]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - drivers/firewire/sbp2.c
KVM: x86/pmu: Add documentation for fixed ctr on PMU filter
[thirdparty/kernel/stable.git] / drivers / firewire / sbp2.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * SBP2 driver (SCSI over IEEE1394)
4 *
5 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net>
6 */
7
8 /*
9 * The basic structure of this driver is based on the old storage driver,
10 * drivers/ieee1394/sbp2.c, originally written by
11 * James Goodwin <jamesg@filanet.com>
12 * with later contributions and ongoing maintenance from
13 * Ben Collins <bcollins@debian.org>,
14 * Stefan Richter <stefanr@s5r6.in-berlin.de>
15 * and many others.
16 */
17
18 #include <linux/blkdev.h>
19 #include <linux/bug.h>
20 #include <linux/completion.h>
21 #include <linux/delay.h>
22 #include <linux/device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/firewire.h>
25 #include <linux/firewire-constants.h>
26 #include <linux/init.h>
27 #include <linux/jiffies.h>
28 #include <linux/kernel.h>
29 #include <linux/kref.h>
30 #include <linux/list.h>
31 #include <linux/mod_devicetable.h>
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/scatterlist.h>
35 #include <linux/slab.h>
36 #include <linux/spinlock.h>
37 #include <linux/string.h>
38 #include <linux/stringify.h>
39 #include <linux/workqueue.h>
40
41 #include <asm/byteorder.h>
42
43 #include <scsi/scsi.h>
44 #include <scsi/scsi_cmnd.h>
45 #include <scsi/scsi_device.h>
46 #include <scsi/scsi_host.h>
47
48 /*
49 * So far only bridges from Oxford Semiconductor are known to support
50 * concurrent logins. Depending on firmware, four or two concurrent logins
51 * are possible on OXFW911 and newer Oxsemi bridges.
52 *
53 * Concurrent logins are useful together with cluster filesystems.
54 */
55 static bool sbp2_param_exclusive_login = 1;
56 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
57 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
58 "(default = Y, use N for concurrent initiators)");
59
60 /*
61 * Flags for firmware oddities
62 *
63 * - 128kB max transfer
64 * Limit transfer size. Necessary for some old bridges.
65 *
66 * - 36 byte inquiry
67 * When scsi_mod probes the device, let the inquiry command look like that
68 * from MS Windows.
69 *
70 * - skip mode page 8
71 * Suppress sending of mode_sense for mode page 8 if the device pretends to
72 * support the SCSI Primary Block commands instead of Reduced Block Commands.
73 *
74 * - fix capacity
75 * Tell sd_mod to correct the last sector number reported by read_capacity.
76 * Avoids access beyond actual disk limits on devices with an off-by-one bug.
77 * Don't use this with devices which don't have this bug.
78 *
79 * - delay inquiry
80 * Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
81 *
82 * - power condition
83 * Set the power condition field in the START STOP UNIT commands sent by
84 * sd_mod on suspend, resume, and shutdown (if manage_start_stop is on).
85 * Some disks need this to spin down or to resume properly.
86 *
87 * - override internal blacklist
88 * Instead of adding to the built-in blacklist, use only the workarounds
89 * specified in the module load parameter.
90 * Useful if a blacklist entry interfered with a non-broken device.
91 */
92 #define SBP2_WORKAROUND_128K_MAX_TRANS 0x1
93 #define SBP2_WORKAROUND_INQUIRY_36 0x2
94 #define SBP2_WORKAROUND_MODE_SENSE_8 0x4
95 #define SBP2_WORKAROUND_FIX_CAPACITY 0x8
96 #define SBP2_WORKAROUND_DELAY_INQUIRY 0x10
97 #define SBP2_INQUIRY_DELAY 12
98 #define SBP2_WORKAROUND_POWER_CONDITION 0x20
99 #define SBP2_WORKAROUND_OVERRIDE 0x100
100
101 static int sbp2_param_workarounds;
102 module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
103 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
104 ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
105 ", 36 byte inquiry = " __stringify(SBP2_WORKAROUND_INQUIRY_36)
106 ", skip mode page 8 = " __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
107 ", fix capacity = " __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
108 ", delay inquiry = " __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
109 ", set power condition in start stop unit = "
110 __stringify(SBP2_WORKAROUND_POWER_CONDITION)
111 ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
112 ", or a combination)");
113
114 /*
115 * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
116 * and one struct scsi_device per sbp2_logical_unit.
117 */
118 struct sbp2_logical_unit {
119 struct sbp2_target *tgt;
120 struct list_head link;
121 struct fw_address_handler address_handler;
122 struct list_head orb_list;
123
124 u64 command_block_agent_address;
125 u16 lun;
126 int login_id;
127
128 /*
129 * The generation is updated once we've logged in or reconnected
130 * to the logical unit. Thus, I/O to the device will automatically
131 * fail and get retried if it happens in a window where the device
132 * is not ready, e.g. after a bus reset but before we reconnect.
133 */
134 int generation;
135 int retries;
136 work_func_t workfn;
137 struct delayed_work work;
138 bool has_sdev;
139 bool blocked;
140 };
141
142 static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
143 {
144 queue_delayed_work(fw_workqueue, &lu->work, delay);
145 }
146
147 /*
148 * We create one struct sbp2_target per IEEE 1212 Unit Directory
149 * and one struct Scsi_Host per sbp2_target.
150 */
151 struct sbp2_target {
152 struct fw_unit *unit;
153 struct list_head lu_list;
154
155 u64 management_agent_address;
156 u64 guid;
157 int directory_id;
158 int node_id;
159 int address_high;
160 unsigned int workarounds;
161 unsigned int mgt_orb_timeout;
162 unsigned int max_payload;
163
164 spinlock_t lock;
165 int dont_block; /* counter for each logical unit */
166 int blocked; /* ditto */
167 };
168
169 static struct fw_device *target_parent_device(struct sbp2_target *tgt)
170 {
171 return fw_parent_device(tgt->unit);
172 }
173
174 static const struct device *tgt_dev(const struct sbp2_target *tgt)
175 {
176 return &tgt->unit->device;
177 }
178
179 static const struct device *lu_dev(const struct sbp2_logical_unit *lu)
180 {
181 return &lu->tgt->unit->device;
182 }
183
184 /* Impossible login_id, to detect logout attempt before successful login */
185 #define INVALID_LOGIN_ID 0x10000
186
187 #define SBP2_ORB_TIMEOUT 2000U /* Timeout in ms */
188 #define SBP2_ORB_NULL 0x80000000
189 #define SBP2_RETRY_LIMIT 0xf /* 15 retries */
190 #define SBP2_CYCLE_LIMIT (0xc8 << 12) /* 200 125us cycles */
191
192 /*
193 * There is no transport protocol limit to the CDB length, but we implement
194 * a fixed length only. 16 bytes is enough for disks larger than 2 TB.
195 */
196 #define SBP2_MAX_CDB_SIZE 16
197
198 /*
199 * The maximum SBP-2 data buffer size is 0xffff. We quadlet-align this
200 * for compatibility with earlier versions of this driver.
201 */
202 #define SBP2_MAX_SEG_SIZE 0xfffc
203
204 /* Unit directory keys */
205 #define SBP2_CSR_UNIT_CHARACTERISTICS 0x3a
206 #define SBP2_CSR_FIRMWARE_REVISION 0x3c
207 #define SBP2_CSR_LOGICAL_UNIT_NUMBER 0x14
208 #define SBP2_CSR_UNIT_UNIQUE_ID 0x8d
209 #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4
210
211 /* Management orb opcodes */
212 #define SBP2_LOGIN_REQUEST 0x0
213 #define SBP2_QUERY_LOGINS_REQUEST 0x1
214 #define SBP2_RECONNECT_REQUEST 0x3
215 #define SBP2_SET_PASSWORD_REQUEST 0x4
216 #define SBP2_LOGOUT_REQUEST 0x7
217 #define SBP2_ABORT_TASK_REQUEST 0xb
218 #define SBP2_ABORT_TASK_SET 0xc
219 #define SBP2_LOGICAL_UNIT_RESET 0xe
220 #define SBP2_TARGET_RESET_REQUEST 0xf
221
222 /* Offsets for command block agent registers */
223 #define SBP2_AGENT_STATE 0x00
224 #define SBP2_AGENT_RESET 0x04
225 #define SBP2_ORB_POINTER 0x08
226 #define SBP2_DOORBELL 0x10
227 #define SBP2_UNSOLICITED_STATUS_ENABLE 0x14
228
229 /* Status write response codes */
230 #define SBP2_STATUS_REQUEST_COMPLETE 0x0
231 #define SBP2_STATUS_TRANSPORT_FAILURE 0x1
232 #define SBP2_STATUS_ILLEGAL_REQUEST 0x2
233 #define SBP2_STATUS_VENDOR_DEPENDENT 0x3
234
235 #define STATUS_GET_ORB_HIGH(v) ((v).status & 0xffff)
236 #define STATUS_GET_SBP_STATUS(v) (((v).status >> 16) & 0xff)
237 #define STATUS_GET_LEN(v) (((v).status >> 24) & 0x07)
238 #define STATUS_GET_DEAD(v) (((v).status >> 27) & 0x01)
239 #define STATUS_GET_RESPONSE(v) (((v).status >> 28) & 0x03)
240 #define STATUS_GET_SOURCE(v) (((v).status >> 30) & 0x03)
241 #define STATUS_GET_ORB_LOW(v) ((v).orb_low)
242 #define STATUS_GET_DATA(v) ((v).data)
243
244 struct sbp2_status {
245 u32 status;
246 u32 orb_low;
247 u8 data[24];
248 };
249
250 struct sbp2_pointer {
251 __be32 high;
252 __be32 low;
253 };
254
255 struct sbp2_orb {
256 struct fw_transaction t;
257 struct kref kref;
258 dma_addr_t request_bus;
259 int rcode;
260 void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
261 struct sbp2_logical_unit *lu;
262 struct list_head link;
263 };
264
265 #define MANAGEMENT_ORB_LUN(v) ((v))
266 #define MANAGEMENT_ORB_FUNCTION(v) ((v) << 16)
267 #define MANAGEMENT_ORB_RECONNECT(v) ((v) << 20)
268 #define MANAGEMENT_ORB_EXCLUSIVE(v) ((v) ? 1 << 28 : 0)
269 #define MANAGEMENT_ORB_REQUEST_FORMAT(v) ((v) << 29)
270 #define MANAGEMENT_ORB_NOTIFY ((1) << 31)
271
272 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v) ((v))
273 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v) ((v) << 16)
274
275 struct sbp2_management_orb {
276 struct sbp2_orb base;
277 struct {
278 struct sbp2_pointer password;
279 struct sbp2_pointer response;
280 __be32 misc;
281 __be32 length;
282 struct sbp2_pointer status_fifo;
283 } request;
284 __be32 response[4];
285 dma_addr_t response_bus;
286 struct completion done;
287 struct sbp2_status status;
288 };
289
290 struct sbp2_login_response {
291 __be32 misc;
292 struct sbp2_pointer command_block_agent;
293 __be32 reconnect_hold;
294 };
295 #define COMMAND_ORB_DATA_SIZE(v) ((v))
296 #define COMMAND_ORB_PAGE_SIZE(v) ((v) << 16)
297 #define COMMAND_ORB_PAGE_TABLE_PRESENT ((1) << 19)
298 #define COMMAND_ORB_MAX_PAYLOAD(v) ((v) << 20)
299 #define COMMAND_ORB_SPEED(v) ((v) << 24)
300 #define COMMAND_ORB_DIRECTION ((1) << 27)
301 #define COMMAND_ORB_REQUEST_FORMAT(v) ((v) << 29)
302 #define COMMAND_ORB_NOTIFY ((1) << 31)
303
304 struct sbp2_command_orb {
305 struct sbp2_orb base;
306 struct {
307 struct sbp2_pointer next;
308 struct sbp2_pointer data_descriptor;
309 __be32 misc;
310 u8 command_block[SBP2_MAX_CDB_SIZE];
311 } request;
312 struct scsi_cmnd *cmd;
313
314 struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
315 dma_addr_t page_table_bus;
316 };
317
318 #define SBP2_ROM_VALUE_WILDCARD ~0 /* match all */
319 #define SBP2_ROM_VALUE_MISSING 0xff000000 /* not present in the unit dir. */
320
321 /*
322 * List of devices with known bugs.
323 *
324 * The firmware_revision field, masked with 0xffff00, is the best
325 * indicator for the type of bridge chip of a device. It yields a few
326 * false positives but this did not break correctly behaving devices
327 * so far.
328 */
329 static const struct {
330 u32 firmware_revision;
331 u32 model;
332 unsigned int workarounds;
333 } sbp2_workarounds_table[] = {
334 /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
335 .firmware_revision = 0x002800,
336 .model = 0x001010,
337 .workarounds = SBP2_WORKAROUND_INQUIRY_36 |
338 SBP2_WORKAROUND_MODE_SENSE_8 |
339 SBP2_WORKAROUND_POWER_CONDITION,
340 },
341 /* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
342 .firmware_revision = 0x002800,
343 .model = 0x000000,
344 .workarounds = SBP2_WORKAROUND_POWER_CONDITION,
345 },
346 /* Initio bridges, actually only needed for some older ones */ {
347 .firmware_revision = 0x000200,
348 .model = SBP2_ROM_VALUE_WILDCARD,
349 .workarounds = SBP2_WORKAROUND_INQUIRY_36,
350 },
351 /* PL-3507 bridge with Prolific firmware */ {
352 .firmware_revision = 0x012800,
353 .model = SBP2_ROM_VALUE_WILDCARD,
354 .workarounds = SBP2_WORKAROUND_POWER_CONDITION,
355 },
356 /* Symbios bridge */ {
357 .firmware_revision = 0xa0b800,
358 .model = SBP2_ROM_VALUE_WILDCARD,
359 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
360 },
361 /* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ {
362 .firmware_revision = 0x002600,
363 .model = SBP2_ROM_VALUE_WILDCARD,
364 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
365 },
366 /*
367 * iPod 2nd generation: needs 128k max transfer size workaround
368 * iPod 3rd generation: needs fix capacity workaround
369 */
370 {
371 .firmware_revision = 0x0a2700,
372 .model = 0x000000,
373 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS |
374 SBP2_WORKAROUND_FIX_CAPACITY,
375 },
376 /* iPod 4th generation */ {
377 .firmware_revision = 0x0a2700,
378 .model = 0x000021,
379 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
380 },
381 /* iPod mini */ {
382 .firmware_revision = 0x0a2700,
383 .model = 0x000022,
384 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
385 },
386 /* iPod mini */ {
387 .firmware_revision = 0x0a2700,
388 .model = 0x000023,
389 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
390 },
391 /* iPod Photo */ {
392 .firmware_revision = 0x0a2700,
393 .model = 0x00007e,
394 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
395 }
396 };
397
398 static void free_orb(struct kref *kref)
399 {
400 struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
401
402 kfree(orb);
403 }
404
405 static void sbp2_status_write(struct fw_card *card, struct fw_request *request,
406 int tcode, int destination, int source,
407 int generation, unsigned long long offset,
408 void *payload, size_t length, void *callback_data)
409 {
410 struct sbp2_logical_unit *lu = callback_data;
411 struct sbp2_orb *orb = NULL, *iter;
412 struct sbp2_status status;
413 unsigned long flags;
414
415 if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
416 length < 8 || length > sizeof(status)) {
417 fw_send_response(card, request, RCODE_TYPE_ERROR);
418 return;
419 }
420
421 status.status = be32_to_cpup(payload);
422 status.orb_low = be32_to_cpup(payload + 4);
423 memset(status.data, 0, sizeof(status.data));
424 if (length > 8)
425 memcpy(status.data, payload + 8, length - 8);
426
427 if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
428 dev_notice(lu_dev(lu),
429 "non-ORB related status write, not handled\n");
430 fw_send_response(card, request, RCODE_COMPLETE);
431 return;
432 }
433
434 /* Lookup the orb corresponding to this status write. */
435 spin_lock_irqsave(&lu->tgt->lock, flags);
436 list_for_each_entry(iter, &lu->orb_list, link) {
437 if (STATUS_GET_ORB_HIGH(status) == 0 &&
438 STATUS_GET_ORB_LOW(status) == iter->request_bus) {
439 iter->rcode = RCODE_COMPLETE;
440 list_del(&iter->link);
441 orb = iter;
442 break;
443 }
444 }
445 spin_unlock_irqrestore(&lu->tgt->lock, flags);
446
447 if (orb) {
448 orb->callback(orb, &status);
449 kref_put(&orb->kref, free_orb); /* orb callback reference */
450 } else {
451 dev_err(lu_dev(lu), "status write for unknown ORB\n");
452 }
453
454 fw_send_response(card, request, RCODE_COMPLETE);
455 }
456
457 static void complete_transaction(struct fw_card *card, int rcode,
458 void *payload, size_t length, void *data)
459 {
460 struct sbp2_orb *orb = data;
461 unsigned long flags;
462
463 /*
464 * This is a little tricky. We can get the status write for
465 * the orb before we get this callback. The status write
466 * handler above will assume the orb pointer transaction was
467 * successful and set the rcode to RCODE_COMPLETE for the orb.
468 * So this callback only sets the rcode if it hasn't already
469 * been set and only does the cleanup if the transaction
470 * failed and we didn't already get a status write.
471 */
472 spin_lock_irqsave(&orb->lu->tgt->lock, flags);
473
474 if (orb->rcode == -1)
475 orb->rcode = rcode;
476 if (orb->rcode != RCODE_COMPLETE) {
477 list_del(&orb->link);
478 spin_unlock_irqrestore(&orb->lu->tgt->lock, flags);
479
480 orb->callback(orb, NULL);
481 kref_put(&orb->kref, free_orb); /* orb callback reference */
482 } else {
483 spin_unlock_irqrestore(&orb->lu->tgt->lock, flags);
484 }
485
486 kref_put(&orb->kref, free_orb); /* transaction callback reference */
487 }
488
489 static void sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
490 int node_id, int generation, u64 offset)
491 {
492 struct fw_device *device = target_parent_device(lu->tgt);
493 struct sbp2_pointer orb_pointer;
494 unsigned long flags;
495
496 orb_pointer.high = 0;
497 orb_pointer.low = cpu_to_be32(orb->request_bus);
498
499 orb->lu = lu;
500 spin_lock_irqsave(&lu->tgt->lock, flags);
501 list_add_tail(&orb->link, &lu->orb_list);
502 spin_unlock_irqrestore(&lu->tgt->lock, flags);
503
504 kref_get(&orb->kref); /* transaction callback reference */
505 kref_get(&orb->kref); /* orb callback reference */
506
507 fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
508 node_id, generation, device->max_speed, offset,
509 &orb_pointer, 8, complete_transaction, orb);
510 }
511
512 static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
513 {
514 struct fw_device *device = target_parent_device(lu->tgt);
515 struct sbp2_orb *orb, *next;
516 struct list_head list;
517 int retval = -ENOENT;
518
519 INIT_LIST_HEAD(&list);
520 spin_lock_irq(&lu->tgt->lock);
521 list_splice_init(&lu->orb_list, &list);
522 spin_unlock_irq(&lu->tgt->lock);
523
524 list_for_each_entry_safe(orb, next, &list, link) {
525 retval = 0;
526 if (fw_cancel_transaction(device->card, &orb->t) == 0)
527 continue;
528
529 orb->rcode = RCODE_CANCELLED;
530 orb->callback(orb, NULL);
531 kref_put(&orb->kref, free_orb); /* orb callback reference */
532 }
533
534 return retval;
535 }
536
537 static void complete_management_orb(struct sbp2_orb *base_orb,
538 struct sbp2_status *status)
539 {
540 struct sbp2_management_orb *orb =
541 container_of(base_orb, struct sbp2_management_orb, base);
542
543 if (status)
544 memcpy(&orb->status, status, sizeof(*status));
545 complete(&orb->done);
546 }
547
548 static int sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
549 int generation, int function,
550 int lun_or_login_id, void *response)
551 {
552 struct fw_device *device = target_parent_device(lu->tgt);
553 struct sbp2_management_orb *orb;
554 unsigned int timeout;
555 int retval = -ENOMEM;
556
557 if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device))
558 return 0;
559
560 orb = kzalloc(sizeof(*orb), GFP_NOIO);
561 if (orb == NULL)
562 return -ENOMEM;
563
564 kref_init(&orb->base.kref);
565 orb->response_bus =
566 dma_map_single(device->card->device, &orb->response,
567 sizeof(orb->response), DMA_FROM_DEVICE);
568 if (dma_mapping_error(device->card->device, orb->response_bus))
569 goto fail_mapping_response;
570
571 orb->request.response.high = 0;
572 orb->request.response.low = cpu_to_be32(orb->response_bus);
573
574 orb->request.misc = cpu_to_be32(
575 MANAGEMENT_ORB_NOTIFY |
576 MANAGEMENT_ORB_FUNCTION(function) |
577 MANAGEMENT_ORB_LUN(lun_or_login_id));
578 orb->request.length = cpu_to_be32(
579 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response)));
580
581 orb->request.status_fifo.high =
582 cpu_to_be32(lu->address_handler.offset >> 32);
583 orb->request.status_fifo.low =
584 cpu_to_be32(lu->address_handler.offset);
585
586 if (function == SBP2_LOGIN_REQUEST) {
587 /* Ask for 2^2 == 4 seconds reconnect grace period */
588 orb->request.misc |= cpu_to_be32(
589 MANAGEMENT_ORB_RECONNECT(2) |
590 MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login));
591 timeout = lu->tgt->mgt_orb_timeout;
592 } else {
593 timeout = SBP2_ORB_TIMEOUT;
594 }
595
596 init_completion(&orb->done);
597 orb->base.callback = complete_management_orb;
598
599 orb->base.request_bus =
600 dma_map_single(device->card->device, &orb->request,
601 sizeof(orb->request), DMA_TO_DEVICE);
602 if (dma_mapping_error(device->card->device, orb->base.request_bus))
603 goto fail_mapping_request;
604
605 sbp2_send_orb(&orb->base, lu, node_id, generation,
606 lu->tgt->management_agent_address);
607
608 wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
609
610 retval = -EIO;
611 if (sbp2_cancel_orbs(lu) == 0) {
612 dev_err(lu_dev(lu), "ORB reply timed out, rcode 0x%02x\n",
613 orb->base.rcode);
614 goto out;
615 }
616
617 if (orb->base.rcode != RCODE_COMPLETE) {
618 dev_err(lu_dev(lu), "management write failed, rcode 0x%02x\n",
619 orb->base.rcode);
620 goto out;
621 }
622
623 if (STATUS_GET_RESPONSE(orb->status) != 0 ||
624 STATUS_GET_SBP_STATUS(orb->status) != 0) {
625 dev_err(lu_dev(lu), "error status: %d:%d\n",
626 STATUS_GET_RESPONSE(orb->status),
627 STATUS_GET_SBP_STATUS(orb->status));
628 goto out;
629 }
630
631 retval = 0;
632 out:
633 dma_unmap_single(device->card->device, orb->base.request_bus,
634 sizeof(orb->request), DMA_TO_DEVICE);
635 fail_mapping_request:
636 dma_unmap_single(device->card->device, orb->response_bus,
637 sizeof(orb->response), DMA_FROM_DEVICE);
638 fail_mapping_response:
639 if (response)
640 memcpy(response, orb->response, sizeof(orb->response));
641 kref_put(&orb->base.kref, free_orb);
642
643 return retval;
644 }
645
646 static void sbp2_agent_reset(struct sbp2_logical_unit *lu)
647 {
648 struct fw_device *device = target_parent_device(lu->tgt);
649 __be32 d = 0;
650
651 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
652 lu->tgt->node_id, lu->generation, device->max_speed,
653 lu->command_block_agent_address + SBP2_AGENT_RESET,
654 &d, 4);
655 }
656
657 static void complete_agent_reset_write_no_wait(struct fw_card *card,
658 int rcode, void *payload, size_t length, void *data)
659 {
660 kfree(data);
661 }
662
663 static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu)
664 {
665 struct fw_device *device = target_parent_device(lu->tgt);
666 struct fw_transaction *t;
667 static __be32 d;
668
669 t = kmalloc(sizeof(*t), GFP_ATOMIC);
670 if (t == NULL)
671 return;
672
673 fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
674 lu->tgt->node_id, lu->generation, device->max_speed,
675 lu->command_block_agent_address + SBP2_AGENT_RESET,
676 &d, 4, complete_agent_reset_write_no_wait, t);
677 }
678
679 static inline void sbp2_allow_block(struct sbp2_target *tgt)
680 {
681 spin_lock_irq(&tgt->lock);
682 --tgt->dont_block;
683 spin_unlock_irq(&tgt->lock);
684 }
685
686 /*
687 * Blocks lu->tgt if all of the following conditions are met:
688 * - Login, INQUIRY, and high-level SCSI setup of all of the target's
689 * logical units have been finished (indicated by dont_block == 0).
690 * - lu->generation is stale.
691 *
692 * Note, scsi_block_requests() must be called while holding tgt->lock,
693 * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to
694 * unblock the target.
695 */
696 static void sbp2_conditionally_block(struct sbp2_logical_unit *lu)
697 {
698 struct sbp2_target *tgt = lu->tgt;
699 struct fw_card *card = target_parent_device(tgt)->card;
700 struct Scsi_Host *shost =
701 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
702 unsigned long flags;
703
704 spin_lock_irqsave(&tgt->lock, flags);
705 if (!tgt->dont_block && !lu->blocked &&
706 lu->generation != card->generation) {
707 lu->blocked = true;
708 if (++tgt->blocked == 1)
709 scsi_block_requests(shost);
710 }
711 spin_unlock_irqrestore(&tgt->lock, flags);
712 }
713
714 /*
715 * Unblocks lu->tgt as soon as all its logical units can be unblocked.
716 * Note, it is harmless to run scsi_unblock_requests() outside the
717 * tgt->lock protected section. On the other hand, running it inside
718 * the section might clash with shost->host_lock.
719 */
720 static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu)
721 {
722 struct sbp2_target *tgt = lu->tgt;
723 struct fw_card *card = target_parent_device(tgt)->card;
724 struct Scsi_Host *shost =
725 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
726 bool unblock = false;
727
728 spin_lock_irq(&tgt->lock);
729 if (lu->blocked && lu->generation == card->generation) {
730 lu->blocked = false;
731 unblock = --tgt->blocked == 0;
732 }
733 spin_unlock_irq(&tgt->lock);
734
735 if (unblock)
736 scsi_unblock_requests(shost);
737 }
738
739 /*
740 * Prevents future blocking of tgt and unblocks it.
741 * Note, it is harmless to run scsi_unblock_requests() outside the
742 * tgt->lock protected section. On the other hand, running it inside
743 * the section might clash with shost->host_lock.
744 */
745 static void sbp2_unblock(struct sbp2_target *tgt)
746 {
747 struct Scsi_Host *shost =
748 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
749
750 spin_lock_irq(&tgt->lock);
751 ++tgt->dont_block;
752 spin_unlock_irq(&tgt->lock);
753
754 scsi_unblock_requests(shost);
755 }
756
757 static int sbp2_lun2int(u16 lun)
758 {
759 struct scsi_lun eight_bytes_lun;
760
761 memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
762 eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff;
763 eight_bytes_lun.scsi_lun[1] = lun & 0xff;
764
765 return scsilun_to_int(&eight_bytes_lun);
766 }
767
768 /*
769 * Write retransmit retry values into the BUSY_TIMEOUT register.
770 * - The single-phase retry protocol is supported by all SBP-2 devices, but the
771 * default retry_limit value is 0 (i.e. never retry transmission). We write a
772 * saner value after logging into the device.
773 * - The dual-phase retry protocol is optional to implement, and if not
774 * supported, writes to the dual-phase portion of the register will be
775 * ignored. We try to write the original 1394-1995 default here.
776 * - In the case of devices that are also SBP-3-compliant, all writes are
777 * ignored, as the register is read-only, but contains single-phase retry of
778 * 15, which is what we're trying to set for all SBP-2 device anyway, so this
779 * write attempt is safe and yields more consistent behavior for all devices.
780 *
781 * See section 8.3.2.3.5 of the 1394-1995 spec, section 6.2 of the SBP-2 spec,
782 * and section 6.4 of the SBP-3 spec for further details.
783 */
784 static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu)
785 {
786 struct fw_device *device = target_parent_device(lu->tgt);
787 __be32 d = cpu_to_be32(SBP2_CYCLE_LIMIT | SBP2_RETRY_LIMIT);
788
789 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
790 lu->tgt->node_id, lu->generation, device->max_speed,
791 CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT, &d, 4);
792 }
793
794 static void sbp2_reconnect(struct work_struct *work);
795
796 static void sbp2_login(struct work_struct *work)
797 {
798 struct sbp2_logical_unit *lu =
799 container_of(work, struct sbp2_logical_unit, work.work);
800 struct sbp2_target *tgt = lu->tgt;
801 struct fw_device *device = target_parent_device(tgt);
802 struct Scsi_Host *shost;
803 struct scsi_device *sdev;
804 struct sbp2_login_response response;
805 int generation, node_id, local_node_id;
806
807 if (fw_device_is_shutdown(device))
808 return;
809
810 generation = device->generation;
811 smp_rmb(); /* node IDs must not be older than generation */
812 node_id = device->node_id;
813 local_node_id = device->card->node_id;
814
815 /* If this is a re-login attempt, log out, or we might be rejected. */
816 if (lu->has_sdev)
817 sbp2_send_management_orb(lu, device->node_id, generation,
818 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
819
820 if (sbp2_send_management_orb(lu, node_id, generation,
821 SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
822 if (lu->retries++ < 5) {
823 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
824 } else {
825 dev_err(tgt_dev(tgt), "failed to login to LUN %04x\n",
826 lu->lun);
827 /* Let any waiting I/O fail from now on. */
828 sbp2_unblock(lu->tgt);
829 }
830 return;
831 }
832
833 tgt->node_id = node_id;
834 tgt->address_high = local_node_id << 16;
835 smp_wmb(); /* node IDs must not be older than generation */
836 lu->generation = generation;
837
838 lu->command_block_agent_address =
839 ((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff)
840 << 32) | be32_to_cpu(response.command_block_agent.low);
841 lu->login_id = be32_to_cpu(response.misc) & 0xffff;
842
843 dev_notice(tgt_dev(tgt), "logged in to LUN %04x (%d retries)\n",
844 lu->lun, lu->retries);
845
846 /* set appropriate retry limit(s) in BUSY_TIMEOUT register */
847 sbp2_set_busy_timeout(lu);
848
849 lu->workfn = sbp2_reconnect;
850 sbp2_agent_reset(lu);
851
852 /* This was a re-login. */
853 if (lu->has_sdev) {
854 sbp2_cancel_orbs(lu);
855 sbp2_conditionally_unblock(lu);
856
857 return;
858 }
859
860 if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
861 ssleep(SBP2_INQUIRY_DELAY);
862
863 shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
864 sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu);
865 /*
866 * FIXME: We are unable to perform reconnects while in sbp2_login().
867 * Therefore __scsi_add_device() will get into trouble if a bus reset
868 * happens in parallel. It will either fail or leave us with an
869 * unusable sdev. As a workaround we check for this and retry the
870 * whole login and SCSI probing.
871 */
872
873 /* Reported error during __scsi_add_device() */
874 if (IS_ERR(sdev))
875 goto out_logout_login;
876
877 /* Unreported error during __scsi_add_device() */
878 smp_rmb(); /* get current card generation */
879 if (generation != device->card->generation) {
880 scsi_remove_device(sdev);
881 scsi_device_put(sdev);
882 goto out_logout_login;
883 }
884
885 /* No error during __scsi_add_device() */
886 lu->has_sdev = true;
887 scsi_device_put(sdev);
888 sbp2_allow_block(tgt);
889
890 return;
891
892 out_logout_login:
893 smp_rmb(); /* generation may have changed */
894 generation = device->generation;
895 smp_rmb(); /* node_id must not be older than generation */
896
897 sbp2_send_management_orb(lu, device->node_id, generation,
898 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
899 /*
900 * If a bus reset happened, sbp2_update will have requeued
901 * lu->work already. Reset the work from reconnect to login.
902 */
903 lu->workfn = sbp2_login;
904 }
905
906 static void sbp2_reconnect(struct work_struct *work)
907 {
908 struct sbp2_logical_unit *lu =
909 container_of(work, struct sbp2_logical_unit, work.work);
910 struct sbp2_target *tgt = lu->tgt;
911 struct fw_device *device = target_parent_device(tgt);
912 int generation, node_id, local_node_id;
913
914 if (fw_device_is_shutdown(device))
915 return;
916
917 generation = device->generation;
918 smp_rmb(); /* node IDs must not be older than generation */
919 node_id = device->node_id;
920 local_node_id = device->card->node_id;
921
922 if (sbp2_send_management_orb(lu, node_id, generation,
923 SBP2_RECONNECT_REQUEST,
924 lu->login_id, NULL) < 0) {
925 /*
926 * If reconnect was impossible even though we are in the
927 * current generation, fall back and try to log in again.
928 *
929 * We could check for "Function rejected" status, but
930 * looking at the bus generation as simpler and more general.
931 */
932 smp_rmb(); /* get current card generation */
933 if (generation == device->card->generation ||
934 lu->retries++ >= 5) {
935 dev_err(tgt_dev(tgt), "failed to reconnect\n");
936 lu->retries = 0;
937 lu->workfn = sbp2_login;
938 }
939 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
940
941 return;
942 }
943
944 tgt->node_id = node_id;
945 tgt->address_high = local_node_id << 16;
946 smp_wmb(); /* node IDs must not be older than generation */
947 lu->generation = generation;
948
949 dev_notice(tgt_dev(tgt), "reconnected to LUN %04x (%d retries)\n",
950 lu->lun, lu->retries);
951
952 sbp2_agent_reset(lu);
953 sbp2_cancel_orbs(lu);
954 sbp2_conditionally_unblock(lu);
955 }
956
957 static void sbp2_lu_workfn(struct work_struct *work)
958 {
959 struct sbp2_logical_unit *lu = container_of(to_delayed_work(work),
960 struct sbp2_logical_unit, work);
961 lu->workfn(work);
962 }
963
964 static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
965 {
966 struct sbp2_logical_unit *lu;
967
968 lu = kmalloc(sizeof(*lu), GFP_KERNEL);
969 if (!lu)
970 return -ENOMEM;
971
972 lu->address_handler.length = 0x100;
973 lu->address_handler.address_callback = sbp2_status_write;
974 lu->address_handler.callback_data = lu;
975
976 if (fw_core_add_address_handler(&lu->address_handler,
977 &fw_high_memory_region) < 0) {
978 kfree(lu);
979 return -ENOMEM;
980 }
981
982 lu->tgt = tgt;
983 lu->lun = lun_entry & 0xffff;
984 lu->login_id = INVALID_LOGIN_ID;
985 lu->retries = 0;
986 lu->has_sdev = false;
987 lu->blocked = false;
988 ++tgt->dont_block;
989 INIT_LIST_HEAD(&lu->orb_list);
990 lu->workfn = sbp2_login;
991 INIT_DELAYED_WORK(&lu->work, sbp2_lu_workfn);
992
993 list_add_tail(&lu->link, &tgt->lu_list);
994 return 0;
995 }
996
997 static void sbp2_get_unit_unique_id(struct sbp2_target *tgt,
998 const u32 *leaf)
999 {
1000 if ((leaf[0] & 0xffff0000) == 0x00020000)
1001 tgt->guid = (u64)leaf[1] << 32 | leaf[2];
1002 }
1003
1004 static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt,
1005 const u32 *directory)
1006 {
1007 struct fw_csr_iterator ci;
1008 int key, value;
1009
1010 fw_csr_iterator_init(&ci, directory);
1011 while (fw_csr_iterator_next(&ci, &key, &value))
1012 if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
1013 sbp2_add_logical_unit(tgt, value) < 0)
1014 return -ENOMEM;
1015 return 0;
1016 }
1017
1018 static int sbp2_scan_unit_dir(struct sbp2_target *tgt, const u32 *directory,
1019 u32 *model, u32 *firmware_revision)
1020 {
1021 struct fw_csr_iterator ci;
1022 int key, value;
1023
1024 fw_csr_iterator_init(&ci, directory);
1025 while (fw_csr_iterator_next(&ci, &key, &value)) {
1026 switch (key) {
1027
1028 case CSR_DEPENDENT_INFO | CSR_OFFSET:
1029 tgt->management_agent_address =
1030 CSR_REGISTER_BASE + 4 * value;
1031 break;
1032
1033 case CSR_DIRECTORY_ID:
1034 tgt->directory_id = value;
1035 break;
1036
1037 case CSR_MODEL:
1038 *model = value;
1039 break;
1040
1041 case SBP2_CSR_FIRMWARE_REVISION:
1042 *firmware_revision = value;
1043 break;
1044
1045 case SBP2_CSR_UNIT_CHARACTERISTICS:
1046 /* the timeout value is stored in 500ms units */
1047 tgt->mgt_orb_timeout = (value >> 8 & 0xff) * 500;
1048 break;
1049
1050 case SBP2_CSR_LOGICAL_UNIT_NUMBER:
1051 if (sbp2_add_logical_unit(tgt, value) < 0)
1052 return -ENOMEM;
1053 break;
1054
1055 case SBP2_CSR_UNIT_UNIQUE_ID:
1056 sbp2_get_unit_unique_id(tgt, ci.p - 1 + value);
1057 break;
1058
1059 case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
1060 /* Adjust for the increment in the iterator */
1061 if (sbp2_scan_logical_unit_dir(tgt, ci.p - 1 + value) < 0)
1062 return -ENOMEM;
1063 break;
1064 }
1065 }
1066 return 0;
1067 }
1068
1069 /*
1070 * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
1071 * provided in the config rom. Most devices do provide a value, which
1072 * we'll use for login management orbs, but with some sane limits.
1073 */
1074 static void sbp2_clamp_management_orb_timeout(struct sbp2_target *tgt)
1075 {
1076 unsigned int timeout = tgt->mgt_orb_timeout;
1077
1078 if (timeout > 40000)
1079 dev_notice(tgt_dev(tgt), "%ds mgt_ORB_timeout limited to 40s\n",
1080 timeout / 1000);
1081
1082 tgt->mgt_orb_timeout = clamp_val(timeout, 5000, 40000);
1083 }
1084
1085 static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
1086 u32 firmware_revision)
1087 {
1088 int i;
1089 unsigned int w = sbp2_param_workarounds;
1090
1091 if (w)
1092 dev_notice(tgt_dev(tgt),
1093 "Please notify linux1394-devel@lists.sf.net "
1094 "if you need the workarounds parameter\n");
1095
1096 if (w & SBP2_WORKAROUND_OVERRIDE)
1097 goto out;
1098
1099 for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1100
1101 if (sbp2_workarounds_table[i].firmware_revision !=
1102 (firmware_revision & 0xffffff00))
1103 continue;
1104
1105 if (sbp2_workarounds_table[i].model != model &&
1106 sbp2_workarounds_table[i].model != SBP2_ROM_VALUE_WILDCARD)
1107 continue;
1108
1109 w |= sbp2_workarounds_table[i].workarounds;
1110 break;
1111 }
1112 out:
1113 if (w)
1114 dev_notice(tgt_dev(tgt), "workarounds 0x%x "
1115 "(firmware_revision 0x%06x, model_id 0x%06x)\n",
1116 w, firmware_revision, model);
1117 tgt->workarounds = w;
1118 }
1119
1120 static const struct scsi_host_template scsi_driver_template;
1121 static void sbp2_remove(struct fw_unit *unit);
1122
1123 static int sbp2_probe(struct fw_unit *unit, const struct ieee1394_device_id *id)
1124 {
1125 struct fw_device *device = fw_parent_device(unit);
1126 struct sbp2_target *tgt;
1127 struct sbp2_logical_unit *lu;
1128 struct Scsi_Host *shost;
1129 u32 model, firmware_revision;
1130
1131 /* cannot (or should not) handle targets on the local node */
1132 if (device->is_local)
1133 return -ENODEV;
1134
1135 shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
1136 if (shost == NULL)
1137 return -ENOMEM;
1138
1139 tgt = (struct sbp2_target *)shost->hostdata;
1140 dev_set_drvdata(&unit->device, tgt);
1141 tgt->unit = unit;
1142 INIT_LIST_HEAD(&tgt->lu_list);
1143 spin_lock_init(&tgt->lock);
1144 tgt->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1145
1146 if (fw_device_enable_phys_dma(device) < 0)
1147 goto fail_shost_put;
1148
1149 shost->max_cmd_len = SBP2_MAX_CDB_SIZE;
1150
1151 if (scsi_add_host_with_dma(shost, &unit->device,
1152 device->card->device) < 0)
1153 goto fail_shost_put;
1154
1155 /* implicit directory ID */
1156 tgt->directory_id = ((unit->directory - device->config_rom) * 4
1157 + CSR_CONFIG_ROM) & 0xffffff;
1158
1159 firmware_revision = SBP2_ROM_VALUE_MISSING;
1160 model = SBP2_ROM_VALUE_MISSING;
1161
1162 if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
1163 &firmware_revision) < 0)
1164 goto fail_remove;
1165
1166 sbp2_clamp_management_orb_timeout(tgt);
1167 sbp2_init_workarounds(tgt, model, firmware_revision);
1168
1169 /*
1170 * At S100 we can do 512 bytes per packet, at S200 1024 bytes,
1171 * and so on up to 4096 bytes. The SBP-2 max_payload field
1172 * specifies the max payload size as 2 ^ (max_payload + 2), so
1173 * if we set this to max_speed + 7, we get the right value.
1174 */
1175 tgt->max_payload = min3(device->max_speed + 7, 10U,
1176 device->card->max_receive - 1);
1177
1178 /* Do the login in a workqueue so we can easily reschedule retries. */
1179 list_for_each_entry(lu, &tgt->lu_list, link)
1180 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1181
1182 return 0;
1183
1184 fail_remove:
1185 sbp2_remove(unit);
1186 return -ENOMEM;
1187
1188 fail_shost_put:
1189 scsi_host_put(shost);
1190 return -ENOMEM;
1191 }
1192
1193 static void sbp2_update(struct fw_unit *unit)
1194 {
1195 struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1196 struct sbp2_logical_unit *lu;
1197
1198 fw_device_enable_phys_dma(fw_parent_device(unit));
1199
1200 /*
1201 * Fw-core serializes sbp2_update() against sbp2_remove().
1202 * Iteration over tgt->lu_list is therefore safe here.
1203 */
1204 list_for_each_entry(lu, &tgt->lu_list, link) {
1205 sbp2_conditionally_block(lu);
1206 lu->retries = 0;
1207 sbp2_queue_work(lu, 0);
1208 }
1209 }
1210
1211 static void sbp2_remove(struct fw_unit *unit)
1212 {
1213 struct fw_device *device = fw_parent_device(unit);
1214 struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1215 struct sbp2_logical_unit *lu, *next;
1216 struct Scsi_Host *shost =
1217 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
1218 struct scsi_device *sdev;
1219
1220 /* prevent deadlocks */
1221 sbp2_unblock(tgt);
1222
1223 list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
1224 cancel_delayed_work_sync(&lu->work);
1225 sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun));
1226 if (sdev) {
1227 scsi_remove_device(sdev);
1228 scsi_device_put(sdev);
1229 }
1230 if (lu->login_id != INVALID_LOGIN_ID) {
1231 int generation, node_id;
1232 /*
1233 * tgt->node_id may be obsolete here if we failed
1234 * during initial login or after a bus reset where
1235 * the topology changed.
1236 */
1237 generation = device->generation;
1238 smp_rmb(); /* node_id vs. generation */
1239 node_id = device->node_id;
1240 sbp2_send_management_orb(lu, node_id, generation,
1241 SBP2_LOGOUT_REQUEST,
1242 lu->login_id, NULL);
1243 }
1244 fw_core_remove_address_handler(&lu->address_handler);
1245 list_del(&lu->link);
1246 kfree(lu);
1247 }
1248 scsi_remove_host(shost);
1249 dev_notice(&unit->device, "released target %d:0:0\n", shost->host_no);
1250
1251 scsi_host_put(shost);
1252 }
1253
1254 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
1255 #define SBP2_SW_VERSION_ENTRY 0x00010483
1256
1257 static const struct ieee1394_device_id sbp2_id_table[] = {
1258 {
1259 .match_flags = IEEE1394_MATCH_SPECIFIER_ID |
1260 IEEE1394_MATCH_VERSION,
1261 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
1262 .version = SBP2_SW_VERSION_ENTRY,
1263 },
1264 { }
1265 };
1266
1267 static struct fw_driver sbp2_driver = {
1268 .driver = {
1269 .owner = THIS_MODULE,
1270 .name = KBUILD_MODNAME,
1271 .bus = &fw_bus_type,
1272 },
1273 .probe = sbp2_probe,
1274 .update = sbp2_update,
1275 .remove = sbp2_remove,
1276 .id_table = sbp2_id_table,
1277 };
1278
1279 static void sbp2_unmap_scatterlist(struct device *card_device,
1280 struct sbp2_command_orb *orb)
1281 {
1282 scsi_dma_unmap(orb->cmd);
1283
1284 if (orb->request.misc & cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT))
1285 dma_unmap_single(card_device, orb->page_table_bus,
1286 sizeof(orb->page_table), DMA_TO_DEVICE);
1287 }
1288
1289 static unsigned int sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
1290 {
1291 int sam_status;
1292 int sfmt = (sbp2_status[0] >> 6) & 0x03;
1293
1294 if (sfmt == 2 || sfmt == 3) {
1295 /*
1296 * Reserved for future standardization (2) or
1297 * Status block format vendor-dependent (3)
1298 */
1299 return DID_ERROR << 16;
1300 }
1301
1302 sense_data[0] = 0x70 | sfmt | (sbp2_status[1] & 0x80);
1303 sense_data[1] = 0x0;
1304 sense_data[2] = ((sbp2_status[1] << 1) & 0xe0) | (sbp2_status[1] & 0x0f);
1305 sense_data[3] = sbp2_status[4];
1306 sense_data[4] = sbp2_status[5];
1307 sense_data[5] = sbp2_status[6];
1308 sense_data[6] = sbp2_status[7];
1309 sense_data[7] = 10;
1310 sense_data[8] = sbp2_status[8];
1311 sense_data[9] = sbp2_status[9];
1312 sense_data[10] = sbp2_status[10];
1313 sense_data[11] = sbp2_status[11];
1314 sense_data[12] = sbp2_status[2];
1315 sense_data[13] = sbp2_status[3];
1316 sense_data[14] = sbp2_status[12];
1317 sense_data[15] = sbp2_status[13];
1318
1319 sam_status = sbp2_status[0] & 0x3f;
1320
1321 switch (sam_status) {
1322 case SAM_STAT_GOOD:
1323 case SAM_STAT_CHECK_CONDITION:
1324 case SAM_STAT_CONDITION_MET:
1325 case SAM_STAT_BUSY:
1326 case SAM_STAT_RESERVATION_CONFLICT:
1327 case SAM_STAT_COMMAND_TERMINATED:
1328 return DID_OK << 16 | sam_status;
1329
1330 default:
1331 return DID_ERROR << 16;
1332 }
1333 }
1334
1335 static void complete_command_orb(struct sbp2_orb *base_orb,
1336 struct sbp2_status *status)
1337 {
1338 struct sbp2_command_orb *orb =
1339 container_of(base_orb, struct sbp2_command_orb, base);
1340 struct fw_device *device = target_parent_device(base_orb->lu->tgt);
1341 int result;
1342
1343 if (status != NULL) {
1344 if (STATUS_GET_DEAD(*status))
1345 sbp2_agent_reset_no_wait(base_orb->lu);
1346
1347 switch (STATUS_GET_RESPONSE(*status)) {
1348 case SBP2_STATUS_REQUEST_COMPLETE:
1349 result = DID_OK << 16;
1350 break;
1351 case SBP2_STATUS_TRANSPORT_FAILURE:
1352 result = DID_BUS_BUSY << 16;
1353 break;
1354 case SBP2_STATUS_ILLEGAL_REQUEST:
1355 case SBP2_STATUS_VENDOR_DEPENDENT:
1356 default:
1357 result = DID_ERROR << 16;
1358 break;
1359 }
1360
1361 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1362 result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1363 orb->cmd->sense_buffer);
1364 } else {
1365 /*
1366 * If the orb completes with status == NULL, something
1367 * went wrong, typically a bus reset happened mid-orb
1368 * or when sending the write (less likely).
1369 */
1370 result = DID_BUS_BUSY << 16;
1371 sbp2_conditionally_block(base_orb->lu);
1372 }
1373
1374 dma_unmap_single(device->card->device, orb->base.request_bus,
1375 sizeof(orb->request), DMA_TO_DEVICE);
1376 sbp2_unmap_scatterlist(device->card->device, orb);
1377
1378 orb->cmd->result = result;
1379 scsi_done(orb->cmd);
1380 }
1381
1382 static int sbp2_map_scatterlist(struct sbp2_command_orb *orb,
1383 struct fw_device *device, struct sbp2_logical_unit *lu)
1384 {
1385 struct scatterlist *sg = scsi_sglist(orb->cmd);
1386 int i, n;
1387
1388 n = scsi_dma_map(orb->cmd);
1389 if (n <= 0)
1390 goto fail;
1391
1392 /*
1393 * Handle the special case where there is only one element in
1394 * the scatter list by converting it to an immediate block
1395 * request. This is also a workaround for broken devices such
1396 * as the second generation iPod which doesn't support page
1397 * tables.
1398 */
1399 if (n == 1) {
1400 orb->request.data_descriptor.high =
1401 cpu_to_be32(lu->tgt->address_high);
1402 orb->request.data_descriptor.low =
1403 cpu_to_be32(sg_dma_address(sg));
1404 orb->request.misc |=
1405 cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg)));
1406 return 0;
1407 }
1408
1409 for_each_sg(sg, sg, n, i) {
1410 orb->page_table[i].high = cpu_to_be32(sg_dma_len(sg) << 16);
1411 orb->page_table[i].low = cpu_to_be32(sg_dma_address(sg));
1412 }
1413
1414 orb->page_table_bus =
1415 dma_map_single(device->card->device, orb->page_table,
1416 sizeof(orb->page_table), DMA_TO_DEVICE);
1417 if (dma_mapping_error(device->card->device, orb->page_table_bus))
1418 goto fail_page_table;
1419
1420 /*
1421 * The data_descriptor pointer is the one case where we need
1422 * to fill in the node ID part of the address. All other
1423 * pointers assume that the data referenced reside on the
1424 * initiator (i.e. us), but data_descriptor can refer to data
1425 * on other nodes so we need to put our ID in descriptor.high.
1426 */
1427 orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high);
1428 orb->request.data_descriptor.low = cpu_to_be32(orb->page_table_bus);
1429 orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT |
1430 COMMAND_ORB_DATA_SIZE(n));
1431
1432 return 0;
1433
1434 fail_page_table:
1435 scsi_dma_unmap(orb->cmd);
1436 fail:
1437 return -ENOMEM;
1438 }
1439
1440 /* SCSI stack integration */
1441
1442 static int sbp2_scsi_queuecommand(struct Scsi_Host *shost,
1443 struct scsi_cmnd *cmd)
1444 {
1445 struct sbp2_logical_unit *lu = cmd->device->hostdata;
1446 struct fw_device *device = target_parent_device(lu->tgt);
1447 struct sbp2_command_orb *orb;
1448 int generation, retval = SCSI_MLQUEUE_HOST_BUSY;
1449
1450 orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1451 if (orb == NULL)
1452 return SCSI_MLQUEUE_HOST_BUSY;
1453
1454 /* Initialize rcode to something not RCODE_COMPLETE. */
1455 orb->base.rcode = -1;
1456 kref_init(&orb->base.kref);
1457 orb->cmd = cmd;
1458 orb->request.next.high = cpu_to_be32(SBP2_ORB_NULL);
1459 orb->request.misc = cpu_to_be32(
1460 COMMAND_ORB_MAX_PAYLOAD(lu->tgt->max_payload) |
1461 COMMAND_ORB_SPEED(device->max_speed) |
1462 COMMAND_ORB_NOTIFY);
1463
1464 if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1465 orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION);
1466
1467 generation = device->generation;
1468 smp_rmb(); /* sbp2_map_scatterlist looks at tgt->address_high */
1469
1470 if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1471 goto out;
1472
1473 memcpy(orb->request.command_block, cmd->cmnd, cmd->cmd_len);
1474
1475 orb->base.callback = complete_command_orb;
1476 orb->base.request_bus =
1477 dma_map_single(device->card->device, &orb->request,
1478 sizeof(orb->request), DMA_TO_DEVICE);
1479 if (dma_mapping_error(device->card->device, orb->base.request_bus)) {
1480 sbp2_unmap_scatterlist(device->card->device, orb);
1481 goto out;
1482 }
1483
1484 sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, generation,
1485 lu->command_block_agent_address + SBP2_ORB_POINTER);
1486 retval = 0;
1487 out:
1488 kref_put(&orb->base.kref, free_orb);
1489 return retval;
1490 }
1491
1492 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1493 {
1494 struct sbp2_logical_unit *lu = sdev->hostdata;
1495
1496 /* (Re-)Adding logical units via the SCSI stack is not supported. */
1497 if (!lu)
1498 return -ENOSYS;
1499
1500 sdev->allow_restart = 1;
1501
1502 /*
1503 * SBP-2 does not require any alignment, but we set it anyway
1504 * for compatibility with earlier versions of this driver.
1505 */
1506 blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1);
1507
1508 if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1509 sdev->inquiry_len = 36;
1510
1511 return 0;
1512 }
1513
1514 static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1515 {
1516 struct sbp2_logical_unit *lu = sdev->hostdata;
1517
1518 sdev->use_10_for_rw = 1;
1519
1520 if (sbp2_param_exclusive_login)
1521 sdev->manage_start_stop = 1;
1522
1523 if (sdev->type == TYPE_ROM)
1524 sdev->use_10_for_ms = 1;
1525
1526 if (sdev->type == TYPE_DISK &&
1527 lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1528 sdev->skip_ms_page_8 = 1;
1529
1530 if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1531 sdev->fix_capacity = 1;
1532
1533 if (lu->tgt->workarounds & SBP2_WORKAROUND_POWER_CONDITION)
1534 sdev->start_stop_pwr_cond = 1;
1535
1536 if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1537 blk_queue_max_hw_sectors(sdev->request_queue, 128 * 1024 / 512);
1538
1539 return 0;
1540 }
1541
1542 /*
1543 * Called by scsi stack when something has really gone wrong. Usually
1544 * called when a command has timed-out for some reason.
1545 */
1546 static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1547 {
1548 struct sbp2_logical_unit *lu = cmd->device->hostdata;
1549
1550 dev_notice(lu_dev(lu), "sbp2_scsi_abort\n");
1551 sbp2_agent_reset(lu);
1552 sbp2_cancel_orbs(lu);
1553
1554 return SUCCESS;
1555 }
1556
1557 /*
1558 * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1559 * u64 EUI-64 : u24 directory_ID : u16 LUN (all printed in hexadecimal)
1560 *
1561 * This is the concatenation of target port identifier and logical unit
1562 * identifier as per SAM-2...SAM-4 annex A.
1563 */
1564 static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev,
1565 struct device_attribute *attr, char *buf)
1566 {
1567 struct scsi_device *sdev = to_scsi_device(dev);
1568 struct sbp2_logical_unit *lu;
1569
1570 if (!sdev)
1571 return 0;
1572
1573 lu = sdev->hostdata;
1574
1575 return sprintf(buf, "%016llx:%06x:%04x\n",
1576 (unsigned long long)lu->tgt->guid,
1577 lu->tgt->directory_id, lu->lun);
1578 }
1579
1580 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1581
1582 static struct attribute *sbp2_scsi_sysfs_attrs[] = {
1583 &dev_attr_ieee1394_id.attr,
1584 NULL
1585 };
1586
1587 ATTRIBUTE_GROUPS(sbp2_scsi_sysfs);
1588
1589 static const struct scsi_host_template scsi_driver_template = {
1590 .module = THIS_MODULE,
1591 .name = "SBP-2 IEEE-1394",
1592 .proc_name = "sbp2",
1593 .queuecommand = sbp2_scsi_queuecommand,
1594 .slave_alloc = sbp2_scsi_slave_alloc,
1595 .slave_configure = sbp2_scsi_slave_configure,
1596 .eh_abort_handler = sbp2_scsi_abort,
1597 .this_id = -1,
1598 .sg_tablesize = SG_ALL,
1599 .max_segment_size = SBP2_MAX_SEG_SIZE,
1600 .can_queue = 1,
1601 .sdev_groups = sbp2_scsi_sysfs_groups,
1602 };
1603
1604 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1605 MODULE_DESCRIPTION("SCSI over IEEE1394");
1606 MODULE_LICENSE("GPL");
1607 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1608
1609 /* Provide a module alias so root-on-sbp2 initrds don't break. */
1610 MODULE_ALIAS("sbp2");
1611
1612 static int __init sbp2_init(void)
1613 {
1614 return driver_register(&sbp2_driver.driver);
1615 }
1616
1617 static void __exit sbp2_cleanup(void)
1618 {
1619 driver_unregister(&sbp2_driver.driver);
1620 }
1621
1622 module_init(sbp2_init);
1623 module_exit(sbp2_cleanup);