer. */
3347 z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3348
3349 if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3350 return -EFAULT;
3351
3352 for (i = 0; i < z; i++) {
3353 d = context_get_descriptors(&ctx->context, 1, &d_bus);
3354 if (d == NULL)
3355 return -ENOMEM;
3356
3357 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3358 DESCRIPTOR_BRANCH_ALWAYS);
3359 if (packet->skip && i == 0)
3360 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3361 if (packet->interrupt && i == z - 1)
3362 d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3363
3364 if (offset + rest < PAGE_SIZE)
3365 length = rest;
3366 else
3367 length = PAGE_SIZE - offset;
3368 d->req_count = cpu_to_le16(length);
3369 d->res_count = d->req_count;
3370 d->transfer_status = 0;
3371
3372 page_bus = page_private(buffer->pages[page]);
3373 d->data_address = cpu_to_le32(page_bus + offset);
3374
3375 dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3376 page_bus, offset, length,
3377 DMA_FROM_DEVICE);
3378
3379 rest -= length;
3380 offset = 0;
3381 page++;
3382
3383 context_append(&ctx->context, d, 1, 0);
3384 }
3385
3386 return 0;
3387 }
3388
3389 static int ohci_queue_iso(struct fw_iso_context *base,
3390 struct fw_iso_packet *packet,
3391 struct fw_iso_buffer *buffer,
3392 unsigned long payload)
3393 {
3394 struct iso_context *ctx = container_of(base, struct iso_context, base);
3395 unsigned long flags;
3396 int ret = -ENOSYS;
3397
3398 spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3399 switch (base->type) {
3400 case FW_ISO_CONTEXT_TRANSMIT:
3401 ret = queue_iso_transmit(ctx, packet, buffer, payload);
3402 break;
3403 case FW_ISO_CONTEXT_RECEIVE:
3404 ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3405 break;
3406 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3407 ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3408 break;
3409 }
3410 spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3411
3412 return ret;
3413 }
3414
3415 static void ohci_flush_queue_iso(struct fw_iso_context *base)
3416 {
3417 struct context *ctx =
3418 &container_of(base, struct iso_context, base)->context;
3419
3420 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3421 }
3422
3423 static int ohci_flush_iso_completions(struct fw_iso_context *base)
3424 {
3425 struct iso_context *ctx = container_of(base, struct iso_context, base);
3426 int ret = 0;
3427
3428 tasklet_disable(&ctx->context.tasklet);
3429
3430 if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) {
3431 context_tasklet((unsigned long)&ctx->context);
3432
3433 switch (base->type) {
3434 case FW_ISO_CONTEXT_TRANSMIT:
3435 case FW_ISO_CONTEXT_RECEIVE:
3436 if (ctx->header_length != 0)
3437 flush_iso_completions(ctx);
3438 break;
3439 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3440 if (ctx->mc_completed != 0)
3441 flush_ir_buffer_fill(ctx);
3442 break;
3443 default:
3444 ret = -ENOSYS;
3445 }
3446
3447 clear_bit_unlock(0, &ctx->flushing_completions);
3448 smp_mb__after_clear_bit();
3449 }
3450
3451 tasklet_enable(&ctx->context.tasklet);
3452
3453 return ret;
3454 }
3455
3456 static const struct fw_card_driver ohci_driver = {
3457 .enable = ohci_enable,
3458 .read_phy_reg = ohci_read_phy_reg,
3459 .update_phy_reg = ohci_update_phy_reg,
3460 .set_config_rom = ohci_set_config_rom,
3461 .send_request = ohci_send_request,
3462 .send_response = ohci_send_response,
3463 .cancel_packet = ohci_cancel_packet,
3464 .enable_phys_dma = ohci_enable_phys_dma,
3465 .read_csr = ohci_read_csr,
3466 .write_csr = ohci_write_csr,
3467
3468 .allocate_iso_context = ohci_allocate_iso_context,
3469 .free_iso_context = ohci_free_iso_context,
3470 .set_iso_channels = ohci_set_iso_channels,
3471 .queue_iso = ohci_queue_iso,
3472 .flush_queue_iso = ohci_flush_queue_iso,
3473 .flush_iso_completions = ohci_flush_iso_completions,
3474 .start_iso = ohci_start_iso,
3475 .stop_iso = ohci_stop_iso,
3476 };
3477
3478 #ifdef CONFIG_PPC_PMAC
3479 static void pmac_ohci_on(struct pci_dev *dev)
3480 {
3481 if (machine_is(powermac)) {
3482 struct device_node *ofn = pci_device_to_OF_node(dev);
3483
3484 if (ofn) {
3485 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3486 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3487 }
3488 }
3489 }
3490
3491 static void pmac_ohci_off(struct pci_dev *dev)
3492 {
3493 if (machine_is(powermac)) {
3494 struct device_node *ofn = pci_device_to_OF_node(dev);
3495
3496 if (ofn) {
3497 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3498 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3499 }
3500 }
3501 }
3502 #else
3503 static inline void pmac_ohci_on(struct pci_dev *dev) {}
3504 static inline void pmac_ohci_off(struct pci_dev *dev) {}
3505 #endif /* CONFIG_PPC_PMAC */
3506
3507 static int __devinit pci_probe(struct pci_dev *dev,
3508 const struct pci_device_id *ent)
3509 {
3510 struct fw_ohci *ohci;
3511 u32 bus_options, max_receive, link_speed, version;
3512 u64 guid;
3513 int i, err;
3514 size_t size;
3515
3516 if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3517 dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3518 return -ENOSYS;
3519 }
3520
3521 ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3522 if (ohci == NULL) {
3523 err = -ENOMEM;
3524 goto fail;
3525 }
3526
3527 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3528
3529 pmac_ohci_on(dev);
3530
3531 err = pci_enable_device(dev);
3532 if (err) {
3533 dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3534 goto fail_free;
3535 }
3536
3537 pci_set_master(dev);
3538 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3539 pci_set_drvdata(dev, ohci);
3540
3541 spin_lock_init(&ohci->lock);
3542 mutex_init(&ohci->phy_reg_mutex);
3543
3544 INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3545
3546 err = pci_request_region(dev, 0, ohci_driver_name);
3547 if (err) {
3548 dev_err(&dev->dev, "MMIO resource unavailable\n");
3549 goto fail_disable;
3550 }
3551
3552 ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
3553 if (ohci->registers == NULL) {
3554 dev_err(&dev->dev, "failed to remap registers\n");
3555 err = -ENXIO;
3556 goto fail_iomem;
3557 }
3558
3559 for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3560 if ((ohci_quirks[i].vendor == dev->vendor) &&
3561 (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3562 ohci_quirks[i].device == dev->device) &&
3563 (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3564 ohci_quirks[i].revision >= dev->revision)) {
3565 ohci->quirks = ohci_quirks[i].flags;
3566 break;
3567 }
3568 if (param_quirks)
3569 ohci->quirks = param_quirks;
3570
3571 /*
3572 * Because dma_alloc_coherent() allocates at least one page,
3573 * we save space by using a common buffer for the AR request/
3574 * response descriptors and the self IDs buffer.
3575 */
3576 BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3577 BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3578 ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
3579 PAGE_SIZE,
3580 &ohci->misc_buffer_bus,
3581 GFP_KERNEL);
3582 if (!ohci->misc_buffer) {
3583 err = -ENOMEM;
3584 goto fail_iounmap;
3585 }
3586
3587 err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3588 OHCI1394_AsReqRcvContextControlSet);
3589 if (err < 0)
3590 goto fail_misc_buf;
3591
3592 err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3593 OHCI1394_AsRspRcvContextControlSet);
3594 if (err < 0)
3595 goto fail_arreq_ctx;
3596
3597 err = context_init(&ohci->at_request_ctx, ohci,
3598 OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3599 if (err < 0)
3600 goto fail_arrsp_ctx;
3601
3602 err = context_init(&ohci->at_response_ctx, ohci,
3603 OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3604 if (err < 0)
3605 goto fail_atreq_ctx;
3606
3607 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3608 ohci->ir_context_channels = ~0ULL;
3609 ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3610 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3611 ohci->ir_context_mask = ohci->ir_context_support;
3612 ohci->n_ir = hweight32(ohci->ir_context_mask);
3613 size = sizeof(struct iso_context) * ohci->n_ir;
3614 ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3615
3616 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3617 ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3618 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3619 ohci->it_context_mask = ohci->it_context_support;
3620 ohci->n_it = hweight32(ohci->it_context_mask);
3621 size = sizeof(struct iso_context) * ohci->n_it;
3622 ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3623
3624 if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3625 err = -ENOMEM;
3626 goto fail_contexts;
3627 }
3628
3629 ohci->self_id_cpu = ohci->misc_buffer + PAGE_SIZE/2;
3630 ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3631
3632 bus_options = reg_read(ohci, OHCI1394_BusOptions);
3633 max_receive = (bus_options >> 12) & 0xf;
3634 link_speed = bus_options & 0x7;
3635 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3636 reg_read(ohci, OHCI1394_GUIDLo);
3637
3638 err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3639 if (err)
3640 goto fail_contexts;
3641
3642 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3643 dev_notice(&dev->dev,
3644 "added OHCI v%x.%x device as card %d, "
3645 "%d IR + %d IT contexts, quirks 0x%x\n",
3646 version >> 16, version & 0xff, ohci->card.index,
3647 ohci->n_ir, ohci->n_it, ohci->quirks);
3648
3649 return 0;
3650
3651 fail_contexts:
3652 kfree(ohci->ir_context_list);
3653 kfree(ohci->it_context_list);
3654 context_release(&ohci->at_response_ctx);
3655 fail_atreq_ctx:
3656 context_release(&ohci->at_request_ctx);
3657 fail_arrsp_ctx:
3658 ar_context_release(&ohci->ar_response_ctx);
3659 fail_arreq_ctx:
3660 ar_context_release(&ohci->ar_request_ctx);
3661 fail_misc_buf:
3662 dma_free_coherent(ohci->card.device, PAGE_SIZE,
3663 ohci->misc_buffer, ohci->misc_buffer_bus);
3664 fail_iounmap:
3665 pci_iounmap(dev, ohci->registers);
3666 fail_iomem:
3667 pci_release_region(dev, 0);
3668 fail_disable:
3669 pci_disable_device(dev);
3670 fail_free:
3671 kfree(ohci);
3672 pmac_ohci_off(dev);
3673 fail:
3674 if (err == -ENOMEM)
3675 dev_err(&dev->dev, "out of memory\n");
3676
3677 return err;
3678 }
3679
3680 static void pci_remove(struct pci_dev *dev)
3681 {
3682 struct fw_ohci *ohci;
3683
3684 ohci = pci_get_drvdata(dev);
3685 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3686 flush_writes(ohci);
3687 cancel_work_sync(&ohci->bus_reset_work);
3688 fw_core_remove_card(&ohci->card);
3689
3690 /*
3691 * FIXME: Fail all pending packets here, now that the upper
3692 * layers can't queue any more.
3693 */
3694
3695 software_reset(ohci);
3696 free_irq(dev->irq, ohci);
3697
3698 if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
3699 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3700 ohci->next_config_rom, ohci->next_config_rom_bus);
3701 if (ohci->config_rom)
3702 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3703 ohci->config_rom, ohci->config_rom_bus);
3704 ar_context_release(&ohci->ar_request_ctx);
3705 ar_context_release(&ohci->ar_response_ctx);
3706 dma_free_coherent(ohci->card.device, PAGE_SIZE,
3707 ohci->misc_buffer, ohci->misc_buffer_bus);
3708 context_release(&ohci->at_request_ctx);
3709 context_release(&ohci->at_response_ctx);
3710 kfree(ohci->it_context_list);
3711 kfree(ohci->ir_context_list);
3712 pci_disable_msi(dev);
3713 pci_iounmap(dev, ohci->registers);
3714 pci_release_region(dev, 0);
3715 pci_disable_device(dev);
3716 kfree(ohci);
3717 pmac_ohci_off(dev);
3718
3719 dev_notice(&dev->dev, "removed fw-ohci device\n");
3720 }
3721
3722 #ifdef CONFIG_PM
3723 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3724 {
3725 struct fw_ohci *ohci = pci_get_drvdata(dev);
3726 int err;
3727
3728 software_reset(ohci);
3729 free_irq(dev->irq, ohci);
3730 pci_disable_msi(dev);
3731 err = pci_save_state(dev);
3732 if (err) {
3733 dev_err(&dev->dev, "pci_save_state failed\n");
3734 return err;
3735 }
3736 err = pci_set_power_state(dev, pci_choose_state(dev, state));
3737 if (err)
3738 dev_err(&dev->dev, "pci_set_power_state failed with %d\n", err);
3739 pmac_ohci_off(dev);
3740
3741 return 0;
3742 }
3743
3744 static int pci_resume(struct pci_dev *dev)
3745 {
3746 struct fw_ohci *ohci = pci_get_drvdata(dev);
3747 int err;
3748
3749 pmac_ohci_on(dev);
3750 pci_set_power_state(dev, PCI_D0);
3751 pci_restore_state(dev);
3752 err = pci_enable_device(dev);
3753 if (err) {
3754 dev_err(&dev->dev, "pci_enable_device failed\n");
3755 return err;
3756 }
3757
3758 /* Some systems don't setup GUID register on resume from ram */
3759 if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3760 !reg_read(ohci, OHCI1394_GUIDHi)) {
3761 reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3762 reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3763 }
3764
3765 err = ohci_enable(&ohci->card, NULL, 0);
3766 if (err)
3767 return err;
3768
3769 ohci_resume_iso_dma(ohci);
3770
3771 return 0;
3772 }
3773 #endif
3774
3775 static const struct pci_device_id pci_table[] = {
3776 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3777 { }
3778 };
3779
3780 MODULE_DEVICE_TABLE(pci, pci_table);
3781
3782 static struct pci_driver fw_ohci_pci_driver = {
3783 .name = ohci_driver_name,
3784 .id_table = pci_table,
3785 .probe = pci_probe,
3786 .remove = pci_remove,
3787 #ifdef CONFIG_PM
3788 .resume = pci_resume,
3789 .suspend = pci_suspend,
3790 #endif
3791 };
3792
3793 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3794 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3795 MODULE_LICENSE("GPL");
3796
3797 /* Provide a module alias so root-on-sbp2 initrds don't break. */
3798 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
3799 MODULE_ALIAS("ohci1394");
3800 #endif
3801
3802 static int __init fw_ohci_init(void)
3803 {
3804 return pci_register_driver(&fw_ohci_pci_driver);
3805 }
3806
3807 static void __exit fw_ohci_cleanup(void)
3808 {
3809 pci_unregister_driver(&fw_ohci_pci_driver);
3810 }
3811
3812 module_init(fw_ohci_init);
3813 module_exit(fw_ohci_cleanup);